
Nonce-encrypting AEAD Modes with Farfalle

Seth Hoffert

Abstract. Nonces are a fact of life for achieving semantic security. Gen-
erating a uniformly random nonce can be costly and may not always be
feasible. Using anything other than uniformly random bits can result
in information leakage; e.g., a timestamp can deanonymize a commu-
nication and a counter can leak the quantity of transmitted messages.
Ideally, we would like to be able to efficiently encrypt the nonce to 1)
avoid needing uniformly random bits and 2) avoid information leakage.
This paper presents two new authenticated encryption modes built on
top of Farfalle [2] that perfectly achieve these goals.

Keywords: farfalle, deck functions, authenticated encryption, wide block
cipher, modes of use, encrypted nonce, onion AE

1 Introduction

A typical implementation of an AEAD mode tends to use some combination of
a timestamp, a counter and uniform randomness when deriving a nonce. Using
uniform randomness for nonce generation can be expensive on platforms that
have a limited entropy pool, and using anything other than uniform randomness
will inevitably leak information. For example, an observed timestamp can be
enough for an adversary to deanonymize a communication if the sender’s clock
is known to be inexact. Using a counter can also leak information, because it
allows an adversary to observe only two messages at different points in time and
yet still be able to estimate the number of messages that were sent in between
observations.

It would be nice if the nonce could somehow be contained within the plain-
text. At first, this seems like a chicken-and-egg problem: how does one encrypt a
nonce without using another nonce? The answer lies in the Feistel construction.
Remarkably, it is possible to construct an efficient inverse-free mode that is very
similar to Deck-PLAIN [3] and yet encrypts the nonce and redundancy with neg-
ligible additional overhead. We showcase a RUP-resistant variant as well, geared
towards onion AE protocols.

1.1 Contributions

Our main contribution is constructing two efficient authenticated encryption
modes on top of Farfalle [2] that feature nonce and redundancy encryption. The
first mode can be viewed as the encrypted nonce analog of Deck-PLAIN [3], and
the second mode can be viewed as a constrained version of Deck-JAMBOREE [3]
that requires a nonce but still supports RUP, similar to GCM-RUP [1]. Because

both of our modes are built entirely on top of Farfalle [2], no block ciphers are
involved and the inverse direction of the underlying permutation remains unused.
Besides the obvious benefit of elegance from needing only one type of primitive,
this provides a hardware space advantage in ASIC and FPGA designs.

1.2 Conventions

The length in bits of the string X is denoted |X|. The concatenation of two
strings X,Y is denoted as X‖Y and their bitwise addition as X ⊕ Y . Bit string
values are noted with a typewriter font, such as 01101. The repetition of a bit
is noted in exponent, e.g., 03 = 000. Finally, ∅ is the empty set and ⊥ denotes
an error code.

2 Constrained wide block cipher

We first present a constrained wide block cipher in algorithm 1.1, parameter-
ized in terms of the Farfalle instance F . A concrete nonce- and redundancy-
encrypting AEAD mode is then presented in algorithm 1.2.

FKW◦·‖0

FKW◦·‖1

PRPL

CLCR

Nonce (K, W, PL)

Nonce (K, W, CR)

© Seth Hoffert https://seth.rocks

Fig. 1: Constrained wide block cipher

2.1 Details

We call the wide block cipher in algorithm 1.1 constrained because it is effec-
tively a four-round Feistel network but with the outer two rounds removed. By
removing the outer rounds, a nonce requirement is imposed in both (K,W,PL)
and (K,W,CR). At first, these nonce constraints may seem unreasonable, as they
would seem to require keeping track of all inputs that have been seen. However,

2

Algorithm 1.1: Constrained wide block cipher
Definition : Farfalle instance F

1 function encrypt(key K, tweak W , plaintext (PL, PR)): ciphertext or ⊥
2 if (K,W,PL) is not a nonce WRT PR then return ⊥
3 CR ← PR ⊕FK(PL‖0 ◦W)
4 CL ← PL ⊕FK(CR‖1 ◦W)
5 if (K,W,CR) is not a nonce WRT CL then return ⊥
6 return (CL, CR)

7 function decrypt(key K, tweak W , ciphertext (CL, CR)): plaintext or ⊥
8 if (K,W,CR) is not a nonce WRT CL then return ⊥
9 PL ← CL ⊕FK(CR‖1 ◦W)

10 PR ← CR ⊕FK(PL‖0 ◦W)
11 if (K,W,PL) is not a nonce WRT PR then return ⊥
12 return (PL, PR)

Algorithm 1.2: Nonce- and redundancy-encrypting AEAD mode
Definition : Farfalle instance F

1 ctr← 064

2 function encrypt(key K, metadata A, plaintext P): ciphertext
3 time ← current 64-bit timestamp
4 PL ← time‖ctr
5 PR ← 0128‖pad(P) such that |PR| ≥ 256
6 CR ← PR ⊕FK(PL‖0 ◦A)
7 CL ← PL ⊕FK(CR‖1 ◦A)
8 ctr← ctr + 1
9 return CL‖CR

10 function decrypt(key K, metadata A, ciphertext C): plaintext or ⊥
11 if |C| < 384 then return ⊥
12 CL‖CR ← C such that |CL| = 128
13 PL ← CL ⊕FK(CR‖1 ◦A)
14 PR ← CR ⊕FK(PL‖0 ◦A)
15 T‖P ← PR such that |T | = 128
16 if T 6= 0128 then return ⊥
17 time‖ctr′ ← PL such that |time| = 64
18 return (time, ctr′, unpad(P))

3

note that these conditions can be satisfied in a practical way by providing a
nonce in (K,W,PL) and validating redundancy in PR. WLOG, we build one
such concrete mode in algorithm 1.2.

This mode is effectively a phase-shifted (and stateless) version of Deck-
PLAIN [3]. In the encryption oracle, note that C ∼ PRFK(A,PL). By requiring
(K,A, PL) to be a nonce, we ensure that C is indistinguishable from random.
Likewise, in the decryption oracle, note that PR ∼ PRFK(A,C). By requiring
verifiable redundancy in PR, we ensure that any tampering of (A,C) is detected.
Additionally, note that PL is allowed to contain arbitrary plaintext, as long as
(K,A, PL) is a nonce. Once PR reaches the minimum length requirement, an
implementation may choose to fill PL to an entire block to achieve optimal per-
formance.

Remarkably, the early rejection feature of Deck-PLAIN is retained. By keep-
ing PL short and placing the entirety of the redundancy within the first block
of PR, the decryption oracle can expand just enough bits to decrypt the redun-
dancy and validate it. If valid, then it can expand the remaining bits to decrypt
the rest of CR. Asymptotically, authentication can be performed after a single
read pass, just like in Deck-PLAIN. Because of this feature, the risk of leak-
ing unverified plaintext is eliminated. Another advantage of keeping PL short
is to allow the encryption oracle to be online: the asymptotic majority of the
ciphertext bits are produced immediately after compressing PL.

Because PR ∼ PRFK(A,C), this implies that if the corresponding redun-
dancy bits of C are tampered with, then every bit of decrypted redundancy
is flipped with 50% probability. This allows for the use of a non-constant-time
equality function. Due to the fact that the redundancy is non-malleable, noth-
ing is gleaned from the timing of the comparison during redundancy validation.
Note that if this feature is not needed (i.e., a constant-time equality function is
used), then the compression of the redundancy portion of CR can be skipped on
lines 7 and 13 of algorithm 1.2. This optimization brings the mode even closer
to parity with Deck-PLAIN. For brevity, the modified algorithm is deferred to a
future paper.

Metadata string A is optional and can be safely omitted from compression
thanks to the frame bits on the plaintext. Note, however, that metadata-only
input is not supported. The algorithm can be modified to support the metadata-
only case, but this circumvents the nonce- and redundancy-encrypting goals
of the mode. If a message authentication code is desired, then we recommend
supplying the nonce and redundancy as part of the plaintext for consistency.

Algorithms 1.1 and 1.2 are stateless by design. Refer to section A for the
treatment of sessions.

2.2 Application: virtual private network protocol

Consider a virtual private network (VPN) protocol. In such a protocol, many
small packets are exchanged at a high frequency. It would be very costly to
generate a uniformly random nonce per packet for the following reasons:

4

– Space: to achieve 128 bits of security, we would need a 256-bit nonce due
to birthday bound collisions

– Time: because of the high-frequency nature of the application, the OS en-
tropy pool could become exhausted and block the application until more can
be gathered

Deck-PLAIN allows for a single nonce to be specified per session. However,
because packets can be lost and arrive out-of-order, we cannot use a session-
based mode. Instead, algorithm 1.2 satisfies the requirements perfectly.

We can use a timestamp and counter as the nonce. Because the nonce is part
of the plaintext, no semantic information is leaked. Additionally, such a nonce
requires only half the amount of storage contrasted against a uniformly random
nonce. The timestamp and counter could be trimmed to further reduce the space
requirements.

2.3 Features

– Encrypted nonce and redundancy: both the nonce and redundancy are
encrypted, allowing non-random nonces to be used without risk of informa-
tion leak

– Performance: asymptotically performs only a single read- and write-pass
over the plaintext

– Online encryption: the encryption oracle produces the majority of the
ciphertext bits immediately after compressing the nonce

– Early rejection: by placing the verifiable redundancy at the beginning of
PR, early rejection can be realized

– Timing-insensitive authentication: because the redundancy is non-malleable,
a non-constant-time equality function can be used to validate redundancy

– Optional/static metadata: the metadata string compression can be skipped
if empty; additionally, static metadata can be factored out and reused across
invocations

2.4 Security proof

We defer the security proof to a future revision.

3 Constrained wide block cipher with RUP resistance

We now present the RUP-resistant constrained wide block cipher in algorithm 1.3,
along with onion AE algorithms 1.4 and 1.5. The wide block cipher is parameter-
ized in terms of the Farfalle instance F and target security level s. We recommend
a target security level of s = 128.

5

FKW◦·‖00

FKW◦·‖01

FKW◦·‖10
2s

PRPL

CRCL

Nonce (K, W, PL) ≥ 2s bits

© Seth Hoffert https://seth.rocks

Fig. 2: Constrained wide block cipher with RUP resistance

Algorithm 1.3: Constrained wide block cipher with RUP resistance
Definition : Farfalle instance F
Definition : Security level s = 128 bits

1 function encrypt(key K, tweak W , plaintext (PL, PR)): ciphertext or ⊥
2 if |PR| < 2s then return ⊥
3 if (K,W,PL) is not a nonce WRT PR then return ⊥
4 CR ← PR ⊕FK(PL‖00 ◦W)
5 CL ← PL ⊕FK(CR‖01 ◦W)
6 left(CR, 256)← left(CR, 256)⊕FK(CL‖10 ◦W)
7 return (CL, CR)

8 function decrypt(key K, tweak W , ciphertext (CL, CR)): plaintext or ⊥
9 if |CR| < 2s then return ⊥

10 left(CR, 256)← left(CR, 256)⊕FK(CL‖10 ◦W)
11 PL ← CL ⊕FK(CR‖01 ◦W)
12 PR ← CR ⊕FK(PL‖00 ◦W)
13 if (K,W,PL) is not a nonce WRT PR then return ⊥
14 return (PL, PR)

6

Algorithm 1.4: Onion AE mode (client)
Definition : Farfalle instance F

1 ctr↓∗ ← 064

2 ctr↑∗ ← 064

3 function init(client keys K∗)
4 G ← FK

5 function wrap(target i, plaintext P): ciphertext
6 PL‖PR ← 0128‖pad(P) such that |PL| = 256, |PR| ≥ 256
7 for j = i through 0 do
8 CR ← PR ⊕ Gj(PL‖000 ◦ ctr↓j)
9 CL ← PL ⊕ Gj(CR‖001 ◦ ctr↓j)

10 left(CR, 256)← left(CR, 256)⊕ Gj(CL‖010 ◦ ctr↓j)
11 ctr↓j ← ctr↓j + 1

12 (PL, PR)← (CL, CR)

13 return CL‖CR

14 function unwrap(ciphertext C): (source, plaintext) or ⊥
15 if |C| < 512 then return ⊥
16 CL‖CR ← C such that |CL| = 256
17 for j = 0 through |G| − 1 do
18 left(CR, 256)← left(CR, 256)⊕ Gj(CL‖110 ◦ ctr↑j)
19 PL ← CL ⊕ Gj(CR‖101 ◦ ctr↑j)
20 PR ← CR ⊕ Gj(PL‖100 ◦ ctr↑j)
21 ctr↑j ← ctr↑j + 1

22 T‖P ′ ← PL‖PR such that |T | = 128
23 if T = 0128 then return (j, unpad(P ′))
24 (CL, CR)← (PL, PR)

25 return ⊥

7

Algorithm 1.5: Onion AE mode (node)
Definition : Farfalle instance F

1 ctr↓ ← 064

2 ctr↑ ← 064

3 function init(ephemeral key K)
4 G ← FK

5 function wrap(from-me, plaintext P): ciphertext or ⊥
6 if from-me then
7 PL‖PR ← 0128‖pad(P) such that |PL| = 256, |PR| ≥ 256
8 else
9 if |P | < 512 then return ⊥

10 PL‖PR ← P such that |PL| = 256

11 CR ← PR ⊕ G(PL‖100 ◦ ctr↑)
12 CL ← PL ⊕ G(CR‖101 ◦ ctr↑)
13 left(CR, 256)← left(CR, 256)⊕ G(CL‖110 ◦ ctr↑)
14 ctr↑ ← ctr↑ + 1
15 return CL‖CR

16 function unwrap(ciphertext C): (to-me, plaintext) or ⊥
17 if |C| < 512 then return ⊥
18 CL‖CR ← C such that |CL| = 256

19 left(CR, 256)← left(CR, 256)⊕ G(CL‖010 ◦ ctr↓)
20 PL ← CL ⊕ G(CR‖001 ◦ ctr↓)
21 PR ← CR ⊕ G(PL‖000 ◦ ctr↓)
22 ctr↓ ← ctr↓ + 1
23 T‖P ′ ← PL‖PR such that |T | = 128
24 if T = 0128 then
25 return (true, unpad(P ′))
26 else
27 return (false, PL‖PR)

8

3.1 Details

Similar to algorithm 1.1, we call the wide block cipher in algorithm 1.3 con-
strained. In this wide block cipher mode, we are stripping away only the first
round from a four-round Feistel network in order to retain RUP resistance. As
a result, the (K,W,CR) nonce constraint is relaxed, opening the doors for spe-
cialized modes that require RUP (e.g., onion AE).

In algorithm 1.1, note of the decryption oracle that PL is malleable. To
achieve RUP resistance, we need only communicate a digest of CL into CR to
ensure that P ∼ PRFK(A,C). In spite of this additional round, note that a
single read- and write-pass over the plaintext is still achieved by keeping PL

short (i.e., one block maximum).
Because algorithm 1.3 allows for RUP, we could trivially build a RUP-

resistant AEAD mode. However, we believe such a mode is of limited benefit
thanks to the early rejection feature. Instead, we feel that the application of
onion AE is a much more interesting and useful mode for this constrained wide
block cipher. We present such a mode in algorithms 1.4 and 1.5.

Algorithms 1.3, 1.4 and 1.5 are stateless by design. Refer to section A for the
treatment of sessions.

3.2 Application: onion AE protocol

Consider an onion AE protocol. At a high level, such a protocol recursively
applies the cryptographic algorithm to a payload that is passed between nodes.
Such a protocol demands two important properties:

– RUP resistance: because intermediate nodes decrypt the payload and po-
tentially pass along the results to the next node, the cryptographic algorithm
needs to be resistant to RUP

– Length preservation: because the cryptographic algorithm is applied re-
cursively, the payload length must be preserved to avoid leaking semantic
information about number of layers

Deck-PLAIN is ruled out immediately since it incurs a per-encryption expan-
sion due to explicit redundancy. Algorithm 1.2 does not quite fit the bill either
because of its lack of RUP resistance. Algorithms 1.4 and 1.5 are exactly what
we need.

In order to satisfy the nonce requirement, the client encryption oracle ac-
cepts only plaintexts that contain valid redundancy and its decryption oracle
releases only plaintexts that contain valid redundancy. These validations prevent
keystream harvesting while also allowing the non-client nodes to freely encrypt,
decrypt and release payloads that are ultimately invalid.

Note specifically that no constraints are placed on the exit node’s oracles:
a malicious exit node can freely encrypt, decrypt and release invalid plaintext
without causing any issues. Because of the RUP resistance, the decrypted plain-
text is non-malleable and tagging attacks are not possible.

9

The benefit of having both the nonce and redundancy reside in non-malleable
PL is that they are treated on equal footing. For example, if a timestamp com-
prises PL, then an implementation can validate the timestamp against a fixed
time window. With a 64-bit timestamp and an allowed time window of 256 sec-
onds, 64− log2 256 = 56 bits of authenticity is already achieved. This saves space
in the plaintext by reducing the need for a separate nonce and redundancy. Addi-
tionally, an application that uses ephemeral keys with a metadata-based counter
(e.g., onion AE) need not place any additional nonce value in PL. Instead, PL

can be a block of arbitrary plaintext.

3.3 Features

– Encrypted nonce and redundancy: both the nonce and redundancy are
encrypted, allowing non-random nonces to be used without risk of informa-
tion leak

– Performance: asymptotically performs only a single read- and write-pass
over the plaintext

– Online encryption: the encryption oracle produces the majority of the
ciphertext bits immediately after compressing the nonce

– Early rejection: by placing the verifiable redundancy at the beginning of
PL, early rejection can be realized

– Timing-insensitive authentication: because the redundancy is non-malleable,
a non-constant-time equality function can be used to validate redundancy

– Optional/static metadata: the metadata string compression can be skipped
if empty; additionally, static metadata can be factored out and reused across
invocations

– RUP resistance: this mode can be used in onion AE protocols thanks to
its RUP resistance

– Combined nonce and redundancy: nonces can be used as verifiable re-
dundancy, resulting in a space savings in the plaintext

3.4 Security proof

We defer the security proof to a future revision.

4 Conclusions

The presented modes are a testament to Farfalle’s flexibility and power. Algo-
rithm 1.1 can be viewed as an enhanced Deck-PLAIN [3], and algorithm 1.3 is
ideal for situations where RUP is needed (e.g., onion AE). Both modes achieve
the encrypted nonce goal and are efficient, asymptotically requiring only a single
read- and write-pass over the plaintext.

10

References
1. Ashur, T., Dunkelman, O., Luykx, A.: Boosting authenticated encryption robustness

with minimal modifications. Cryptology ePrint Archive, Paper 2017/239 (2017),
https://eprint.iacr.org/2017/239, https://eprint.iacr.org/2017/239

2. Bertoni, G., Daemen, J., Hoffert, S., Peeters, M., Van Assche, G., Van Keer, R.:
Farfalle: parallel permutation-based cryptography. IACR Trans. Symmetric Cryptol.
2017(4), 1–38 (2017)

3. Băcuieți, N., Daemen, J., Hoffert, S., Assche, G.V., Keer, R.V.: Jammin’ on the
deck. Cryptology ePrint Archive, Paper 2022/531 (2022), https://eprint.iacr.
org/2022/531, https://eprint.iacr.org/2022/531

A Session support

We now present session-based variants of algorithms 1.2, 1.4 and 1.5.

A.1 Application: stream encryption

Consider wanting to build a stream encryption application for a platform that
has a limited entropy pool, or a lack thereof. We could use algorithm 1.2 and
encrypt the messages statelessly, using some combination of a timestamp and
counter as the nonce. However, this is not so elegant due to the overall space
consumption of the per-message nonces. It would be preferrable to use a session-
based mode like Deck-PLAIN so that we need a nonce only at session initializa-
tion.

Because the platform has a limited entropy pool, we would like to avoid
uniformly random nonces. Algorithm 1.6 fits the bill perfectly because it allows
us to specify a single non-random nonce for the entirety of the session. This
results in a space savings, ensures semantic security and obviates the need for
per-session system entropy.

Algorithm 1.6 inherits all of the features of algorithm 1.2 plus session sup-
port. This mode can be seen as a hybrid of the nonce-encrypting mode and
Deck-PLAIN, in that the first message is handled specially such that the nonce
is encrypted. Subsequent messages are handled in a manner similar to Deck-
PLAIN. Note that the redundancy-encrypting feature is not needed in the sub-
sequent messages because such redundancy can be stripped out of the plaintext
and reinserted on the unwrapping end, thereby offsetting the spatial cost of the
tag.

A.2 Application: onion AE protocol

In section 3.2 we describe a sessionless solution to the onion AE problem. The
main disadvantage of the sessionless algorithm is that if a message is corrupted,
then subsequent messages are unaffected. This problem can be solved by making
use of a chaining value in the metadata input, but this requires additional oper-
ations. Instead, algorithms 1.7 and 1.8 solve this problem elegantly and avoids
explicit chaining values and per-message nonces.

11

https://eprint.iacr.org/2017/239
https://eprint.iacr.org/2017/239
https://eprint.iacr.org/2022/531
https://eprint.iacr.org/2022/531
https://eprint.iacr.org/2022/531

Algorithm 1.6: Nonce-encrypting session AEAD mode
Definition : Farfalle instance F

1 ctr← 064

2 o← 0

3 function init-sender(key K, metadata A, plaintext P): ciphertext
4 G ← FK

5 time ← current 64-bit timestamp
6 PL ← time‖ctr
7 PR ← 0128‖pad(P) such that |PR| ≥ 256
8 if |A| 6= 0 then history← A
9 CR ← PR ⊕ G(PL‖0 ◦ history)

10 CL ← PL ⊕ G(CR‖1 ◦ history)
11 history← CL ◦ CR‖1 ◦ history
12 ctr← ctr + 1
13 return CL‖CR

14 function init-receiver(key K, metadata A, ciphertext C): plaintext or ⊥
15 if |C| < 384 then return ⊥
16 G ← FK

17 CL‖CR ← C such that |CL| = 128
18 if |A| 6= 0 then history′ ← A
19 PL ← CL ⊕ G(CR‖1 ◦ history′)
20 PR ← CR ⊕ G(PL‖0 ◦ history′)
21 T‖P ← PR such that |T | = 128
22 if T 6= 0128 then return ⊥
23 history← CL ◦ CR‖1 ◦ history′

24 time‖ctr′ ← PL such that |time| = 64
25 return (time, ctr′, unpad(P))

26 function wrap(plaintext P): ciphertext
27 assert history 6= ∅
28 C ← P ⊕ G(history)� o
29 T ← 0128 ⊕ G(C ◦ history)
30 history← C ◦ history
31 o← 128
32 return C‖T

33 function unwrap(ciphertext C): plaintext or ⊥
34 assert history 6= ∅
35 if |C| < 128 then return ⊥
36 C′‖T ′ ← C such that |T ′| = 128
37 T ← T ′ ⊕ G(C′ ◦ history)
38 if T 6= 0128 then return ⊥
39 P ← C′ ⊕ G(history)� o
40 history← C′ ◦ history
41 o← 128
42 return P

12

Algorithm 1.7: Onion session AE mode (client)
Definition : Farfalle instance F

1 function init(client keys K∗)
2 G∗ ← FK∗

3 function wrap(target i, plaintext P): ciphertext
4 PL‖PR ← 0128‖pad(P) such that |PL| = 256, |PR| ≥ 256
5 for j = i through 0 do
6 CR ← PR ⊕ Gj(PL‖000 ◦ history↓

j)

7 CL ← PL ⊕ Gj(CR‖001 ◦ history↓
j)

8 left(CR, 256)← left(CR, 256)⊕ Gj(CL‖010 ◦ history↓
j)

9 history↓
j ← CR‖001 ◦ history↓

j

10 (PL, PR)← (CL, CR)

11 return CL‖CR

12 function unwrap(ciphertext C): (source, plaintext) or ⊥
13 if |C| < 512 then return ⊥
14 CL‖CR ← C such that |CL| = 256
15 for j = 0 through |G| − 1 do
16 left(CR, 256)← left(CR, 256)⊕ Gj(CL‖110 ◦ history↑

j)

17 PL ← CL ⊕ Gj(CR‖101 ◦ history↑
j)

18 PR ← CR ⊕ Gj(PL‖100 ◦ history↑
j)

19 history↑
j ← CR‖101 ◦ history↑

j

20 T‖P ′ ← PL‖PR such that |T | = 128
21 if T = 0128 then return (j, unpad(P ′))
22 (CL, CR)← (PL, PR)

23 return ⊥

13

Algorithm 1.8: Onion session AE mode (node)
Definition : Farfalle instance F

1 function init(ephemeral key K)
2 G ← FK

3 function wrap(from-me, plaintext P): ciphertext or ⊥
4 if from-me then
5 PL‖PR ← 0128‖pad(P) such that |PL| = 256, |PR| ≥ 256
6 else
7 if |P | < 512 then return ⊥
8 PL‖PR ← P such that |PL| = 256

9 CR ← PR ⊕ G(PL‖100 ◦ history↑)

10 CL ← PL ⊕ G(CR‖101 ◦ history↑)

11 left(CR, 256)← left(CR, 256)⊕ G(CL‖110 ◦ history↑)

12 history↑ ← CR‖101 ◦ history↑

13 return CL‖CR

14 function unwrap(ciphertext C): (to-me, plaintext) or ⊥
15 if |C| < 512 then return ⊥
16 CL‖CR ← C such that |CL| = 256

17 left(CR, 256)← left(CR, 256)⊕ G(CL‖010 ◦ history↓)

18 PL ← CL ⊕ G(CR‖001 ◦ history↓)

19 PR ← CR ⊕ G(PL‖000 ◦ history↓)

20 history↓ ← CR‖001 ◦ history↓

21 T‖P ′ ← PL‖PR such that |T | = 128
22 if T = 0128 then
23 return (true, unpad(P ′))
24 else
25 return (false, PL‖PR)

14

	Nonce-encrypting AEAD Modes with Farfalle
	Introduction
	Contributions
	Conventions

	Constrained wide block cipher
	Details
	Application: virtual private network protocol
	Features
	Security proof

	Constrained wide block cipher with RUP resistance
	Details
	Application: onion AE protocol
	Features
	Security proof

	Conclusions
	Session support
	Application: stream encryption
	Application: onion AE protocol

