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Abstract. An Identity-based matchmaking encryption (IB-ME) scheme proposed at CRYPTO
2019 supports anonymous but authenticated communications in a way that communication par-
ties can both specify the senders or receivers on the fly. IB-ME is easy to be used in several
network applications requiring privacy-preserving for its efficient implementation and special
syntax. In the literature, IB-ME schemes are built from the variants of Diffie-Hellman assump-
tion and all fail to retain security for quantum attackers. Despite the rigorous security proofs
in previous security models, the existing schemes are still possibly vulnerable to some poten-
tial neglected attacks. Aiming at the above problems, we provide stronger security definitions
considering new attacks to fit real-world scenarios and then propose a generic construction of
IB-ME satisfying the new model. Inspired by the prior IB-ME construction of Chen et al., the
proposed scheme is constructed by combining 2-level anonymous hierarchical IBE (HIBE) and
identity-based signature (IBS) schemes. In order to upgrade lattice-based IB-ME with better
efficiency, we additionally improve a lattice IBS, as an independent technical contribution, to
shorten its signature and thus reduce the final IB-ME ciphertext size. By combining the im-
proved IBS and any 2-level adaptively-secure lattice-based HIBE with anonymity, we finally
obtain the first IB-ME from lattices.

Keywords: Matchmaking Encryption, Identity-based Matchmaking Encryption, Lattice, Identity-
based Signature, Security Model

1 Introduction

Matchmaking Encryption (ME) [AFNV19] is a quite useful primitive which allows any sender and
receiver to predesignate policies that the other party should satisfy to reveal message. In an ME
scheme, a sender uses the secret encryption key ekσ associated with his attribute σ to generate
ciphertexts with additional specifying policy R. Each receiver obtains different decryption keys from
the authority with just one key dkρ associated with his attribute ρ and others dkS related to his
chosen policy S. When decrypting a ciphertext linking (σ, R) using dkρ and dkS, the receiver recovers
the plaintext by matching the attributes and policies of both participants. The entire procedure of
policy matchmaking is privacy-preserved. In other words, nothing is leaked beyond the fact that a
match occurred/did not occur. Furthermore, malicious attacks fail to forge ciphertexts embedding
fake attributes which were not certificated by the authority.

ME naturally supports several network applications requiring secret communication, such as the
scenarios that the both communicating parties need to specify access polices to encrypted plaintext.
Ateniese et al. [AFNV19] proposed two generic constructions of ME relying on 2-input Functional
Encryption (FE) scheme [GGG+14] or FE scheme for randomized functionalities (rFE) [GJKS15,
AW17]. However, the ME scheme based on rFE only achieves security against bounded collusions.
Another approach requiring 2-input FE for general circuits retains full security, but this construction
can only be instantiated on sub-exponentially secure indistinguishable obfuscation (iO), which is a
non-standard strong assumption. In fact, this notion of 2-input FE only requires identity function
over plaintexts with access control over attributes. Hence, Francati et al. [FFMV22] recently presented
multi-key predicate encryption (PE) bulit from learning with errors (LWE) directly and then construct
ME with unbounded collusions using 2-key PE.
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Concept of IB-ME. By contrast, the ME scheme in the restricted identity-based setting can be
more efficient than ME for general functions and be easy to implement. Identity-based matchmak-
ing encryption (IB-ME) can also be used to construct an anonymous but authentic communication
environment.

Being a special case of ME under the identities equality policy, IB-ME features that each sender
is given a secret encryption key related to his identity σ, and each receiver has a secret decryption
key for his identity ρ. Similarly, senders can select target receiver rcv and encrypt secretly. The
receiver takes dkρ and arbitrary identity snd as input to decryption algorithm, without an additional
decryption key for snd, and obtains messages if and only if identities equality policies both match
(ρ = rcv ∧ σ = snd). The security requirements of IB-ME are privacy and authenticity. When
mismatch happens (ρ ̸= rcv ∨ σ ̸= snd), privacy not only protects plaintext from illegal leaking,
but also prevents decryptors from learning any extra information about sender’s identity. Another
property, namely authenticity, promises that the ciphertexts associated with σ could only be generated
by encryption key ekσ.

Existing work for IB-ME. The existing constructions for IB-ME are all based on the variants of
discrete log problems. By amplifying a secure identity-based encryption (IBE) under chosen plaintext
attack [BF01], Ateniese et al. [AFNV19] provided the first IB-ME from bilinear Diffie-Hellman (BDH)
assumption. The follow-up work [FGRV21] proposed an instantiation without random oracle based on
non-standard augumented bilinear Diffie-Hellman exponent assumption (q-ABDHE), and its privacy
relies on the underlying anonymous IBE [Gen06] in the standard model. The scheme also requires
non-interactive zero knowledge proof (NIZK) to achieve authenticity.

Very recently, Chen et al. [CLWW22] presented an IB-ME from symmetric external Diffie-Hellman
(SXDH) assumption in the standard model. The scheme is built from a variant of anonymous IBE
[CLL+13] by absorbing the idea of 2-level Hierarchical Predicate Encryption (HPE) [OT09]. In the
scheme, receivers obtain 1-level decryption key dkρ from the authority, and each sender obtains an
encryption key ekσ which is the signature for message σ (encoded in 2-level) signed by the authority
using master secret key. Sender is allowed to use ekσ to generate ciphertexts making decryption
works correctly if the counterpart matches the corresponding equality policy. The privacy relies on
the anonymity of 1-level IBE, while the authenticity can be reduced to the unforgeability of the
underlying signature scheme.

More general application scenarios. In previous security models, the authenticity is solely
identity authentication, especially less relevant to encrypted message. In other words, the existing
security models fail to prevent tampering with plaintexts, even forging. When considering some real-
world application scenarios, there exists some classes of forgery of message might affect authenticity,
meaning that it is necessary to model new security models capturing such attacks. The first potential
forgery is "forging-to-itself". In such scenarios, adversaries might get access to obtain ciphertexts from
chosen sources, even decrypt partially. Suppose the dean of a faculty usually authorize the associate
dean to act him while he is busy. IB-ME enables the dean to delegate part of powers to the associate
dean, with the guarantee that the third party fails to learn information about the encrypted content.
However, once the associate dean can construct a fake authorization on his own, he might have the
possession of arbitrary authority and claim that he was authorized by the dean.

Another potential forgery is tamper forgery. Suppose IB-ME was applied to a bulletin board
hidden service, everyone gets access to upload ciphertexts to open server and download ciphertexts
from it. Then hackers might obtain and manipulate ciphertexts then upload them without needing
any keys, receivers will thus get wrong information.

Nevertheless, the previous schemes [AFNV19,CLWW22] is proven secure under the original secu-
rity model, these schemes still requires some additional adjustments to recognize the aforementioned
forgeries due to the reason that these constructions mainly consider security under chosen-plaintext
attacks. To some extent, tamper forgeries could be identified simply relying on pre-existing coding
rules of plaintext, as tampering will lead to decryption results that do not meet the rules with high
probability. While using NIZK is another relatively direct way to solve both potential forgeries in
the same time. Intuitively, ciphertexts would contain additional witness to prove the certification of
the sender’s identity and the plaintext, the decryption algorithm also need to check the validity of
the proof. The soundness of NIZK guarantees that the witness generating by malicious adversary
fails to pass the verification. On the other hand, nothing secret leaks from the proof itself due to the
zero-knowledge property.
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Motivation. Although the prior schemes [AFNV19,FGRV21,CLWW22] could supply more prac-
tical applications using some tweaks, their security will be entirely broken down for attacks using
quantum computers. Quantum algorithms can efficiently solve the mathematical problems such as
factoring and discrete log problem, while the previous schemes rely on the latter to protect both
privacy and authenticity. This motivates us to think about the following question:

Can we build a post-quantum secure IB-ME
supporting more general applications?

1.1 This Work
The work gives several contributions for an IB-ME with stronger security.
• Improved security definitions. We modified the security definitions to match more general appli-

cation requirements. Specifically, we allow the adversary to forge to itself and obtain ciphertexts
encrypted with its chosen source and destination by querying encryption oracle. Also the "forge-
to-itself" ciphertexts are admissible.

• Generic construction. Inspired by the previous schemes, we propose a generic construction to sat-
isfy modified stronger security definitions. Our construction is based on adaptively secure 2-level
anonymous HIBE and Identity-based Signature scheme (IBS). The privacy of IB-ME is implied
by the anonymity of underlying HIBE. The unforgeability of IBS can guarantee the authenticity.

• Instantiation on lattices. To further improve the efficiency of lattice-based IB-ME, we additionally
modify an existing IBS based on SIS problem to achieve shorter signature (reduce by n · (⌈log q⌉)2
bits) with better efficiency. Finally, by combining our improved IBS and any existing 2-level
Hierarchical IBE (HIBE) with adaptive security and anonymity (e.g., [ABB10b]), we obtain the
first IB-ME from lattices in the random oracle model.

1.2 Technical Overview
Here we present an overview of our technical approach for IB-ME construction. We focus on showing
our new and easy-understanding construction method to satisfy stronger security.

IB-ME from 2-level HIBE and IBS. Intuitively, our generic construction approach can be sep-
arated into two steps. Here we show a brief overview, the complete construction is given in section
4.

HIBE implies an imperfect IB-ME. Inspired by Chen et al. [CLWW22], we observe that a 2-level
hierarchical identity-based encrypion (HIBE) scheme can directly be used to construct an IB-ME if
taking authenticity aside for a while. Note that the main distinction between syntaxes of HIBE and
IB-ME is that a receiver is allowed to assign sender in an IB-ME scheme. Thus, we allow decryptors
to delegate key associated with rcv | snd for any snd.

In more details, we construct the IB-ME scheme as follows:
– Setup: Run HIBE.Setup to obtain mpk := HIBE.mpk and msk := HIBE.msk.
– SKGen(msk, σ): ekσ := σ.
– RKGen(msk, ρ): skρ ← HIBE.Keygen(HIBE.msk, ρ), set dkρ := skρ.
– Enc(mpk, ekσ, rcv,m): ct := HIBE.Enc(rcv | σ,m).
– Dec(mpk, dkρ, snd, C):

1. skρ|snd ← HIBE.Derive(dkρ, ρ | snd).
2. m or ⊥ ← HIBE.Dec(skρ|snd, ct).

It is clear that when both match conditions satisfy, receiver can generate the correct 2-level key
to help to recover message. Although authenticity has been ignored for the moment, privacy issues
have been already fixed out. As long as one single condition doesn’t hold (rcv ̸= ρ or snd ̸= σ),
receiver(malicious or not) cannot learn anything but decryption failure itself.

So far, our construction approach looks quite similar to the idea of the variant construction of 2-
level IBE in [CLWW22]. However, the authenticity in their construction is related to the unforgeability
of underlying signature scheme, while we choose a different way.
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Guarantee authenticity by sign-then-encrypt. To further overcome authenticity problem, sender has
to deliver a witness to persuade legal receivers that the received ciphertext came from claimed source
exactly. In our setting, the witness is just an identity-based signature for message rcv generated by
sender. Unlike Chen et al. [CLWW22], authority gives out the identity-based signing capability to
each sender rather than the signature for message id. Thus, authenticity naturally guaranteed by
the unforgeability of IBS. However, merely adding identity-based signature as part of ciphertexts
would break privacy of IB-ME, because owners of non-target dkid could also verify and learn identity
information of sender. The solution is let sender also encrypt witness under 2-level public key rcv | snd,
which implies that only target receiver can check authenticity by verifying the validity of signature.
For those illegal receivers whom id ̸= rcv, nothing leaks. Furthermore, in order to avoid the case that
the receiver reuses the witness to forge ciphertexts, we tweak the above signature to contain encrypted
plaintext additionally.

Notice also that the generic constructions for ME and Arranged ME (A-ME) [AFNV19] all require
NIZK as essential tools to achieve authenticity. To replace NIZK in prior schemes, we can choose a
similar approach that accomplishing the goal of correctness and privacy primarily then guaranteeing
authenticity by attribute-based signature (ABS). Precisely, using attribute-based signature key from
the authority, a sender additionally encrypts attribute-based signatures for related messages and
attributes. Hence, the authenticity can be naturally captured by the unforgeability of underlying
ABS.

Instantiated with shorter ciphertext. The proposed generic construction can be instantiated from
2-level anonymous with adaptively security HIBE (e.g., based on lattice assumptions [ABB10a,
CHKP12, ABB10b, BL16] or SXDH [LP20b, LP19, LP20a]) and adaptively secure IBS from various
assumptions. As the final ciphertext contains the encryption of signature, we improve an existing
IBS [PW21] based on short interger solution (SIS) [Ajt96] to reduce the signature size, thus obtain a
shorter ciphertext.

In an IBS scheme [Sha84], any authorized user can generate signature using secret signing key,
and everyone can verify whether the signature is valid or not by public parameters and user’s iden-
tity. The previous works for IBS with tight adaptive security are mainly constructed by the following
approaches. The standard signature scheme which is tightly secure in the multi-user setting with
adaptive corruption can be used to obtain tightly secure IBS [LPLL20, DKXY03, BNN04]. How-
ever, the related existing works [BHJ+15, GJ18, DGJL21] are all based on Diffie-Hellman assump-
tion. Even though there is generic construction [BHJ+15], it still requires a non-interactive witness-
indistinguishable proof of knowledge (NIWIPoK) system which has no efficient instantiation in the
post-quantum setting like lattices. Another approach [GS02] is to transform any 2-level HIBE into a
tightly secure IBS. But the existing technical approaches [BL16,LLW20] that use Katz-Wang random-
bit technique [GJKW07] to achieve (almost) tightly secure IBE fail to trivially construct tightly secure
2-level HIBE, informally due to the reason that the hidden random bit bid∗

1
of level-1 challenge identity

id∗
1 could be learned by asking secret key for (id∗

1, id2), where id2 ̸= id∗
2, and then the security proof

cannot work.
Pan and Wagner [PW21] recently proposed a new approach to construct tightly adaptive secure

identity-based signature with signature size independent of message length from lattices. Informally,
the first step is constructing an IBS with unforgeability under non-adaptive chosen message attacks
(UF-naCMA), and the second step is to upgrade UF-naCMA construction into adaptively secure
(UF-CMA) one by generic transformations using tools like chameleon hash functions. In our work,
we will show a simpler signing algorithm and the length of signature can reduce by n · (⌈log q⌉)2 bits.
The resulting IBS will be further used to construct the IB-ME scheme.

1.3 Related Work

Authenticated identity-based encryption and identity-based signcryption. Authenticated
encryption (AE) [Zhe97] in the identity-based setting, i.e. identity-based signcryption [Mal02,Boy03,
BLMQ05], enables the intended receiver has the sole ability to decrypt and can authenticate that the
message is indeed from the specified sender. However, the receivers in the identity-based signcryption
scheme usually need to firstly recover the purported identity (also signature and message) and then
check the validity. In an IB-ME scheme, a receiver just take ciphertexts, its decryption key and
chosen sender’s identity as input, and finally get the message only when matches happen. The whole
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decryption procedure implicitly contains the authentication to the message source and the message
itself. Also the key generation mechanisms are different. There is only one KeyGen algorithm for
users to encrypt or decrypt, while authorities in IB-ME schemes will generate encryption keys and
decryption keys, respectively.

2 Preliminaries

2.1 Notations

We denote the natural numbers by N, the integers by Z and the real numbers by R. Let Zq be
Z/(qZ). For a non-negative integer n, we let [n] = {1, · · · , n}. Vectors are written in bold lower-case
letters (e.g., x) and are always assumed to be in column form. The ith component of vector x is
denoted by xi. Matrices are written using bold capital letters(e.g., X) and we denote the i-th column
vector of a matrix X by xi. The Euclidean norm, or l2 norm, of a vector is denoted by ∥x∥. We
denote the Euclidean norm and spectral norm of a matrix X by ∥X∥ and s1(X), respectively. For
any set S = {s1, · · · , sn} ⊂ Rn of linearly independent vectors, we use S̃ to denote its Gram-Schmidt
orthogonalization.

The security parameter is λ ∈ N throughout this paper, and every algorithm will implicitly get it
as an input. We use standard asymptotic notations to classify the growth of functions, and say that
f(n) = O(g(n)) if f is bounded above by g asymptotically up to constant factor, f(n) = o(g(n)) if f
is dominated by g asymptotically, and f(n) = ω(g(n)) if f dominates g asymptotically. We say that
a function f : R≥0 → R≥0 is negligible if for any c ∈ N, f(λ) = o(1/λc), and denote such function by
negl(λ). A probability is overwhelming if it is 1− negl(λ).

We write x
$←− D to define that element x is sampled uniformly random from set D. Suppose X

and Y are probability distributions on a countable domain D, then their statistical distance is defined
as ∆(X,Y ) = 1

2

∑
d∈D | X(d)− Y (d) |. We say that the distributions X and Y are statistically close

if ∆(X,Y ) is negligible in n, denoted by X
s
≈Y . If for every probabilistic poly-time algorithm A,

| Pr[A(1n,X) = 1] − Pr[A(1n,Y) = 1] | is negligible in n, then the two distributions X and Y are
computationally indistinguishable, denoted by X

c
≈Y .

2.2 Lattices Background

A n-dimensional lattice Λ, being a discrete additive subgroup of Rn, is the set L(b1, · · · ,bn) =
{Bz =

∑
i∈[n] zi · bi | zi ∈ Z} of all integral combinations of some n linearly independent vectors

{b1, · · · ,bn} ⊂ Rn. The sequence of vectors {b1, · · · ,bn} is called a lattice basis, and it is conve-
niently represented as a matrix B = {b1, · · · ,bn}.

Many lattice-based cryptosystems use q-ary integer lattices defined by a matrix over Zq. Formally,
let A ∈ Zn×m

q be arbitrary matrix for some positive integers n,m, q, define the full-rank m-dimensional
q-ary lattices as follows

Λ(A) = {z ∈ Zm | ∃ s ∈ Zn
q , s.t. Ats = z mod q}

Λ⊥(A) = {z ∈ Zm | Az = 0 mod q}.

For any fixed u ∈ Zn
q , define a coset of Λ⊥ as:

Λ⊥
u (A) = {z ∈ Zm | Az = u mod q}.

Gaussian on Lattices. For any positive s, the Gaussian distribution Ds,c centered at c ∈ Rn with
parameter s is defined by the following probability distribution function

∀x ∈ Zn, ρs,c(x) = exp(−π∥x− c∥2/s2).

The subscripts c is taken to be 0 when omitted.
Let s > 0, c ∈ Rn, for any n-dimensional lattice Λ, define the discrete Gaussian distribution over

Λ as
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∀x ∈ Λ,DΛ,s,c =
ρs,c(x)
ρs,c(Λ) .

The following is a bound on the smoothing parameter for random lattices.

Lemma 1 ( [GPV08]). Let Λ be an n-dimensional lattice with basis B, and let real ϵ > 0, we have

ηϵ(Λ) ≤ ∥B̃∥ ·
√

log(2n(1 + 1/ϵ))/π.

For any ω(
√
log n) function, there is a negligible function ϵ(n) for which ηϵ(Λ) ≤ ∥B̃∥ · ω(

√
log n).

Lemma 2 ( [GPV08]). Let n,m, q be positive integers, and let m ≥ 2n log q. Then for all but an
at most q−m fraction of A ∈ Zn×m

q , we have λ∞
1 (Λ) ≥ q/4.

In particular, for such A and any ω(
√
logm) function, there is a negligible function ϵ(m) such

that ηϵ(Λ⊥(A)) ≤ ω(
√
logm).

Lemma 3 ( [MR04, GPV08]). For any m-dimensional lattice Λ, let B be a basis for Λ. Suppose
s ≥ ∥B̃∥ · ω(

√
logm), then Pr[∥x∥ ≥ s

√
m : x← DΛ,s] ≤ negl(m).

Lemma 4 ( [GPV08]). Let n and q be positive integers with q prime, and let m ≥ 2n lg q. Then for
all but a 2q−n fraction of all A ∈ Zn×m

q and for any s ≥ ω(
√
logm), the distribution of the syndrome

u = Ae mod q is statistically close to uniform over Zn
q , where e← DZm,s.

Furthermore, fix u ← Zn
q and let x ← Zm be an arbitrary solution to Ax = u mod q. Then the

conditional distribution of e← DZm,s given Ae = u mod q is exactly DΛ⊥
u (A),s.

The following lemma is the bound for spectral norm of random matrices from the non-asymptotic
theory.

Lemma 5 ( [MP12]). Let X ∈ Rn×m be a δ-subgaussian random matrix with parameter s. There
exists a universal constant C, which is very close to 1/

√
2π such that for any t ≥ 0, we have s1(X) ≤

C · s · (
√
m+

√
n+ t) except with probability at most 2 exp(δ) exp(−πt2).

Trapdoors and Sampling Algorithms. Here we recall some lattices trapdoors and gaussian
sampling algorithms.

The gadget matrix G ∈ Zn×m
q is a primitive matrix defined by gadget vector g as G := In⊗ gt ∈

Zn×nk
q . We usually consider gadget vector gt := [1 2 4 · · · 2k−1] ∈ Z1×k

q , where k = ⌈log2 q⌉.

Lemma 6 ( [MP12, Theorem 4.1]). Let n,m, k, q be any integers with q ≥ 2, n ≥1, m = nk and
k = ⌈log2 q⌉, then there is a primitive matrix G ∈ Zn×m

q such that the lattice Λ⊥(G) has a known
basis S ∈ Zm×m with ∥S̃∥ ≤

√
5 and ∥S∥ ≤ max{

√
5,
√
k}.

Lemma 7 (TrapGen [MP12]). There is a probabilistic polynomial-time algorithm TrapGen(1n, 1m, s, q)
that, given any integers n ≥ 1, q ≥ 2, s > 0 and sufficiently large m = O(n log q), outputs a parity-
check matrix A ∈ Zn×m

q and a trapdoor R ∈ Z(m−w)×w where w := n⌈log2 q⌉, such that the distri-
bution of A is statistically close to uniform, and the entries of R are sampled from DZ,s such that
s1(R) = s ·O(

√
m− w +

√
w).

Lemma 8 (SamplePre [MP12,PPS21]). Let q ≥ 2, let R be a trapdoor for matrix A ∈ Zn×m
q , for

any u ∈ Zn
q and s ≥ (s1(R)2+1)·∥S̃∥·ω(

√
log n), there exists a p.p.t. algorithm SamplePre(A,R,u, s)

that samples preimages from a distribution which is statistically close to DΛ⊥
u (A),s.

In particular, the output distribution of the following two experiments are with negl(n) statistical
distance:

• choose z← Dm
Z,s, and output (z,u = A · z ∈ Zn

q ).
• choose uniformly random u

$←− Zn
q and z← SamplePre(A,R,u, s), and output (e,u).

Lemma 9 (DelTrap [MP12]). Let q ≥ 2, for any pair of public matrix and its trapdoor (A ∈
Zn×m,R) generated from TrapGen algorithm in Lemma 7, any extension matrix A1 ∈ Zn×w, and
m′ ≥ m + w, s′ ≥ ω(

√
logm), there exists a p.p.t. algorithm DelTrap(A′ = [A | A1],R, s′) that

outputs a trapdoor R′ for A′ and s1(R
′) ≤ s′ ·O(

√
m+

√
w) with overwhelming probability. Usually,

s′ is required to be sufficiently large relative to s1(R) when implementing algorithm.
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Hardness Assumption.

Definition 10 (SIS [Ajt96,MR04]). The short integer solution problem SISn,m,q,β (in the l2 norm)
is defined as follows: Given an integer q, m uniformly random vectors ai ∈ Zn

q , forming the columns
of a matrix A ∈ Zn×m

q , find a nonzero integer vector z ∈ Zm of norm ∥z∥ ≤ β such that Az =∑
i ai · zi = 0 mod q.

2.3 Hierarchical Identity-based Encryption

We now recall the definition of (anonymous) 2-level hierarchical identity-based encryption (HIBE) as
we require it as building block to constructing IB-ME. Since we focus on 2-level case, we consider the
encryption and decryption algorithms only for level-2 users. Such modifications apply to all existing
HIBE schemes.

Definition 11 (2-level Hierarchical Identity-based Encryption [Gen06,ABB10b,KMT19]).
A 2-level HIBE scheme over a message space M, an identity space ID is a tuple of algorithms
ΠHIBE = (Setup, Extract, Derive, Enc, Dec) with the following properties:

• Setup(1λ) → (mpk, msk): On input the security parameter λ, the setup algorithm outputs the
master public key mpk and the master secret key msk.

• Extract(msk, id1)→ skid1 : On input the master secret key msk and a first-level identity id1 ∈ ID,
the key-extract algorithm outputs a secret key skid1

.
• Derive(skid1 , id2) → skid1|id2

: On input a secret key skid1 and a second-level identity id2 ∈ ID,
outputs a secret key skid1|id2

.
• Enc(mpk, id = (id1 | id2),m) → ct: On input the master public key mpk, a level-2 user’s identity

id = (id1 | id2) ∈ (ID)2 and a message m ∈M, outputs a ciphertext ct.
• Dec(skid1|id2

, ct) → m/⊥: On input a secret decryption key skid1|id2
(for a level-2 user with id =

(id1 | id2)) and a ciphertext ct, outputs either a message m ∈M or a special symbol ⊥.

A 2-level HIBE scheme should satisfy the following properties:
Correctness. For all identities id = (id1 | id2) ∈ (ID)2 , and all messages m ∈ M, if we set
(mpk, msk) ← Setup(1λ), skid1

← Extract(msk, id1), skid1|id2
← Derive(skid1

, id2), ct ← Enc(mpk, id =
(id1 | id2),m), it holds that

Pr[Dec(skid1|id2
, ct) = m] ≥ 1− negl(λ)

Security. We define chosen-plaintext security for HIBE systems under chosen identity attacks via
the following game IND-ID-CPAA

HIBE(λ).

• Setup: The challenger runs the Setup algorithm given it the security parameter λ as input. It
gives the adversary the resulting master public key mpk. It keeps the master secret key msk to
itself.

• Pre-challenge querying Phase:
1. Level-1 secret key query

The Adversary issues queries on identities id1
1, id

2
1, · · · where each idi

1 ∈ ID. For each query
the challenger executes skidi

1
← Extract(msk, idi

1) and returns skidi
1

to the adversary.
2. Level-2 secret key query

The Adversary issues queries on identities (id1
1 | id1

2), (id
2
1 | id2

2), · · · where each (idj
1 | idj

2) ∈
(ID)2. For each query the challenger executes skidj

1
← Extract(msk, idj

1) and skidj
1|id

j
2
←

Derive(skidj
1
, idj

2). Then the challenger returns skidj
1|id

j
2

to the adversary.
• Challenge Phase:

Once the adversary decides that pre-challenge querying phase is over, it submits an identity
id∗ = (id∗

1 | id∗
2) ∈ (ID)2 and a message m ∈ M. The challenge identity id∗ and its prefix must

not have appeared in any secret key query (both level-1 and level-2) in pre-challenge querying
phase. The challenger picks a random bit b ∈ {0, 1} and a random ciphertext ct from ciphertext
space. If b = 0, it sets the challenge ciphertext to ct∗ := Enc(mpk, id∗ = (id∗

1 | id
∗
2),m). If b = 1, it

sets ct∗ := ct. The challenger then sends ct∗ to the adversary.
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• Post-challenge querying phase:
The adversary issues additional level-1 and level-2 key queries as in the pre-challenge querying
phase, and the challenger responds as before, except that the adversary should not request a
secret key for id∗ or the prefix of id∗.

• Guess: Finally, the adversary submits a guess b′ ∈ {0, 1} and wins if b = b′.

We refer to such an adversary as an IND-ID-CPA adversary.

Definition 12 (IND-ID-CPA secure 2-level HIBE). A 2-level HIBE is IND-ID-CPA secure if for
all p.p.t. adversaries A,

AdvIND-ID-CPA
Π,A (λ) :=| Pr[b = b′]− 1

2 |≤ negl(λ).

We define the anonymous property to the above adaptive-identity secure HIBE by slightly adjust-
ing the challenge phase and post-challenge phase. Concretely, in the game ANON-IND-ID-CPAA

HIBE
(λ), the adversary submits two identities id∗ = (id∗

1 | id
∗
2) and id† = (id†

1 | id
†
2) and two message m∗ and

m†. The challenge identities and corresponding prefixes may not been queried in the pre-challenge
phase. After received the challenge tuple, the challenger picks a random bit b ∈ {0, 1}. If b = 0, the
challenger computes ct := Enc(mpk, id∗ = (id∗

1 | id∗
2),m

∗), otherwise computes ct := Enc(mpk, id† =

(id†
1 | id

†
2),m

†), and then sends the resulting ciphertext to adversary. Post-challenge phase is the same
as pre-challenge, except that the adversary cannot request a secret key for id∗ or id†, or their prefixes.
At the end of the game, the adversary outputs its guess b′ ∈ {0, 1} and wins if b = b′. It is clear that
the ANON-IND-ID-CPA security implies the IND-ID-CPA security.

Definition 13 (ANON-IND-ID-CPA secure 2-level HIBE). A 2-level HIBE is ANON-IND-ID-CPA
secure if for all p.p.t. adversaries A,

Adv ANON-IND-ID-CPA
Π,A (λ) :=| Pr[b = b′]− 1

2 |≤ negl(λ).

2.4 Identity-based Signature

Definition 14 (Identity-based Signature [Sha84, PW21]). An IBS scheme is specified by four
algorithms IBS = (Setup, KeyExt, Sign, Ver) with running time polynomial in the security parameter.
The first three may be randomized while the last is deterministic.

• Setup(1λ) → (mpk, msk): The trusted authority takes security parameters as input and run the
setup algorithm to obtain a master public key mpk and a master secret key msk. We assume that
mpk implicitly specified a message space M and identity space ID.

• KeyExt(msk, id)→ skid: To generate secret signing key for user with identity id ∈ ID, the authority
revokes the key-extract algorithm on input a master secret key msk and an identity id and output
secret signing key skid.

• Sign(skid,m) → σ: On input secret signing key skid and message m ∈ M, user with identity id
will obtain a signature σ, which is the output of signing algorithm.

• Ver(mpk,id,m, σ)→ 0/1: On input a master public key mpk, a user identity id, a message m and
a signature σ, verifying algorithm returns 1 if signature is valid for id and m, otherwise returns
0.

Correctness. For every (mpk, msk) generated as above, m ∈M, id ∈ ID, we have:

Pr[Ver(mpk,id,m, σ) = 1 | skid ← KeyExt(msk, id),
σ ← Sign(skid,m)] = 1− negl(λ)

Security. We define the unforgeability for IBS systems under chosen message attacks via the following
game UF-CMAA

IBS(λ). Oracles Key, Sig are implemented by KeyExt(·), Sign(·), respectively. Lists Lid

and Lm are updated after each query.
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Game UF-CMAA
IBS(λ)

(mpk, msk)← Setup(1λ)

(id∗,m∗, σ∗)← AKey,Sig,H(1λ,mpk)
if id∗ ∈ Lid : return 0

if (id∗,m∗) ∈ Lm : return 0

return Ver(mpk,id∗,m∗, σ∗)

Fig. 1. Game UF-CMAA
IBS(λ)

Definition 15 (UF-(na)CMA). Let IBS = (Setup, KeyExt, Sign, Ver) be an IBS scheme. We say
that the IBS scheme is UF-CMA secure, if for every p.p.t algorithm A, the following advantage is
negligible in λ:

AdvUF-CMA
A,IBS := Pr[UF-CMAA

IBS(λ)⇒ 1]

UF-naCMA security is defined similarly, but with additional restriction that the adversary should
submit all the signing key queries Lid and Lm signature queries before setup phase.

We say that the IBS scheme is UF-naCMA secure, if for every p.p.t algorithm A, the following
advantage is negligible in λ:

AdvUF-naCMA
A,IBS := Pr[UF-naCMAA

IBS(λ)⇒ 1]

3 Improved Formal Definitions for Identity-based Matchmaking
Encryption

In this section, we will firstly recall the syntax and the formal definition of correctness for IB-ME. Then
we will propose the improved security definitions to match general and practical security requirements.
As we will discuss in detail later, our security definition is able to capture more real-world attacks
than previous ones [AFNV19,FGRV21,CLWW22].

Definition 16 (Identity-based Matchmaking Encryption [AFNV19]). A IB-ME scheme for
a set of identities ID and a message space M is a tuple of polynomial-time algorithms IB-ME =
(Setup, SKGen, RKGen, Enc, Dec) defined as follows:

• Setup(1λ) → (mpk, msk): Upon input the security parameter 1λ, the setup algorithm outputs the
master public key mpk and the master secret key msk.

• SKGen(msk, ϕ) → ekϕ: The sender-key generator takes as input the master secret key msk, and
identity ϕ. The algorithm outputs a secret encryption key ekϕ for identity ϕ.

• RKGen(msk, ρ) → dkρ: The receiver-key generator takes as input the master secret key msk, and
an identity ρ. The algorithm outputs a secret decryption key dkρ for identity ρ.

• Enc(ekϕ, rcv,m) → c: The encryption algorithm takes as input a secret encryption key ekϕ for
identity ϕ, a target receiver’s identity rcv, and a message m ∈ M. The algorithm produces a
ciphertext c linked to both ϕ and rcv.

• Dec(dkρ, snd, c) → m/⊥: On input a secret decryption key dkρ for identity ρ, a target sender’s
identity snd and a ciphertext c, the decryption algorithm outputs either a message m or ⊥.

Correctness. Intuitively, the output of decryption algorithm for the ciphertext encrypted under
encryption key for ϕ and target identity rcv using decryption key for ρ and target identity snd will
be the original plaintext if and only if the receiver’s identity matches the identity rcv chosen by
the encryptor, and the sender’s identity matches the identity snd selected by the decryptor in the
meantime.



10 Yuejun Wang, Baocang Wang, Qiqi Lai, and Yu Zhan

Definition 17 (Correctness of IB-ME). For all messages m ∈ M, all identities ϕ, ρ, rcv, snd ∈
ID such that ρ = rcv ∧ ϕ = snd, if we set (mpk, msk) ← Setup(1λ), ekϕ ← SKGen(msk, ϕ), dkρ ←
RKGen(msk, ρ), then

Pr[Dec(dkρ, snd,Enc(ekϕ, rcv,m)) = m] ≥ 1− negl(λ)
Security Definitions. Here, we give an improved formal security definition for IB-ME. The security
of an IB-ME scheme can be viewed as two properties, called privacy and authenticity.

Like the previous privacy of IB-ME, we focus on the privacy in the case of mismatch, which means
that as long as the malicious receiver does not own the decryption key associated with the right
identity, he cannot learn anything about message and the information about the sender’s identity.
The reason why we do not consider the condition of match is that match cases obviously imply
ρ = rcv ∧ ϕ = snd. We modified the original privacy game to allow additional ciphertext queries and
the modified privacy game Gnew-priv

Π,A is showed in Fig. 2.
Definition 18. (Stronger Privacy of IB-ME). We say that an IB-ME Π satisfies stronger privacy if
for all admissible p.p.t algorithms A,

| Pr[Gnew-priv
Π,A = 1]− 1

2 |≤ negl(λ).
Oracles OS ,OR,OE are implemented by SKGen(·), RKGen(·), Enc(·), respectively. And an adversary
A is admissible if for all identities ρ the adversary submitted to the decryption key oracle, it holds
that ρ ̸= rcv0 ∧ ρ ̸= rcv1.

Gnew-priv
Π,A (λ)

(mpk,msk) $←− Setup(1λ)

(µ0, µ1, rcv0, rcv1, ϕ0, ϕ1, α)
$←− AOS ,OR,OE

1 (1λ,mpk)

b
$←− {0, 1}

ekϕb

$←− SKGen(msk, ϕb)

ct $←− Enc(ekϕb , rcvb, µb)

b′
$←− AOS ,OR,OE

2 (1λ, ct, α)
If (b′ = b) return 1

Else return 0

Fig. 2. Gamenew-priv
Π,A (λ)

Gnew-auth
Π,A (λ)

(mpk,msk) $←− Setup(1λ)

(ct, ρ, snd) $←− AOS ,OR,OE (1λ,mpk)

dkρ
$←− RKGen(msk, ρ)

µ = Dec(dkρ, snd, ct)
If ∀ϕ ∈ QOS : (ϕ ̸= snd) ∧ (µ ̸= ⊥) ∧ ((ρ, snd, µ) /∈ QOE), return 1

Else return 0

Fig. 3. Gamenew-auth
Π,A (λ)
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Authenticity guarantees that adversary, without corresponding encryption keys, cannot produce
ciphertexts embedding fake identities. We observe that the previous security definitions [AFNV19,
FGRV21, CLWW22] fail to capture the possible forgeries like "forging-to-itself" or tamper forgeries.
Hence, we modify the authenticity game to cancel the restrictions on the challenge receivers’ identities
and give adversaries access to encryption oracle. In other words, the improved game enables attackers
to obtain ciphertexts with known plaintexts from chosen sources, also it is admissible for adversaries
to submit forgeries that send to corrupted receivers. The modified authenticity game is presented in
Fig. 3.

Definition 19. (Stronger Authenticity of IB-ME). We say that an IB-ME Π satisfies stronger au-
thenticity if for all p.p.t algorithms A,

| Pr[Gnew-auth
Π,A = 1] |≤ negl(λ).

4 Generic Construction of IB-ME

In this section, we provide the details about our generic construction of IB-ME satisfying stronger
security definitions. Namely, we show how to construct an IB-ME scheme by combining a 2-level
HIBE scheme and an IBS scheme. We require that both underlying schemes to be adaptively secure,
so that IB-ME achieving adaptive security.

4.1 Constructing IB-ME from 2-level HIBE and IBS

Construction 1 (Identity-based Matchmaking Encryption). Let HIBE and IBS be respectively an
anonymous 2-level HIBE and a identity-based signature scheme, we construct our IB-ME with identity
space ID and message space M as follows:

• Setup(1λ): On input the security parameter 1λ, the setup algorithm runs (HIBE.mpk, HIBE.msk)←
HIBE.Setup(1λ), (IBS.mpk, IBS.msk)← IBS.Setup (1λ), and outputs

mpk = (HIBE.mpk, IBS.mpk) and msk = (HIBE.msk, IBS.msk)

• SKGen(msk, ϕ): On input the master secret key msk = (HIBE.msk, IBS.msk) and an identity ϕ,
the sender key-generation algorithm computes signing key IBS.skϕ ← IBS.KeyExt(IBS.msk, ϕ). It
outputs ekϕ ← IBS.skϕ.

• RKGen(msk, ρ): On input the master secret key msk = (HIBE.msk, IBS.msk) and an identity ρ,
the receiver key-generation algorithm computes HIBE.skρ ← HIBE.Extract(H-IBE.msk, ρ). Then,
it outputs dkρ ← HIBE.skρ.

• Enc(mpk, ekϕ, rcv, µ): On input the master public key mpk = (HIBE.mpk, IBS.mpk), secret en-
cryption key ekϕ, target identity rcv and message µ ∈M, the encryption algorithm first generate
identity-based signature t← IBS.Sign(IBS.skϕ, rcv | µ). It then computes ciphertexts under public
key rcv | ϕ (for HIBE) to obtain

ctµ ← HIBE.Enc(HIBE.mpk, rcv | ϕ, µ), ctt ← HIBE.Enc(HIBE.mpk, rcv | ϕ, t)

Finally, it outputs ciphertext ct = (ctµ, ctt).
• Dec(dkρ, snd, ct): On input a secret decryption key dkρ, a ciphertext ct and a selected sender’s

identity snd, the decryption algorithm first delegates key dkρ|snd ← H-IBE.Derive(dkρ, ρ | snd),
and recovers (t, µ) ← H-IBE.Dec(dkρ|snd, ct). Then it verifies the validity of signature (0/1) ←
IBS.Verify(IBS.pk, t, ρ | µ). Finally, it outputs µ if signature is valid. Otherwise, it returns ⊥.

Theorem 20 (Correctness). If underlying HIBE and IBS are both correct, then IB-ME from Con-
struction 1 is correct.

Proof. Take a message m ∈M, an sender’s identity ϕ ∈ ID, and a target receiver’s identity rcv ∈ ID.
Take a receiver’s identity ρ ∈ ID, and a target sender’s identity snd ∈ ID. Take (mpk, msk) ←
Setup(1λ), ekϕ ← SKGen(msk, ϕ), dkρ ← RKGen(msk, ρ), ct← Enc(mpk, ekϕ, rcv, µ).

In this case, mpk = (HIBE.mpk, IBS.mpk), msk = (HIBE.msk, IBS.msk), ekϕ is the signing key out-
put by IBS.KeyExt(IBS.msk, ϕ), dkρ is the decryption key obtained by HIBE.Extract(H-IBE.msk, ρ), and
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ct = (ctµ, ctt) is output by ctµ ← HIBE.Enc(HIBE.mpk, rcv | ϕ, µ) and ctt ← HIBE.Enc(HIBE.mpk, rcv |
ϕ, t), respectively, where t is the identity-based signature corresponding to ϕ, rcv and µ. It is obvious
that when ρ = rcv ∧ ϕ = snd, rcv | ϕ = ρ | snd, the receiver with identity ρ can generate decryption
key for ρ | snd using its key dkρ and then recover message µ and signature t. Moreover, signature t is
signed by sender with identity ϕ for rcv | µ, we have 1← IBS.Verify(IBS.pk, t, ρ | µ) with overwhelming
probability. Thus, the claim follows by correctness of HIBE and IBS.

4.2 The Security Analysis

We provide the formal security analysis of the identity-based matchmaking encryption scheme from
Construction 1.

Theorem 21 (Security). Let HIBE, IBS be as above. Suppose that ΠHIBE is ANON-IND-ID-CPA
secure (Def. 13), IBS is UF-CMA secure (Def. 15), then ΠIB-ME from Construction 1 is secure.

Proof. We prove privacy and authenticity separately.

Lemma 22. If ΠHIBE is ANON-IND-ID-CPA secure (Def. 13), then ΠIB-ME from Construction 1 sat-
isfies stronger privacy(Def. 18). In particular, for every p.p.t. algorithm A there is a p.p.t. algorithm
B such that

Advnew-priv
A,IB-ME(λ) ≤ 2Adv IND-ID-CPA

B1,HIBE (λ) + Adv ANON-IND-ID-CPA
B2,HIBE (λ) + negl(λ).

Proof. We proceed with a hybrid argument:

• Hyb0: This is experiment Gnew-priv
Π,A (λ) for case that b = 0. Namely, the challenger responds to

the challenge query (µ0, µ1, rcv0, rcv1, ϕ0, ϕ1) with the ciphertext ct $←− Enc(ekϕ0
, rcv0, µ0), where

ekϕ0

$←− SKGen(msk, ϕ0).
• Hyb1: Same as Hyb0, except the challenger constructs the challenger ciphertext as ct← (ctµ, ct∗),

where the first part ctµ is same as in the Hyb0, and the second part ct∗ is set as a random
ciphertext from ciphertext space.

• Hyb2: Same as Hyb1, except the challenger constructs the first part of challenge ciphertext to be
ctµ ← HIBE.Enc(HIBE.mpk, rcv1 | ϕ1, µ1), and sets second part the same as in the Hyb1. Then,
the challenger responds with ct← (ctµ, ct∗).

• Hyb3: Same as Hyb2, except the challenger constructs the challenger ciphertext as ct $←− Enc(ekϕ1 ,

rcv1, µ1), where ekϕ1

$←− SKGen(msk, ϕ1).

We denote the advantage of adversary A in each game as Advi(A) := Pr[HybA
i ⇒ 1]. Note that

the Hyb3 is the experiment Gnew-priv
Π,A (λ) for case that b = 1. We can obtain the advantage of A by

Advnew-priv
A,IB-ME(λ) =| Adv0(A)− Adv3(A) |.
We now show that each consecutive pair of hybrid experiments are computationally indistinguish-

able.

• Hybrids Hyb0 and Hyb1 are computationally indistinguishable by IND-ID-CPA security (Def. 12)
of HIBE. Specifically, suppose that there exists an efficient adversary A that can distinguish Hyb0

from Hyb1. We then uses A to construct an adversary B1 for the IND-ID-CPA security game:
1. At the beginning of the IND-ID-CPA security game, adversary B1 receives the public param-

eters HIBE.mpk from the IND-ID-CPA security challenger. In addition, it runs IBS.Setup to
obtain IBS.mpk and IBS.msk. Then adversary B1 sets mpk← (HIBE.mpk, IBS.mpk) and sends
it to the adversary A.

2. Whenever A makes a decryption key query on an identity ρ ∈ ID, algorithm B1 makes a
key-generation query to its challenger on level-1 identity ρ to obtain a key HIBE.skρ, which
it forwards to A. Whenever A makes a encryption key query on an identity ϕ ∈ ID, algo-
rithm B1 computes IBS.skϕ ← IBS.KeyExt(IBS.msk, ϕ). It sets ekϕ ← IBS.skϕ and sends it
to A. Whenever A makes a ciphertext query on a tuple of (ϕ, rcv, µ), algorithm B first gen-
erates IBS.skϕ ← IBS.KeyExt(IBS.msk, ϕ) and computes t ← IBS.Sign(IBS.skϕ, rcv | µ), then
computes ctµ and ctt as in the real Enc. Finally, it sets ct← (ctµ, ctt) and sends it to A.
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3. Whenever A makes a challenge query on input (µ0, µ1, rcv0, rcv1, ϕ0, ϕ1), algorithm B1 first
selects random bit b ∈ {0, 1}, computes IBS.skϕb

← IBS.KeyExt(IBS.msk, ϕb) and t← IBS.Sign
(IBS.skϕb

, rcvb | µb), and then obtains ctµb ← HIBE.Enc(HIBE.mpk, rcvb | ϕb, µb). The adver-
sary B1 submits the pair (rcvb | ϕb, t) to the challenger as challenge query. The challenger
replies to B1 with ct∗. Then, the algorithm B1 sets the challenge ciphertext as ct← (ctµb , ct∗)
and sends it to adversary A.

4. At the end of the game, algorithm B1 outputs what A outputs.
We first argue that B1 is admissible for the IND-ID-CPA game. Since A is admissible for the
privacy game, this means that for all decryption key generation queries ρ ∈ ID that A makes,
it must satisfy that ρ ̸= rcv0 ∧ ρ ̸= rcv1. Due to the reason that the challenge query submitted
by B1 forms of (rcvb | ϕb, t) and all key generation queries it issued are exactly identities ρ which
queried by A, this means that B1 never asked secret key for challenge identity or its prefix. Thus,
B1 is admissible for the IND-ID-CPA game.
By construction, if ct∗ ← HIBE.Enc(HIBE.mpk, rcvb | ϕb, t), then B1 perfectly simulated Hyb0 for
A, and if ct∗ is the random ciphertext chosen by challenger, then B1 perfectly simulated Hyb1 for
A. Thus,

| Adv0(A)− Adv1(A) |≤ Adv IND-ID-CPA
B1,HIBE (λ)

• Hybrids Hyb1 and Hyb2 are computationally indistinguishable by ANON-IND-ID-CPA security
(Def. 13) of HIBE. Specifically, suppose that there exists an efficient adversary A that can distin-
guish Hyb1 from Hyb2. We then uses A to construct an adversary B2 for the ANON-IND-ID-CPA
security game:
1. At the beginning of the ANON-IND-ID-CPA security game, adversary B2 receives the public

parameters HIBE.mpk from the ANON-IND-ID-CPA security challenger. In addition, it runs
IBS.Setup to obtain IBS.mpk and IBS.msk. Then adversary B2 sets mpk← HIBE.mpk, IBS.mpk
and sends it to the adversary A.

2. Whenever A makes a decryption key query on an identity ρ ∈ ID, algorithm B2 then makes a
key-generation query to its challenger on level-1 identity ρ to obtain a key HIBE.skρ, which it
forwards to A. Whenever A makes a encryption key query on an identity ϕ ∈ ID, algorithm
B2 computes IBS.skϕ ← IBS.KeyExt(IBS.msk, ϕ). It then sets ekϕ ← IBS.skϕ and sends it
to A. Whenever A makes a ciphertext query on a tuple of (ϕ, rcv, µ), algorithm B2 first
generates IBS.skϕ ← IBS.KeyExt(IBS.msk, ϕ) and computes t ← IBS.Sign(IBS.skϕ, rcv | µ) It
then computes ctµ and ctt as in the real Enc algorithm. Finally, it sets ct ← (ctµ, ctt) and
sends back to A.

3. Whenever A makes a challenge query on input (µ0, µ1, rcv0, rcv1, ϕ0, ϕ1), algorithm B2 first
selects random ct∗ from ciphertext space. Then it submits the challenge query (rcv0 |, ϕ0, rcv1 |
ϕ1) and (µ0, µ1, ) to the challenger. The challenger replies to B2 with ctµb′ . Then, the algorithm
B2 sets the challenge ciphertext as ct← (ctµb′ , ct∗) and sends it to A.

4. At the end of the game, algorithm B2 outputs what A outputs.
Similarly, B2 is admissible for the ANON-IND-ID-CPA game. By construction, if ctµb′ ← HIBE.Enc
(HIBE.mpk, rcv0 | ϕb, µ1), then B2 perfectly simulated Hyb1 forA, and if ctµb′ ← HIBE.Enc(HIBE.mpk,
rcv1 | ϕ1, µ1), then B2 perfectly simulated Hyb2 for A. Thus,

| Adv1(A)− Adv2(A) |≤ Adv ANON-IND-ID-CPA
B2,HIBE (λ)

• Hybrids Hyb2 and Hyb3 are computationally indistinguishable by IND-ID-CPA security (Def. 12)
of HIBE via the same argument used to show indistinguishability of hybrids Hyb0 and Hyb1. Thus,

| Adv2(A)− Adv3(A) |≤ Adv IND-ID-CPA
B1,HIBE (λ)

Thus, we can bound that

Advnew-priv
A,IB-ME(λ) ≤ 2Adv IND-ID-CPA

B1,HIBE (λ) + Adv ANON-IND-ID-CPA
B2,HIBE (λ) + negl(λ).

Lemma 23. If ΠIBS is UF-CMA secure (Def. 15), then ΠIB-ME from Construction 1 satisfies stronger
authenticity(Def. 19). In particular, for every p.p.t. algorithm A there is a p.p.t. algorithm B such
that
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Advnew-auth
A,IB-ME(λ) ≤ AdvUF-CMA

B,IBS (λ) + negl(λ).

Proof. The proof strategy of Lemma 23 is based on a contradiction, i.e. we assume that there exists
an adversary A′ which can break the authenticity of Construction 1 with non-negligible advantage,
then we could build an attacker B′ that breaks UF-CMA of IBS. And the reduction procedure is in
the following way:

1. At the beginning, algorithm B′ receives IBS.mpk from the challenger. Then, it executes (HIBE.mpk,
HIBE.msk)← HIBE.Setup(1λ), and sends mpk = (HIBE.mpk,IBS.mpk) to adversary A′.

2. For the queries issued by A′, B′ proceeds as follows:
• When A′ issues encryption key queries for ϕ, B′ queries its challenger for secret signing key

on input identity ϕ. B′ sets the ekϕ as the signing key skϕ received from the challenger, and
sends it back to A′.
• WhenA′ issues decryption key queries for ρ, B′ revokes HIBE.skρ ← HIBE.Extract(H-IBE.msk, ρ),

then sets dkρ ← HIBE.skρ and returns it to A′.
• When A′ issues ciphertext queries for (ϕ, rcv, µ), B′ first queries its challenger for signature

on input (ϕ, rcv | µ) and receivers t, then runs the encryption algorithm to obtain ctµ and
ctt. Finally, it sends ct = (ctµ, ctt) to A′.

3. Once the algorithm B′ receives the forgery output (ct, ρ, snd) from adversary A′, B′ executes in
the following way:
• If A′ ever asked encryption key for snd, returns 0.
• Else, B′ firstly generate dkρ ← HIBE.Extract(H-IBE.msk, ρ) and delegates the level-2 decryp-

tion key dkρ|snd ← H-IBE.Derive(dkρ, ρ | snd). Then, it recovers (t, µ)← H-IBE.Dec(dkρ|snd, ct).
It is clear that the decryption algorithm will output µ only when the signature t is valid cor-
responding to (snd, ρ | µ).
• If either µ = ⊥ orA′ ever asked ciphertext for the same identities and message pair (snd, ρ | µ),

returns 0.
• Else, B′ returns (snd, ρ | µ, t) as forgery signature to its challenger.

All the oracle queries of A′ are perfectly simulated by B′ helped by the secret key oracle and signing
oracle of IBS challenger. The validity for forge signature is also obvious, because the valid conditions
of authenticity forgery output already contains the checking conditions for IBS. Concretely, A′ is not
allowed to ask secret key for snd or signature for (snd, ρ | µ), so as B′. Thus, we extract (snd, ρ | µ, t)
as valid forgery breaking the UF-CMA of IBS.

By combining Lemma 22 and Lemma 23, we can conclude that Construction 1 is secure.

5 Adaptively Secure Identity-Based Signature

To improve the efficiency of IB-ME instantiation based on lattices assumptions, we shorten the sig-
nature size of an existing lattice-based IBS scheme to reduce the final IB-ME ciphertext sizes. Note
that Pan and Wagner [PW21] proposed two generic transformations from non-adaptive IBS to adap-
tive one. We follow the same approach to obtain adaptive IBS. In other words, we pay attention to
improving non-adaptive IBS from SIS assumptions respectively, and proving non-adaptive security.
Using the lattice-based 2-level HIBE scheme of Agrawal et al. [ABB10b] and our improved IBS with
adaptive security, our result implies the first lattice-based IB-ME.

5.1 Improved Non-adaptive IBS from SIS

We provide our improved SIS-based IBS scheme in Fig.4. The intuition of improvement is reduce the
signature size by slightly changing the "hash-and-sign" approach in the signing algorithm.

Correctness. For correctness, we check that verification algorithm will accept valid signatures gen-
erated by user id with overwhelming probability.
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Setup(1λ)

(A,TA)← TrapGen(1n, 1m, q, s0)
mpk := A ∈ Zn×m

q

msk := TA

KeyExt(msk,id)

H1 ← H1(mpk,id)
Fid ← [A | H1]
Tid ← DelTrap(Fid,TA, s)
skid := Tid

Note: Hash functions H1,H2 are random oracles,
where H1 : {0, 1}∗ → Zn×n⌈log q⌉

q , H2 : {0, 1}∗ →
Zn
q .

Sign(skid,m)

h2 ← H2(mpk,id,m)
z← SamplePre(Fid,Tid,h2, s

′)
s.t. Fid · z = h2

return σ := z

Ver(mpk,id,m,z)

H1 ← H1(mpk,id)
Fid ← [A | H1]
h2 ← H2(mpk,id,m)
if z = 0 ∨ Fid · z ̸= h2: return 0
else if ∥z∥ ≤ s′

√
m+ n⌈log q⌉

Fig. 4. Improved na-IBSSIS = (Setup, KeyExt, Sign, Ver).

Lemma 24. The identity-based signature scheme IBSSIS in Fig.4 is correct with overwhelming prob-
ability.

Proof. For master public key and master secret key (A,TA) ← Setup(1λ), an identity id ∈ ID and
message m ∈ M. Let skid ← KeyExt(msk,id) and z ← Sign(skid,m). According to the definition of
key generation algorithm, signing key skid is the trapdoor for matrix Fid := [A | H1], which is an
extension of public matrix A. Thus, the trapdoor Tid can be used to sample preimages in the signing
algorithm. And the output vector z is sampled from the distribution statistically close to DΛ⊥

h2
(A),s′

by Lemma 8. In other word, z satisfies h2 = Fid · z and ∥z∥ ≤ s′
√
m+ n⌈log q⌉.

Parameter Selection. We provide the parameters to satisfy following restrictions.
· Let m ≥ 2n⌈log q⌉ and s0 > 0 so that algorithm TrapGen of Lemma 7 works as specified.
· Let s≫ s1(TA) so that algorithm DelTrap of Lemma 9 works as specified.
· Let s′ ≥ (s1(Tid)

2 + 1) · ∥S̃∥ · ω(
√
log n) so that algorithm SamplePre of Lemma 8 works as

specified.
· Let the modulus q be sufficiently large relative to β, so that the hardness assumption of related

SIS problem applies.
An appropriate choice of parameters is as follows:

n = poly(λ), m = O(n⌈log q⌉), β = s · s′ ·O(m+ n⌈log q⌉)
s0 = ω(

√
logm), s = s0 ·O(

√
m− n⌈log q⌉+

√
n⌈log q⌉)

s′ = s2 ·O(m+ n⌈log q⌉+
√
m · n⌈log q⌉) · ω(

√
log n)

We obtain the following keys and signature sizes:
– Master public key mpk is in Zn×m

q and hence has size m · n⌈log q⌉ bits.
– Master secret key msk is in Z(m−n⌈log q⌉)×(n⌈log q⌉) and hence has size (m− n⌈log q⌉)× n · ⌈log q⌉2

bits.
– Signing keys skid = Tid are in Zm×(n⌈log q⌉) and hence have size m · n · ⌈log q⌉2 bits.
– Signatures z are in Zm+n⌈log q⌉

q and hence have size (m+n⌈log q⌉)·⌈log q⌉ bits, which are n·⌈log q⌉2
bits shorter than signatures in [PW21].

Remark 25. Due to space limit, we only focus on the improved IBS construction bases on SIS hardness.
As to RSIS-based instantiation construction, the high-level construction idea and proving method are
quite similar. And we can also reduce the signature size following the similar improvement approach.
Concretely, the size of signatures can be h ·n · ⌈log q⌉ bits shorter than that in [PW21], where h refers
to the dimension of gadget vector g.
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5.2 The Security Proof

Here we prove the UF-naCMA security of na-IBSSIS scheme showed in Fig.4. Using the generic trans-
formations presented in [PW21], the final scheme will achieve UF-CMA security.

Theorem 26. Assuming the hardness of SISn,m,q,β, then the identity-based signature scheme de-
scribed in Fig. 4 achieves UF-naCMA security (Def.15). In particular, for every p.p.t. algorithm A
there is a p.p.t. algorithm B such that

AdvUF-naCMA
A,na-IBS (λ) ≤ AdvSISn,m,q,β

B (λ) + negl(λ).

Proof. We prove the UF-naCMA security of na-IBSSIS by constructing an algorithm B, presented in
Fig. 5, which can solve SIS problem by interacting with adversary A. The details of reduction process
are as follows:

At the beginning of security reduction, algorithm B was given random SIS problem instance
A ∈ Zn×m

q as input. B then sets A as master public key for IBS scheme and sends it to adversary A.
After receiving mpk, A sends lists Lid and Lm to B.

Algorithm B (Given A ∈ Zn×m
q )

1. (Lid,Lm, St)← A(1λ)
2. mpk := A
3. for id ∈ Lid:

· R̂id ← Dm×n⌈log q⌉
Z,s

· h[1,mpk,id] := AR̂id + G
· skid := R̂id

· Lsk := Lsk ∪ {skid}

4. for (id,m) ∈ Lm:
· H1 ← H1(mpk,id)
· zid,m ← Dm+n⌈log q⌉

Z,s′

· h[2,mpk,id,m] := [A | H1] · zid,m

· Lsig := Lsig ∪ {zid,m}

Oracle H1(mpk,id)

if h[1,mpk,id] = ⊥:

· R̂id ← Dm×n⌈log q⌉
Z,s

· h[1,mpk,id] := AR̂id

return h[1,mpk,id]

5. (id∗,m∗, z∗)← AH1,H2(St,mpk,Lsk,Lsig)

6. if id∗ ∈ Lid ∨ (id∗,m∗) ∈ Lm:
return ⊥
if ∥z∗∥ > s′

√
m+ n⌈log q⌉∨

z∗ = 0: return ⊥

7. Fid∗ ← [A | AR̂id∗ ]
h2 ← H2(mpk, id∗,m∗)

if Fid∗z∗ ̸= h2: return ⊥

8. z := [Im | R̂id∗ ](z∗ − z′
id∗,m∗)

return z

Oracle H2(mpk,id,m)

if h[2,mpk,id,m] = ⊥:

· H1 ← H1(mpk,id)

· z′
id,m ← D

m+n⌈log q⌉
Z,s′

· h[2,mpk,id,m] := [A | H1] · z′
id,m

· L′
sig := L′

sig ∪ {z′
id,m}

return h[2,mpk,id,m]

Fig. 5. Algorithm B for solving SISn,m,q,β problem, using an adversary A against UF-naCMA security of
na-IBSSIS

• For every identity id ∈ Lid, B firstly selects matrix R̂id from Dm×n⌈log q⌉
Z,s , and program the random

oracle H1 as h[1,mpk,id] := AR̂id +G. Thus, R̂id is a trapdoor for matrix Fid := [A | H1(mpk,id)],
also a secret signing key skid for identity id, as it supports a connection with gadget matrix
G for further operation like Gaussian sampling. Moreover, according to the definition of UF-
naCMA security, adversary has not queried random oracles until now, which means programming
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is available. The distribution of the secret keys skid := R̂id is statistically close to the real secret
keys.

• For every identity and message pair (id,m) ∈ Lm, B samples vector zid,m from distribution
Dm+n⌈log q⌉

Z,s′ , then program the random oracle as h[2,mpk,id,m] := [A | H1] · zid,m, and set vector
zid,m to be the signature for (id,m). The programming is also available as the hash values have
not been asked for. The signature generated by algorithm B is statistically close to the honest
signatures.

After receiving the list of secret signing keys Lsk and signatures Lsig, A queries random oracles H1

and H2 adaptively.

• For every identity id, for which adversary A queries for H1(mpk, id), algorithm B first checks
whether the hash value H1(mpk, id) has been defined or not. If it has not been defined yet, then
B draws matrix R̂id ← Dm×n⌈log q⌉

Z,s , and programs h[1,mpk,id] := AR̂id.
• For every identity and message pair (id,m), for which adversary A queries for H2(mpk, id,m),

algorithm B first checks whether the hash value H2(mpk, id,m) has been defined or not. If it has
not been defined yet, then B samples vector z′

id,m ← D
m+n⌈log q⌉
Z,s′ , and programs h[2,mpk,id,m] :=

[A | H1] · z′
id,m. Note that B only returns H2(mpk, id,m) back to A, and keeps z′

id,m secret to its
own.

At the end of UF-naCMA security game, adversary A outputs forgery signature (id∗,m∗, z∗). If the
forgery is valid, in other words A wins the security game successfully, then by definition of UF-naCMA
security id∗ /∈ Lid ∧ (id∗,m∗) /∈ Lm, and [A | AR̂id∗ ]z∗ = h2. Recall that when answering the query
for random oracle H2, challenger B additionally sampled a vector z′

id∗,m∗ from gaussian distribution
with parameter s′, therefore the following equation holds: [A | AR̂id∗ ]z′

id,m = h2. It implies that

[A | AR̂id∗ ]z∗ = h2 = [A | AR̂id∗ ]z′
id,m,

and then B can set the solution to SIS problem as

z := [Im | R̂id∗ ](z∗ − z′
id,m).

It remains to show that z is a valid solution for SISn,m,q,β problem, i.e. z ̸= 0 and ∥z∥ ≤ β.
We prove that z is non-zero firstly. Note that z′id,m is a random vector sampled from gaussian

distribution Dm+n⌈log q⌉
Z,s′ , thus (z∗ − z′

id,m) ̸= 0 with high probability. Then set z := (z∗ − z′
id,m), write

z = [z1 ∈ Zm
q | z2 ∈ Zn⌈log q⌉

q ]t, and z can be represented as

z = z1 + R̂id∗ · z2.

If z = 0, then it cannot be the case that z2 = 0, because it implies that z1 = 0 which makes z = 0.
Thus, assume that z2 has a non-zero component z2,j where j ∈ [n⌈log q⌉]. Denote each column of
R̂id∗ as r̂i, where i ∈ [n⌈log q⌉]. Assume that z = 0, it implies that

r̂j = − 1
z2,j

(z1 +
∑
i ̸=j

z2,ir̂i).

Note that R̂id∗ is drawn from distribution Dm×n⌈log q⌉
Z,s , which has a large min-entropy and it implies

that the above equation holds with negligible probability.
At last, we check the norm of z. As in Lemma 5, s1(R̂id∗) ≤ s · O(

√
m +

√
n⌈log q⌉) with over-

whelming probability. Then

∥z∥ ≤ ∥z1∥+ ∥R̂id∗∥ · ∥z2∥

≤ (1 + s ·O(
√
m+

√
n⌈log q⌉))s′ ·O(

√
m+ n⌈log q⌉)

= s′ ·O(
√
m+ n⌈log q⌉) + s · s′ ·O(

√
m+

√
n⌈log q⌉)O(

√
m+ n⌈log q⌉)

≤ s′ ·O(
√
m+ n⌈log q⌉) + s · s′ ·O(m+ n⌈log q⌉)

≤ s · s′ ·O(m+ n⌈log q⌉) ≤ β,

which means that z is a valid solution for SISn,m,q,β problem. Hence, we conclude that na-IBSSIS
scheme is UF-naCMA secure.
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6 Conclusion

In this paper, we provide an IB-ME satisfying stronger security. We first proposed the improved secu-
rity definitions considering practical application requirements. Then we present a generic construction
of IB-ME, which is proven secure under stronger security definitions, from 2-level HIBE and IBS. To
improve the efficiency of IB-ME instantiated on lattices, we further modify an existing SIS-based
IBS to obtain shorter signatures along with simpler signature algorithm. By combining the improved
IBS and any 2-level adaptively-secure lattice-based HIBE with anonymity, we finally obtain the first
IB-ME from lattices.
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