
Nonce- and Redundancy-encrypting Modes with
Farfalle

Seth Hoffert

Abstract. Nonces are a fact of life for achieving semantic security. Gen-
erating a uniformly random nonce can be costly and may not always be
feasible. Using anything other than uniformly random bits can result in
information leakage; e.g., a timestamp can deanonymize a communica-
tion and a counter can leak the quantity of transmitted messages. Ideally,
we would like to be able to efficiently encrypt the nonce to 1) avoid need-
ing uniformly random bits and 2) avoid information leakage. This paper
presents new authenticated encryption modes built on top of Farfalle [3]
that tackle the problems of nonce and redundancy encryption in AEAD
and onion AE modes.

Keywords: farfalle, deck functions, authenticated encryption, wide block
cipher, modes of use, encrypted nonce, onion AE

1 Introduction

Typical usage of an AEAD mode tends to involve some combination of a times-
tamp, a counter and uniform randomness when deriving a nonce. Using uniform
randomness for nonce generation can be expensive on platforms that have a
limited entropy pool, and using anything other than uniform randomness will
inevitably leak information. For example, an observed timestamp can be enough
for an adversary to deanonymize a communication if the sender’s clock is known
to be inexact. Using a counter can also leak information, because it allows an
adversary to observe only two messages at different points in time and yet still
be able to accurately estimate the number of messages that were sent in between
observations.

It would be preferable to encrypt the nonce; i.e., to treat the nonce as part
of the plaintext. At first, this seems like a chicken-and-egg problem: how does
one encrypt a nonce without using another nonce? One such solution lies in the
Feistel construction. Remarkably, it is possible to construct an efficient inverse-
free mode that is very similar to Deck-PLAIN [4] and yet encrypts the nonce
and redundancy with negligible additional overhead. We showcase RUP-resistant
and onion AE modes as well.

1.1 Contributions

Our main contribution is constructing efficient authenticated encryption modes
on top of Farfalle [3] that feature nonce and redundancy encryption. We provide

a variant that is secure against RUP, similar to GCM-RUP [1]. Additionally, we
address the application of onion AE. Specifically, we propose two efficient stateful
modes that can be viewed as generalizations of our aforementioned stateless
AEAD modes.

Because our modes are built entirely on top of Farfalle [3], no block ciphers
are involved and the inverse direction of the underlying permutation remains
unused. Besides the obvious benefit of elegance from needing only one type of
primitive, this provides a hardware space advantage in ASIC and FPGA designs.

Another important advantage of building modes on top of Farfalle is that
it allows the designer to focus on mode design instead of low-level concerns
such as the handling of multiple input/output blocks, parallelizability, and the
number of rounds to take in the underlying permutation. Farfalle provides us
with a random oracle primitive that can be used to build a wide variety of modes
without the typical pitfalls of building new modes from scratch.

1.2 Related work

In an effort to leverage existing nonce-based encryption schemes, Bellare, Ng and
Tackmann [2] describe a set of parameterized transformations. Each transforma-
tion has different properties but all achieve the goal of protecting the nonce. Note
that while our modes are not generic transformations, we nonetheless also avoid
building from scratch, preferring instead to leverage the power of Farfalle.

Providing security even when unverified plaintext is released is addressed by
Ashur, Dunkelman and Luykx [1]. Applicability to onion AE is also discussed.
Note that our RUP-resistant mode differs in that it does not make use of a
block cipher and places no maximum length restriction on the nonce. Indeed,
our modes treat the nonce, redundancy and plaintext on equal footing.

1.3 Conventions

The length in bits of the string X is denoted |X|. The concatenation of two
strings X,Y is denoted as X‖Y and their bitwise addition as X ⊕ Y . Bit string
values are denoted with a typewriter font, such as 01101. The repetition of a bit
is denoted in exponent, e.g., 03 = 000. Substrings with exclusive upper bounds
are denoted [x..y). Finally, ∅ is the empty set and ⊥ denotes an error code.

2 Constrained wide block cipher

In this section, we first present a constrained wide block cipher model in algo-
rithm 1.1, parameterized by Farfalle instance F . We then present two concrete
modes that satisfy the constraints imposed by the model.

2

FKW◦·‖0

FKW◦·‖1

PRPL

CLCR

Nonce (K,W,PL)

Nonce (K,W,CR)

Fig. 1: Constrained wide block cipher

Algorithm 1.1: Constrained wide block cipher
Definition : Farfalle instance F

1 function encrypt(key K, tweak W , plaintext (PL, PR)): ciphertext or ⊥
2 if (K,W,PL) is not a nonce WRT PR then return ⊥
3 CR ← PR ⊕FK(PL‖0 ◦W)
4 CL ← PL ⊕FK(CR‖1 ◦W)
5 if (K,W,CR) is not a nonce WRT CL then return ⊥
6 return (CL, CR)

7 function decrypt(key K, tweak W , ciphertext (CL, CR)): plaintext or ⊥
8 if (K,W,CR) is not a nonce WRT CL then return ⊥
9 PL ← CL ⊕FK(CR‖1 ◦W)

10 PR ← CR ⊕FK(PL‖0 ◦W)
11 if (K,W,PL) is not a nonce WRT PR then return ⊥
12 return (PL, PR)

2.1 Details

We call the wide block cipher in algorithm 1.1 constrained because it is effectively
a four-round Feistel network but with the outer two rounds removed. By remov-
ing the outer rounds, a nonce requirement is imposed in both (K,W,PL) and
(K,W,CR). At first, these nonce constraints may seem unreasonable, as they
would seem to require keeping track of all inputs that have been seen. How-
ever, note that these constraints can be satisfied in a practical way by providing
a nonce in (K,W,PL) and validating redundancy in PR. WLOG, we describe
three practical modes that satisfy these constraints.

3

2.2 Mode: Nonce- and redundancy-encrypting AEAD

Consider a virtual private network (VPN) protocol. In such a protocol, many
small packets are exchanged at a high frequency. It would be very costly to
generate a uniformly random nonce per packet for the following reasons:

– Space: to achieve 128 bits of security, we would need a 256-bit nonce to
mitigate birthday bound collisions

– Time: because of the high-frequency nature of the application, the OS en-
tropy pool could become exhausted and block the application until more can
be gathered

Deck-PLAIN allows for a single nonce to be specified per session. However,
because packets can be lost and arrive out-of-order, we cannot use a session-
based mode. A solution to this problem is to build a mode that treats the nonce
as part of the plaintext. We now present such a mode in algorithm 1.2.

WLOG, we use a timestamp and counter as the nonce. Because the nonce
is part of the plaintext, no semantic information is leaked. Additionally, such
a nonce requires only half the amount of space contrasted against a uniformly
random nonce. The timestamp and counter could even be trimmed to further
reduce the space requirements. Because the mode treats the nonce as part of the
plaintext, we can recover the timestamp and counter at decryption time and use
it for efficient replay detection.

Note that we initialize the counter to 064. If an application can be restarted
rapidly within the same timestamp, and the counter cannot be retained between
restarts, then it may be desirable to initialize the counter to a random value to
mitigate risk of nonce collision. This still satisfies the goals of the mode since no
per-packet randomness is needed.

This mode is effectively a phase-shifted (and stateless) version of Deck-
PLAIN [4]. In the encryption oracle, note that C ∼ PRFK(A,PL). By requiring
(K,A, PL) to be a nonce, we ensure that C is indistinguishable from random.
Likewise, in the decryption oracle, note that PR ∼ PRFK(A,C). By requiring
verifiable redundancy in PR, we ensure that any tampering of (A,C) is detected.
Additionally, note that PL is allowed to contain arbitrary plaintext, as long as
(K,A, PL) is a nonce. Once PR reaches the minimum length requirement, an
implementation may choose to fill PL to an entire block to achieve optimal per-
formance.

Remarkably, the early rejection feature of Deck-PLAIN is retained. By keep-
ing PL short and placing the entirety of the redundancy within the first block of
PR, the decryption oracle can expand just enough bits to decrypt the redundancy
and validate it. If valid, then it can expand the remaining bits to decrypt the rest
of CR. Asymptotically, authentication can be performed after a single read pass,
just like in Deck-PLAIN. Because of this feature, the risk of leaking unverified
plaintext is eliminated. Another advantage of keeping PL short is to allow the
encryption oracle to be online: the asymptotic majority of the ciphertext bits
are produced immediately after compressing PL.

4

Because PR ∼ PRFK(A,C), if any of the encrypted redundancy bits of C
are tampered with, then every bit of decrypted redundancy is flipped with 50%
probability. This allows for the use of a non-constant-time equality function.
Due to the fact that the redundancy is non-malleable, nothing is gleaned from
the timing of the comparison during redundancy validation. Note that if this
feature is not needed, i.e., a constant-time equality function is used, then the
compression of the redundancy portion of CR can be skipped on lines 7 and 13
of algorithm 1.2. This optimization brings the mode even closer to parity with
Deck-PLAIN. For brevity, the modified algorithm is deferred to a future paper.

Another benefit of encrypted and non-malleable redundancy is the ability
to use part of the plaintext as redundancy. For example, a timestamp could be
validated against a fixed time window relative to the receiver’s clock. Given a
64-bit timestamp with 1-second resolution and a window size of 256 seconds,
64 − log2 256 = 56 bits of authenticity is already achieved. Because of the re-
quirements of algorithm 1.1, this mode does not allow overlapping the nonce and
redundancy. For treatment of this feature, refer to section 3.2.

Metadata string A is optional and can be safely omitted from compression
thanks to the frame bits on the plaintext. Note, however, that metadata-only
input is not supported. The algorithm can be modified to support the metadata-
only case, but this circumvents the nonce- and redundancy-encrypting goals
of the mode. If a message authentication code is desired, then we recommend
supplying the nonce and redundancy as part of the plaintext for consistency.

Similar to [2], this mode achieves nonce encryption, but has important dif-
ferences as well. The transformations described in [2] are designed to work with
existing AEAD schemes, providing the benefit of reusing existing work. Nonethe-
less, this comes at the cost of requiring additional key material and a separate
PRF invocation to encrypt the nonce. Algorithm 1.2 on the other hand is de-
signed with nonce encryption in mind from the beginning, with the benefit of
using only a single key and requiring only two invocations of the random oracle
primitive, putting its performance at parity with that of Deck-PLAIN.

Features

– Encrypted nonce and redundancy: both the nonce and redundancy are
encrypted, allowing embedded nonces and redundancy to be used without
risk of information leak

– Performance: asymptotically performs only a single read- and write-pass
over the plaintext

– Online encryption: the encryption oracle produces the majority of the
ciphertext bits immediately after compressing the nonce

– Early rejection: by placing the verifiable redundancy at the beginning of
PR, early rejection can be realized

– Timing-insensitive authentication: because the redundancy is non-malleable,
a non-constant-time equality function can be used to validate redundancy

5

Algorithm 1.2: Nonce- and redundancy-encrypting AEAD mode
Definition : Farfalle instance F

1 ctr← 064

2 function encrypt(key K, metadata A, plaintext P): ciphertext
3 time ← current 64-bit timestamp
4 PL ← time‖ctr
5 PR ← 0128‖pad(P) such that |PR| ≥ 256
6 CR ← PR ⊕FK(PL‖0 ◦A)
7 CL ← PL ⊕FK(CR‖1 ◦A)
8 ctr← ctr + 1
9 return CL‖CR

10 function decrypt(key K, metadata A, ciphertext C): plaintext or ⊥
11 if |C| < 384 then return ⊥
12 CL‖CR ← C such that |CL| = 128
13 PL ← CL ⊕FK(CR‖1 ◦A)
14 PR ← CR ⊕FK(PL‖0 ◦A)
15 if PR[..128) 6= 0128 then return ⊥
16 time‖ctr′ ← PL such that |time| = 64
17 return (time, ctr′, pad−1(PR[128..]))

– Optional/static metadata: the metadata string compression can be skipped
if empty; additionally, static metadata can be factored out and reused across
invocations

Security proof We defer the security proof to a future revision.

2.3 Mode: Onion AE without leaky pipe

Consider the application of onion AE. In this application, we must recursively
encrypt a message such that each node in the circuit decrypts (i.e., strips off) its
respective layer and relays the result to the next node in the circuit. The terminal
node, being either the client or exit node, decrypts its layer and validates the
authenticity. If valid, then it processes the message; otherwise, it rejects it. We
wish to satisfy the following properties:

– Authenticated encryption: the client and exit node must be able to cryp-
tographically authenticate the message

– Length preservation: because the cryptographic algorithm is applied re-
cursively, the payload length must be preserved to avoid leaking semantic
information about number of layers

– Statefulness: if a message is corrupted, then authentication must fail for
all subsequent messages reaching the client and exit node

6

Deck-PLAIN is ruled out immediately since it incurs a per-encryption expan-
sion due to explicit redundancy. Algorithm 1.2 does not fit the bill either because
it requires a nonce and redundancy in every encryption. An important obser-
vation of algorithm 1.1 is that there is more than one way to satisfy the nonce
constraints. We now present algorithms 1.3 and 1.4 satisfying the constraints in
the onion AE setting.

In order to satisfy the nonce requirement, the client encryption oracle accepts
only plaintexts that contain valid redundancy and its decryption oracle releases
only plaintexts that contain valid redundancy. Because the mode is stateful,
tampering will effectively poison the state of every node in the circuit such that
all subsequent decryptions in the client and exit node will fail authentication.
This concept is visualized in figure 2.

The ability for the client to send/receive messages to/from any node in the
circuit is referred to as the leaky pipe architecture. Because algorithm 1.1 is
not resistant to RUP, the client can send messages only to the exit node; all
other nodes are strictly relays. We build a mode that supports the leaky pipe
architecture in section 3.3.

Note that a session-based analog of algorithm 1.2 can be obtained by setting
the number of clients to 1, and compressing metadata into the history if desired.
If the key is not ephemeral, then simply ensure that a nonce is present in the
metadata or first wrap’s PL.

⊥
m = 1

⊥
m = 2

⊥

Tampering

m = 3
⊥

m = 4

Fig. 2: Visualization of stateful onion AE with tampering. A gray circle represents
the space of all possible plaintexts and ciphertexts, with ⊥ representing the error
value. The process of recursively encrypting/decrypting is effectively a random
walk through the space, here visualized by vertices and edges. A green vertex
indicates an authentic plaintext. Here, four messages are shown and the circuit
is composed of the client plus three nodes.

Features

– Encrypted redundancy: the redundancy is encrypted, allowing embedded
redundancy to be used without risk of information leak

– Performance: asymptotically performs only a single read- and write-pass
over the plaintext, per node

7

Algorithm 1.3: Onion session AE mode for client
Definition : Farfalle instance F

1 function init(ephemeral client keys K∗)
2 G∗ ← FK∗

3 function wrap(plaintext P): ciphertext
4 P ′ ← pad(P) such that |P ′| ≥ 128
5 PL ← P ′[..128)
6 PR ← 0128‖P ′[128..]
7 for j = |G| − 1 through 0 do
8 CR ← PR ⊕ Gj(PL‖00 ◦ history↓

j)

9 CL ← PL ⊕ Gj(CR‖01 ◦ history↓
j)

10 history↓
j ← PL‖00 ◦ history↓

j

11 (PL, PR)← (CL, CR)

12 return CL‖CR

13 function unwrap(ciphertext C): plaintext or ⊥
14 if |C| < 256 then return ⊥
15 CL‖CR ← C such that |CL| = 128
16 for j = 0 through |G| − 1 do
17 PL ← CL ⊕ Gj(CR‖11 ◦ history↑

j)

18 PR ← CR ⊕ Gj(PL‖10 ◦ history↑
j)

19 history↑
j ← PL‖10 ◦ history↑

j

20 (CL, CR)← (PL, PR)

21 if PR[..128) 6= 0128 then return ⊥
22 return pad−1(PL‖PR[128..])

– Early rejection: by placing the verifiable redundancy at the beginning of
PR, early rejection in the client and exit node can be realized

– Timing-insensitive authentication: because the redundancy is non-malleable,
a non-constant-time equality function can be used to validate redundancy

Security proof We defer the security proof to a future revision.

3 Constrained wide block cipher with RUP resistance

In this section, we first present a RUP-resistant constrained wide block cipher
model in algorithm 1.5, parameterized by Farfalle instance F and truncation
length t. We then present two concrete modes that satisfy the constraints im-
posed by the model.

8

Algorithm 1.4: Onion session AE mode for node
Definition : Farfalle instance F

1 function init(ephemeral key K)
2 G ← FK

3 function wrap(plaintext P): ciphertext or ⊥
4 if exit-node then
5 P ′ ← pad(P) such that |P ′| ≥ 128
6 PL ← P ′[..128)
7 PR ← 0128‖P ′[128..]

8 else
9 if |P | < 256 then return ⊥

10 PL‖PR ← P such that |PL| = 128

11 CR ← PR ⊕ G(PL‖10 ◦ history↑)

12 CL ← PL ⊕ G(CR‖11 ◦ history↑)

13 history↑ ← PL‖10 ◦ history↑

14 return CL‖CR

15 function unwrap(ciphertext C): plaintext or ⊥
16 if |C| < 256 then return ⊥
17 CL‖CR ← C such that |CL| = 128

18 PL ← CL ⊕ G(CR‖01 ◦ history↓)

19 PR ← CR ⊕ G(PL‖00 ◦ history↓)

20 history↓ ← PL‖00 ◦ history↓

21 if exit-node then
22 if PR[..128) 6= 0128 then return ⊥
23 return pad−1(PL‖PR[128..])

24 else
25 return PL‖PR

3.1 Details

Similar to algorithm 1.1, we call the wide block cipher in algorithm 1.5 con-
strained. In this wide block cipher mode, we are stripping away only the first
round from a four-round Feistel network in order to retain RUP resistance. As
a result, the (K,W,CR) nonce constraint is relaxed, opening the doors for spe-
cialized modes that require RUP (e.g., onion AE).

In algorithm 1.1, note of the decryption oracle that PL is malleable. To
achieve RUP resistance, we need only communicate a digest of CL into CR to
ensure that P ∼ PRFK(A,C). In spite of this additional round, note that a sin-
gle read- and write-pass over the plaintext is still achieved by keeping PL short
(i.e., one block maximum).

9

FKW◦·‖00

FKW◦·‖01

FKW◦·‖10
t

PRPL

CRCL

Nonce (K,W,PL)

≥ t bits

Fig. 3: Constrained wide block cipher with RUP resistance

3.2 Mode: Nonce- and redundancy-encrypting AEAD with RUP
resistance

We now present the RUP-resistant analog of algorithm 1.2 in algorithm 1.6. This
mode adds RUP resistance and the ability to overlap the nonce and redundancy.
The benefit of having both the nonce and redundancy reside in non-malleable PL

is that they are treated on equal footing. For example, if a timestamp comprises
PL, then an implementation can rely on it as a nonce while also validating
the timestamp against a fixed time window at decryption time. With a 64-bit
timestamp and an allowed time window of 256 seconds, 64− log2 256 = 56 bits
of authenticity is already achieved. This saves space in the plaintext by reducing
the need for a separate nonce and redundancy.

Features

– Encrypted nonce and redundancy: both the nonce and redundancy are
encrypted, allowing embedded nonces and redundancy to be used without
risk of information leak

– Performance: asymptotically performs only a single read- and write-pass
over the plaintext

– Online encryption: the encryption oracle produces the majority of the
ciphertext bits immediately after compressing the nonce

– Early rejection: by placing the verifiable redundancy at the beginning of
PL, early rejection can be realized

– Timing-insensitive authentication: because the redundancy is non-malleable,
a non-constant-time equality function can be used to validate redundancy

10

Algorithm 1.5: Constrained wide block cipher with RUP resistance
Definition : Farfalle instance F
Definition : Truncation length t

1 function encrypt(key K, tweak W , plaintext (PL, PR)): ciphertext or ⊥
2 if |PR| < t then return ⊥
3 if (K,W,PL) is not a nonce WRT PR then return ⊥
4 CR ← PR ⊕FK(PL‖00 ◦W)
5 CL ← PL ⊕FK(CR‖01 ◦W)
6 CR[..t)← CR[..t)⊕FK(CL‖10 ◦W)
7 return (CL, CR)

8 function decrypt(key K, tweak W , ciphertext (CL, CR)): plaintext or ⊥
9 if |CR| < t then return ⊥

10 CR[..t)← CR[..t)⊕FK(CL‖10 ◦W)
11 PL ← CL ⊕FK(CR‖01 ◦W)
12 PR ← CR ⊕FK(PL‖00 ◦W)
13 if (K,W,PL) is not a nonce WRT PR then return ⊥
14 return (PL, PR)

– Optional/static metadata: the metadata string compression can be skipped
if empty; additionally, static metadata can be factored out and reused across
invocations

– RUP resistance: the mode does not break down if unverified plaintext is
released from the decryption oracle

– Overlapped nonce and redundancy: the nonce and redundancy can be
overlapped, resulting in a space savings

Security proof We defer the security proof to a future revision.

3.3 Mode: Onion AE with leaky pipe

In section 2.3, we describe a mode that solves a special case of the onion AE
problem where the client can send/receive messages only to/from the exit node.
Now we wish to solve for the more general case; that is, we wish to support the
leaky pipe architecture, visualized in figure 4.

In the leaky pipe architecture, the client can send/receive messages to/from
any node, not just the exit node. Because intermediate nodes in this model
conditionally pass their decrypted output to the next node, such a mode must
satisfy the additional property of RUP resistance. We now present algorithms 1.7
and 1.8 satisfying the aforementioned goals.

Note that a session-based analog of algorithm 1.6 can be obtained by setting
the number of clients to 1, and compressing metadata into the history if desired.
If the key is not ephemeral, then simply ensure that a nonce is present in the
metadata or first wrap’s PL.

11

Algorithm 1.6: Nonce- and redundancy-encrypting AEAD mode with
RUP resistance

Definition : Farfalle instance F
1 ctr← 064

2 function encrypt(key K, metadata A, plaintext P): ciphertext
3 time ← current 64-bit timestamp
4 PL ← time‖ctr‖0128

5 PR ← pad(P) such that |PR| ≥ 256
6 CR ← PR ⊕FK(PL‖00 ◦A)
7 CL ← PL ⊕FK(CR‖01 ◦A)
8 CR[..256)← CR[..256)⊕FK(CL‖10 ◦A)
9 ctr← ctr + 1

10 return CL‖CR

11 function decrypt(key K, metadata A, ciphertext C): plaintext or ⊥
12 if |C| < 512 then return ⊥
13 CL‖CR ← C such that |CL| = 256
14 CR[..256)← CR[..256)⊕FK(CL‖10 ◦A)
15 PL ← CL ⊕FK(CR‖01 ◦A)
16 time‖ctr′‖T ← PL such that |time| = |ctr′| = 64
17 if T 6= 0128 then return ⊥
18 PR ← CR ⊕FK(PL‖00 ◦A)
19 return (time, ctr′, pad−1(PR))

Features

– Encrypted redundancy: the redundancy is encrypted, allowing embedded
redundancy to be used without risk of information leak

– Performance: asymptotically performs only a single read- and write-pass
over the plaintext, per node

– Early rejection: by placing the verifiable redundancy at the beginning of
PL, early rejection in the client and exit node can be realized

– Timing-insensitive authentication: because the redundancy is non-malleable,
a non-constant-time equality function can be used to validate redundancy

– Leaky pipe architecture: any node can securely send and receive messages

Security proof We defer the security proof to a future revision.

4 Conclusions

The presented modes are a testament to Farfalle’s flexibility and power. We
described two constrained wide block cipher models, along with concrete modes
for AEAD and onion AE. The presented modes not only solve the encrypted
nonce and onion AE goals but are efficient as well, asymptotically requiring only
a single read- and write-pass over the plaintext.

12

Algorithm 1.7: Onion session AE mode for client, with leaky pipe
Definition : Farfalle instance F

1 function init(ephemeral client keys K∗)
2 G∗ ← FK∗

3 function wrap(target i, plaintext P): ciphertext
4 assert 0 ≤ i < |G|
5 PL ← 0128

6 PR ← pad(P) such that |PR| ≥ 128
7 for j = i through 0 do
8 CR ← PR ⊕ Gj(PL‖000 ◦ history↓

j)

9 CL ← PL ⊕ Gj(CR‖001 ◦ history↓
j)

10 CR[..128)← CR[..128)⊕ Gj(CL‖010 ◦ history↓
j)

11 history↓
j ← CR‖001 ◦ history↓

j

12 (PL, PR)← (CL, CR)

13 return CL‖CR

14 function unwrap(ciphertext C): (source, plaintext) or ⊥
15 if |C| < 256 then return ⊥
16 CL‖CR ← C such that |CL| = 128
17 for j = 0 through |G| − 1 do
18 CR[..128)← CR[..128)⊕ Gj(CL‖110 ◦ history↑

j)

19 PL ← CL ⊕ Gj(CR‖101 ◦ history↑
j)

20 PR ← CR ⊕ Gj(PL‖100 ◦ history↑
j)

21 history↑
j ← CR‖101 ◦ history↑

j

22 if PL = 0128 then return (j, pad−1(PR))
23 (CL, CR)← (PL, PR)

24 return ⊥

References

1. Ashur, T., Dunkelman, O., Luykx, A.: Boosting authenticated encryption robustness
with minimal modifications. Cryptology ePrint Archive, Paper 2017/239 (2017),
https://eprint.iacr.org/2017/239, https://eprint.iacr.org/2017/239

2. Bellare, M., Ng, R., Tackmann, B.: Nonces are noticed: Aead revisited. Cryptol-
ogy ePrint Archive, Paper 2019/624 (2019), https://eprint.iacr.org/2019/624,
https://eprint.iacr.org/2019/624

3. Bertoni, G., Daemen, J., Hoffert, S., Peeters, M., Van Assche, G., Van Keer, R.:
Farfalle: parallel permutation-based cryptography. IACR Trans. Symmetric Cryptol.
2017(4), 1–38 (2017)

4. Băcuieți, N., Daemen, J., Hoffert, S., Assche, G.V., Keer, R.V.: Jammin’ on the
deck. Cryptology ePrint Archive, Paper 2022/531 (2022), https://eprint.iacr.
org/2022/531, https://eprint.iacr.org/2022/531

13

https://eprint.iacr.org/2017/239
https://eprint.iacr.org/2017/239
https://eprint.iacr.org/2019/624
https://eprint.iacr.org/2019/624
https://eprint.iacr.org/2022/531
https://eprint.iacr.org/2022/531
https://eprint.iacr.org/2022/531

Algorithm 1.8: Onion session AE mode for node, with leaky pipe
Definition : Farfalle instance F

1 function init(ephemeral key K)
2 G ← FK

3 function wrap(from-me, plaintext P): ciphertext or ⊥
4 if from-me or exit-node then
5 PL ← 0128

6 PR ← pad(P) such that |PR| ≥ 128

7 else
8 if |P | < 256 then return ⊥
9 PL‖PR ← P such that |PL| = 128

10 CR ← PR ⊕ G(PL‖100 ◦ history↑)

11 CL ← PL ⊕ G(CR‖101 ◦ history↑)

12 CR[..128)← CR[..128)⊕ G(CL‖110 ◦ history↑)

13 history↑ ← CR‖101 ◦ history↑

14 return CL‖CR

15 function unwrap(ciphertext C): (to-me, plaintext) or ⊥
16 if |C| < 256 then return ⊥
17 CL‖CR ← C such that |CL| = 128

18 CR[..128)← CR[..128)⊕ G(CL‖010 ◦ history↓)

19 PL ← CL ⊕ G(CR‖001 ◦ history↓)

20 PR ← CR ⊕ G(PL‖000 ◦ history↓)

21 history↓ ← CR‖001 ◦ history↓

22 if PL = 0128 then
23 return (true, pad−1(PR))
24 else if exit-node then
25 return ⊥
26 else
27 return (false, PL‖PR)

⊥
m = 1

⊥
m = 3

⊥
m = 2

Fig. 4: Visualization of stateful onion AE with leaky pipe architecture. A gray
circle represents the space of all possible plaintexts and ciphertexts, with ⊥
representing the error value. The process of recursively encrypting/decrypting
is effectively a random walk through the space, here visualized by vertices and
edges. A green vertex indicates an authentic plaintext. Here, three messages are
shown and the circuit is composed of the client plus three nodes. The client sends
a message destined for the second node, then the third node, then the first node.

14

	Nonce- and Redundancy-encrypting Modes with Farfalle
	Introduction
	Contributions
	Related work
	Conventions

	Constrained wide block cipher
	Details
	Mode: Nonce- and redundancy-encrypting AEAD
	Mode: Onion AE without leaky pipe

	Constrained wide block cipher with RUP resistance
	Details
	Mode: Nonce- and redundancy-encrypting AEAD with RUP resistance
	Mode: Onion AE with leaky pipe

	Conclusions

