
An Algebraic Attack Against McEliece-like
Cryptosystems Based on BCH Codes

Freja Elbro and Christian Majenz
Technical University of Denmark, Denmark;

{freel,chmaj}@dtu.dk

Abstract—We present an algebraic attack on a McEliece-like
scheme based on BCH codes (BCH-McEliece), where the Goppa
code is replaced by a suitably permuted BCH codes. Our attack
continues the line of work devising attacks against McEliece-
like schemes with Goppa-like codes, with the goal of getting a
better understanding of why Goppa codes are so intractable. Our
starting point is the work of Faugère, Perret and Portzamparc
(Asiacrypt 2014). We take their algebraic model and adapt and
improve their attack algorithm so that it can handle BCH-
McEliece. We demonstrate experimentally that our attack is
practical for high rate codes over non-prime fields for parameters
where generic attacks suggest cryptographic security.

I. INTRODUCTION

The design of quantum-safe public key encryption schemes
is a task of critical importance. This importance is highlighted
by the recent NIST process to standardize quantum-resistant
public-key cryptographic algorithms. One of the oldest cryp-
tosystems not affected by known quantum computer attacks is
the McEliece public key encryption scheme [1], a code-based
cryptosystem based on binary Goppa codes. The main advan-
tage of this cryptosystem is its very fast encryption/decryption,
and the fact that despite decades of research, no attacks
have been developed that exploit the structure of the Goppa
codes. Generic decoding algorithms still provide the best
known attacks. Furthermore, despite many improvements to
these generic decoding algorithms, the generic decoder from
before McEliece’s time (due to Prange [2]) still has the best
asymptotic runtime [3].

Although the McEliece cryptosystem has withstood crypt-
analysis for almost 45 years, its security raises fundamental
questions about the difficulty of recovering the secret algebraic
structure of a (binary) Goppa code solely from an arbitrary
basis. This is all the more intriguing as Goppa codes are linear
subspaces of generalized Reed-Solomon codes for which it
is famously easy to recover the algebraic structure from any
basis [4]. This surprising constellation motivate the study of
mathematical approaches to attacking McEliece-like schemes.

Algebraic cryptanalysis is a framework that can in principle
be applied to any cryptographic scheme. It has for instance
been used successfully against several stream ciphers and
cryptographic schemes based on the rank-decoding problem.
The idea is to associate to a cryptographic primitive a set of
polynomial equations such that the solutions of this system
allow the recovery of secret information (like the secret key).

It was shown in [5] that it is possible to construct a
polynomial system of equations for the McEliece cryptosystem

that a private key has to satisfy. This algebraic modeling works
for McEliece-like cryptosystem as long as the underlying
codes are alternant codes (of which Goppa codes form a
subclass). In general, the resulting polynomial system has
equations of high degree and many variables, rendering it
intractable. However, it has lead to attacks when alternant
codes with symmetries like cyclicity or dyadicity are used [6],
[7]. Here, the symmetries can be used to reduce the number
of variables, making the polynomial system tractable.

More recently, an attack on the cryptosystem Wild McEliece
(a McEliece variant with wild Goppa codes) has been devel-
oped, which experimentally is shown to beat generic decoding
algorithms when the field is non-prime and the extension
degree is two or three [8]. Here they also use the modeling of
[5], but solve the problem of high degree equations and many
variables in another way: exploiting multiplicities in the Goppa
polynomial, more polynomial equations can be added. Clever
manipulations then allow halving the number of variables of
the system. For the resulting system, it turns out that using
only equations of low degree extends the solution set to a
union of vector spaces with a nice structure. The structure of
these vector spaces make it possible to find the secret key,
given bases for the vector spaces. Such bases can be found
by solving the system with low degree polynomials multiple
times, each time fixing a number of variables equal to the
dimension of the vector spaces.

The aim of this paper is to expand on the results in [8] to
devise an attack on BCH-McEliece. This case is interesting
for the following reasons:

1) The polynomial system associated to BCH codes by
[5] is simpler, and hence might provide some insight.
Possibly also on the security of the (standard) McEliece
cryptosystem.

2) Narrow-sense BCH codes are a class of Goppa codes,
and they might give slightly better parameters if used in
McEliece-like schemes. Hence breaking a scheme based
on masked BCH codes has been issued as a challenge in
[9].

3) To the best of our knowledge, there is only one known
better-than-generic attack against BCH-McEliece, which
only applies for very specific parameters.

The non-generic attack, which applies to BCH McEliece for
some parameters, is a polynomial attack on Wild McEliece
over quadratic extensions [10]. This attack applies for Wild

Goppa codes with extension degree 2, and this class of codes
has a a small, but not trivial, intersection with the class of
BCH codes.

The generic attacks, which are relevant to BCH-McEliece,
are information-set decoding [2], and the support splitting
algorithm [11]. Information-set decoding is a generic decoding
algorithm, which was originally developed by Prange [2].
Since its development, it has seen many improvements, but
for errors with a sublinear Hamming weight, none of these
improvements have led to asymptotic improvements in the
running time of the algorithm [3]. The support splitting
algorithm takes as input two codes which are equal up to
a fixed permutation on the codeword coordinates, and gives
as output the permutation. The complexity of the support
splitting algorithm is polynomial in the length of the code and
exponential in the dimension of the hull (the intersection of
the code with its dual). For BCH codes, this dimension is large
in general, so for BCH-McEliece, we consider information set
decoding the most relevant generic attack.

A. Our contribution

We present a key recovery attack against the BCH-McEliece
encryption scheme, obtained by adapting and improving the
attack methodology developed in [8]. To the best of our knowl-
edge, this is the first algebraic attack against BCH-McEliece
for BCH codes, which are not also quadratic-extension wild
Goppa codes.

We provide an implementation of the attack (in Magma
[12]). Experimental results obtained with this implementation
show that our attack is practical for high rate codes over
non-prime fields for parameters where generic attacks suggest
cryptographic security. In contrast to [8] and [10], we do
not limit ourselves to extension degrees 2 or 3, and we
find that this does not structurally influence the attack. By
definition of BCH-McEliece, our attack tackles 4 out of 6
defense strategies suggested in the challenge of [9] (scaling,
permutation, subfield and wildness1) in the context of BCH
codes2. While we describe our attack in the “plain” BCH-
McEliece setting, we provide experimental evidence that the
attack defeats all 6 defenses mentioned in [9].

On the technical side,

1) we demonstrate that we can take the technique of [8] a
step further by reducing the degrees of the polynomials in
the system even more. We thus increase the dimension of
the vector spaces in the solution set and thereby increase
number of variables we can fix compared to [8].

2) In addition we replace an exhaustive search step in the
attack algorithm of [8] by an algorithm which iteratively

1In [9] these are described as defenses of RS-codes. Therefore, we under-
stand scaling, permutation and wildness to be included in the definition of
BCH codes. Hence the only additional defense to BCH codes is permutation.

2 [9] states that the four defenses we chose to focus on are "immediately"
broken for BCH codes by the support splitting algorithm [11], but we find
this to be untrue, as the support splitting algorithm has runtime exponential
in the dimension of the hull of the code, and this dimension is large for BCH
codes.

narrows down the search space, improving the efficiency
of the attack.

B. Organization

In section II and III we briefly present some notation and
background information on algebraic coding theory. In section
IV we present the McEliece cryptosystem and outline the
algebraic modeling of [5]. In section V we describe our
attack on permuted narrow sense primitive BCH-codes. In
section VI and VII we first give a theoretical analysis of
the runtime of our attack and then we provide experimental
results on the runtime for specific parameters. In the latter of
these two sections, we will additionally provide experimental
results describing what happens when we include all defense
strategies of [9]. In section VIII, we round the article off with
a conclusion, where we outline possible further works.

II. NOTATION

The symbol , is used to define the left-hand side object.
Fq is the field with q elements where q is a power of a prime
integer. When a 6 b are integers, Ja, bK is the integer interval
[a, b] ∩ Z. When b < a, Ja, bK , ∅. Zn , Z/nZ denotes the
ring {0, 1, .., n − 1} with addition and multiplication modulo
n. Vectors a = (a1, . . . , an) will be regarded as row vectors
by default. The (Hamming) weight of a ∈ Fn denoted by
wtH(a) is the number of non-zero coordinates. For a function
f : Fn → Fn, we write f(a) , (f(a1), .., f(an)). Given two
fields K ⊆ F and A ∈ Fr×n, we define

kerK A ,
{
v ∈ Kn

∣∣ AvT = 0
}
.

K[X] is the ring of univariate polynomials with coefficients
in the field K. We also denote the ring of multivariate
polynomials over K with variables X = (X1, . . . , Xn) by
K[X]. Given P = {P1, . . . , Pk} ⊆ K[X] and a field F ⊇ K,
we define

ZF(P) , {x ∈ Fn | ∀i ∈ J1, kK, Pi(x) = 0}.

Given two n-tuples x and y from Fn, we define the Vander-
monde matrix Vt(x,y) ∈ Ft×n of order t ∈ N

Vt(x,y) ,


y1 y2 · · · yn
y1x1 y2x2 · · · ynxn

...
...

...
y1x

t−1
1 y2x

t−1
2 · · · ynx

t−1
n

 .
III. ALGEBRAIC CODING THEORY

This section is devoted to recalling classical notions on
algebraic coding theory. We refer to [13] for a detailed
treatment.

A linear code C of length n and dimension k over a field
F is a k-dimensional subspace of Fn where k < n are natural
numbers. Any matrix such that its rows form a basis of C is
called a generator matrix. A generator matrix G is said to be

on standard form if G =
[
Ik | A

]
with A ∈ Fk×n−k. The

dual of C ⊆ Fn is the linear space

C⊥ ,

{
z ∈ Fn

∣∣∣ ∀u ∈ C ,
∑
i

uivi = 0

}
.

We always have dim C⊥ = n−dim C , and a generator matrix
of C⊥ is called a parity check matrix of C . Moreover, if[
Ik | A

]
is a generator matrix for C then

[
AT | In−k

]
is a parity-check matrix for C . An algorithm Φ is t-correcting
if Φ(u+e) = u for every (u, e) in C ×Fn when wtH(e) 6 t.

We now recall definitions and key properties of the linear
codes, which are relevant for this article.

Definition 1 (Generalized Reed-Solomon code). Let k and
n be integers such that 1 6 k < n 6 q where q is a
power of a prime number. The generalized Reed-Solomon code
GRSk (x,y) of dimension k, where x is an n-tuple of distinct
elements of Fq and y is an n-tuple of nonzero elements in Fq ,
is defined as the code with generator matrix Vk(x,y).

One of the key properties of GRS codes is that they can be
efficiently decoded.

Proposition 2. For every generalized Reed-Solomon code
GRSk (x,y) there exists a polynomial-time algorithm that
corrects all errors of weight at most (n − k)/2 whenever x
and y are known. We denote this decoder by decGRSk,x,y

Another key property is that the dual of a GRS code is again
a GRS code.

Proposition 3. GRSk (x,y)
⊥

= GRSn−k (x, z) where for
every i ∈ J1, nK,

z−1i , yi

n∏
j=1j 6=i

(xj − xi)

We turn now to subfield subcodes of GRS codes.

Definition 4 (Alternant code). Given a natural number m >
1 the q-ary alternant code Ar(x,y), where x is an n-tuple
of distinct elements of Fqm and y is an n-tuple of nonzero
elements in Fqm , is the following (subfield) subcode

Ar(x,y) = GRSr (x,y)
⊥ ∩ Fnq

Remark 5. We note that Ar(x,y) ⊂ GRSn−r (x, z) with z
defined in proposition 3, so decGRSn−r,x,z can be used as
a decoding algorithm for Ar(x,y). It can correct up to r/2
errors whenever x and z are known – or equivalently whenever
x and y are known.

Another key property of alternant codes is the following:

Corollary 6. Given x that is an n-tuple of distinct elements
of Fqm and y which is an n-tuple of nonzero elements in Fqm ,
it holds that

Ar(x,y) = kerFq
Vr(x,y).

We turn now to specific alternant codes.

Definition 7 (Goppa code). A q-ary Goppa code G (x, γ) of
length n, where x is an n-tuple of distinct elements from Fqm
with m > 1 and γ is a polynomial in Fqm [X] of degree t such
that x does not contain any root of γ, is the alternant code
At

(
x,y

)
where yj , γ(xj)

−1 for every j ∈ J1, nK.

A key property of Goppa codes is the following:

Proposition 8 ([14]). Let γ ∈ Fqm [X] be a monic and square
free polynomial of degree t. Let x be an n-tuple of distinct
elements of Fqm satisfying γ(xi) 6= 0 for every i ∈ J1, nK.
Then

G (x, γq−1) = G (x, γq).

The last code-class we introduce, is the BCH codes, which
are also a subclass of alternant codes.

Definition 9 (BCH code). Let us assume that q = ps where
p is a prime number and s > 1. Let b, m and n be a natural
numbers such that n divides qm − 1. Let α be an arbitrary
primitive n-th root of unity in Fqm .

A q-ary BCH code, of length n denoted by BCHb,r(α)
is the q-ary alternant code Ar(α,α

b), where α ,
(1, α, α2, . . . , αn−1).

When b = 1 the BCH code is called narrow-sense and when
n = qm − 1 it is called primitive.

It is more standard to define a BCH code in terms of its
designed distance δ. It is then defined as the cyclic code with
zeros αb, αb+1, . . . , αb+δ−2. If we set δ = r + 1, then the
two definitions are equivalent. We chose definition 9, as all
the properties of BCH codes that will be relevant to us follow
directly from it and we want to emphasize the connection to
Goppa codes.

Proposition 10. A narrow-sense q-ary BCH code BCH1,r(α)
is the q-ary Goppa code G

(
α−1, Xr

)
where α−1 =(

1, α−1, . . . , α−(n−1)
)
.

Proof. By definition of a narrow-sense BCH code, any code-
word is in the right kernel of the following matrix

1 α1 α2 · · · α(n−1)

1 α2 α4 · · · α(n−1)2

...
...

...
...

1 αr α2r · · · α(n−1)r

 . (1)

For every i ∈ J1, rK and j ∈ J1, nK the entry located at position
(i, j) in the matrix (1) is equal to αi(j−1). But by letting ` ,
r − i and setting aj , α−(j−1) we then have

αi(j−1) = α(r−`)(j−1) = α(r)(j−1)α−`(j−1)

= a
−(r)
j a`j =

a`j
arj

As ` ∈ J0, r − 1K this proves that a narrow-sense BCH code
is a Goppa code defined with the polynomial Xr.

Theorem 11 ([15]). The dimension of a narrow-sense BCH
code BCH1,r(α) is at least n−mdr − r/qe.

IV. THE MCELIECE CRYPTOSYSTEM

The McEliece cryptosystem [1] is a public key encryption
scheme. We recall its key generation, encryption and decryp-
tion functions in algorithm 1, 2 and 3 respectively. We give the
description for a generalization of the McEliece scheme based
on alternant codes. To get the original McEliece cryptosystem,
you just have to specialize to q = 2 and y = γ(x)−1. Then
apply proposition 8 to double the number of errors that can
be corrected.

In the algorithms we will write x $←− S to express that x is
sampled according to the uniform distribution over a set S.

Algorithm 1 (sk, pk)← Gen
(
1λ
)

1: (q,m, n, r)← param(1λ)

2: x
$←− Fnqm composed of pairwise distinct entries

3: y
$←− (F∗qm)n

4: Pick at random a generator matrix G of Ar(x,y)
5: return Return (sk, pk) with sk , (x,y) and pk ,

(
G, r2

)

Algorithm 2 c← Enc(pk,m)

1: Parse pk to obtain G, r
2: e

$←− Fnq of weight wtH(e) = br/2c
3: return Return c ,mG + e

Algorithm 3 m← Dec(sk, c)

1: Parse sk to get x and y
2: Define z as in prop. 3 from x and y
3: return Return m , decGRSn−r,x,z (c)

A. Algebraic Modeling of the Key Recovery Problem

We here explain how recovering the secret key of any
McEliece-like cryptosystem based on alternant codes is con-
nected to solving a polynomial system. The adversary has
access to the (public) generator matrix G = (gi,j) belonging
to Fk×nq . This matrix contains a basis for an alternant code
Ar(x,y) of length n 6 qm and dimension k > n− rm.

The algebraic modeling given in [5] introduces 2n variables
X , (X1, . . . , Xn) and Y , (Y1, . . . , Yn) satisfying the
following,

n∑
j=1

gi,jYjX
u
j = 0, 1 6 i 6 k, 0 6 u 6 r − 1, (2)

Substituting X ← x and Y ← y into the system yields a
valid solution, because

Ar(x,y) = kerFq
Vr (x,y) ,

see Cor. 6.
As Goppa codes are alternant codes, we can use the same

modeling for them. We do have the additional information that
y = γ(x)−1, but we do not know of a way to leverage this

information without increasing massively the degree of the
equations. So, like [5], we do not give a separate modeling
for Goppa codes.

A classical approach for solving such a system is to use
algorithms relying on the computation of Gröbner bases. But
in a cryptographic setting, the number of unknowns can be
really high, as n is larger than 1, 000. Unless the number of
unknowns is very low (less than 100 as in [5]), no existing
algorithms can deal with the current cryptographic parameters.

These practical obstacles do not change the fact that key
recovery problem of the McEliece public-key cryptosystem
has a strong connection to the following problem

Problem 1. Considering the polynomial ring Fq[X,Y] with
X , (X1, . . . , Xn) and Y , (Y1, . . . , Yn). Compute
ZFqm

(P) where

P ,


n∑
j=1

gi,jYjX
`
j

∣∣∣ i ∈ J1, kK, ` ∈ J0, r − 1K

 (3)

and G = (gi,j) ∈ Fk×nq is a generator matrix of a q-ary
alternant code Ar(x,y) ⊂ Fnq of dimension k.

However, the two are not equivalent, as ZFqm
(P) might

contain more than just the secret key (x,y). In fact, we
know that the solution set contains at least m elements as
the zeros are sought in Fqm , but each polynomial in P has its
coefficients in Fq . Hence we can apply the Frobenius mapping
defined for z ∈ Fqm by z 7→ zq

e

with e ∈ J0,m − 1K to get
other solutions in Fqm .

Lemma 12. If (x,y) is in ZFqm
(P), then so is (xq

e

,yq
e

) for
every e ∈ J1,m− 1K.

Furthermore, Theorem 4 in [16] shows that even though
(x′,y′) 6= (x,y), it might still be the case that
GRSk (x′,y′) = GRSk (x,y). If this is the case, then (x′,y′)
is also in the zero set of P .

These two groups of extra solutions are not a problem
though, as they all generate the same alternant code, so
regardless of which one you choose, you can get a decoding
algorithm for the code generated by G.

However, P also has zeros which does not generate the
same alternant code. In fact, these extra solutions often do
not generate an alternant code at all, as they do not consist
of distinct/non-zero elements. These solutions are not well
characterized, but it has been found experimentally that if we
include extra polynomials which encode the information that x
must consist of n distinct elements and all entries of y must be
non-zero, then the solution set becomes manageable, so finding
the secret key becomes equivalent to solving problem 1 with
the inclusion of those extra polynomials [5]. The drawback
of this approach is of course the extra variables added to an
already intractable system.

V. CRYPTANALYSIS OF THE BCH-MCELIECE
CRYPTOSYSTEM

A. Preliminaries

In this section we describe a key-recovery attack on the
BCH-McEliece cryptosystem, which uses permuted narrow-
sense primitive BCH codes. We will introduce additional
notation throughout this section, and therefore provide an
overview of notation in appendix A. We hope that this can
serve as an index in case our readers want to go back and
look up a definition.

Algorithm 4 describes the key generation process of the
BCH-McEliece cryptosystem. The encryption and decryption
functions do not change from the previous section, so they can
be found in Algorithm 2 and Algorithm 3 respectively.

Algorithm 4 (sk, pk)← Gen
(
1λ
)

1: (p, s,m, r)← param(1λ)
2: q ← ps

3: n← qm − 1
4: Pick at random in Fqm a primitive n-th root of unity α
5: Pick at random a permutation π on J0, n− 1K
6: x←

(
απ(0), απ(−1), . . . , απ(−(n−1))

)
7: Pick at random a generator matrix G of G (x, Xr)
8: return (sk, pk) with sk , x and pk , (G, r/2)

We recall from Prop. 10 that a narrow-sense
BCH code is the Goppa code G (α, Xr) where
α ,

(
1, α−1, . . . , α−(n−1)

)
.

The key recovery problem we want to solve is

Problem 2. Given a public key G that is obtained from the
BCH-McEliece cryptosystem instantiated with a k-dimensional
q-ary permuted narrow-sense primitive BCH code BCHr(x).
Assuming that q = ps where p is a prime number and s > 1,
find x.

Following [8], we will only use equations of low degree
in the algebraic modeling of [5]. This makes the solution set
of the system larger, naively increasing the difficulty of the
remaining search problem. However, the extra solutions are
helpful as they form a vector space with a very particular
structure. We can therefore 1) repeatedly fix variables when
solving the system, which means that it is easier to solve, and
2) “detangle” the vector spaces to obtain the correct solution.

B. Algebraic modeling

We specialize the algebraic modeling of [5] to the BCH-case
and thus see that x is a zero of

P ,


n∑
j=1

gi,jX
`
j

∣∣ i ∈ J1, kK, ` ∈ J1, rK

 . (4)

We can thus solve Problem 2 via finding ZFqm
(P). However,

we were unable to get very far by trying to solve this system
directly. In stead we chose to follow in the footsteps of [8]
and focus a set of low degree polynomials.

We first observe that P contains k linear polynomials.
Following [8], we further observe that for every a ∈ J0, smK,
the mapping from Fqm to Fqm given by z 7→ zp

a

is Fp-linear
and invertible. This enables us to find more linear equations
that x satisfies. If we define pa

√
: Fqm → Fqm to be the

inverse of z 7→ zp
a

, then the following is straight forward to
prove

Lemma 13. For any a ∈ J0, smK such that pa ∈ J1, rK, and
for every i ∈ J1, kK it holds that

n∑
j=1

pa
√
gi,jxj = 0.

The secret key x is therefore additionally a zero of

L ,


n∑
j=1

pa
√
gi,jXj

∣∣ i ∈ J1, kK, pa ∈ J1, rK

 . (5)

Solving linear equations is fast, but unfortunately we were
not able to detangle ZFqm

(L) to obtain the secret key. How-
ever, we found that adding the following equations

Pu ,


n∑
j=1

gi,jX
u
j

∣∣ i ∈ J1, kK

 . (6)

where
u ,

{
3 for p = 2
2 else

gave a zero-set that we could detangle. 3

An outline of our attack is as follows: We solve Problem 2
by identifying a particular vector space V ⊆ ZFqm

(Pu ∪ L)
such that x ∈ V and such that it is possible to recover x from
the knowledge of V .

Finding a basis for V is much easier than finding zeros of
P directly. In part because we can fix dim(V) many variables
when we solve the system, and in part because we only
have polynomials of low degree in our system. This means
that we can break the BCH-McEliece cryptosystem for many
parameters. See Section VII)

C. Identifying a vector space in ZFqm
(Pu ∪ L).

An important feature of the attack given in [8] is to
identify a relatively large vector space that is included in
ZFqm

(Pu ∪ L). The idea is to find sets L ⊆ Zqm−1 which
guarantees that

spanFqm

{
x`

∣∣ ` ∈ L} ⊂ ZFqm
(Pu ∪ L) .

We now introduce a conditions that will help us to find such
sets L. In the following, Cq(c) are the cyclotomic cosets,

Cq(c) ,
{
cqe (mod qm − 1)

∣∣ e ∈ J0,m− 1K
}
,

3The systems of [8] includes more non-linear equations than ours. There
is a trade-off between the benefit of more equations and the dimension of
the vector spaces in the solution set. Both our experiments and those of [8]
indicate that it is more important to raise the dimension of the solution set
than it is to keep more equations. With that in mind, we include the smallest
possible number of non-linear equations necessary to obtain a solution space
with a structure that allows finding the actual desired solution.

and Cq ,
⋃
c∈J1,rK Cq(c) is their union. Note that by the same

reasoning as in lemma 12, ∪c∈J1,rKCq(c) contains powers c for
which we know that

n∑
j=1

gi,jx
c
j = 0 for all i ∈ J1, rK. (7)

Definition 14. For u ∈ J1, rK, L ⊆ Zqm−1 is said to satisfy
the u-sum condition, if
U1: for every ` ∈ L and any pa ∈ J1, rK, pa · ` ∈ Cq , and
U2: for any choice of `1, . . . , `u ∈ L, `1 + · · ·+ `u ∈ Cq .

Proposition 15. If L ⊆ Zqm−1 satisfies the u-sum condition
then

spanFqm

{
x`
∣∣ ` ∈ L} ⊆ ZFqm

(Pu ∪ L) .

Proof. We will prove the more precise statements:
1) U1 ⇒ spanFqm

{
x`
∣∣ ` ∈ L} ⊆ ZFqm

(L).
2) U2 ⇒ spanFqm

{
x`
∣∣ ` ∈ L} ⊆ ZFqm

(Pu).

For the first of these: Let z ∈ spanFqm
{x` | ` ∈ L} be given

for some L, which satisfies the U1 condition. Then

z =
∑
`∈L

c`x
` (8)

for some c`’s in Fqm . We now have to prove that
n∑
j=1

pa
√
gijzj = 0 (9)

for all pa ∈ J1, rK. But since raising to the power pa is Fp-
linear for all elements in Fqm , this is equivalent to

n∑
j=1

gijz
pa

j = 0 (10)

If we now plug in zj from equation (8), and again use that
raising to the power pa is Fp-linear, we see that

n∑
j=1

gijz
pa

j =

n∑
j=1

gij
∑
`∈L

cp
a

` x
`·pa
j =

∑
`∈L

cp
a

`

n∑
j=1

gijx
`·pa
j

Which is equal to zero by (7) as ` · pa ∈
⋃
c∈J1,rK Cq(c) for

all l and pa. This finishes the proof.
The proof of the second statement is similar. Except here,

raising to the power u is not linear in general, so the last step
becomes

n∑
j=0

gijz
u
j =

n∑
j=0

gij
∑

`1,...,`u∈L

b`1,...,`ux
`1+···+`u
j

=
∑

`1,...,`u∈L

b`1,...,`u

n∑
j=0

gijx
`1+···+`u
j

= 0

Remark 16. Note that ZFqm
(Pu∪L) might contain more than

one vector space. In fact, for most parameters, it contains
many vector spaces, which may or may not have overlapping

subspaces. For example for q = 8, m = 2 and r = 20, all of
the following sets satisfy the 3-sum condition:
• {1, 2, 3, 4, 6} and {8, 16, 24, 32, 48}
• {1, 2, 3, 4, 8} and {8, 16, 24, 32, 1}
• {1, 2, 8, 16}
The following lemma shows that some of the sets we found

in remark 16 were no coincidence

Lemma 17. If L ⊆ Zqm−1 satisfies the u-sum criteria, then
qL does as well.

Proof. Relies on the simple observation that a ∈ Cq ⇒ qa ∈
Cq .

For the attack, we need the size of the largest L as this
tells us the number of variables we can fix. Once we fix this
number of variables, we are unlikely to find solutions in the
smaller vector spaces. Hence in the example of remark 16, if
we fix 5 variables, then we are most likely to only find 2m
solutions.

For the remainder of this article, we will denote by L a
subset of Zqm−1 of maximal size which fulfills the u-sum
condition.

We were not able to find a closed formula for the size of
L, but we developed two algorithms to determine L (next
section). Furthermore, we found the following upper and lower
limits:

Lemma 18. Any L that fulfills the u-sum criteria has size
at most rm. Conversely, the largest L’s that fulfill the u-sum
criteria, have size at least

⌊
r

maxU

⌋
, where

U , {u} ∪ {pa | a ∈ J0, s− 1K, pa ∈ J1, rK}

Proof. For the first statement, note that L ⊆ Cq , and Cq has
size at most rm. For the second, we claim that {1, ..,

⌊
r

maxU

⌋
}

fulfills the u-sum criteria. The central step of proving the claim
is to realize that

pa · l ∈ Cq ⇒ q · pa · l ∈ Cq.

Hence, to check U1 of definition 14 it is sufficient to check
pa where a ∈ J0, s− 1K.

D. Algorithms to find L’s which fulfill the u-sum criteria

Here we present two algorithms to find L’s of maximal
size that fulfill the u-sum criteria. The first algorithm is fast
but may not always find an L of maximal size. The second
is guaranteed to find all L’s of maximal size, but may have
runtime exponential in r.

The first step for both of the algorithms is to create the set

SU , {l ∈ Zqm−1 | l · u ∈ Cq for all u ∈ U}

where U is defined in lemma 18. We create this set to limit the
search space for L, as it is clear that L ⊆ SU . Furthermore,
SU can be created efficiently by running through all elements
l of Zqm−1 and for each test if l · u ∈ Cq for all u ∈ U .

In the fast algorithm (Algorithm 5), the idea is simply create
L element by element. To initialize, we set L = {}, and then

for each element l of SU , we check if L∪{l} fulfills the u-sum
criteria. If it does, then we grow L and if not, then we leave
out that particular element, and move onto the next. Based on
our experience with how the sets look, we decided to sort the
elements of SU and start by adding small elements. We can
check if a set L fulfills the u-sum criteria in time O(|L|3)
(we need to calculate a sum for each choice of two or three
elements from L). As we need to check a u-sum criteria for
each l ∈ SU , the total runtime of the algorithm is O(|SU |4),
which is O(m4r4) by the same argument as in lemma 18.

Algorithm 5 Find L Fast
Input: SU and u
Output: A set L ⊆ Zqm−1, which fulfills the u-sum criteria
Algorithm:
L := {}
for l ∈ SU do

if L ∪ {l} fulfills the u-sum criteria then
L := L ∪ {l}

end if
end for
return L

The second algorithm (Algorithm 6), which is guaranteed
to find all L’s of maximal size, leverages the maximal clique
finding algorithms from graph theory. The idea is to construct
a hypergraph where each vertex is an element of SU , and a set
of vertices is connected by an edge, if the set fulfills the u-sum
criteria. Once this graph is constructed, finding L boils down
to finding the maximal cliques of the graph. When p 6= 2, it
is sufficient to consider edges of size two (the hypergraph is
just a normal graph). This is because a set L fulfills the 2-sum
criteria if and only if all subsets of L of size two fulfill the
criteria. For p = 2, we need to consider hypergraphs, where
all edges connect three vertices.

Algorithm 6 Find L Accurately for u = 3

Input: SU
Output: All sets L ⊆ Zqm−1 of maximal size, which fulfill
the 3-sum criteria
Algorithm:

Initialize hypergraph G with nodeset SU .
for {a, b, c} ⊆ SU do

if {a, b, c} fulfills the 3-sum criteria then
add edge {a, b, c} to G

end if
end for
Run algorithm for finding maximal cliques in G
return Maximal cliques

In our code, we implemented the fast but inaccurate algo-
rithm for p = 2, as magma does not support hypergraphs,
and we did not run into any cases where the algorithm failed.
For p 6= 2, we implemented the slow but accurate algorithm,
and we used the clique finding algorithm of Magma, which
is based on [17]. The runtime of this algorithm is not well

understood in general, but we note that it is at most exponential
in the number of vertices |SU |, i.e. in r and m.

E. Repeatedly solving restrictions of the polynomial system

We use Magma’s [12] Gröbner basis algorithm to find vector
spaces of maximal dimension in ZFqm

(Pu ∪ L) as follows.
The set ZFqm

(Pu ∪ L) contains at least one vector space of
dimension |L|. We can thus fix |L| variables, and still find a
solution in each vector space of maximal dimension. We run
the Gröbner basis algorithm |L| times, each time fixing |L|
variables differently, to find |L| sets of solutions.

In the first run, we fix the first |L| variables to

(1, ω, ω2, .., ω|L|−1)

where ω is a primitive n’th root of unity, that we choose. In
the second run, we fix the variables to

(1, ω2, ω4, .., ω2(|L|−1))

etc. This choice of fixed variables is different from the choice
of [8]. Our choice forces the solutions to have many different
entries, which we found to be helpful when trying to avoid
additional solutions outside of the vector spaces that we
understand.

Let us denote the solution sets outputted by the Gröbner
basis algorithm by V1, .., V|L|. If we denote by ν the number
of vector spaces of maximal dimension in ZFqm

(Pu∪L), then
with high probability, Vi has exactly ν elements – one from
each of these vector spaces. To obtain a basis for each of
the maximal vector spaces, what is left to do is to “match
up” the elements of Vi, i.e., to find sets Wj , j = 1, ..., ν
such that Wj ∩ Wj′ = ∅ for j 6= j′, |Vi ∩Wj | = 1, and
spanFqm

Wj ⊆ ZFqm
(Pu∪L). This is achieved via Fröbenius

Alignment.

F. Step 4: Fröbenius Alignment

In [8], the above task is solved using a brute-force search, a
routine with runtime exponential in |L|. This is possible since
their L is not too big. However, as r grows, |L| grows too
rendering this step infeasible.

We we able to construct a faster solution by leveraging
the following insight: if two vectors, v,w ∈ ZFqm

(Pu ∪ L)
belong to the same vector space of zeros, then v +w is also
in ZFqm

(Pu ∪L), and if they don’t belong to the same vector
space, then most likely, v+w is not in ZFqm

(Pu∪L). Hence,
we can build a basis W iteratively. First we choose w1 ∈ V1.
Then, for each i, we check whether w1 + wi is a zero of
Pu ∪ L for all wi ∈ Vi and add the successful vector to W .

For each choice of w1 this gives a basis for a vector space
in ZFqm

(Pu ∪L). If we loop through all the different choices
of w1, we find bases for all the vector spaces in ZFqm

(Pu∪L)
of maximal dimension.

Note that this algorithm in not fail safe: it is possible that
v + w ∈ ZFqm

(Pu ∪ L), but v and w are not in the same
vector space of maximal dimension. There are ways to make
our Fröbenius Alignment algorithm more dependable, but for

all the parameters we tried, the simple version of the algorithm
sufficed.

The algorithm is summarized in Algorithm 7. The runtime
is O(|L| · ν), where ν is the number of results given by the
Gröbner basis calculation.

Algorithm 7 Fast Fröbenius Alignment
Inputs:
• |L| lists of zeros of Pu ∪ L: V1, ..., V|L|
• Index j ∈ {1, .., |V1|} (deciding which solution to pick

from the first set)
Output: A set of vectors: W := {w1, ..,w|L|}, such that
• wi ∈ Vi for i = 1, .., |L| and
• {w1, ..,w|L|} forms a basis for spanFqm

{x` : ` ∈ L}
for some L of maximum dimension fulfilling the u-sum
condition.

Algorithm:
w1 := V1[j] (the j’th element on the list V1)
for i ∈ {2, .., |L|} do

for v ∈ Vi do
b := 0
for f ∈ Pu ∪ L do

if f(w1 + v) 6= 0 then
(w1 and v are not in the same vector space)
b := 1
break f -loop

end if
end for
if b = 0
wi := v
break v-loop (go to next i ∈ {2, .., |L|})

end if
end for

end for
return {w1, ..,w|L|}

G. Step 5: Detanglement

Here we assume that we have a basis for all vector spaces
of maximal dimension in ZFqm

(Pu∪L) and that we know all
the corresponding L’s. We further assume that we know which
L belongs to which basis (we can achieve this by trying all
combinations and seeing which produce the expected results
in the upcoming calculations4).

In order to use this input to find the secret key, x, we use
the same idea as [8]. Their idea relies on the following two
propositions5 :

Proposition 19. Let a ∈ J0, sm−1K and W = {w1, ..,w|L|}
be one of the sets returned by Fröbenius alignment. If W is a
basis for spanFqm

{x` | ` ∈ L} then W pa , {wpa

1 , ..,w
pa

|L|} is

4The number of vector spaces of maximal dimension is not very big. The
largest we saw was 3m, so this step of exhaustive search is not a problem

5The authors of [8] were not able to prove the second proposition in their
setting. Our proof does not apply in their setting, either, as it is not clear
whether their vectors are linearly independent.

a basis for spanFqm
{x` | ` ∈ paL}, where paL , {pa` | ` ∈

L}.

Proof. To ease notation, we just show the proposition for a =
1. The idea generalizes directly to other a’s.

That spanFqm
W p ⊆ spanFqm

{x` | ` ∈ pL} follows easily
from z 7→ zp being Fp-linear for all z ∈ Fqm . To prove
that the vectors of W p are linearly independent, we note
that for wi ∈ W , the first entries of wi were chosen to be
(1, ωi, ω2i, .., ω|L|i) in section V-E, so the first entries of wpi
are (1, ωip, ω2ip, .., ωi|L|p). Furthermore, the matrix

1 ωp ω2p · · · ω|L|p

1 ω2p ω4p · · · ω2|L|p

...
...

1 ω|L|p ω|L|p · · · ω|L|
2p


has full rank, as it is a Vandermonde-matrix. Hence the vectors
of W p are linearly independent

Proposition 20. For L1, L2 ⊆ Zqm−1

spanFqm
{x` : ` ∈ L1} ∩ spanFqm

{x` : ` ∈ L2}
= spanFqm

{x` : ` ∈ L1 ∩ L2}

Proof. First, note that the inclusion "⊇" is trivial. To prove the
other inclusion, we show that the two vector spaces have the
same dimension. As x0, ...,xn−1 are linearly independent per
Lemma 26, the dimension of the right hand side is |L1 ∩L2|.
To find the dimension of the left hand side, we use the formula
dim(V1 + V2) = dim(V1) + dim(V2)− dim(V1 ∩ V2). In our
case, the sum of vector spaces is equal to

spanFqm
{x` : ` ∈ L1}+ spanFqm

{x` : ` ∈ L2}
= spanFqm

{x` : ` ∈ L1 ∪ L2}

So it has dimension |L1 ∪ L2|. From this we deduce that
the left hand side has dimension

|L|1 + |L|2 − |L1 ∪ L2| = |L1 ∩ L2|

Exactly like the right hand side. This finishes our proof.

Using these two ideas and the attack on GRS codes by
Sidelnikov and Shestakov [4], we can detangle the solution
space for many parameters. We first illustrate the idea with an
example, and then we will describe the idea in more detail.
Example 21. For q = 25, m = 2 r = 100, we are given
W = {w1, .., w26}, which is a basis for spanFqm

{x` : ` ∈ L}
with

L = J1, 20K ∪ {25, 30, 35, 40, 45, 50}.

Using proposition 19 and 20 along with the fact that 5−1 = 53

in Zqm−1, we see that

(spanFqm
W) ∩ (spanFqm

W 53)

= spanFqm
{x` : ` ∈ L ∩ 5−1L}

with L ∩ 5−1L = J1, 10K. Note that calculating a basis for
(spanFqm

W)∩ (spanFqm
W 53) is simple linear algebra given

W . Hence we are able to find a basis for spanFqm
{x` : ` ∈

J1, 10K}.
Now we just repeat the process. If we again raise to

the power 53 and take the intersection, we find a basis
for spanFqm

{x1,x2}. This is a basis for the GRS code
GRS2 (x,x), so we can use the Sidelnikov-Shestakov attack
[4] to find x.

From this example we already see the outline of how
detangle the solution sets. However, the idea used in example
21 relies on L having a very particular structure. We will call
any L that has this structure well formed.

Definition 22. L ⊆ Zqm−1 is called well-formed of length
σ ∈ J1, sm− 1K if
• L ⊆ J1, pσ − 1K
• pa ∈ L for all a ∈ J0, σ − 1K
• For every c ∈ J2, p− 1K:

∀a ∈ J0, σ − 1K : pa · c ∈ L⇒
∀a ∈ J0, σ − 1K,∀b ∈ J2, c− 1K : pa · b ∈ L

Note that if such a σ exists, it is unique.
The remainder of this section will be used to prove that the

strategy of example 21 works whenever L is well formed. In
appendix B, we give experimental evidence to show that it is
always possible to find an L which is well-formed when r is
small enough. In section VII, we will see that the Gröbner
basis step of our attack is the limiting factor, and this step
has a runtime which increases in r. In the appendix we will
show that it is possible to find well-formed L’s for r’s which
are much bigger than the largest r’s for which we are able
to run the Gröbner basis step of our attack. In other words,
the problem of finding well-formed L’s is, in practice, not the
limiting factor of our attack.6

To prove that the detanglement-idea of example 21 always
works when L is well-formed, we start out by formalizing the
step we repeated twice in the example. Here and throughout
the rest of this section, we will use the notation of proposition
19:

Definition 23. A detanglement step is an algorithm, which
takes as input (L,W), where L ⊆ Zqm−1 and W ⊆ Fnqm , and
outputs (L′,W ′) where L′ = L∩ p−1L and W ′ is a basis for
spanFqm

W ∩ spanFqm
W psm−1

.

Note that the output is efficiently computable from the input.
Now for the key lemma of detanglement:

Lemma 24. If the input (L,W) of a detanglement step
satisfies
• L is well formed with length σ > 1
• W is a basis for spanFqm

{x` | ` ∈ L}
Then the output (L′,W ′) will satisfy
• L′ is well formed with length σ − 1

6We suspect that even when no L’s are well-formed, we would still be able
to detangle most solution spaces through a clever combination of the ideas
in example 21 and multiple runs of a Gröbner basis algorithm with different
polynomial inputs.

• W ′ is a basis for spanFqm
{x` | ` ∈ L′}

Proof. As p−1 = psm−1 in Zqm−1, the statement about W ′

follows from proposition 19 and 20.
We now turn our attention to L′ = L ∩ p−1L. Throughout

this proof, we will use the fact that

b ∈ L′ ⇔ b ∈ L and pb ∈ L (11)

which follows directly from the definition of L′.
To show L′ ⊆ J1, pσ−1 − 1K, we first note that L′ ⊆ L ⊆

J1, pσ−1K. We claim that L′∩Jpσ−1, pσ−1K = ∅. To prove this
claim, it is sufficient to show that for every b ∈ Jpσ−1, pσ−1K,
pb is not in L. First observe that

b ∈ Jpσ−1, pσ − 1K⇒ bp ∈ Jpσ, pσ+1 − pK

Next, observe that Jpσ, pσ+1 − pK ∩L = ∅ (note that here we
need σ 6 sm−1 as it implies pσ+1−p 6 qm−1, so nothing
"wraps around"). These two observations together give a proof
of the claim, and we can thus conclude that L′ fulfills the first
criteria of well formed.

For the second criteria of well formed, we have to show
that pa ∈ L′ for all a ∈ J0, σ− 2K. Per Equation (11), we just
have to show that both pa ∈ L and p ·pa ∈ L, but this is clear.

For the third criteria, first note that if p = 2, the statement
is vacuously true. Hence for this proof, we assume p > 2.
Now let c ∈ J2, p− 1K be given such that

∀a ∈ J0, σ − 2K : pac ∈ L′.

By Equations 11 this implies

∀a ∈ J0, σ − 1K : pac ∈ L.

As L is well-formed, we can conclude that

∀a ∈ J0, σ − 1K,∀b ∈ J2, c− 1K : pab ∈ L.

Again by Equations 11 this implies

∀a ∈ J0, σ − 2K,∀b ∈ J2, c− 1K : pab ∈ L′,

which is what we wanted to prove.

If we repeat the detanglement step σ− 1 times, we end out
with an L which is well formed with length 1. I.e. we will have
a basis W of spanFqm

{x` : ` ∈ L′}, where L′ = J1, |L′|K.
I.e. W is a basis for the GRS code GRS|L| (x,x), so we can
apply the Sidelnikov-Shestakov attack [4] to find x.

The algorithm for detanglement is summarized in Algorithm
8 Detanglement.

For each W , the algorithm has to perform the detanglement
step at most sm−2 times. The detanglement step is polynomial
in n. Furthermore, the Sidelnikov-Shestakov attack has to be
run. This also have runtime polynomial in n. As there are ν
different W ’s, the total runtime of the algorithm is poly(n) ·ν.

Algorithm 8 Detanglement
Input:

• Ws = {W1, ..,Wν}, a set of bases of all vector
spaces in ZFqm

(Pu ∪ L) of maximal dimension.
• L ⊆ Zqm−1, which is well-formed and such that

spanFqm
Wi = spanFqm

{x` | ` ∈ L} for some
i ∈ J1, νK.

Output: A vector v, that can be used as secret key to decrypt
messages

1: for W ∈Ws do
2: σ ← length of L (see Def. 22)
3: L′ ← L
4: while σ > 1 do
5: L′ ← L′ ∩ p−1L′
6: σ ← length of L′

7: W ← basis for (spanFqm
W) ∩ (spanFqm

W psm−1

)
8: if |L′| 6= |W | then
9: (W is not a basis of span{x` | ` ∈ L′})

10: continue W -loop (go to next W ∈Ws)
11: end if
12: end while
13: Run the Sidelnikov Shestakov attack with input W
14: v ← output of Sidelnikov Shestakov attack
15: if G is a generator matrix for Ar(v,v) then
16: return v
17: end if
18: end for

VI. THEORETICAL ANALYSIS OF THE RUNTIME

When we analyze the runtime of the attack, it is helpful to
split the attack into four parts:

1) Find L. The runtime of this part is not well understood,
but it is potentially exponential in r.

2) Find a Gröbner basis in the grevlex order for the ideal
generated by Pu ∪ L. The runtime is well understood
for random systems, but our results in the next section
will show that our system does not behave like a random
system. Hence, analyzing the precise complexity of the
Gröbner basis step is a hard task. One difficulty is to
predict the number of solutions to the system (see next
section). In any case, even if the complexity of this step
remains exponential in the parameters, it is practical for
some cases, and that is what we want to emphasize in
this article.

3) Transform the Gröbner basis in the grevlex order into a
Gröbner basis in the lex-order using the FGLM algorithm
[18]. This algorithm has complexity O(ND3) where D
is the number of solutions to the system counted with
multiplicities and N is the number of variables. D varies
greatly with parameters (see next section), and therefore
we cannot estimate the runtime analytically. However,
once we have a Gröbner basis in the lex order, it is easy
to compute the solutions of the system.

4) Fröbenius align and detangle the set of solutions to find

one vector, which can be used like the secret key to
decrypt messages. The runtime of this part is polynomial
in n and ν, the number of solutions of the system (without
multiplicities).

In practice we find that part 2 and 3 are the deciding factors
of whether the attack is feasible or not. Analyzing analytically
their running times is a hard task, on which we are working.
In the next section we have collected our initial findings on
the running time of part 2.

A. Running time of part 2

When analyzing the runtime of the Gröbner basis algorithm,
the first step is often to count the number of polynomials and
the number of variables. In one way, this is easy: We have s ·k
linear polynomials, k polynomials of degree 2 or 3 and n−|L|
variables (as we can fix |L| of the n variables). However, not
all of the polynomials are linearly independent.

Proposition 25. The number of linearly independent polyno-
mials in L is less than or equal to n− |Sp|, where

Sp := {` ∈ Zqm−1 | ∀pa ∈ J1, rK : ` · pa ∈ Cq}

and Cq is defined in section V-C.

Experimentally, we find that the inequality is an equality
for all parameters we tried. To prove the proposition, we need
a short lemma

Lemma 26. The vectors x0, ...,xn−1 are linearly indepen-
dent.

Proof. x is a vector of length n. Hence the n×n matrix, whose
columns are xi for i = 0, .., n − 1 is a square Vandermonde
matrix. We know that a Vandermonde matrix has full rank
iff all entries in the generating vector are different. x is a
permutation of (1, α, α2, ..., αn−1). So all entries in x are
different.

Now we are ready to prove the proposition

Proof of proposition 25. If we define Ga := pa
√
G, where the

root is applied to all entries of G, then by the rank-nullity
theorem, the number of linearly independent polynomials in
L is equal to

n− dim(
⋂

pa∈J1,rK

N(
pa
√
G))

where N(pa
√
G) is the null-space of pa

√
G. We will now show

that if ` ∈ Zqm−1 satisfies ` · pa ∈ Cq for all pa ∈ J1, rK
then x` ∈ N(pa

√
G). To do this, we first note that ` · pa ∈ Cq

implies that
n∑
j=1

gijx
`·pa
i = 0

for all i = 1, .., k and pa ∈ J1, rK. But by taking the pa’th
root, we see that this implies

n∑
j=1

pa
√
gijx

`
i = 0

for all i = 1, .., k and pa ∈ J1, rK. Which is equivalent to
x` ∈ N(pa

√
G). Hence

{x` | ∀pa ∈ J1, rK : ` · pa ∈ Cq} ⊆
⋂

pa∈Up

N(
pa
√
G)

Per Lemma 26, powers of x are linearly independent, so the
dimension of

⋂
pa∈J1,rKN(pa

√
G) is at least |Sp|. Hence the

number of linearly independent equations is at most n− |Sp|,
which finishes the proof.

Of course, it would be nice, if we could find a closed
formula for the number of linear equations, but we were unable
to do this. However, we can say that

Lemma 27. The size of the set in proposition 25 satisfies⌊
r

maxU

⌋
6 |Sp| 6 mr,

where

U , {u} ∪ {pa | a ∈ J0, s− 1K, pa ∈ J1, rK}

Proof. Same idea as the proof of lemma 18.

Now, if we use the linear equations of L to eliminate
variables from the equations of degree 2 or 3, we find that
the total number of variables that the Gröbner basis algorithm
has to deal with is

n− |L| − (n− |Sp|) = |Sp| − |L| 6 mr. (12)

However, once we eliminate variables, the k equations of
degree u are no longer linearly independent. Unfortunately we
were not able to make much progress on how many linearly
independent equations the Gröbner basis algorithm has access
to once |L| variables are fixed and (n − |Sp|) are eliminated
using the linear equations.

VII. RESULTS FROM EXPERIMENTS

We split this section into five subsections. In the first, we
look at the number of solutions with and without multiplicities
that the Gröbner basis algorithm returns. The large variability
of these numbers support our claim from the previous section
that our system does not behave like a random system. In
the second subsection, we report on experimental results for
the runtime of the Gröbner basis algorithm. In the third we
add more polynomials of low degree to our system and give
experimental evidence that this increases the runtime of the
attack. This supports our choice of adding as few non-linear
equations to the system as possible. In the fourth and fifth
subsections, we tackle the remaining two defenses of [9]:
"puncturing" and "subcode". We choose to add them one at
a time, in order to better understand how they individually
influence our attack. Experimentally we find, that when we
combine them, the effects are simply combined.

We run magma V2.26-9 on a virtual machine with a 4x Sin-
gle Core CPU running at 1996 MHz. We capped calculations
at 10 GB ram, and stopped them if they ran for more than five
hours.7

7The code for our experiments is available on https://github.com/FrejaElbro/
Cryptanalysis-of-BCH-McEliece.

A. The number of solutions to the Gröbner basis algorithm

In general each run of the Gröbner basis algorithm pro-
duces as many results as there are vector spaces of maximal
dimension in ZFqm

(Pu ∪ L). For most parameters, there are
m vector spaces of maximal dimension, but we have also
observed other possibilities. In rare instances the Gröbner
Basis algorithm finds fewer solutions than there are vector
spaces of maximal dimension. This can happen, as the vector
spaces of maximal dimension are not disjoint8. We can also
find more solutions than there are vector spaces of maximal
dimension. This happens if we fix the variables in a way that
allows for a solution from a vector space of lower dimension9.
Furthermore, we sometimes find a lot of extra solutions that
we have no control over. This is particularly true for q = 2.
Here the runtime is dominated by part 3 in section VI. For
most other parameters, part 2 of section VI is the dominating
part.10

Aside from the many possibilities for the number of solu-
tions, there is also a huge variability in the multiplicities of
the solutions. The largest multiplicity we saw was for q = 29,
m = 2 and r = 27. Here we found just two solutions, but
each of them had multiplicity 85. A parameter set, which we
though should behave fairly similarly is q = 29, m = 2 and
r = 26, but here each solution only had multiplicity 5. And
close to this is q = 29, m = 2 and r = 30, where each
solution had multiplicity 1. We were not able to explain these
large variations.

Also the multiplicities varied for different runs of the
Gröbner basis algorithm. In Table I we have recorded the num-
ber of solutions with and without multiplicities for different
parameter sets and ten independent runs of the Gröbner basis
algorithm. For all other results than q = 4, r = 3, 4, 5, the
number of results is equal to the number of vector spaces of
maximal dimension in ZFqm

(P ∪ L).

B. The runtime of the Gröbner basis algorithm

In this section, we provide examples, where our attack is
practical, but both information set decoding (ISD) and the
support splitting algorithm suggest cryptographic security. The
support splitting algorithm is a relevant attack, as there are
only φ(n) BCH codes for any given choice of (p, s,m, r)11,
so the security of BCH-McEliece relies crucially on the per-
mutation in the key generation algorithm 4. This permutation
can be found using the support splitting algorithm. However,

8For example for q = 7, m = 4 and r = 11, both {1, 2, 3, 4, 5} and
{1, 2, 3, 4, 7} fulfill the u-sum criteria. When we fix 5 variables during the
Gröbner basis computation, we are essentially picking an element at random
in each of the corresponding vector spaces. With probability 1/n that vector
also lies in the intersection of the vector spaces, so instead of one solution
from each of the two vector spaces, we will find one solution, which happens
to lie in both.

9See for example the sets in remark 16. With probability 1/n we find
a solution in the vector space spanFqm {x

1,x2,x8,x16} when we fix 5
variables.

10The other parameter sets where we found extra solutions that we have
no control over all have small values of r and q = 3, 4 or 8.

11The only free variable the primitive n’th root of unity, and there are φ(n)
of them

https://github.com/FrejaElbro/Cryptanalysis-of-BCH-McEliece
https://github.com/FrejaElbro/Cryptanalysis-of-BCH-McEliece

r solutions with mult.

2 3 3
3 3 9
4 3 3
5 3 12
6 3 3
7 3 15
8 3 3
9 3 24
10 3 6 or 9
11 3 63
12 3 39
13 3 39
14 3 3
15 3 39
16 3 3
17 3 39
18 3 6
19 3 48
20 3 6
21 3 63
22 3 9
23 6 129
24 6 45
25 3 6
26 3 6
27 3 54

r solutions with mult.

3 132 136
4 132 136
5 132 152
6 4 16 or 20
7 4 64
8 4 64
9 4 8 or 12
10 8 160
11 4 16
12 4 16 or 20
13 4 48

TABLE I
NUMBER OF SOLUTIONS WITH AND WITHOUT MULTIPLICITIES FOR TEN
RUNS OF THE GRÖBNER BASIS ALGORITHM. ON THE LEFT FOR q = 13

AND m = 3 AND ON THE RIGHT FOR q = 4 AND m = 4

this algorithm is infeasible when the dimension of the hull is
large.

We organize this section as an investigation into the influ-
ence of r, s, m and p respectively. In turn, we will vary one
parameter and keep the remaining fixed to the greatest extend
possible. Our aim is to understand how each of the parameters
influences the runtime of the Gröbner basis algorithm.

The easiest parameter to understand the influence of is r. r
influences the runtime in two different ways. Increasing r leads
both to an increase in the number of variables (Equation (12)),
and a decrease in the dimension of the BCH code (Theorem
11), and hence the number of non-linear equations in Pu.
Predictably, the effect of increasing the number of variables is
to increase the runtime of the Gröbner basis algorithm. In Fig.
1 we have plotted all our results in one graph. We see that the
runtime of the Gröbner basis algorithm seems exponential in
the number of variables.

To visually compare our results with information-set decod-
ing, we also graph our results as a function of the rate (which
is closely connected to r through proposition 11). The results
are in Fig. 2. We conclude that our attack works best for high
rates, which was to be expected as high rate corresponds to
low r and hence low number of variables and many equations.
The precise cutoff point between when our attack is better than
information-set decoding depends on the other parameters.

The easiest parameter after r to understand is s, that is the
extension degree of the base field Fq . The larger the extension
degree, the more linear equations can be added by taking p’th
roots, which leads to fewer variables and hence lower runtime

Fig. 1. The runtime of the Gröbner basis part of our attack in seconds (part
2 and 3 of section VI) as a function of number of free variables and the size
of the subfield, q.

TABLE II
THE INFLUENCE OF s ON HOW ISD-SECURE SYSTEMS WE CAN BREAK

p s n r rate pols vars GB ISD Hull

2 2 4095 13 0.99 390 32 240 271 60
2 3 4095 35 0.97 596 39 242 2121 124
2 4 4095 113 0.92 1317 61 247 2247 318

3 1 728 12 0.93 398 42 244 251 48
3 2 728 47 0.83 426 46 249 287 126
3 3 728 168 0.60 365 40 243 2150 216

"rate" is the code-rate = k/n.
"pols" is the number of Fqm -linearly independent polynomials in Pu

once the linear equations of L have been used to eliminate variables and
|L| variables have been fixed.
"vars" is the number of variables in the system once the linear equations
of L have been used to eliminate variables and |L| variables have been
fixed.
"GB" is the number of clock cycles expended on the Gröbner basis part
of our attack including all |L| runs and both part 2 and 3 of section VI).
The remaining parts of our attack are insignificant in comparison.
"ISD" is the expected number of q’ary operations used by Prange’s alg.
(asymptotically the best generic decoding algorithm for BCH codes [3]).
"Hull" is the dimension of the hull of the code.

of our attack. We ran some experiments, where we kept n
constant, but varied s. Our experiment consisted of running
the Gröbner basis part of our attack for larger and larger r,
and stopping when either the runtime exceeded 5 hours or
when memory exceeded 10 GB. The results are in Table II.
We see that for both p = 2 and p = 3, the effect of s is
clearly to bring down runtime of the Gröbner basis algorithm,
and hence bring more parameter sets into the range we can
attack with our limited resources.

We now explore the effect of m on the runtime. We ran
similar experiments as for s to find the results of Table III. We
find that increasing m leads to us being able to break systems
with higher ISD security. This is in part because increasing m
increases n, which increases the expected number of rounds
the Prange Algorithm [2] has to run to find the error vector.
However, we can also see that when we increase m, we are

Fig. 2. Comparison between the runtime of our attack and the best previ-
ously known attack (information-set decoding). We estimate the runtime of
information-set decoding as the expected number of q-ary computations that
the Prange algorithm [2] needs to find the error-vector. For our attack, the
runtime is estimated as the number of clock cycles used to run part 2 and
3 of our attack |L| times (section VI). The remaining steps of our attack
are insignificant in comparison. As the rate decreases, r increases, so the
number of free variables increases. This explains why the runtime of our
attack increases for decreasing rates, and why we were only able to run our
attack for high rates.

able to solve systems with more variables within the same time
window. We suspect this is because we are increasing k, which
gives us more polynomials for the Gröbner basis algorithm to
work with.

Finally, we look at the effect of p. This effect was the most
difficult to isolate, as we cannot keep all the other parameters
constant. Here we picked parameters so that n ∈ [600, 4000].
The results are in Table IV. We see that the effect of increasing
p is to increase the ISD security of the largest parameters we
are able to break in our setup.

C. Adding more non-linear equations of low degree

In section V-B, we took pa’th roots and found a set of linear
polynomials that has x as a zero. This idea is not limited to

TABLE III
THE INFLUENCE OF m ON HOW ISD-SECURE SYSTEMS WE CAN BREAK

q m n r k pols vars GB ISD Hull

3 5 242 12 202 170 34 245 238 40
3 6 728 12 680 398 42 244 251 48
3 7 2186 12 2130 714 50 245 263 56
3 8 6560 12 6496 1086 58 247 276 64

5 3 124 13 91 83 27 245 231 33
5 4 624 16 572 404 44 248 255 52
5 5 3124 15 3064 840 53 247 273 60

9 2 80 32 31 31 20 248 228 29
9 3 728 47 602 426 46 249 287 126
9 4 6560 50 6380 1686 69 249 2168 180

"pols" is the number of Fqm -linearly independent polynomials in Pu

once the linear equations of L have been used to eliminate variables and
|L| variables have been fixed.
"vars" is the number of variables in the system once the linear equations
of L have been used to eliminate variables and |L| variables have been
fixed.
"GB" is the number of clock cycles expended on the Gröbner basis part
of our attack including all |L| runs and both part 2 and 3 of section VI).
The remaining parts of our attack are insignificant in comparison.
"ISD" is the expected number of q’ary operations used by Prange’s alg.
(asymptotically the best generic decoding algorithm for BCH codes [3]).
"Hull" is the dimension of the hull of the code.

TABLE IV
THE INFLUENCE OF p ON HOW ISD-SECURE SYSTEMS WE CAN BREAK

p s n r k pols vars GB ISD Hull

3 1 728 12 680 398 42 244 251 48
3 1 2186 12 2130 714 50 245 263 56
5 1 624 16 572 404 44 248 255 52
5 1 3124 15 3064 840 53 247 273 60

13 1 2196 26 2124 793 59 247 297 72
29 1 840 36 771 771 51 246 295 67
37 1 1368 34 1300 1069 51 245 2106 68

"pols" is the number of Fqm -linearly independent polynomials in Pu

once the linear equations of L have been used to eliminate variables and
|L| variables have been fixed.
"vars" is the number of variables in the system once the linear equations
of L have been used to eliminate variables and |L| variables have been
fixed.
"GB" is the number of clock cycles expended on the Gröbner basis part
of our attack including all |L| runs and both part 2 and 3 of section VI).
The remaining parts of our attack are insignificant in comparison.
"ISD" is the expected number of q’ary operations used by Prange’s alg.
(asymptotically the best generic decoding algorithm for BCH codes [3]).
"Hull" is the dimension of the hull of the code.

linear polynomials. We can similarly show that x is a zero of

Lu ,


n∑
j=1

pa
√
gi,jX

u
j

∣∣ i ∈ J1, kK, u · pa ∈ J1, rK

 . (13)

for any u ∈ J1, rK, and in particular for u = 2 or 3. This gives
extra non-linear equations of low degree which can be added
to the system. However, adding extra equations to the system
limits the solution set. We find that

Proposition 28. If L ⊆ Zqm−1 satisfies the u-sum condition
and furthermore

TABLE V
THE INFLUENCE OF INCLUDING POLYNOMIALS FROM Lu ON THE

RUNTIME OF THE ATTACK

q r n Lu |L| vars pols 1GB Total
time time

25 50 624 no 13 19 160 0.4 15
yes 5 27 223 7 43

25 100 624 no 26 38 376 89 2390
yes 10 54 495 >18000

27 50 728 no 11 13 103 0.01 10
yes 3 21 168 0.7 9

27 100 728 no 22 28 276 7 205
yes 6 44 411 7824 46971

16 50 255 no 10 14 74 0.06 2
yes 2 22 130 1134 2291

Lu indicates whether the polynomials of Lu are included or not.
"vars" is the number of variables in the system once the linear equations
of L have been used to eliminate variables and |L| variables have been
fixed.
"pols" is the number of Fqm -linearly independent polynomials in Pu

once the linear equations of L have been used to eliminate variables and
|L| variables have been fixed.
1GB is the time in seconds to run one round of the Gröbner basis
algorithm (including both part 2 and 3 of section VI).
"Total time" is the total time in seconds to run our entire attack.

U3: for any a ∈ J0, smK such that upa ∈ J1, rK and any
choice of `1, . . . , `u ∈ L it holds that pa(`1 + · · ·+ `u) ∈
Cq .

then

spanFqm

{
x`
∣∣ ` ∈ L} ⊆ ZFqm

(Pu ∪ L ∪ Lu) .

Proof. To prove U3⇒ spanFqm

{
x`
∣∣ ` ∈ L} ⊆ ZFqm

(Lu)
we use the same ideas as in the proof of 15

Hence by including more equations, we are effectively
decreasing the dimension of the vector spaces in the solution
set. This means that we can fix fewer variables, when we solve
the system. However, we also have to solve the system fewer
times. In table V we have recorded results from experiments
where we either included the polynomials of Lu or not. We
find that for small runtimes of the Gröbner basis algorithm,
there is a slight advantage to including more polynomials.
This advantage comes from the fact that when the runtime
of the Gröbner basis algorithm is low, the other steps of the
attack dominate. And some of these have runtimes which
increase in |L|. For large runtimes of the Gröbner basis
algorithm, however, there is a clear advantage to not include
the polynomials from Lu.

D. How puncturing (defense 3 in the challenge of [9]) affects
our attack

Here we consider subfield subcodes of the codes

GRSr (x,x)
⊥

where the only restriction on x is that it must consist of non-
zero distinct elements. Note that these codes are in general
not BCH codes, but they are still Goppa codes on the form
G (x−1, Xr). Note also that attacking a McEliece-like scheme

based on these codes correspond to breaking the challenge of
[9] with 5 out of 6 defense strategies (scaling, permutation,
subfield, wildness and puncturing).

Theoretically, our attack works just as well for these subfield
subcodes as it does for permuted BCH codes. The u-sum
condition only depends on p, s,m and r, so puncturing the
GRS code does not change L. The only limitations we have to
set is max(L) 6 n, as otherwise we can no longer guarantee
that the vectors in the proof of proposition 20 are linearly
independent (however, the proposition might still be true) and
max(Sp) 6 n for the same reason, but now in the proof of
proposition 25 (again the proposition may still be true).

However, even for the permuted BCH codes, we have not
been able to prove that all steps of our attack work. Hence we
rely on the following experimental facts

(A1) We can explain almost all of the zeroes of Pu ∪ L
(A2) Finding zeros of Pu ∪ L is practically feasible when we

fix |L| variables.
(A3) The inequality of proposition 10 is an equality. This not

necessary for our attack to work, but it is relevant if we
want to explain the number of free variables in the system
(equation (12)).

To check whether puncturing the GRS code breaks any of these
assumptions, we ran a number of experiments. We present a
selection of the findings in table VI. The first row in each
section corresponds to the non-punctured case. As we go down
the lines, the codes are punctured at an increasing number of
(randomly chosen) positions. At least for the parameters we
test, we find that we can reduce n quite a bit without breaking
the assumptions above. As we puncture the GRS code on more
and more positions, we reduce both n and k. Once we puncture
on so many positions that k becomes the limiting factor for the
number of Fqm -linearly independent polynomials in Pu, then
the runtime of the Gröbner basis algorithm starts to increase.
Before that, the effect of puncturing on the total runtime of
our attack is actually positive as many steps of our attack are
polynomial in n.

E. How taking a random subcode (defense 4 in the challenge
of [9]) affects our attack

Here we consider a McEliece-like scheme based on a
randomly chosen subcode of a permuted, narrow sense, prim-
itive BCH-code. Attacking this cryptosystem corresponds to
breaking the challenge of [9] with 5 out of 6 defense strategies
(scaling, permutation, subfield, wildness and subcode). Note
further that randomly chosen subcodes of BCH codes are in
general not BCH codes, and neither are they Goppa codes.
The idea of masking a code in this way stems from [19].

Like in the previous section, we start by noting that none of
our theoretical results break down when adding this additional
defense. Here not even the proofs of proposition 20 and 25
are affected. However, like before, we still rely on assumptions
A1-A3 of section VII-D. To check whether taking a random
subcode breaks any of these assumptions, we ran a number of
experiments. We present a selection of our findings in table
VII. The first row in each section corresponds to the biggest

TABLE VI
THE INFLUENCE OF PUNCTURING ON THE RUNTIME OF OUR ATTACK

q n k vars pols sols Success 1GB Total

27 728 631 13 103 2 (2) 10/10 223 235

27 228 131 13 103 2 (2) 10/10 223 232

27 168 71 13 71 2 (2) 10/10 226 231

27 138 41 13 41 2 (2) 10/10 226 231

9 728 674 17 138 3 (3) 10/10 229 234

9 198 144 17 138 3 (3) 10/10 229 232

9 128 74 17 74 3∗(3∗) 10/10 229 232

9 98 44 17 44 3 (3∗) 10/10 234 236

13 168 150 14 87 2 (16) 10/10 225 230

13 108 90 14 87 2 (16) 10/10 225 229

13 68 50 14 50 2 (16∗) 10/10 226 229

13 38 20 14 20 2 (16) 10/10 236 238

"vars" is the number of variables in the system once the linear equations
of L have been used to eliminate variables and |L| variables have been
fixed.
"pols" is the number of Fqm -linearly independent polynomials in Pu

once the linear equations of L have been used to eliminate variables and
|L| variables have been fixed.
"sols" is the number of solutions that the GB algorithm finds. In
parenthesis is the number of solutions counted with multiplicities.
"Success" reports on the number of times we repeated the experiment
and for how many of those runs, the our attack succeeded.
1GB is the average number of clock cycles used in one round of the
GB algorithm (including both part 2 and 3 of section VI).
"Total" is the total number of clock cycles used when running our entire
attack.
∗ For one or more runs, the computation produced another number of

solutions/multiplicities (19 instead of 16 or 4 instead of 3).

possible subcode (namely the code itself). As we go down the
lines, we take random subcodes of decreasing dimension. At
least for the parameters we test, we find that for non-prime q
we can reduce k quite a bit without breaking the assumptions
above. A3 must break down when s · k < n − |Sp|, as the
number of linearly independent polynomials in L is upper
bounded by s · k.12 For non-prime q, A3 breaks down for any
non-trivial subcode as the upper bound here is just k. Hence,
the number of variables is equal to n−k−|L|, so as k decreases
the number of variables increase by the same amount. This
causes the runtime of the Gröbner basis algorithm to increase.

VIII. CONCLUSION AND FURTHER WORK

We build on the attack by [8] to develop an algebraic attack
on q-ary BCH-McEliece, which demonstrates that in particular
high rate codes with non-prime q are unsafe cryptographic
choices. We further show how our attack can be expanded
to cover randomly chosen subcodes of subfield subcodes of
GRSr (x,x)

⊥, where x has distinct non-zero entries. That is,
we break the BCH-challenge of [9] for high rate codes over
non-prime fields.

The attack of [8] focuses on Goppa codes with large multi-
plicities. BCH codes in a way have the ultimate multiplicities,
which motivated us to try to extend the work of [8] to BCH
codes. However, through our work, we found that actually the

12In equation (5) it may look like L contains blogp(r)c · k polynomials,
but gi,j ∈ Fq implies that qpa

√
gi,j = pa

√
gi,j , so there can be maximally

s · k polynomials in L.

TABLE VII
THE INFLUENCE OF TAKING A SUBCODE ON THE RUNTIME OF OUR

ATTACK

q n k vars pols sols Success 1GB Total

27 728 631 13 103 2 (2) 10/10 223 235

27 728 431 13 103 2 (2) 10/10 223 235

27 728 231 24 231 2 (2) 10/10 233 237

9 728 674 17 138 3 (3) 10/10 229 234

9 728 574 17 138 3 (3) 10/10 229 235

9 728 474 17 138 3 (3) 10/10 229 235

9 728 374 17 138 3 (3) 10/10 229 235

13 168 150 14 87 2 (16) 10/10 225 230

13 168 140 24 140 2 (16∗) 10/10 231 233

13 168 130 34 130 2 (16) 5/5 243 245

"vars" is the number of variables in the system once the linear equations
of L have been used to eliminate variables and |L| variables have been
fixed.
"pols" is the number of Fqm -linearly independent polynomials in Pu

once the linear equations of L have been used to eliminate variables and
|L| variables have been fixed.
"sols" is the number of solutions that the GB algorithm finds. In
parenthesis is the number of solutions counted with multiplicities.
"Success" reports on the number of times we repeated the experiment
and for how many of those runs, the our attack succeeded.
1GB is the average number of clock cycles used in one round of the
GB algorithm (including both part 2 and 3 of section VI).
"Total" is the total number of clock cycles used when running our entire
attack.
∗ For one or more runs, the computation produced 19 instead of

16 solutions with multiplicities.

main idea of [8], which is to throw away equations to extend
the solution set, does not rely on multiplicities of the Goppa
polynomial. In fact, it also applies to Classic McEliece (the
NIST submission), which uses Goppa codes with irreducible
Goppa polynomials. Breaking these codes is strongly related
to finding zeros of [5]

n∑
j=1

gijYjX
u
j : i ∈ {1, .., k}, u ∈ {0, .., r − 1}

 (14)

I.e. here we do not have n unknowns but 2n unknowns, and
we cannot get linear polynomials by applying p’th roots (we
would have to apply the p’th root to both x and y-variables).

However, the main idea [8] still applies. If we for example
set U = {0, 1, 2}, then we can prove that the zero set of

n∑
j=1

gijYjX
u
j : i ∈ {1, .., k}, u ∈ U

 ,

contains the vector space spanned by{
(y,1), (y,x), .., (y,xb

r−1
2 c)

}
. I.e. we can fix

⌊
r+1
2

⌋
x-variables, when we try to solve the system.

But even with this approach, we are not able to bring
down the number of variables sufficiently for the system to be
tractable by our polynomial system solver. In fact, for many
parameter-sets, the reduced system has more variables than
equations, even after we take advantage of the known extra
solutions to fix variables. In other words, the reduced system
has more solutions than we can explain.

Inspired by the work of [8], we would like to understand
the additional "wrong" solutions. In [8], it is shown that
even though the extra solutions of the system cannot be
used directly as a secret key to decrypt messages, they can
still aid in finding the secret key. It would be interesting to
study whether this idea could also apply to Goppa codes with
irreducible Goppa polynomials or BCH codes with q = 2.

IX. ACKNOWLEDGMENTS

We want to thank Magali Bardet and Ayoub Otmani for
their invaluable support during the whole process.

C.M. was funded by a NWO VENI grant (Project No.
VI.Veni.192.159) and F.E. was funded by Dencrypt in col-
laboration with the Danish Ministry of Defense Acquisition
and Logistics Organization.

REFERENCES

[1] R. J. McEliece, A Public-Key System Based on Algebraic Coding Theory.
Jet Propulsion Lab, 1978, pp. 114–116, dSN Progress Report 44.

[2] E. Prange, “The use of information sets in decoding cyclic codes,”
IRE Transactions on Information Theory, vol. 8, no. 5, pp. 5–9, 1962.
[Online]. Available: http://dx.doi.org/10.1109/TIT.1962.1057777

[3] R. Canto Torres and N. Sendrier, “Analysis of information set decoding
for a sub-linear error weight,” in Post-Quantum Cryptography. Springer,
2016, pp. 144–161.

[4] V. M. Sidelnikov and S. Shestakov, “On the insecurity of cryptosystems
based on generalized Reed-Solomon codes,” Discrete Math. Appl.,
vol. 1, no. 4, pp. 439–444, 1992.

[5] J.-C. Faugère, A. Otmani, L. Perret, and J.-P. Tillich, “Algebraic
cryptanalysis of McEliece variants with compact keys,” in Advances
in Cryptology - EUROCRYPT 2010, ser. LNCS, vol. 6110, 2010, pp.
279–298.

[6] T. P. Berger, P.-L. Cayrel, P. Gaborit, and A. Otmani, “Reducing key
length of the McEliece cryptosystem,” in Progress in Cryptology -
AFRICACRYPT 2009, ser. LNCS, B. Preneel, Ed., vol. 5580, Gammarth,
Tunisia, Jun. 21-25 2009, pp. 77–97.

[7] R. Misoczki and P. Barreto, “Compact McEliece keys from Goppa
codes,” in Selected Areas in Cryptography, Calgary, Canada, Aug. 13-14
2009.

[8] J.-C. Faugère, L. Perret, and F. de Portzamparc, “Algebraic attack against
variants of McEliece with Goppa polynomial of a special form,” in
Advances in Cryptology - ASIACRYPT 2014, ser. LNCS, vol. 8873.
Kaoshiung, Taiwan, R.O.C.: Springer, Dec. 2014, pp. 21–41.

[9] D. J. Bernstein, “Cryptography for the paranoid,” Presentation at Yet
Another Conference on Cryptography (YACC), 2012, https://cr.yp.to/
talks/2012.09.24/slides.pdf.

[10] A. Couvreur, A. Otmani, and J.-P. Tillich, “Polynomial time attack on
wild McEliece over quadratic extensions,” in Advances in Cryptology -
EUROCRYPT 2014, ser. LNCS, P. Q. Nguyen and E. Oswald, Eds., vol.
8441. Springer Berlin Heidelberg, 2014, pp. 17–39.

[11] N. Sendrier, “Finding the permutation between equivalent linear codes:
The support splitting algorithm,” IEEE Trans. Inform. Theory, vol. 46,
no. 4, pp. 1193–1203, 2000.

[12] W. Bosma, J. Cannon, and C. Playoust, “The Magma algebra system.
I. The user language,” J. Symbolic Comput., vol. 24, no. 3-4, pp.
235–265, 1997, computational algebra and number theory (London,
1993). [Online]. Available: http://dx.doi.org/10.1006/jsco.1996.0125

[13] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting
Codes, 5th ed. Amsterdam: North–Holland, 1986.

[14] Y. Sugiyama, M. Kasahara, S. Hirasawa, and T. Namekawa, “Further
results on Goppa codes and their applications to constructing efficient
binary codes,” IEEE Trans. Inform. Theory, vol. 22, pp. 518–526, 1976.

[15] H. Liu, C. Ding, and C. Li, “Dimensions of three types of bch
codes over gf(q),” Discrete Mathematics, vol. 340, no. 8, pp. 1910–
1927, 2017. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0012365X1730105X

[16] A. Dür, “The automorphism groups of Reed-Solomon codes,” Journal
of Combinatorial Theory, Series A, vol. 44, pp. 69–82, 1987.

[17] C. Bron and J. Kerbosch, “Finding all cliques of an undirected graph
(algorithm 457),” Commun. ACM, vol. 16, no. 9, pp. 575–576, 1973.

[18] J.-C. Faugère, P. M. Gianni, D. Lazard, and T. Mora, “Efficient com-
putation of zero-dimensional gröbner bases by change of ordering,” J.
Symbolic Comput., vol. 16, no. 4, pp. 329–344, 1993.

[19] T. P. Berger and P. Loidreau, “How to mask the structure of codes for
a cryptographic use,” Des. Codes Cryptogr., vol. 35, no. 1, pp. 63–79,
2005.

APPENDIX

A. Overview of notation which is introduced section V

In section V we introduce a lot of additional notation. We
provide the following list as an index in case our readers need
to go back to look up a definition.
• q, the size of Fq , which is the alphabet of the BCH code.

Introduced in problem 2
• p, the characteristic of the field Fq . Introduced in problem

2
• s, chosen such that ps = q. Introduced in problem 2
• m, the extension degree of the code. I.e. the BCH code is

a subfield subcode of a GRS code over Fqm . Introduced
in problem 2

• n = qm − 1, the length of the BCH code. Introduced in
problem 2

• r, the dimension of the "parent" GRS code. Introduced
in problem 2

• k, the dimension of the BCH code. Introduced in problem
2

• G, the generator matrix of the BCH code. Introduced in
problem 2

• x, the secret key of the BCH McEliece encryption
scheme. Introduced in problem 2

• L, the linear equations in the system we will solve.
Introduced in equation (5).

• Pu, the non-linear equations in the system we will solve.
Introduced in equation (6).

• Cq the union of cyclotomic cosets
⋃
c∈J1,rK Cq(c), where

Cq(c) ,
{
cqe (mod qm − 1)

∣∣ e ∈ J0,m− 1K
}
,

Introduced in section V-C.
• u-sum condition, a condition which will guarantee that a

subset L ⊆ Zqm−1 satisfies

spanFqm
{x` | ` ∈ L} ⊆ ZFqm

(Pu ∪ L).

Introduced in definition 14.
• L, a subset of Zqm−1 of maximal size which satisfies the
u-sum condition. Introduced in section V-C

• ν, the number of subsets of Zqm−1 of maximal size which
satisfy the u-sum condition. Introduced in section V-E.

B. Experimental evidence on well-formed L’s

Here we provide experimental evidence to support our claim
that finding well-formed L’s is not the limiting factor of our
attack. More precisely, the results in table VIII indicates that
for cryptographically relevant parameters, the maximal r for
which we can find a well-formed L is bigger than the maximal

http://dx.doi.org/10.1109/TIT.1962.1057777
https://cr.yp.to/talks/2012.09.24/slides.pdf
https://cr.yp.to/talks/2012.09.24/slides.pdf
http://dx.doi.org/10.1006/jsco.1996.0125
https://www.sciencedirect.com/science/article/pii/S0012365X1730105X
https://www.sciencedirect.com/science/article/pii/S0012365X1730105X

TABLE VIII
COMPARISON BETWEEN THE LARGEST r FOR WHICH WE ARE ABLE TO

RUN THE GRÖBNER BASIS ALGORITHM (WITH THE LIMITATIONS GIVEN IN
SECTION VII) AND THE LARGEST r FOR WHICH WE ARE ABLE TO FIND A

WELL-FORMED L.

q m Max r for Gröbner Basis Max r with well-formed L

3 5 12 76
3 6 12 > 157∗

5 3 13 48
5 4 16 > 213∗

9 2 32 50
9 3 52 > 303∗

25 2 119 218
27 2 171 > 424∗

∗For these parameters, it took longer than five hours to find L for
larger r, so we stopped calculations.

r for which we can run the Gröbner basis step of our attack.
For larger m this gap seems to increase.

The code used to find these values and a collection of all the
L’s involved can be found on https://github.com/FrejaElbro/
Cryptanalysis-of-BCH-McEliece.

https://github.com/FrejaElbro/Cryptanalysis-of-BCH-McEliece
https://github.com/FrejaElbro/Cryptanalysis-of-BCH-McEliece

	Introduction
	Our contribution
	Organization

	Notation
	Algebraic Coding Theory
	The McEliece cryptosystem
	Algebraic Modeling of the Key Recovery Problem

	Cryptanalysis of the BCH-McEliece cryptosystem
	Preliminaries
	Algebraic modeling
	Identifying a vector space in ZFqm(Pu L).
	Algorithms to find L's which fulfill the u-sum criteria
	Repeatedly solving restrictions of the polynomial system
	Step 4: Fröbenius Alignment
	Step 5: Detanglement

	Theoretical analysis of the runtime
	Running time of part 2

	Results from experiments
	The number of solutions to the Gröbner basis algorithm
	The runtime of the Gröbner basis algorithm
	Adding more non-linear equations of low degree
	How puncturing (defense 3 in the challenge of dB12) affects our attack
	How taking a random subcode (defense 4 in the challenge of dB12) affects our attack

	Conclusion and further work
	Acknowledgments
	References
	Appendix
	Overview of notation which is introduced section V
	Experimental evidence on well-formed L's

