A remark on NIST SP 800-22 serial test

Corina-Elena Bogos! Razvan Mocanu! Emil Simion

February 14, 2022

Abstract

This paper represents a cumulative review of the serial statistical test over the
canonical values used in testing and freely generated values. Also in this paper,
we study by simulation, the variation of second type error, depending on certain
factors: the range of pl,the length of the bit string represented by n and the
m-bit pattern.

Keywords: pseudo-random generators, serial test, second type error.

1 Introduction

1.1 Serial Test

The focus of this test is the frequency of all possible overlapping m-bit patterns across
the entire sequence. The purpose of this test is to determine whether the number of
occurrences of the 2™ m-bit overlapping patterns is approximately the same as would
be expected for a random sequence. Random sequences have uniformity; that is, every
m-bit pattern has the same chance of appearing as every other m-bit pattern.

1.2 Pseudo-random Generators

Given an initial seed, a PRNG produces a sequence of bits indistinguishable from a
sequence produced by a real random source.

Indistinguishable means that there is no algorithm executable in polynomial time on
a probabilistic Turing machine that can decide if the given sequence is random or cal-
culated. That is, no randomised algorithm can say if a string produced by a PRNG
was calculated deterministically or extracted by a random source. Hence, here it is a
definition of PRNG: it’s an algorithm executable in polynomial time on a deterministic
Turing Machine that calculates a function G such that:

*Faculty of Computer Science, Alexandru Toan Cuza University of Iasi,
Email:corina.iftinca.v@gmail.com

tFaculty of Computer Science, Alexandru Ioan Cuza University of lasi, Email: mocanuraz-
van123@gmail.com

tPolitehnica University of Bucharest, Email: emil.simion@upb.ro

G:{0,1}* — {0, 1}'®

with 1 as a monotonically increasing function. That means the output is always longer
than the input (seed).

Truly random numbers are unpredictable in advance and must be produced by a random
physical process, such as radioactive decay. Series of such numbers are available on
magnetic tape or published in books, but they are extremely clumsy to use and are
generally insufficient in both number and accuracy for serious calculations.

2 Math Background

A null hypothesis is a type of hypothesis used in statistics that proposes that there is
no difference between certain characteristics of a population.

2.1 Null Hypothesis (First type error)

First type error (also known as the significance level), which is the probability of re-
jecting the null hypothesis when it is true: « = P(reject HO|HO is true). In the case of
the serial test the p-values are calculated according to this formula:

P-valuel = igmac(2™~2, %)

P-value2 = igmac(2™3, %)

Where igmac represents the regularized upper incomplete gamma function, defined as:

D(z,s) = [t*te tdt,

s is a complex parameter, such that the real part of s is positive.

2.2 Null Hypothesis (Second type error)

Second type error represents the probability of failing to reject the null hypothesis when
it is false: = P(accept HO|HO is false).

The (generalized) serial test represents a battery of procedures based on testing the uni-
formity of distributions of patterns of given lengths. Specifically, for iy, ..., 4, running
through the set of all 2™ possible 0,1 vectors of length m, let v, ; , denote the frequency
of the pattern (i, ...,4,) in the “circularized” string of bits (€1,...,€n,€1,...,€n_1).

w% = % Zil,...,z’m(vil,.-.,im - 2%)2 = % Z“zm Uz'Ql,...,im —-n
Thus, 12, is a x? -type statistic, but it is a common mistake to assume that 12 has the
x? -distribution. Indeed, the frequencies Vi, ..in, are not independent.
For the second type error, the serial test with the parameter m, verifies the uniformity
of distributions of patterns of given length m.
The input size recommended in [nis21] should verify m < [logs(n)] - 2.
Regarding the second error value, the results for the serial test from [GS17] are:

m__,m\2
Bp1) ~ XA((B)™3_o (27 — 1) + 2 UEZEEE om 1)

m (pg'py*)

2

3 Implementation

3.1 Serial test implementation

For running the experiments we used our own implementation[Bog22|, explained in
[SLL*10] that had as a starting point the steps described in NIST. Because we wanted
to benefit from the multiple libraries given by Python, we thought it was the perfect
choice.
In the next lines we will make a short description for the main functions used in our
script.

e sub_strings() extracts the substrings of a given length from a string;

e dict_sequence() makes a dictionary having as a key a string and as a value the
number of appearance;

e psi() for calculating the psi function;
e serial_test() the combination of the functions described above having as a result

the serial test itself.

3.2 Second type error implementation

Regarding the tests for the second type error we transposed the code, presented in
[GS17], from Matlab into Python. The second error 5 :

e (0.21062271194733564 for data.e

e 0.07112411541676428 for data.pi

e 0.01535927966491096 for data.shal

e (0.02175406943058905 for data.sqrt2

e 0.0005832720701033665 for data.sqrt3

We can conclude that the probability for false negatives is very small for the serial test
over the batch test

4 Experiments and Results

4.1 Batch test

For the batch test we have tested our algorithm over the following parameters and ex-
amples:

data.e is a random sequence data.sqrt3 is a random sequence
with pl1=0.8749140550999196 and with with p1=0.4037303479165052
p2=0.6109207198026381 and p2=0.22856489778962388

data.pi is a random sequence data.shal is a random sequence

with pl=0.6372227521869827 and with p1=0.521894405425432 and
p2=0.4213740310465458 p2=0.30962938652749694

data.sqrt2 is a random sequence data.bad_rng is not a random se-

with pl1=0.5421009046833856 and quence
p2=0.2790923129134414 with p1=0.0 and p2=0.0

4.2 Random functions testing

We have used the serial test for finding out about the qualities of several random
functions from python and compared them to a true random source from random.org.

e randint from the random library
e randbelow from the secrets library
e urandom from the os library

e samples from random.org

Here are the tables that shows the qualities of the random tests done over 10 batches
of 1000 generated numbers over 1, 1000000 range in python.

random_alg_gen mean standard deviation | range | mode median
random_classic 96.7000 | 0.2160 0.6000 | 96.5000 | 96.6500
randbelow 96.4399 | 0.6449 2.2000 | 95.8999 | 96.5000
os_urandom 95.5099 | 0.4976 1.4000 | 96.0000 | 95.3500
random _org_request | 98.4799 | 0.2573 0.8000 | 98.6000 | 98.5000
random _alg_gen mean standard deviation | range | mode median
random _classic 96.5800 | 0.4685 1.5000 | 96.8999 | 96.6000
randbelow 96.8000 | 0.3590 1.0999 | 96.7000 | 96.7000
os_urandom 95.2500 | 0.6704 2.0000 | 94.8999 | 95.1499
random_org_request | 98.5700 | 0.3591 1.3000 | 98.6000 | 98.5500

4.3 Second type error tests

In this section we study the variation of the second type error § with respect to pI and
the length n of the bit stream. The figures presented below, generated using the scripts
from [Bog22], compare the different values of § obtained in the following cases:

e n = 150, pl in the range [0.3,0.7], m = 2;

e n = 200, pl in the range [0.49,0.51], m taking the values 2,3,4;

n = 5300, pl in the range [0.48,0.52], m = §;

n in [5200,7700] and pl in [0.48,0.52].

Variation of B with respect to H1: p=p1 Variation of B with respect to H1: p=pl
0.996

1.000

0.994 1
0.995 4
0.992 +

0.990 4 0.990 -

E_ 0.988
0.985 - @

B(p1)

0.986

0.980 - 0.984 -

0.982 4
0.975 4

0.980 1

T T T T T T T T T T T T T T T T T T
0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.4900 0.4925 0.4950 0.4975 0.5000 0.5025 0.5050 0.5075 0.5100
pl pl

Figure 1: n=150. Figure 2: n=200.

Variation of B with respect to H1L: p=p1l Variation of B with respect to H1: p=pl

0.8

0.6

B(p1)

0.4

0.2 q

pi 051 5500

T T T T T T T T T
0.480 0.485 0490 0495 0500 0505 0510 0515 0.520

0.52

pl

Figure 3: n=5300. Figure 4: 5200< n < 7700.

5 Conclusion

In conclusion the serial test is reliable and robust statistical test that can help evaluate
pseudorandom generators, but it is advisable to use multiple NIST statistical tests to
have a higher amount of certainty about the randomness of an algorithm.

References

[Bog22] Corina Bogos. Nist serial tests. https://github.com/corinal906/nist_
serial_test, 2022.

[GS17] Carmina Georgescu and Emil Simion. New results concerning the power of
nist randomness tests. Proceedings of The Romanian Academy, Series A,
18:381-388, 2017.

nis21] NIST standards. :http://www.nist.gov/,http://www.csrc.nist.gov/.,
2021.

[SLL*10] Elaine Barker Smid, Stefan Leigh, Mark Levenson, Mark Vangel, AlanHeck-

ert DavidBanks, and SanVo JamesDray. A statistical test suite for random
and pseudorandom number generators for cryptographic applications. Her re-
search interest includes Computer security, secure operating systems, Access
control, Distributed systems, Intrusion detection systems, 2010.

https://github.com/corina1906/nist_serial_test
https://github.com/corina1906/nist_serial_test
: http://www.nist.gov/, http://www.csrc.nist.gov/.

	Introduction
	Serial Test
	Pseudo-random Generators

	Math Background
	Null Hypothesis (First type error)
	Null Hypothesis (Second type error)

	Implementation
	Serial test implementation
	Second type error implementation

	Experiments and Results
	Batch test
	Random functions testing
	Second type error tests

	Conclusion

