
Nonce-encrypting AEAD Modes with Farfalle

Seth Hoffert

Abstract. Nonces are a fact of life for achieving semantic security. Gen-
erating a uniformly random nonce can be costly and may not always be
feasible. Using anything other than uniformly random bits can result
in information leakage; e.g., a timestamp can deanonymize a commu-
nication and a counter can leak the quantity of transmitted messages.
Ideally, we would like to be able to efficiently encrypt the nonce to 1)
avoid needing uniformly random bits and 2) avoid information leakage.
This paper presents two new authenticated encryption modes built on
top of Farfalle [2] that perfectly achieve these goals.

Keywords: farfalle, deck functions, authenticated encryption, wide block
cipher, modes of use, encrypted nonce

1 Introduction

A typical implementation of an AEAD mode tends to use some combination of
a timestamp, a counter and uniform randomness when deriving a nonce. Using
uniform randomness for nonce generation can be expensive on platforms that
have a limited entropy pool, and using anything other than uniform randomness
will inevitably leak information. For example, an observed timestamp can be
enough for an adversary to deanonymize a communication if the sender’s clock
is known to be inexact. Using a counter can also leak information, because it
allows an adversary to observe only two messages at different points in time and
yet still be able to estimate the number of messages that were sent in between
observations.

It would be nice if the nonce could somehow be contained within the plain-
text. At first, this seems like a chicken-and-egg problem: how does one encrypt a
nonce without using another nonce? The answer lies in the Feistel construction.
Remarkably, it is possible to construct an efficient inverse-free mode that is very
similar to Deck-PLAIN [3] and yet encrypts the nonce and redundancy with
negligible additional overhead. We showcase a RUP-resistant variant as well,
suitable for use in e.g., onion routing protocols.

1.1 Contributions

Our main contribution is constructing two efficient authenticated encryption
modes on top of Farfalle [2] that feature nonce and redundancy encryption. The
first mode can be viewed as the encrypted nonce analog of Deck-PLAIN [3], and
the second mode can be viewed as a constrained version of Deck-JAMBOREE [3]
that requires a nonce but still supports RUP, similar to GCM-RUP [1]. Because

both of our modes are built entirely on top of Farfalle [2], no block ciphers are
involved and the inverse direction of the underlying permutation remains unused.
Besides the obvious benefit of elegance from needing only one type of primitive,
this provides a hardware space advantage in ASIC and FPGA designs.

1.2 Conventions

The length in bits of the string X is denoted |X|. The concatenation of two
strings X,Y is denoted as X‖Y and their bitwise addition as X ⊕ Y . Bit string
values are noted with a typewriter font, such as 01101. The repetition of a bit
is noted in exponent, e.g., 03 = 000. Finally, ∅ is the empty set and ⊥ denotes
an error code.

2 Nonce- and redundancy-encrypting AEAD mode

The nonce- and redundancy-encrypting AEAD mode is now presented in its most
general form in algorithm 1.1. The mode is parameterized in terms of the Farfalle
instance F and target security level s. We recommend a target security level of
s = 128 bits. The valid function called by the decryption oracle is expected to
validate the redundancy that is present in PR so that the plaintext can be safely
released.

FKA◦·‖0

FKA◦·‖1

PRPL

CLCR

≥ s bits
Diversifier

≥ 2s bits
Redundancy

© Seth Hoffert https://seth.rocks

Fig. 1: Nonce- and redundancy-encrypting AEAD mode

2.1 Details

This mode is effectively a phase-shifted (and stateless) version of Deck-PLAIN [3].
In the encryption oracle, note that C ∼ PRFK(A,PL). By requiring a nonce in

2

Algorithm 1.1: Nonce- and redundancy-encrypting AEAD mode
Definition : Farfalle instance F
Definition : Security level s = 128 bits

1 function encrypt(key K, metadata A, plaintext (PL, PR)): ciphertext
2 assert (K,A, PL) is a nonce
3 assert |PL| ≥ s
4 assert |PR| ≥ 2s and PR contains valid redundancy
5 CR ← PR ⊕FK(PL‖0 ◦A)
6 CL ← PL ⊕FK(CR‖1 ◦A)
7 return (CL, CR)

8 function decrypt(key K, metadata A, ciphertext (CL, CR)): plaintext or ⊥
9 if |CL| < s or |CR| < 2s then return ⊥

10 PL ← CL ⊕FK(CR‖1 ◦A)
11 PR ← CR ⊕FK(PL‖0 ◦A)
12 if not valid(PR) then return ⊥
13 return (PL, PR)

(K,A, PL), we ensure that C is indistinguishable from random. Likewise, in the
decryption oracle, note that PR ∼ PRFK(A,C). By requiring verifiable redun-
dancy in PR, we ensure that any tampering of (A,C) is detected. Additionally,
note that PL is allowed to contain arbitrary plaintext, as long as (K,A, PL) sat-
isfies the nonce requirement. Once PR reaches the minimum length requirement,
an implementation may choose to fill PL to an entire block to achieve optimal
performance.

Remarkably, the early rejection feature of Deck-PLAIN is retained. By keep-
ing PL short and placing the entirety of the redundancy within the first block
of PR, the decryption oracle can expand just enough bits to decrypt the redun-
dancy and validate it. If valid, then it can expand the remaining bits to decrypt
the rest of CR. Asymptotically, authentication can be performed after a single
read pass, just like in Deck-PLAIN. Because of this feature, the risk of leaking
unverified plaintext is eliminated. Note that a bulk of the ciphertext bits are
produced immediately after compressing PL. This leads to another advantage of
keeping PL short: it allows the encryption oracle to be online.

Because PR ∼ PRFK(A,C), this implies that if the corresponding redun-
dancy bits of C are tampered with, then every bit of decrypted redundancy
is flipped with 50% probability. This allows for the use of a non-constant-time
equality function. Due to the fact that the redundancy is non-malleable, noth-
ing is gleaned from the timing of the comparison during redundancy validation.
Note that if this feature is not needed (i.e., a constant-time equality function is
used), then the compression of the redundancy portion of CR can be skipped on
line 6 of algorithm 1.1. This optimization brings the mode even closer in par-
ity to Deck-PLAIN. For brevity, the modified algorithm is deferred to a future
paper.

3

2.2 Features
– Encrypted nonce and redundancy: both the nonce and redundancy are

encrypted, allowing non-random nonces to be used without risk of informa-
tion leak

– Performance: asymptotically performs only a single read- and write-pass
over the plaintext

– Online encryption: the encryption oracle produces the majority of the
ciphertext bits immediately after compressing the nonce

– Early rejection: by placing the verifiable redundancy at the beginning of
PR, early rejection can be realized

– Timing-insensitive authentication: because the redundancy is non-malleable,
a non-constant-time equality function can be used in function valid

– Optional/static metadata: the metadata string compression can be skipped
if empty; additionally, static metadata can be factored out and reused across
invocations

2.3 Security proof

We defer the security proof to a future revision.

2.4 Application: virtual private network protocol

Consider a virtual private network (VPN) protocol. In such a protocol, many
small packets are exchanged at a high frequency. It would be very costly to
generate a uniformly random nonce per packet for the following reasons:

– Space: to achieve 128 bits of security, we would need a 256-bit nonce due
to birthday bound collisions

– Time: because of the high-frequency nature of the application, the OS en-
tropy pool could become exhausted and block the application until more can
be gathered

Deck-PLAIN allows for a single nonce to be specified per session. However,
because packets can be lost and arrive out-of-order, we cannot use a session-
based mode. Instead, algorithm 1.1 satisfies the requirements perfectly.

We can use a timestamp and counter as the nonce. Because the nonce is part
of the plaintext, no semantic information is leaked. Additionally, such a nonce
requires only half the amount of storage contrasted against a uniformly random
nonce. The timestamp and counter could be trimmed to further reduce the space
requirements.

3 Nonce- and redundancy-encrypting AEAD mode with
RUP resistance

We now present the RUP-resistant mode in algorithm 1.2. Similar to algo-
rithm 1.1, the mode is parameterized in terms of the Farfalle instance F and
target security level s.

4

FKA◦·‖00

FKA◦·‖01

FKA◦·‖10
2s

PRPL

CRCL

≥ 2s bits
Diversifier + redundancy

≥ 2s bits

© Seth Hoffert https://seth.rocks

Fig. 2: Nonce- and redundancy-encrypting AEAD mode with RUP resistance

Algorithm 1.2: Nonce- and redundancy-encrypting AEAD mode with
RUP resistance

Definition : Farfalle instance F
Definition : Security level s = 128 bits

1 function encrypt(key K, metadata A, plaintext (PL, PR)): ciphertext
2 assert (K,A, PL) is a nonce
3 assert |PL| ≥ 2s and PL contains valid redundancy
4 assert |PR| ≥ 2s
5 CR ← PR ⊕FK(PL‖00 ◦A)
6 CL ← PL ⊕FK(CR‖01 ◦A)
7 CR0 ← CR0 ⊕FK(CL‖10 ◦A)
8 return (CL, CR)

9 function decrypt(key K, metadata A, ciphertext (CL, CR)): plaintext or ⊥
10 if |CL| < 2s or |CR| < 2s then return ⊥
11 CR0 ← CR0 ⊕FK(CL‖10 ◦A)
12 PL ← CL ⊕FK(CR‖01 ◦A)
13 if not valid(PL) then return ⊥
14 PR ← CR ⊕FK(PL‖00 ◦A)
15 return (PL, PR)

5

3.1 Details
In algorithm 1.1, note of the decryption oracle that PL is malleable. To achieve
RUP resistance, we need only communicate a digest of CL into CR to ensure
that P ∼ PRFK(A,C). In spite of this additional round, note that a single read-
and write-pass over the plaintext is still achieved by keeping PL short (i.e., one
block maximum).

Note that it is important that the verifiable redundancy be placed in PL. If
no redundancy is present in PL and the adversary is able to observe unverified
plaintext from the decryption oracle, keystream can be harvested for the ob-
served nonce in PL. Although PL is non-malleable, if the nonces are short then
keystream harvesting could become feasible. By placing s bits of redundancy in
PL, the adversary would need to perform on average 2s−1 decryption queries to
obtain a PL that would even be considered valid by the encryption oracle.

A benefit of having both the nonce and redundancy reside in non-malleable
PL is that they are treated on equal footing. For example, if a timestamp com-
prises the nonce, then an implementation can validate the timestamp against
a fixed time window. With a 64-bit timestamp and an allowed time window of
256 seconds, 64 − log2 256 = 56 bits of authenticity is already achieved. This
saves space in the plaintext by reducing the need for separate redundancy. Addi-
tionally, an application that uses ephemeral keys with a metadata-based counter
(e.g., onion routing) need not place any additional nonce value in PL. Instead,
PL can be a block of plaintext.

3.2 Features
– Encrypted nonce and redundancy: both the nonce and redundancy are

encrypted, allowing non-random nonces to be used without risk of informa-
tion leak

– Performance: asymptotically performs only a single read- and write-pass
over the plaintext

– Online encryption: the encryption oracle produces the majority of the
ciphertext bits immediately after compressing the nonce

– Early rejection: by placing the verifiable redundancy at the beginning of
PL, early rejection can be realized

– Timing-insensitive authentication: because the redundancy is non-malleable,
a non-constant-time equality function can be used in function valid

– Optional/static metadata: the metadata string compression can be skipped
if empty; additionally, static metadata can be factored out and reused across
invocations

– RUP resistance: this mode can be used in onion routing protocols thanks
to its RUP resistance

– Combined nonce and redundancy: nonces can be used as verifiable re-
dundancy, resulting in a space savings in the plaintext

3.3 Security proof
We defer the security proof to a future revision.

6

3.4 Application: onion routing protocol

Consider an onion routing protocol. At a high level, such a protocol recursively
applies the cryptographic algorithm to a payload that is passed between nodes.
Such a protocol demands two important properties:

– RUP resistance: because intermediate nodes decrypt the payload and po-
tentially pass along the results to the next node, the cryptographic algorithm
needs to be resistant to RUP

– Length preserving: because the cryptographic algorithm is applied re-
cursively, the payload length must be preserved to avoid leaking semantic
information about number of layers

Deck-PLAIN is ruled out immediately since it incurs a per-encryption expan-
sion due to explicit redundancy. Algorithm 1.1 does not quite fit the bill either
because of its lack of RUP resistance. Algorithm 1.2 is exactly what we need.

In order to prevent keystream harvesting, the client encryption oracle ac-
cepts only plaintexts that contain valid redundancy and its decryption oracle
releases only plaintexts that contain valid redundancy. These validations prevent
keystream harvesting while also allowing the non-client nodes to freely encrypt,
decrypt and release payloads that are ultimately invalid.

Note specifically that no constraints are placed on the exit node’s oracles:
a malicious exit node can freely encrypt, decrypt and release invalid plaintext
without causing any issues. Because of the RUP resistance, the decrypted plain-
text is non-malleable and tagging attacks are not possible.

4 Session support

In the interest of conciseness of description, neither of the presented modes has
native session support. One could implement session-based versions of both of the
presented algorithms simply by keeping an incremental history. Implementing
this feature is deferred to a future paper.

5 Conclusions

The presented modes are a testament to Farfalle’s flexibility and power. Algo-
rithm 1.1 can be viewed as an enhanced Deck-PLAIN [3], and algorithm 1.2
is ideal for situations when RUP is needed (e.g., onion routing). Both modes
achieve the encrypted nonce goal and are efficient, asymptotically requiring only
a single read- and write-pass over the plaintext.

References

1. Ashur, T., Dunkelman, O., Luykx, A.: Boosting authenticated encryption robustness
with minimal modifications. Cryptology ePrint Archive, Paper 2017/239 (2017),
https://eprint.iacr.org/2017/239, https://eprint.iacr.org/2017/239

7

https://eprint.iacr.org/2017/239
https://eprint.iacr.org/2017/239

2. Bertoni, G., Daemen, J., Hoffert, S., Peeters, M., Van Assche, G., Van Keer, R.:
Farfalle: parallel permutation-based cryptography. IACR Trans. Symmetric Cryptol.
2017(4), 1–38 (2017)

3. Băcuieți, N., Daemen, J., Hoffert, S., Assche, G.V., Keer, R.V.: Jammin’ on the
deck. Cryptology ePrint Archive, Paper 2022/531 (2022), https://eprint.iacr.
org/2022/531, https://eprint.iacr.org/2022/531

8

https://eprint.iacr.org/2022/531
https://eprint.iacr.org/2022/531
https://eprint.iacr.org/2022/531

	Nonce-encrypting AEAD Modes with Farfalle
	Introduction
	Contributions
	Conventions

	Nonce- and redundancy-encrypting AEAD mode
	Details
	Features
	Security proof
	Application: virtual private network protocol

	Nonce- and redundancy-encrypting AEAD mode with RUP resistance
	Details
	Features
	Security proof
	Application: onion routing protocol

	Session support
	Conclusions

