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Abstract—Cross-chain communication is instrumental in un-
leashing the full potential of blockchain technologies, as it al-
lows users and developers to exploit the unique design features
and the profit opportunities of different existing blockchains.
Solutions based on trusted third parties (TTPs) suffer from
security and scalability drawbacks; hence, increasing attention
has recently been given to decentralized solutions. Lock con-
tracts (e.g., HTLCs and adaptor signatures) and chain relays
emerged as the two most prominent attempts to achieve cross-
chain communication without TTPs. Lock contracts enable
efficient synchronization of single transactions over different
chains but are limited in expressiveness as they only support
the development of a restricted class of applications (e.g.,
atomic swaps). On the other hand, chain relays enable the
development of arbitrary cross-chain applications but are
extremely expensive to operate in practice because they need
to synchronize every on-chain transaction, besides assuming a
quasi Turing-complete scripting language, which makes them
incompatible with Bitcoin-based and scriptless blockchains.

We introduce Glimpse, a novel on-demand cross-chain
synchronization primitive, which is both efficient in terms of
on-chain costs and computational overhead, and expressive in
terms of applications it supports. The key idea of Glimpse is to
synchronize transactions on-demand, i.e., only those relevant
to realize the cross-chain application of interest. We present a
concrete instantiation which is compatible with blockchains fea-
turing a limited scripting language (e.g., Bitcoin-based chains
like Liquid), and, yet, can be used as a building block for the
design of DeFi applications such as lending, pegs, wrapping/un-
wrapping of tokens, Proof-of-Burn, and verification of multiple
oracle attestations. We formally define and prove Glimpse
security in the Universal Composability (UC) framework and
conduct an economical security analysis to identify the secure
parameter space in the rational setting. Finally, we evaluate the
cost of Glimpse for Bitcoin-like chains, showing that verifying a
simple transaction has at most 700 bytes of on-chain overhead,
resulting in a one-time fee of 3$, only twice as much as a basic
Bitcoin transaction.

1. Introduction
The plethora of different blockchains that have emerged

and gained traction over the past years has yielded a

fragmented and diverse landscape. Each blockchain comes
with its design and characteristics, attracting users for their
privacy properties (e.g., Monero and ZCash), their high
throughput (e.g., Algorand) or low fees (e.g., Solana), their
unique DeFi ecosystem (e.g., Ethereum) or their robust
design (e.g., Bitcoin). Blockchain platforms already hold an
impressive amount of investments, users, and developers,
with the latter being often reluctant to migrate their assets
and contracts to other chains. In this context, the lack of
interoperability prevents users from trustlessly leveraging
the characteristics and the profit opportunities of different
chains, as well as the features of newborn chains. Overall,
this fragmentation significantly weakens blockchains’ po-
tential and value and erodes the user experience.

Many solutions have been presented to promote cross-
chain communication and blockchain interoperability: some
rely on a trusted third party (TTP), while others do not
impose any trust assumption, such as lock contracts and
chain relays. We focus on the latter since trusting a central
entity is risky in the context of cryptocurrencies, besides not
aligning with their rationale and philosophy. Lock contracts
such as Hashed TimeLock Contracts (HTLCs) and adap-
tor signatures [1] enable the synchronization of individual
transactions, possibly on different chains, in a way that
these are triggered atomically. The success of lock contracts
is due to their relatively simple and elegant design, low
on-chain costs, and minimal set of scripting requirements.
Despite their broad adoption, their restricted functionality
limits their usage in cross-chain applications to the context
of atomic swaps swaps [2], [3], [4], [5], as we further
discuss in Section 2.3. Conversely, chain relays [6], [7],
[8] are an expressive but expensive solution, as they verify
and store every block header of a source ledger LS on
a destination ledger LD, thereby acting as light clients.
This hinders their practical deployment due to extremely
high maintenance costs. Additionally, chain relays require a
quasi-Turing complete scripting language on the destination
chain, therefore excluding chains adopting minimal scripting
capabilities, like the Bitcoin-based Liquid, and more. In
short, existing solutions either suffer from technical, eco-
nomic, or compatibility limitations.

In this work, we present Glimpse, a novel cross-chain
synchronization primitive that allows participants on a desti-
nation ledger LD to obtain on demand the desired informa-



tion about the state of a PoW source ledger LS . Intuitively,
Glimpse allows a prover and a verifier to enforce that if a
specific set of transactions TxS is confirmed on LS within
a given time, then another set of transactions TxD can be
published on LD. Technically, Glimpse is a contract lying
on LD, which receives from the prover a proof that TxS was
included on LS with the desired number of confirmations,
and enables TxD to appear on LD. Glimpse reconciles the
low on-chain costs and simple design of lock contracts with
the expressiveness of chain relays.

To achieve these properties, we address several chal-
lenges. First, to drastically reduce the on-chain costs, we
synchronize transactions on-demand. More precisely, we
forgo the need to verify and store the full list of block
headers of LS on LD as done in relays, verifying instead
only that enough work (weighted over a time window)
has been done to produce the proof. The protocol design
is further enriched by a number of ingredients to make
Glimpse secure against a variety of attacks, including proof
forgeries, block reorganizations, and upfront mining.

Second, to enhance expressiveness, we fix only partially
the expected format of the transaction on LS in the contract,
leaving parts undefined, which is crucial to support cross-
chain applications with a dynamic component (e.g., lending,
where it is not known a-priori how the lent money will
be used). We generalize our synchronization patterns to
those that can be expressed as Disjunctive Normal Forms
(DNFs) formulas over transactions, which we leverage to
encode a variety of DeFi applications, such as lending,
pegs, wrapping/unwrapping of tokens, Proof-of-Burn, and
verification of multiple oracle attestations.

Third, the security of Glimpse is based on the fact that
it is less profitable to attack Glimpse than to participate
in the regular mining process, i.e., by producing a valid
block and earning the associated reward. This means that
the value locked on LD in Glimpse should not exceed a
certain threshold to disincentivize malicious parties to co-
operate with miners and launch proof forgery or censorship
attacks. We formally analyze the security boundaries for the
economic value held by Glimpse. Our contributions are:
• We introduce Glimpse, a novel cross-chain synchroniza-

tion primitive combining efficiency, expressiveness, and
compatibility with blockchains offering limited scripting
capabilities, e.g., for those based on Bitcoin (Section 3.3);

• We provide an instantiation that is suitable to encode
a variety of DeFi applications, including lending, pegs,
wrapping/unwrapping of tokens, Proof-of-Burn, and ver-
ification of multiple oracle attestations (Section 4);

• We formally analyze Glimpse in the UC framework and
characterize the security parameters of Glimpse, including
the limits of the economic value Glimpse contracts can
hold (Section 5).

• We evaluate the on-chain costs of Glimpse (in Ethereum-
like and Bitcoin-like chains), and showing the overall cost
is at most 3$, around twice as much as ordinary transac-
tions. We also show how to optimize it with Taproot [9],
[10] (Section 6).

2. Background
2.1. The UTXO Transaction Model

Each user U is identified by a pair of digital keys
(pkU , skU ) that are used to prove ownership over coins. A
transaction Tx = (cntrin,

−−−→
input, cntrout,

−−−−→
output,

−−−−−−→
witnesses)

is an atomic update of the blockchain state and is as-
sociated to a unique identifier txid ∈ {0, 1}256 defined
as the hash H([Tx]) of the transaction. We let [Tx] :=

(cntrin,
−−−→
input, cntrout,

−−−−→
output) be the body of the transac-

tion. Intuitively, a transaction maps a non-empty list of in-
puts to a non-empty list of newly created outputs, describing
a redistribution of funds from the users identified in the
inputs to those identified in the outputs.

cntrin ∈ R≥0 and cntrout ∈ R≥0 represent the number
of elements in the

−−−→
input and −−−−→output lists. Any input ζ

within
−−−→
input is an unspent output from an older transaction,

defined by the tuple ζ := (txid, outid), with txid ∈ {0, 1}256

representing the hash of the old transaction containing the
to-be-spent output, and outid ∈ R≥0 the index of such
an output within the output list of the old transaction.
These two fields uniquely identify the to-be-spent output.−−−−−−→
witnesses ∈ {0, 1}∗, also known as scriptSig or unlocking
script, is a list of witnesses ω, i.e., the data that only the
entity entitled to spend the output can provide, thereby au-
thenticating and validating the transaction. Any output θ in
the list −−−−→output is a pair θ := (coins, ϕ) and can be consumed
by at most one transaction (i.e., no double-spend). The
amount of coins in an output θ is denoted by coins ∈ R≥0,
whereas the spendability of θ is restricted by the conditions
in ϕ, also known as the scriptPubKey or locking script. Such
conditions are modeled in the native scripting language of
the blockchain and can vary from single-user OneSig(pkU )
and multi-user MuSig(pkU1, pkU2) ownership, to time locks,
hash locks, and more complex scripts.

2.2. Proof-of-Work Consensus
In a PoW blockchain, the probability that a node

is selected is proportional to its computational power.
This is meant to hinder Sybil attacks since computational
power is assumed hard to monopolize. Specifically,
incentivized to win the reward in native assets, the nodes
compete with each other to create, validate, and append
new blocks to the ledger by solving a cryptographic
puzzle that is hard to compute and easy to verify. The
content of a block is summarized within a unique and
cryptographically secured string that grants immutability
to the blockchain: the block header header(B) :=
(ParentHash,MR,Timestamp, nBits,Nonce), where
ParentHash is the hash of the previous block, MR is the
root of the Merkle tree whose leaves are the transactions in
B, Timestamp is the creation time of the block, nBits is a
parameter for the target space, and Nonce a value that can
be arbitrarily iterated to reach the PoW.

In particular, the nodes, called miners, repeatedly change
the Nonce field of the block header until the hash of the
header lies within a target space that is smaller (by several
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orders of magnitude) than the output space of the hash
function. This is a necessary condition for the block to be
valid. The size of the target space is parameterized by the
total computational power of the network and is periodically
adjusted to keep the expected block time, i.e., the time it
takes to find a valid block, almost constant. We refer to
the target as T , and we say that a block B is valid when
H(header(B)) < T . A miner is selected to propose the next
block with probability proportional to the fraction of the
network’s total hashing power he controls. PoW blockchains
periodically adjust the network difficulty to maintain the
average block time almost constant over time, preventing
uncontrolled inflation and network congestion.

2.3. Lock Contract and Chain Relay Limitations
Existing cross-chain communication solutions not re-

lying on a TTP fall into two main categories: lock con-
tracts and chain relays. Lock contracts are an umbrella
term for non-custodial locking mechanisms (e.g., Hashed-
Timelocked-Contracts, adaptor signatures) that achieve se-
curity and atomicity from the hardness of some crypto-
graphic assumptions. Hash locks and adaptor signatures
are, for instance, lock contract schemes broadly used to
encode blockchain applications such as atomic swaps, pay-
ment channels [11], [12], multi-hop payments [13], [14],
virtual channels [15], [16], [17], [18], and discreet log
contracts [19]. Lock contracts use a statement S that ties
the authorization of a transaction Tx2 to the leakage of a
secret witness s of some hard relation (usually leaked within
a transaction Tx1 posted on-chain). Lock contracts can
encode a class of asymmetric problems: The party posting
transaction Tx1 cannot be the same posting transaction Tx2.
Intuitively, the party who posts transaction Tx2 has to gain
knowledge of s only after transaction Tx1 has been posted.
Lock contracts are cheap and lightweight, and since they
require minimal scripting capabilities, they can be leveraged
on all existing chains. On the other hand, they enable a very
limited number of (asymmetric) applications.

Chain relays theoretically represent the ideal solution
for interoperability, allowing any party to verify on LD the
inclusion of any transaction in LS . However, they are costly
to operate and do not represent an easily viable solution for
interoperability: To the best of our knowledge, there is a
single relay currently operating, where relayers are heavily
subsidized via ad-hoc incentive mechanisms [20]. A relay is
essentially a light client operating within a smart contract.
The block headers are constantly relayed from LS to LD by
off-chain untrusted clients called relayers. Since malicious
relayers might submit invalid block headers, the contract
ensures correct functioning by (i) internally validating the
headers by partially replicating the consensus mechanism of
LS , and (ii) resolving temporary forks.

3. Glimpse
We introduce Glimpse, a new primitive for cross-chain

communication that allows participants to obtain on demand
the desired information about the state of a PoW source

ledger LS on a destination ledger LD without executing a
light client.
Intuition. Intuitively, Glimpse resembles challenge-
response protocols: On LD, a prover P and verifier V argue
about the inclusion on LS of a specific set of transactions
TxS (challenge). Depending on the outcome, they want to
publish on LD different transactions. To solve the argument,
P and V first agree on the Glimpse specifics and some
consensus parameters of LS , then deploy a Glimpse contract
on LD. On ledger LS , an issuer I publishes the transaction
set TxS , and an off-chain untrusted relayer R provides P
with the necessary data to construct a proof P to prove
the occurrence of TxS on LS . If P submits a valid proof
(response) to the Glimpse contract on LD, he can post a
pre-defined TxP on LD. Else, V can post a pre-defined TxV
after time T has elapsed.

3.1. Assumptions and Models

Cryptographic Assumptions. Hash functions are modeled
as random oracles [21]. Digital signature schemes are as-
sumed to be EUF-CMA secure. They comprise three algo-
rithms: (Gen,Sign,Vrfy). Gen is a probabilistic polynomial-
time (PPT) algorithm on input a security parameter 1λ

returns key pair (pk, sk). Sign is a PPT algorithm, on input
sk and a message m, outputs a digital signature σ. Vrfy
is a deterministic polynomial-time (DPT) algorithm that on
input pk, m and σ returns 1 when the signature over m w.r.t
pk is valid and 0 otherwise.
System Model. We assume two blockchains (ledgers) LS

and LD where consistency and liveness hold [22] and where
LS uses a PoW consensus as specified in Section 2.2.
Glimpse relies on four parties: an issuer I that publishes
transactions TxS on LS , a prover P that proves the occur-
rence of TxS on LD, a relayer R (e.g., blockchain explorers,
full nodes) that provides parties with the necessary informa-
tion to construct the proof P , and a verifier V that guarantees
contractual fairness. These parties can but do not have to
be the same, e.g., P and I can be the same party.

We require P and V to have an address (a key pair
(pk,sk)) on LD, whereas I to have an address on LS . The
Glimpse contract is deployed on LD and holds coins locked
in by P and V (and potentially also other users of LD).
We also require LD to support the same hash function
used by LS , and both LS and LD to allocate the same
domain for the hash function, to avoid oversize preimage
attacks [23], [24]. Furthermore, LD needs to support the
following functionalities in its programming language: (i)
Merkle proof verifications (ii) hash comparisons, and (iii)
block header and transaction body reconstructions.1

Network Model. We assume there exist authenticated com-
munication channels between parties, where all messages are
delivered within a fixed time delay.
Adversarial Model. P and V are mutually distrustful
parties, with at least one of them being honest. I can

1. We note that (i) and (iii) can be supported by Bitcoin-based chains
by simply enabling a concatenation opcode.
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be honest or dishonest, meaning she can either publish or
not publish TxS on LS within the established time frame.
Similarly, R is untrusted, as she can either provide correct
or incorrect information (or no information) to P and V
about the state of LS . We assume a majority γ of honest
miners, where γ depends on the underlying consensus.

Cross-chain Communication (CCC) Model. Closely fol-
lowing [23], CCC protocols are usually articulated in three
main phases: Setup, Commit on LS , and Verify & Com-
mit on LD. The Setup phase parameterizes the involved
blockchains, identifies the protocol participants, and speci-
fies the transactions TxS and TxD to be synchronized. After
a successful setup, in the Commit on LS phase, a publicly
verifiable commitment to execute the CCC protocol, i.e.,
TxS , is posted on LS . In the Verify & Commit on LD phase,
LD verifies the commitment on LS and, upon successful
verification, a publicly verifiable commitment, i.e., TxD, is
posted on LD. An optional abort phase reverts transaction
TxS on LS in case the verification of the commitment failed
or the commitment on LD is not executed.

A CCC protocol has to give some atomicity guarantees,
which, for Glimpse, we articulate in a weak and strong
variant. Simplified, weak atomicity ensures that TxD can
only appear on LD if TxS was already confirmed on LS .
On the other hand, strong atomicity additionally ensures that
TxD will appear on LD after TxS has been confirmed on
LS . Let ∆S ,∆D ∈ N be the wait time parameters, i.e., the
upper bound of time it takes for valid transactions to be
included on the ledger, for LS and LD, respectively. We
consider n the number of confirmation blocks that need to
be mined on top of a block containing a transaction Tx for
Tx to be stable on a PoW ledger.

Definition 1 (Weak atomicity). Let TxS and TxD be (sets of)
transactions for LS and LD, respectively. If honest players
of LS reports TxS with at least n confirmations at time t,
then a valid TxD is provided to honest players of LD and
reported stable at time t+∆D+∆S : TxD ∈ LD =⇒ TxS
∈ LS .

Definition 2 (Strong atomicity). Let TxS and TxD be (sets
of) transactions for LS and LD, respectively. TxD is re-
ported stable by honest players on LD at time t+∆D+∆S

if and only if honest players of LS reports TxS with at least
n confirmations at time t: TxD ∈ LD ⇐⇒ TxS ∈ LS . If
either TxS or TxD is invalid and provided to honest players,
then neither TxS nor TxD is reported stable on LS and LD,
respectively.

3.2. Protocol Overview
In the Setup phase, P and V cooperate in the creation

of the Glimpse contract TxG, which hard-codes the target
TS of LS (PoW consensus parameter), as well as the fol-
lowing Glimpse specifics: the hashes of the to-be-verified
transactions in TxS , the contract lifetime T , the number
of confirmation blocks in the proofs, and the spending
conditions for the funds in the contract.

P and V prepare transactions TxP and TxV, both spend-

ing the same funds in the contract TxG but in different ways;
these two transactions are meant to be published by P and
V respectively and are commitments to how the coins are
distributed in case P provides a valid proof as a witness for
TxP, or V reacts to the lack of such proof by publishing
TxV after T . P signs TxV and sends the signature to V ,
whereas V signs TxP and gives the signature to P . They
also exchange all necessary signatures over TxG and publish
TxG on LD. Finally, they pass the randomized TxS to I . In
the Commit on LS phase, I publishes TxS on LS .

In the Verify & Commit on LD phase, P queries R about
the inclusion of TxS on LS and asks for the necessary data
to construct a proof P . This proof can convince TxG that
TxS appeared on LS and we detail how it looks like in
Section 3.3. Having constructed the proof, P publishes TxP
on LD with P , V ’s signature, and his own signature as
witnesses. After time T , if the funds are still unspent, V
publishes TxV on LD with P ’s signature as well as his own
as witnesses. The Glimpse instance is now closed and the
funds are distributed as agreed in the Setup phase.

We will see that this approach can be generalized so
that TxS represents a set of transactions, logically expressed
as a disjunctive normal form over transactions, that are
considered valid by the Glimpse contract. Figure 1 depicts
the Glimpse protocol flow.

3.3. Glimpse Design Principles
We describe the protocol design, starting with a straw

man proposal and gradually refining it to tackle security
challenges.

Simplify Relay Contract. Let us consider, for now, the
simple case where the set TxS is composed of a single
transaction Tx. We recall that a chain relay is a smart
contract deployed on a destination chain LD that verifies
and stores the full list of block headers of a source chain
LS : however, this is expensive, and its use is exclusively
limited to quasi Turing-complete blockchains.

With this in mind, we try to simplify relays to
lightweight Glimpse contract such that, unlike relays, it is no
longer able to verify any given transaction. Instead, Glimpse
can verify whether or not one, application-specific transac-
tion Tx was posted on LS . This design would allow us
to feed the contract with minimal, Tx-specific information,
removing the expensive need to continuously verify and
store the full list of block headers. However, without a full
list of block headers, the contract cannot ad-hoc compute
the value of the PoW target TS of LS anymore.

Instead, the Glimpse contract now needs to be actively
made aware of the current TS . To ensure TS is honestly set,
P and V have to initially agree on the value of TS and
commit to it within the contract, along with the Glimpse
specifics. Concretely, in agreement with V , P publishes on
LD a contract that hard-codes the PoW target TS (consensus
parameter), the to-be-verified-transaction hash H([Tx]), the
contract lifetime T , and the conditions under which the con-
tract’s funds can be spent (Glimpse specifics). Concretely,
these spending conditions allow P to distribute the funds as
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agreed with V in TxP, upon submission of a valid proof P
for Tx as part of the witness. Otherwise, after the timeout
T , V gets the funds via TxV.

The proof P consists of the Merkle inclusion proof
for Tx as well as the block header (without the to-be-
computed Merkle root) for the block in LS containing Tx.
The contract verifies P by (i) computing the Merkle root
using the Merkle inclusion proof and the hard-codedH(Tx),
(ii) reconstructing the full block header and hashing it, and
(iii) finally checking if the hash is within the hard-coded TS .
In practice, P guarantees that enough work has been done
to find a valid block including Tx. We address difficulty
adjustments taking place during the Glimpse lifetime by
considering a larger target TS .

The simplicity of this construction forgoes the need for
stateful smart contracts, and it can be deployed, e.g., in
Bitcoin-based chains within a transaction TxG that simply
encodes this smart contract in the locking script, which is
spendable with a witness containing the proof P .

As is, Glimpse has three weaknesses: (i) P is not sound
as a malicious P could forge a fake one-block proof given
a large enough T ; it is not robust in case of (ii) block
reorganization where a malicious P could submit a valid
proof for a transaction Tx that, however, does not end up
in the longest chain but to an orphaned branch; and (iii)
upfront mining attacks where a malicious P could forge P
upfront by knowing Tx before setting up Glimpse.

Parameterized P and Randomized Tx. To secure Glimpse
against proof forgeries and block reorganizations, we param-
eterize the proof P with a confirmation parameter n (hard-
coded in the TxG locking script), such that Pn includes n
confirmation block headers with hashes within the target TS
after the block containing Tx. To cheat, P now has to make
a significant computational effort to find n+1 blocks in time
T whose hashes are within TS . The parties can set n such
that P has only a negligible probability of forging Pn in time
T (see Section 5.1). Instead, P can only construct a valid
Pn by receiving valid information from R about the state
of LS , thus leveraging the work of miners. For increasing
n, the risk of block reorganization reduces exponentially.

We prevent P from launching an upfront mining attack
by asking V to randomize the transaction Tx: for instance,
V can sample a uniformly random string r ← {0, 1}λ (λ
is the security parameter), and plug it into the Tx body,
producing TxR. This can be done by adding to an output of
value 0 with spending condition OP_RETURN2 followed by
the random value r. Now the Glimpse transaction TxG must
hard code H([TxR]) instead of H([Tx]). Since P cannot
anticipate r, he cannot start forging Pn upfront, so his
computational efforts are restricted to the timeout T .

3.4. Enhancing Expressiveness
As of now, Glimpse cannot yet encode sophisticated

applications where, for instance, inputs and outputs of TxR

2. OP_RETURN is a Bitcoin script opcode that marks a transaction output
as invalid and can be used to embed up to 80-bytes in a transaction.
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∨
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Figure 1: On a high level, Glimpse operates as follows: (1)
Upon P and V agreeing on the Glimpse specifics and PoW
consensus parameters, they construct TxG, TxP, and TxV.
P publishes TxG on LD. (2) I publishes TxR on LS . (3)
P gets the information to prove TxR has been included on
LS via R. (4) P constructs Pn and publishes TxP with Pn

as part of the witness. Else, if after T the funds in TxG are
unspent, V can publish TxV.

are not entirely known a priori, as for the case of cross-
chain lending, nor where one needs to efficiently verify
not a single transaction Tx, but a set of transactions, as
for multiple oracle attestations. To cater to such use cases,
we augment Glimpse as in Figure 2 to verify transactions
which are not fully known during the initial Setup phase
and to capture arbitrary synchronization patterns expressed
as Disjunctive Normal Forms over transactions in LS .

Recall our definition transaction bodies [Tx] :=

(cntrin,
−−−→
input, cntrout,

−−−−→
output), where inputs and outputs

are tuples (txid, outid) and (coins, ϕ), respectively, from
Section 2.1. To verify transactions that are not fully known
in the Setup phase, we introduce the Glimpse description
Desc of a transaction (see Figure 2). In such a description,
we allow parameterized inputs and outputs. More concretely,
txid, outid, and coins can either be static data or variables
xi. Similarly, to avoid fixing a priori a specific script, we say
that ϕ in a parameterized input or output can be a function f
which encodes a family of scripts. f takes a fixed number of
arguments for a well-defined spending condition and returns
the desired locking script for the to-be-verified transaction.
In other words, this is a parameterized locking script that can
be filled with concrete values, e.g., public key, script hash,
etc. The script which f encodes must be defined in the Setup
phase: For instance, if the parties agree on f(z) encoding
any P2PKH (Pay-To-Public-Key-Hash), then it would accept
any public key hash as parameter z and return the script.

Following Figure 2,
−−−→
input and −−−−→output of descriptions

are lists of such parameterized inputs and outputs, and
cntrin and cntrout the number of overall inputs and outputs.
The latter must be known from the beginning to avoid
miners interpreting transactions in an unintended way (see
Appendix D). In the Setup phase the parties agree on and
commit to Desc, TS , T , and n. By replacing H(TxR) with
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txid := {0, 1}256 | x1

outid := {0, 1}32 | x2

coins := {0, 1}64 | x3

ϕ := f(z1, . . . , zn)−−−→
input := [(txid, outid)] | −−−→input ∪ [(txid, outid)]
−−−−→
output := [(coins, ϕ)] | −−−−→output ∪ [(coins, ϕ)]

cntrin, cntrout := {0, 1}m

Desc := (cntrin,
−−−→
input, cntrout,

−−−−→
output)

Li := Desci | ¬Desci
FS := (L1 ∧ ... ∧ Lk) ∨ ... ∨ (L1 ∧ ... ∧ Lk)

∀(x1,..., x3, z1..., zn).(FS ⇐⇒ TxD)

Figure 2: Synchronization Patterns expressed in DNFs

Desc, we can now verify any TxR in the set of transactions
that share the same description, i.e., any TxR whose body
has the same static data in Desc and an arbitrary realization
for the variable ones. For example any value can be in the
place of xi and any parameter can be given to f , e.g., any
public key hash in the example above. We denote this as
[TxR] ←↩ Desc or a concrete transaction [TxR] fulfilling a
description Desc. We note that the random string sampled
by V must always be included in Desc. The variable real-
izations are included in the proof Pn. Given Pn and Desc,
the full transaction body can be reconstructed and hashed
in the logic of TxG.

We can efficiently verify any DNF formula FS over k
transactions or descriptions (see Figure 2), also known as
literals Li, as follows: the P and V replace TxP with as
many sets of transactions (TxT, TxF, TxP) as the number
of (conjunctive) terms in the formula (see Appendix C).
When I publishes on LS a valid combination of transactions
for the DNF formula, P queries R, constructs the set of
proofs for the transactions published, and posts on LD the
corresponding set TxD:= (TxT, TxF, TxP) of transactions. If
P cheats by publishing an invalid set, i.e., P falsely claims
a transaction was not published on LS , V can query R,
misprove P , and publish TxV.

3.5. Compatibility
In Table 1, we provide a non-exhaustive list of popular

Bitcoin-based chains that can be used as LS or LD for
Glimpse. Most PoW chains can be used as the source
chain LS for Glimpse, e.g., Bitcoin, Litecoin, Bitcoin Cash,
Bitcoin SV, Rootstock, and Ethereum PoW. However, we
need to make some distinctions for which chains can be
supported by Glimpse as destination chains.

While Glimpse’s compatibility with quasi-Turing com-
plete chains as LD is obvious, its compatibility with Bitcoin-
like chains is not. Glimpse requires the destination chain to
have an opcode for the same hash function used for PoW
of the source chain: this is a strict requirement that already
rules out some combinations in Table 1. E.g., Bitcoin-based
chains do not have an opcode for computing Keccack or
Scrypt hashes, used in Ethereum PoW and Litecoin, respec-
tively. For this reason, Ethereum PoW and Litecoin can only
be source chains for Glimpse contracts deployed on quasi-

Source chain LS Destination chain LD

Bitcoin Bitcoin†
Bitcoin Cash Liquid

Bitcoin Satoshi Vision Bitcoin Cash∗
Bitcoin Rootstock Bitcoin SV∗

Litecoin†† Litecoin†

Ethereum PoW†† Any quasi-Turing complete chain
Ethereum Classic††

TABLE 1: A non-exhaustive list of the most popular
Bitcoin-based source (LS) and destination (LD) chains com-
patible with Glimpse. †: lack of string opcodes. ††: currently
not supported by Bitcoin-based destination chains. ∗: lack
of Taproot.

Turing complete chains. Next, we discuss how the particular
design of Glimpse makes it compatible with prominent
Bitcoin-based blockchains, such as Liquid, and how it could
similarly be supported by Bitcoin, Bitcoin Cash, or Bitcoin
Satoshi Vision (SV), e.g., by (re-)enabling string opcodes
or Taproot. For detailed discussion and examples, we refer
to Appendix D.
Liquid (Fully Compatible). Liquid is a Bitcoin sidechain
operating since 2018. It inherits its design from Bitcoin but
provides more expressiveness in its scripting language. In
particular, the following opcodes crucial to Glimpse are dis-
abled in Bitcoin but enabled on Liquid: (i) string concatena-
tion (OP_CAT) for the Merkle Proof verification and block
header/transaction reconstruction, and (ii) OP_SUBSTR for
splitting numbers larger than 4 bytes for comparison (which
only allows comparison of 4-byte numbers), i.e., the block
header hash and PoW target. Moreover, Liquid adopts Tap-
root [9], which can significantly reduce the Glimpse script
size and complexity with the use of the Merkelized Ab-
stract Syntax Tree (MAST), as discussed in Section 6 and
exemplified in Appendix D.
Bitcoin Cash (Missing Taproot). Bitcoin Cash is a
blockchain resulting from a Bitcoin hard fork that took place
in 2017 after Bitcoin moved to SegWit. It presents a larger
block size and a wider variety of supported opcodes. Simi-
larly to Liquid, Bitcoin Cash has OP_CAT and OP_SPLIT
(which is the same as OP_SUBSTR). However, Taproot is
not enabled, thus we cannot encode the Glimpse script in a
single output. While it is possible to unroll the script leaves
of the MAST, the script is too large (around 300kB, see
Section 6), even though it would be within the transaction
size limits. In Bitcoin SV we have the same limitations as
in Bitcoin Cash. To support Bitcoin Cash or Bitcoin SV as
a destination chain, it would need either Taproot or larger
script sizes.
Bitcoin and Litecoin (Missing String Opcodes). Bitcoin
and Litecoin have both adopted Taproot, but disabled the
aforementioned opcodes in 2010. With Taproot at their
disposal, they could efficiently support Glimpse if they had
opcodes for Merkle root reconstruction and hash comparison
available, e.g., if OP_CAT and OP_SUBSTR are available
or if instead of the latter OP_LESSTHAN could compare
32-byte values. Interestingly, the Bitcoin community has
been recently discussing the string concatenation opcode
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Figure 3: Illustration of Glimpse-based lending for Bitcoin-
based blockchains. We have T1 < T2 < T3.

and considering enabling it back in the context of Speedy
Covenants [25]. We hope this work provides additional
motivation for such opcodes to be (re-)enabled in the future.

4. Glimpse for Cross-Chain DeFi
In the last years, Decentralized Finance (DeFi) has

gained exceptional traction. In particular, lending and bor-
rowing markets thrive on blockchains supporting quasi
Turing-complete smart contracts, as they allow lenders with
an excess of funds to supply assets to lending smart con-
tracts, whereas borrowers provide smart contracts with col-
lateral acting as a security deposit for the loan. While
trustless cross-chain lending marketplaces are widely used
on, e.g., Ethereum, we are still far from having such applica-
tions in the Bitcoin-based blockchain ecosystem. To fill this
gap, we show how to use Glimpse for designing a lending
protocol for Bitcoin-based chains.

4.1. Cross-chain Lending Protocol

Intuition. We consider a borrower P and a lender V . P
has α coins on LD and wants to take a loan of α′ coins on
LS . We assume the loan is over-collateralized to compensate
for price drops of asset α. Having a surplus of α′ coins in
LS , V lends the α′ coins to P . Intuitively, P locks α coins
in a Glimpse transaction TxG, and V sets up a transaction
TxLoan giving a loan of α′ coins to P . Via an atomic swap
conditioned to secret s, P publishes TxLoan on LS revealing
s to V , and V publishes TxG on LD using the same secret s.
TxG guarantees that if P gives back to V the α′ coins on LS

within time T , P gets back his α coins on LD. Otherwise,
V retains the α coin collateral after time T . Figure 3 depicts
such a lending construction, which we detail below and later
extended to support a liquidation mechanism.

Setup. P sends Desc := (1, [(x1)], 1, [(α,OneSig(pkV ))])
to V . V samples r ← {0, 1}λ uniformly at random
and generates Desc := (1, [(x1)], 2, [(α,OneSig(pkV )),
(0,OP_RETURN(r))]). V sends Desc to P .

We let θP be an unspent output of P holding α
coins, and ζP be an input pointing to θP . Then, P con-

structs [TxG] := (1, [(ζP )], 1, [(α, scriptG(Desc, T, TS , n,
(P, V )))]). The locking script generated by scriptG can
be spent as follows: (i) P can get back the α coins by
submitting a valid Pn (witness); else, V can get the α
coins after time T . T is strictly bigger than one block time
of LS and LD. (ii) Pn proves inclusion for a transaction
Tx compliant with Desc, i.e., whose [Tx] ←↩ Desc, and
(iii) Pn is verified against the PoW consensus parameter
TS . Figure 5 shows the pseudocode for scriptG (sG), and
Appendix D describes a concrete example.

After setting up [TxG], P constructs transaction
[TxP] = (1, [ζG], 1, [(α,OneSig(pkP ))]) and [TxV] := (1,
[ζG], 1, [(α,OneSig(pkV ))]). In other words, TxP (TxV)
spends the output of TxG and creates a new un-
spent output that only P (V ) can spend. Then, P
signs [TxV] producing σP ([TxV]) and sends to V
the following message with the Glimpse specifics:
(ζP ,Desc, T, TS , n, α, sG, [TxG], [TxP], [TxV], σP ([TxV])).

Upon receiving the message from P , if V is interested
in opening a Glimpse instance with P , V verifies whether
scriptG returns the intended locking script for TxG and
σP ([TxV]) is a valid signature of P over [TxV]. Upon suc-
cessful verification, V computes the signatures σV ([TxP])
and σV ([TxG]), and sends them to P .

Upon receiving (σV ([TxP]), σV ([TxG])) from V , P
checks whether V ’s signatures are valid signatures, and if
this is the case, P signs [TxG] and publishes TxG on LD

with witness σP ([TxG]).

Commit on LS . At this point the lending is set up and P
can use the loan in any way he wants. Once P is done and
wants to pay it back, P posts Tx on LS such that [Tx] ←↩
Desc: concretely, [Tx] is equal to Desc apart form x1 being
replaced by an arbitrary input of P .

Verify & Commit on LD. P monitors LS check-
ing for Tx being included. If Tx is included within T
and has n confirmations, P constructs Pn by taking
the concrete value of x1 within Tx ([Tx]), computing
the Merkle proof (MP) for Tx, retrieving from LS the
block header without Merkle root for the block B in-
cluding Tx, and fetching n confirmation block headers
(without ParentHash) after B. Concretely, P constructs
Pn := ([Tx] \ Desc,MP, headerWOMR(B), confHeadersn).
We provide pseudocode for constructing Pn in Figure 6.
Upon computing Pn, P signs [TxP] and publishes TxP on
LD with witness ω := (Pn, σP ([TxP]), σV ([TxP])), thus
having back his α coins staked in Glimpse.

After T , if the output of TxG is still unspent, V
signs [TxV] and publishes TxV with witness ω :=
(σP ([TxV]), σV ([TxV])), redeeming the α coins in Glimpse.
We note that if V does not publish TxV right after time T ,
P can maliciously claim the funds by publishing TxP with
a belated proof: this case is, however, ruled out by assuming
rational parties. We also note that the time lock T prevents
TxV from being valid before T .

The Setup, Commit on LS , and Verify & Commit on
LD phases are the core of Glimpse construction, recurring
(with minor application-specific variations) regardless of the
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Setup(Desc, T, TS , n)
1) P sends a transaction description Desc′ =

(cntrin,
−−−→
input, cntrout,

−−−−→
output) to V .

2) Upon receving Desc′, V samples a random string r
$←

{0, 1}λ, creates Desc = (cntrin,
−−−→
input, cntrout+1,

−−−−→
output∪

(0,OP_RETURN(r))), and sends Desc to P .
3) Let α := θP .coins; let ζP point to an unspent output of P .
4) Let [TxG] := (1, [ζP ], 1, [θG := (α, scriptG(Desc, T, TS , n,

(P, V )))]). Let ζG point to θG.
5) Let [TxP] := (1, [ζG], 2, [(α ·outcomeP,OneSig(pkP )), (α ·

(1− outcomeP),OneSig(pkV ))]).
6) Let [TxV] := (1, [ζG], 2, [(α ·outcomeV,OneSig(pkV )), (α ·

(1− outcomeV),OneSig(pkP ))]).
7) P computes σP ([TxV]) and sends the specifics

(ζP ,Desc, T, TS , n, α, scriptG, [TxG], [TxP], [TxV],
σP ([TxV])) to V .

8) Upon receiving (ζP ,Desc, T, TS , n, α, scriptG, [TxG], [TxP],
[TxV], σP ([TxV])), if V is interested in opening a Glimpse
instance with P at the given specifics, V signs TxP and
sends (σV ([TxP])) and sends it to P .

9) Upon receiving (σV ([TxP])), P verifies if σV ([TxP]) is a
valid signatures and, upon successful verification, P signs
[TxG] and posts TxG with witness ω := σP ([TxG]).

Commit on LS (Desc)

1) P posts Tx such that [Tx]←↩ Desc.

Verify & Commit on LD (Desc, T, n)

1) Upon Tx s.t. [Tx] ←↩ Desc being included on LS with
n confirmations before T , P constructs Pn as in Fig-
ure 6 and signs TxP. P posts TxP with witness ω :=
(Pn, σP ([TxP]), σV ([TxP])).

2) If time T has elapsed and θG is still unspent, V signs TxV
and posts TxV with witness ω := (σP ([TxV]), σV ([TxV])).

Figure 4: Pseudocode for the Glimpse-based lending.

specific use case. We now discuss the liquidation mechanism
exclusively for lending.
Liquidation. Should the asset price on LS shrink below
a predefined liquidity threshold, V must be able to redeem
the collateral before T . For this, we assume there exists a
trusted oracle O on LD that regularly publishes a transaction
TxO with the current price of the asset on LS ; for instance,
O can be a Discreet Log Contract-based [19] oracle. If O is
not trusted, we can leverage a set of N different independent
oracles, with the promise that if a large enough number of
oracles agree on the same price, the liquidation is granted
using Glimpse ability to verify DNFs over descriptions. The
oracles do not need to coordinate with each other, nor have
a common transaction structure. For simplicity, we discuss
the case of a single trusted O.

When setting up Glimpse, we assume TxO is described
by, e.g., DescO := (1, [ζi], 2, [θr, (0,OP_RETURN(price))]),
where θr := (0,OP_RETURN(r)) includes the Glimpse
randomness, and the other output reports the price update.
In this case, O must take the randomness from LD itself
so that Glimpse participants can, to some extent, anticipate
it and be able to include it in θr: for example, r can be
the hash of the transaction/block of the last price update
published by O. It is the verifier’s responsibility to ensure
Glimpse embeds the most recent random string.

To include liquidation, scriptG has to be tweaked to

scriptG(Desc, T, cp, n, (P, V ))
Let Tx ∈ B ∈ LS such that [Tx]←↩ Desc. scriptG generates a
locking script with the following logic:
• Upon receiving ω = (Pn, σP ([TxP]), σV ([TxP])), where
Pn = ([Tx] \ Desc,MP, headerWOMR(B), confHeadersn):
1) If [Tx]\Desc matches the expected number of strings and

their expected length, reconstruct [Tx]. Else, return ⊥.
2) Compute H([Tx]) := txid.
3) Given txid and MP, compute the Merkle root MR for B.

Given MR and headerWOMR(B), reconstruct header of
B.

4) Compute the hash of B’s header and check if it is smaller
than cp := TS . Else, return ⊥.

5) If n > 0, for each of the n confirmation blocks, re-
construct the header concatenating headerWOPH(i) with
H(Bi−1).a Hash the header and check if it is smaller than
TS . Else, ⊥.

6) If (σP ([TxP]), σV ([TxP])) are valid signatures of P and
V , unlock the coins. Else, return ⊥.

• If t > T , upon receiving ω = (σP ([TxV]), σV ([TxV])),
unlock the coins. Else, return ⊥.

a. This is equivalent to check whether each block constitutes a valid
child of its parent.

Figure 5: scriptG(Desc, T, cp, n, (P, V )) pseudocode.

Construct Pn(Tx,Desc, n)
1) Upon Tx ∈ B ∈ LS s.t. [Tx]←↩ Desc, fetch [Tx].
2) Compute the transaction Merkle proof MP for Tx.
3) Fetch the block header of B and remove the Merkle Root:

headerWOMR(B) := Header(B) \MR.
4) Let headerWOPH(B) := Header(B) \ ParentHash. If

n > 0, retrieve confHeadersn := {headerWOPH(B +
1), . . . , headerWOPH(B+ n)}.

5) Set Pn := ([Tx] \ Desc,MP, headerWOMR(B),
confHeadersn).

Figure 6: Construct Pn(Tx,Desc, n) pseudocode.

encode the following: (i) if P repays his debt publishing
Tx, s.t. [Tx]←↩ Desc on LS within time T , he can publish
TxP with witness Pn and have his collateral back on LD,
(ii) if P defaults the loan, V can publish TxV redeeming the
collateral after T , and (iii) if before T O attests the collateral
price on LS below the predefined liquidity threshold, V can
redeem the collateral publishing the liquidation transaction
TxL := (1, [ζG], 1, [(α,OneSig(pkV ))]) with witness Pn′

O
and sell the funds at a discount. The liquidation transaction
has to be constructed and signed by P in the Setup phase.

Glimpse-based lending enables the first form of trustless
peer-to-peer lending on Bitcoin-based chains. Moreover,
publishing TxG and TxLoan via atomic swap only requires a
single Glimpse instance on LD. On the other hand, without
extensive programmability, funds cannot be pooled, leading
to peer-to-peer lending where potential borrowers have to
find would-be lenders and agree on the loan’s amount and
interest rate – reflected in the fund distribution in TxP.
To facilitate matching the demand and supply, we suggest
setting up dedicated communication channels or platforms.

4.2. Backed Assets, Proofs-of-Burn, and Oracles
Besides the lending, Glimpse can serve as a lightweight

and powerful building block for other interesting applica-
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tions, such as backed assets (e.g., sidechain pegs, wrapping
and unwrapping of tokens), Proofs-of-Burn, and multiple
oracle attestations. In this section, we give an intuition about
how Glimpse can be leveraged in different use cases.

Backed Assets. We refer to backed assets as assets issued
on a ledger LD that are backed by a cryptocurrency or an
asset on a ledger LS . In this category, we have, for instance,
assets issued on sidechains and backed on parent chains, and
native tokens on ledger LS backing wrapped tokens on LD.

Sidechains are blockchains tightly bound to a pre-
existing parent blockchain with the purpose of enabling or
extending some features. Users can easily move funds from
the parent chain to the sidechain and vice versa through
verifiable two-way pegs: assets are locked in an address of
the parent chain (sidechain) and are then released on the
sidechain (parent chain), ready to be used. Starting from the
lending protocol on Section 4.1, we show how to set up pegs
with Glimpse. Let us remove the liquidation mechanism
from the lending protocol and assume V can create assets
on LD: with these two caveats, the same Glimpse-based
construction can be used to encode trustless sidechain pegs,
where V issues new assets on the sidechain (rather than
giving a loan), and P is able to get back the funds on the
parent chain by proving he returned the coins to an a priori
well-defined peg address on the sidechain.

Similar to pegs, Glimpse can be used to wrap and
unwrap tokens. Wrapped tokens allow one to represent on
a chain LD an asset that does not have any native repre-
sentation on a different chain LS . Wrapped tokens can be
issued on LD when a corresponding amount of native tokens
are locked on LS , and they can subsequently be released
(unwrapped) on the native chain when the user locks up the
wrapped ones on LD.

Proofs-of-Burn. Proof-of-Burn is a bootstrapping mecha-
nism allows users to prove on a destination ledger LD they
burnt some coins on the source ledger LS , meaning they
sent coins to a verifiable unspendable address. By verifying
such proof, the user can obtain the correspondent amount
of native assets on LD.

The construction for a Proof-of-Burn is very similar to
the one for backed assets, with the only difference being
that funds are moved unidirectionally.

Proofs of Oracle Attestations. A noteworthy application
enabled by Glimpse for Bitcoin-based chains is the fol-
lowing: let us assume on LS there exist k oracles posting
information about real-world events, such as real-time prices
for currencies, and on LD one wants to efficiently verify k
oracle attestations for a specific event. In case of two oracles,
O1 and O2, TxG verifies FS = (Desc1∧Desc2), with Desc1
being the description for O1 and Desc2 the one for O2. We
note that O1 and O2 do not have to cooperate nor operate
on the same chain; their chains need to run PoW consensus.

5. Security Analysis
In this Section, we formally analyze the security of

Glimpse in the Global Universal Composability (GUC)

framework [26]. First, we state that according to basic as-
sumptions, Glimpse achieves weak atomicity. Next, we show
that by assuming the liveness of parties and access to LS ,
Glimpse achieves strong atomicity. Finally, we investigate
under which conditions the basic assumptions underlying
the security of Glimpse hold against rational parties. To
that end, we calculate the adversary’s costs for breaking
the assumptions we make for the GUC model by carrying
out proof forgery and censorship attacks.

Security in the UC Framework. We model Glimpse in
the synchronous Global Universal Composability (GUC)
framework [26], closely following prior work [17], [1],
[27]. We use a global clock GClock [26] and authenticated
channels with guaranteed delivery GGDC [17] to model
time and communication. We assume static corruption. We
use the functionality GLedger defined in [28] to model
a ledger L. We use a concrete instantiation as specified
in [28], where the parameters are chosen such that the ledger
achieves both liveness and consistency, which is defined
in [22]. We define two very similar ideal functionalities
FW−Glimpse and FS−Glimpse (see Appendix A.1), formal-
izing our desired properties of weak atomicity and strong
atomicity in the general case, respectively. More concretely,
the ideal functionality is parameterized over two ledgers
LA or LB . The functionality observes these ledgers and,
after two parties have registered to it, will ensure that the
respective transactions are posted on LA or LB such that
weak atomicity or strong atomicity holds.

We then formally model our Glimpse protocol Π in the
UC framework (see Appendix A.2), and prove that Π real-
izes FW−Glimpse or FS−Glimpse, depending on the under-
lying assumptions. In a nutshell, this is done by designing an
ideal world adversary (or simulator) S and showing that no
PPT environment can computationally distinguish between
interacting with the real world protocol Π in the presence of
an adversary A and the ideal functionality in the presence
of a simulator S. In other words, S translates any attack
on the protocol into an attack on the ideal functionality,
which intuitively means that Π is “as secure”, i.e., has
the same properties as FW−Glimpse or FS−Glimpse. This
is formalized in Appendix A. In Appendix B we formally
prove Theorems 1 and 2, which make use of Definitions 4
to 8. The definitions underlined in the theorems can be found
in Appendix A.2.

Theorem 1. Given functionalities GClock, GGDC , the proto-
col Π is instantiated with two ledger instantiations LA and
LB of GLedger, a delay ∆B ∈ N and a proof generation
function genP , where genP is T-sound, and where Π has
strictly randomized input, then the protocol Π UC-realizes
the ideal functionality FW−Glimpse.

Theorem 2. Given functionalities GClock, GGDC , the proto-
col Π is instantiated with two ledger instantiations LA and
LB of GLedger, a delay ∆B ∈ N and a proof generation
function genP , where genP is complete and T-sound, and
where Π has strictly randomized input, and where all parties
have direct access to LA and LB , and where parties
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exhibit liveness, then the protocol Π UC-realizes the ideal
functionality FS−Glimpse.

We now study the cost of two types of attacks that
violate the assumptions from the theorems above by bribing
miners or conducting feather fork attacks. We first analyze
an attack on T-soundness, where miners try to forge a proof,
and then an attack on the liveness of a ledger via transaction
censorship. The aim is to find under which parameters
these assumptions hold and Glimpse achieves the desired
properties.

5.1. Proof Forgery Attack
In the UC security model, we assume the generated

proofs are T-sound, which means that proof forgery attacks
are successful only with negligible probability. In this eco-
nomic analysis, we examine under which parameters this
assumption holds for Glimpse if players are rational, i.e.,
they act to maximize their profit.

Let us consider the case where an adversarial P bribes
the miners of LS to forge a proof for his Glimpse contract,
and promise to reward them with the coins held by Glimpse
on LD. We take one step further and we augment the
adversary’s power such that each prover Pi having active
Glimpse instances on top of the same LS is malicious and
cooperates to launch a joint attack. In this case, corrupted
miners of LS can optimize their computational overhead by
forging a single proof for all the contracts: upon receiving
from Pi the transactions to include in the forgery, they forge
a single block Bf including them all, and then they mine n
confirmation blocks on top of Bf in time T , where n and T
are the average proof size and the lifetime of the Glimpse
instances.

Since we assume the worst case where all provers col-
lude, we denote G as the set of all the active Glimpse
contracts on top of LD sharing the same source chain
LS . To analyze when this attack constitutes a threat in
practice, we need to have knowledge of the cumulative
economic value held by the contracts in G. In prac-
tice, we can say that honest verifiers should mark a
Glimpse contract TxG as such, e.g., by adding an out-
put (0,OP_RETURN(“This is Glimpse contract: T, n, α”)).
This way, honest parties can monitor the cumulative value
of all active Glimpse contracts with honest verifiers on top
of LD sharing the same source chain LS , and avoid opening
a new Glimpse if that value exceeds the security levels we
discuss below.

To make matters worse, there may be Glimpse contracts
for one source chain LS on m different destination chains.
In this case, the adversary is basically controlling every
prover on every destination chain. In order to compute the
cumulative value G, an honest verifier would have to access
each destination chain LDi. As this might be infeasible, we
propose possible countermeasures: honest verifiers may use
a public bulletin board where they announce their Glimpse
contract, or use some heuristic to estimate G, e.g., computing
the cumulative value for their chain and multiplying it with
the number of compatible destination chains. We leave a

more rigorous analysis of how honest verifiers can compute
G in the face of an adversary this powerful as future work.
We assume honest verifiers can compute G.

We want to bound the number of required block confir-
mations n by two constraints: (i) n should be equal to the
minimum number of blocks for which the probability of an
ordinary block reorganization (temporary fork) is negligible,
and (ii) the probability of n being larger than the number
of honest blocks mined for LS in T should be negligible.
Constraint (i) protects V from the proof coming from an
orphaned branch of a temporary fork, and constraint (ii)
protects P from needing to provide more blocks than the
ones honestly included on LS over the time window T .

The adversary controlling all provers will bribe the
miners, and the bribe can be up to the cumulative value
locked in G. To study the economic cost of a proof forgery
attack, we need to compare the miners’ expected gain when
mining honestly to their expected gain when executing the
attack. If the latter is higher than the former, then rational
miners will launch the attack. Let R be the number of coins
given as block reward on LS , VS is the USD value of 1
coin of LS , EB

LS
[T ] the number of expected blocks on LS

in T , and µr the attacker’s relative mining power on LS .
Then, the expected gain for honest miners is given by:

E[H] = R · VS · EB
LS

[T ] · µr. (1)

We note that 0 ≤ µr ≤ 1 and µr < γ, being γ the fraction
of honest miners. Conversely, the miners’ expected gain
when executing the attack depends on how many blocks
they need to forge, how much mining power they hold, and
the fluctuation (we pessimistically consider a price drop) of
the bribe value during the attack. Let αc be the bribe value,
δi the percentage price drop of the bribe in the native asset
of LDi

(the i-th destination chain) over the duration of the
attack, and VDi

the USD value of 1 coin of LDi
. Being µ the

attacker’s hashing power (hashes per second), the number
of hashes computed in T is N := µ · T . Considering N
repeated, independent, and equally distributed hashes, and
being Pv,T the probability to find a valid hash given a target
T , the binomial probability that given T the attacker finds
at least n valid blocks in time T is:

PT
n,T = 1−

n−1∑
k=0

(
N

k

)
P k
v,T (1− Pv,T )

N-k. (2)

The miners’ expected gain for the forgery attack is thus
given by:

E[F] = αc ·
m∑

k=1

((1− δk) · VDk
) · PT

n,T . (3)

For Glimpse to be economically secure, it has to be more
profitable to honestly mine blocks rather than launch a proof
forgery attack: E[F] < E[H]. This yields the upper bound
for the cumulative number of coins αc held in all active
Glimpse instances on the same LS :

αc <
R · VS · EB

LS
[T ] · µr∑m

k=1((1− δk) · VDk
) · PT

n,T
. (4)

10



We recall that any honest user willing to open a new Glimpse
instance of value α must first retrieve and compute the
cumulative number of coins α′

c for the Glimpse in G (on
LS), and check that α+α′

c < αc. The αc varies considerably
with varying parameters: in particular, the block reward
and the USD value of the coins play a dominant role. As
the block reward and the gap between currencies’ values
increases, the coins that can be securely locked in Glimpse
increase.

We note that if miners with a large share of µr redirect
their mining power to forging a proof, the attack could be
detected, as a drop in the network computational power can
be observed. For example purposes, we make this simpli-
fication: let us assume all the active Glimpse instances are
between Bitcoin (LS) and Liquid (LD) with proofs having,
on average, 5 confirmation blocks and a lifetime T ∼ 1 hour.
We consider the largest Bitcoin target T over the year 2022
with 19 leading zeros, and µr = 23% of attacker hashing
fraction, comparable to the largest Bitcoin mining pool in
2022. We also consider BTC and Liquid prices averaged on
November 2022. In Figure 7 we show αc as a function of the
price drop δ. With minimal price drop over the attack time
window, all the active Glimpse instances can hold ∼ 100k
bitcoin, i.e., 162 million USD in November 2022.

5.2. Censorship Attack
In general, we have so far assumed the ledgers under-

lying Glimpse fulfill consistency and liveness. However, a
malicious verifier V could attempt violating liveness for
LS or LD by launching a censorship attack. Indeed, V
might try to censor the transaction(s) on LS to unfairly get
more coins on LD. Alternatively, V could reach the same
goal by censoring P ’s transactions on LD. We analyze the
censorship attack without distinguishing between LS or LD,
as V will always attack the weakest chain, i.e., the cheapest
one to attack. A rational V will attack Glimpse only if
censoring the transaction(s) leads to a larger expected profit
than the one V would get behaving honestly. V can adopt
two strategies to launch the attack: She can either bribe the
miners not to include the transaction(s) or, if she is a miner
herself, she can announce a feather fork attack. We discuss
these two scenarios below.

Bribery. Closely following [29], we define the bribing
game as a Markov game running in T + 1 sequential
stages, a stage being the period between two mined blocks.
In each stage, every miner can choose between censoring
the transaction pointed out by V and therefore following
the attack or including the transaction in her block, hence
refusing to play the game. We define the bribing game as
safe if, after eliminating the strictly dominated strategies, the
only action for each miner in stage one is to play refuse.

The discussion moves from the following assumptions:
(i) miners are rational, i.e., they always try to maximize
their profit and, if they can choose, they always follow
dominant strategies; (ii) miners do not create forks; (iii)
each miner’s relative hash power µr is publicly known and
remains constant during the attack; (iv) the attacker and the

victim of the bribing attack have no hash power of their own;
(v) all miners can see time-locked transactions that will be
valid in the future; (vi) the Glimpse lifetime T is a time lock
expressed in number of blocks, and each block generation is
equivalent to a tick of the clock; finally, (vii) block rewards
and fees generated outside the Glimpse protocol are constant
and do not impact on the attack.

We refer to a miner whose relative hashing power is
µr < f

α as a weak miner, and we let µw be the sum of
the relative hashing powers (or the sum of probabilities to
be selected as next block proposer) of all weak miners in
the system. We refer to f as the fee of the to-be-censored
transaction, to α as the bribe, i.e., the economic value of the
single Glimpse contract. We reasonably consider α > f . As
proved in [29], the following theorem holds:

Theorem 3. The bribing game is safe if there is at least
one miner such that µr < f

α (weak miner) and

T >
log f

α

log(1− µw)
. (5)

Therefore, to secure Glimpse from censorship attacks,
we require α < f

µr
and T as in Theorem 3. For instance, to

censor a transaction in Bitcoin considering the average fee
per transaction being 1.4 USD (over July-October 2022) and
0.01% being the minimum fraction of hashing power for a
miner, the value α locked in a single Glimpse should not
have been higher than 1400 USD.
Feather Fork. We now consider the case where V has some
computational mining power µ. V can launch a feather fork
attack by publicly announcing she will not include a specific
transaction in her blocks, therefore forking the chain for a
certain number of blocks. Concretely, suppose honest miners
include such transaction a block B of the main chain: in this
case, V forks the chain from block B−1 and keeps forking
until b blocks are appended to the main chain after the block
holding the blacklisted transaction.

We define successful a feather fork attack of order b if
an attacker manages to append b+ 1 consecutive blocks to
her own forked chain before other miners append at least b
consecutive blocks to the main chain. Since rational miners
do not want to lose their reward, they will avoid mining
blocks containing the blacklisted transactions, as they are
likely to be excluded from the main chain (while other
blocks do not). We consider the case where V announces a
feather fork attack of order b and promises a bribe α (the
bribe is again the value locked in Glimpse) to any miner
that joins her in the fork endeavor. A miner with relative
hash power µr will follow the fork attack if α > f

µb
r

. Put
differently, Glimpse is safe against feather fork attacks with
bribe payment if

α ≤ f

µb
r

. (6)

To launch a successful attack, the attacker has to pay a
lower bribe in the bribe attack rather than in the feather
fork combined with bribing. In Figure 8 we show the USD
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Figure 7: αc as function of δ
for n = 5, T ∼1 hour, µr =
23%, and T with 19 leading
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we show the USD value
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value a single Glimpse can hold for different µr assuming
f = 1.4.

Secure Parameter Space for Glimpse. To have solid secu-
rity guarantees, the economic value locked in Glimpse has
to fulfill twofold conditions: First, to prevent proof forgery
attacks, the cumulative value of all the active Glimpse
instances having the same source chain (but potentially dif-
ferent destination chains) is bound by Equation (4). Second,
to protect Glimpse against censorship attacks carried out
via bribery or feather fork attack, the economic value of
each single Glimpse instance is bound by Theorem 3 if the
attacker has no computational power or by Equation (6) if
the attacker has computational power.

6. Evaluation
We discuss the Glimpse costs in Ethereum- and Bitcoin-

like chains and we analyze the computational and commu-
nication overhead.

Overhead in Ethereum-like Chains. We now consider
the Ethereum main chain, but the same discussion also
applies to any Ethereum-based chain, e.g., Ethereum Classic
and Ethereum PoW. In Ethereum, the cost of a transac-
tion is measured in gas, which together with a gas-price
specified by the issuer of the transaction results in the
fees expressed in the native currency. Every computation
consumes an amount of gas proportional to its complexity,
and every data that is stored on-chain consumes an amount
of gas proportional to its length. The computational costs of
Glimpse come from the proof Pn verification, which, for a
given target T , consists of a Merkle proof verification for
a specific transaction (or description), the transaction body
and block header reconstruction, and final hash comparison,
as shown in Figure 5. A Merkle tree with k leaves has a
Merkle proof of size O(log2 k). This leads to Merkle proof
verification cost scaling logarithmically in the number of
transactions in a block. Each of the n confirmation blocks
in Pn yields an overhead of 36k gas.

Besides these computational costs, the Glimpse contract
has to initially store the source chain target T as well as
either the to-be-published transaction hash or a transaction
description. In Ethereum the data are stored in 32-bytes slots
and for each slot 20k gas are consumed: this leads to 40k
gas storage cost for the target and the transaction hash, or to

188k in the case of target and ∼300-bytes description. We
have implemented an open-source cost evaluation which can
be found in an anonymized Github repository [30].

Glimpse has lower on-chain costs compared to the over-
all costs of some optimized and naive relay solutions, such
as Ethrelay [8] and zkRelay [7]. For Ethrelay, each block
header submission results in an average cost of 280k gas,
whereas the inclusion of a transaction is verified via SPV
combined with an advanced search algorithm that checks for
main chain membership. For relatively recent blocks, this
leads to a gas consumption of 110k gas. Using zkRelay, the
submission of a batch of blocks of arbitrary size costs 522k
gas, including the validation of the zero-knowledge proof
and the storage costs. The proof validation alone results in
351k gas. To verify that a transaction has been included in
a block on the source blockchain, users have to provide the
relay contract with a Merkle proof for verifying the block
inclusion in the batch and a Merkle proof for the SPV.

While the relay costs for verifying the inclusion of a
transaction are somewhat similar to the ones of Glimpse,
the crucial difference lies in the operating costs: while relays
incur high ongoing costs for relaying, verifying and storing
the full list of block headers, Glimpse has none due to its
on-demand nature. For a simple Glimpse with a single well-
defined transaction and n = 5, we have an upper bound of
330k gas: we note that this is a one-time fee, compared to
the continuous 280k gas for each block header submission
of Ethrelay and 522k per batch submission of zkRelay.
Overhead in Bitcoin-like Chains. The transaction cost
in Bitcoin-based chains follows a different fee mechanism.
Transaction fees are usually proportional to the size of the
transaction and in Bitcoin in the order of a few satoshi per
byte as of October 2022.

To cope with the limited scripting capabilities of Bitcoin-
like chains, when Taproot is supported, the parties can use
Merkelized Abstract Syntax Trees (MAST) [31]. A MAST
can compress many scripts into a single root of a Merkle tree
and we use it to efficiently encode our Glimpse contract. The
MAST first needs to be constructed and then exchanged off-
chain. The MAST size depends on (i) the number of variable
inputs and outputs in Desc, as their well-formedness needs
to be checked with dedicated opcodes, (ii) the number of
confirmation blocks in Pn, (iii) the number of transactions
in the block determining the number of levels in the Merkle
tree, and (iv) the size of the description, being the static data
to be hard-coded in the script. For example, in a single to-be-
verified transaction Tx of ∼350 bytes, n = 6 confirmation
blocks, one variable input or output, the upper bound for
the MAST is 10 MB. For DNF formulas, parties need to
compute and exchange the MAST for each literal. For a
detailed discussion see Appendix D.

We provide a theoretical estimation for a Glimpse trans-
action size in Liquid, where we have Taproot and all the
necessary string opcodes. Assuming two P2PKH inputs and
one P2TR output for TxG, we have a transaction size of
approximately 350 bytes. For TxP, assuming one P2TR
input (Glimpse witness + selected script of the MAST)
and two P2PKH outputs, the size is again roughly 350
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bytes. Instead, considering one P2TR input and two P2PKH
outputs, the size of TxV is about 200 bytes. Concretely, in
November 2022, users’ fees for TxG and TxP would amount
to 1.5$ each, whereas for TxV to 0.84$. The total cost
would be at most 3$, in line with the costs for standard
transactions. In the Setup phase, parties need to exchange
TxG, TxP and TxV, as well as the description for the to-be-
verified transaction. For verifying a DNF formula with m
literals, the parties need to exchange 4 ·2m transactions, and
V has to send to P 2 · 2m signatures.

For chains like Bitcoin Cash which do not support
functionalities similar to those of Taproot, one could unroll
the MAST tree, obtaining a large Glimpse script within TxG
that is by far dominated by the opcodes for the Merkle
proof verification. Assuming M is the maximum number
of transactions in a block, one ends up having

∑log2(M)
l=0 2l ·

(3l+3)+1 opcodes for the Merkle root reconstruction (see
Appendix D). In this case, Glimpse can be supported by
removing the limit for the maximum number of opcodes
in a transaction (MAX_OPS_PER_SCRIPT). For instance,
assuming M = 3k, one would have l = {0, . . . , 12}, leading
to ∼300k opcodes in the locking script.

The computations overhead consist of the creation and
verification of signatures, the creation and verification of the
MAST, and the construction of the proofs, all of which can
be performed using commodity hardware.

7. Related Work
The idea of chain relays first appeared with BTC Re-

lay [6], realizing a Bitcoin relay on Ethereum. BTC Relay
verifies and stores Bitcoin block headers; the costs the
relayers had to bare for keeping the relay up-to-date are
high and not compensated by user’s fees.

Westerkamp et al. [7] introduced zkRelay which batches
multiple headers. Their validity is verified off-chain and
proven on-chain via zkSNARKs. zkRelay has constant veri-
fication costs and releases the target ledger from process-
ing and storing every single block header of the source
blockchain. Although the on-chain costs are lower than
for BTC Relay, a maintenance overhead for the off-chain
computation and for on-chain storage remain. Furthermore,
the users’ costs for transaction inclusion verification are
doubled, as both the block inclusion in the batch and the
transaction inclusion in the block have to be verified.

Efficient relay contracts for Ethereum on Ethereum Clas-
sic (and vice versa) are even more challenging to design, as
Ethereum has a complex and ASIC-resistant consensus in
place. To this end, Frauenthaler et al. [8] propose Ethrelay,
a relay that employs an optimistic approach: Block headers
are optimistically accepted as valid and only validated on-
demand. The computational costs per header are cut out, but
the storage costs persist.

Zamyatin et al. [20] propose XCLAIM, a framework
for trustless and efficient cross-chain exchanges. XCLAIM
exhibits functionalities for issuing, transferring, swapping
and redeeming cryptocurrency-backed assets securely on
existing blockchains. To make the protocol non-interactive,

Protocol Commit on LS Verify & Commit on LD Expressiveness
Ass. Comp. Consensus Ass. Comp.

Universal
Atomic
Swap [2]

Sync 1 Any Sync 1 Secret-based logic
(Adapt. Sigs)

HTLC Atomic
Swap [5], [3],
[4]

Sync 1 Any Sync 1 Secret-based logic
(HTLC)

Glimpse (this
work)

Sync 1 PoW Sync 2 DNF formulas
over transactions (or
descriptions)

Bidirectional
chain relays [7],
[8], [6], [32]

Sync 3 PoW, PoS Sync 3 Arbitrary logic

XCLAIM [20],
XCC [33]

TTP 1 PoW, PoS Sync 3 Arbitrary logic

TABLE 2: Classification of state-of-the-art CCC protocols
w.r.t.: (i) the assumption they make (TTP/Synchrony), (ii)
the interoperability they achieve w.r.t. scripting require-
ments, and (iii) the consensus they operate on.

the XCLAIM implementation operating between Bitcoin
and Ethereum makes use of a chain relay on Ethereum,
specifically of the implementation of BTC Relay. The relay
costs are shared among all users of XCLAIM, with decreas-
ing costs for very active users.

Another conceptually and technically different solution
for cross-chain communication is atomic swaps, originally
introduced by Herlihy [5]. Atomic swaps allow multiple
parties to exchange assets across multiple blockchains in
a distributed and coordinated manner. Herlihy designed a
swap protocol that uses HTLCs, i.e., contracts storing a pair
(h, t) and ensuring that if the contract receives the secret s
such that h = H(s) before time t has elapsed, then the
ownership of the asset locked in the contract are transferred
to the counter party. This secret-based solution is cheap and
elegant, but, contrarily to Glimpse, it can only be used in
an asymmetric setting, where the party posting a transaction
on LS cannot be the same one posting a transaction on LD,
besides being limited in expressiveness.

Thyagarajan et al. [2] enhanced the compatibility of
atomic swaps to all existing chains without hash locks or
timelocks,enabling atomic swaps that are simultaneously
non-custodial (no TTP), universal (compatible with all (cur-
rent and future) blockchains), and multi-asset (supporting
the exchange of multiple coins in a single atomic swap),
but no other applications.

Table 2 compares Glimpse to other state-of-the-art cross-
chain solutions: (i) Glimpse completely relies on synchrony
assumptions, (ii) Glimpse makes use of a basic set of
scripting operations, and (iii) Glimpse can be used to en-
code DNF-based synchronization patterns. With 1 , 2 , 3 we
denote three classes of scripting languages: 1 comprises
hash locks, time locks, and signature locks, 2 includes the
operations in 1 along with the following functionalities for
string concatenation and hash comparison, and 3 finally
represents any quasi-Turing complete language.

8. Conclusion
We presented Glimpse, a new on-demand trustless cross-

chain communication primitive for PoW source chains.
Glimpse is efficient in terms of on-chain costs and compu-
tational overhead, expressive for the information complex-
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ity it can transfer across chains, compatible with Bitcoin-
based chains. It is proven secure in the UC framework and
through an economical security analysis, where we quan-
tify the costs of breaking basic security assumptions. We
demonstrated how the expressiveness of Glimpse enables
the design of sophisticated cross-chain applications, such as
lending, backed-assets, and multiple oracle attestations. The
crucial assumption on the underlying scripting language is
the capability to verify Merkle proofs: Glimpse is already
compatible with several cryptocurrencies and we believe this
work has the potential to shape the evolution of others too,
by adding arguments in favor of, e.g., the OP_CAT opcode,
whose inclusion in Bitcoin is currently under discussion.

This work opens up a number of interesting research
directions. For instance, we intend to explore how to support
different consensus mechanisms, such as Proof-of-Stake or
Proof-of-Space. Furthermore, we plan to investigate how to
lift the Glimpse construction off-chain, in order to make
it compatible with the Lightning Network and open up the
design of off-chain applications operating over different, and
possibly cross-chain, payment channel networks.
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Appendix A.
Modeling Glimpse in the UC-Framework
Protocol, Adversarial Model, Time, Communication. We
consider a real world protocol Π executed by a set of parties
U and in the presence of an adversary A. Π is parameterized
by a security parameter λ ∈ N and an auxiliary input
z ∈ {0, 1}∗. A can corrupt any party P ∈ U prior to the
protocol execution (static corruption) by taking full control
of it and learning its internal state. A special entity Z , the
environment, provides parties andA with inputs and receives
their outputs. Z represents anything external to the protocol.

We assume synchronous communication, i.e., the pro-
tocol execution proceeds in synchronized rounds. We fol-
low [34], [17], formalizing these rounds with a global ideal
functionality GClock which can be seen as a global clock.
At a high level, this functionality proceeds to the next round
only after all honest parties indicate that they are ready to
do so. Every party knows what the current round is.

We model message exchange between parties via au-
thenticated communication channels with guaranteed deliv-
ery after one round. This notion is formalized with the
functionality GGDC (e.g., [17]), and basically, this means
that if a party P sends a message to Q in round t, Q
will receive this message exactly at the beginning of round
t+1. The adversary A has the power to observe the content
of messages between parties and can reorder any messages
sent within the same round, but A cannot delay, modify or
censor messages or insert new messages on an honest party’s
behalf. We assume that any computation made by entities
and communication that does not involve two parties, but
rather a special entity such as A or Z , takes zero rounds.
Modeling the Ledger. For modeling the ledger we refer to
the functionality GLedger as defined in [28]. Concretely, we
use a concrete instantiation also as specified in [28], where
the parameters are chosen such that the ledger achieves
both liveness and consistency (or just consistency), which
is defined in [22]. Concretely, we interact with the ledger
mainly in two ways: posting transactions and reading the

ledger (e.g., to see if a certain transaction appeared on it).
A ledger has a delay parameter ∆ which is an upper bound
on the number of rounds which it takes for valid transactions
to appear on the ledger after being posted.
The GUC Security Definition. Let Π be a hybrid proto-
col with access to the preliminary functionalities Fprelim

consisting of GClock, GGDC and GLedger. We define as
EXEC

Fprelim

Π,A,Z (λ, z) the output of Z interacting with Π and
A on input a security parameter λ and an auxiliary input
z. Further, we denote ϕF as the ideal protocol of the ideal
functionality FGlimpse with access to the same preliminary
functionalities Fprelim. ϕF is a trivial protocol where parties
merely forward any input to FGlimpse. The output of an
environment Z on input λ and an auxiliary input z inter-
acting with ϕF and an ideal world adversary S (also called
simulator) is denoted as EXECFprelim

ϕF ,S,Z (λ, z).
We proceed with our main security definition. Infor-

mally, if a real world protocol Π GUC-realizes an ideal
functionality FGlimpse, any attack carried out against Π can
be carried out against ϕF .

Definition 3. A real world protocol Π GUC-realizes an
ideal functionality FGlimpse with respect to preliminary
functionalities Fprelim, if for any real world adversary A
there exists an ideal world adversary S such that{
EXEC

Fprelim

Π,A,Z (λ, z)
}

λ∈N,
z∈{0,1}∗

c
≈
{
EXEC

Fprelim

ϕF ,S,Z (λ, z)
}

λ∈N,
z∈{0,1}∗

where ≈c denotes computational indistinguishability.

A.1. Ideal Functionality
To capture the desired functionality of our scheme, we

model Glimpse as an ideal functionality. In fact, we provide
two slightly different functionality definitions FW−Glimpse

and FS−Glimpse, the former achieving weak atomicity and
the latter achieving strong atomicity, which are our desired
properties. Note that this functionality (and subsequently
also the protocol) considers only two parties per execution,
P and V . In particular, we let the issuance of the transaction
relevant to FGlimpse (or the protocol) on LS (the issuer I)
be handled by Z . This captures any conceivable setting, e.g.,
where I is adversarial, the same as or colluding with either
of the parties P and V .
A Generic Functionality. The functionalities are param-
eterized by two ledgers LS and LD, both of which are
instances of GLedger, and a delay parameter ∆D, which for
readability we write explicitly as a parameter, but which is
also implicitly given by LD.

Both functionalities allow for (i) verifying DNF formulas
over descriptions posted on LS on LD instead of single
transactions and (ii) multiple different outcomes for the
prover. In other words, an outcome on LD can be tied to
a specific combination of truth values of the variables in
the formula FS (see Figure 2). The truth variables inside
these logical formulas are descriptions of transactions. On
a high level, each description is set to true if a transaction
Tx corresponding to this description, i.e., [Tx] ←↩ Desc,
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appears on LS , and is set to false otherwise. The formula
FS , in combination with this interpretation of descriptions
as boolean variables, generates a truth table, which we say
is the truth table associated with FS .

For each possible combination of truth values (i.e., each
row of the truth table), which should benefit the prover, we
can now assign a unique outcome, whereas for the other
ones, the verifier gets all the money (see also Appendix C).

Functionality and Properties. Our functionality proceeds
in two phases, Setup and Verify & Commit on LD: the
former is the same in both functionalities, the latter changes
depending on weak or strong atomicity.
• Setup: In this phase, the functionality gets the required

inputs to set up a Glimpse contract from V , checks that
they are well-formed, informs P . Finally, a transaction
hosting the Glimpse contract has to appear on LD. This
phase is the same for both functionalities. We do not con-
strain how two parties P and V agree on the parameters,
which is why V already sends the setup message with all
parameters specified.

• Verify & Commit on LD (weak atomicity): The function-
ality FW−Glimpse expects that if a transaction spending
the Glimpse transaction appears on LD corresponding to
the outcome associated with one of the rows of the truth
table for FS , then a transaction corresponding to each
description that is set to true in that row must already be
on LS . Otherwise, the functionality outputs error. For
FW−Glimpse, LS and LD need to have have consistency,
otherwise this notion of weak atomicity would be mean-
ingless, as transactions are not stable and can be removed
from the ledger again.

• Verify & Commit on LD (strong atomicity): In addition
to what happens for weak atomicity, the functionality
FS−Glimpse expects the “other way around”. This means
that if a set of transactions appears on LS that correspond
to descriptions in FS for some row of its truth table, then
a transaction with the outcome corresponding to that row
must appear on LD, spending from the transaction hosting
the Glimpse contract. Otherwise, the functionality outputs
error. For FS−Glimpse, in addition to LS and LD

needing to have consistency, LD needs to have liveness.
This notion of strong atomicity would not be realizable
without LD having liveness, as the functionality always
expects the corresponding transaction to appear on LD.

Errors, Staleness and Notation. Naturally, the ideal func-
tionalities directly defines the desired properties. We note
that our functionalities satisfy weak or strong atomicity if
no error is output. If an error is output, then all guarantees
are lost. Thus, we are only interested in protocols realizing
either functionality that never output error.

The Verify & Commit on LD phase for both weak
and strong atomicity are “executed in every round”. This
phrasing is used to ease readability. This can be achieved
by marking the functionality as stale, if it does not receive
the execution token from the environment in every round.
Then, the next time the functionality receives the execution
token and is stale, it outputs error.

Finally, to ease readability, we omit explicit calls to
GClock and GGDC . Instead, we denote (m)

t
↪−→ X as sending

message (m) to party X in round t and denote (m)
t←−↩ X as

receiving message (m) from X in round t. We abstain from
explicitly mentioning session identifiers sid or sub-session
ssid identifiers in every message. The formal definition of
the functionality follows.

FGlimpse(LS ,LD,∆D)
consisting of FW−Glimpse and FS−Glimpse

Parameters:
LS , LD ... two instances of GLedger , representing the source and
destination blockchain
∆D ∈ N ... the blockchain delay of LD , i.e., the upper bound
on the time it takes from posting a valid transaction Tx to Tx
appearing on the the ledger.

Variables:

Φ ... a set of tuples (id,FS , TP , TV , n, P, V, [outcomei],TxG),
where id ∈ {0, 1}∗ is an identifier unique to the pair P and
V . P and V are in turn both distinct elements of the set of all
users U . FS is a logical formula as defined in Figure 2. Further,
TP , TV , n ∈ N, and [outcomei] is a list of outcomes, which in
turn are tuples (outcome.P, outcome.V ) ∈ N2.

Setup

1) Upon (SETUP,id,FS , P, [outcomei]i∈[1,r], TP , TV , n,

{inputP}, {inputV}) τ←−↩ V , where the following holds:
a) FS is a logical formula as defined in Figure 2.
b) [outcomei] is a list of r := 2d outcomes, where d is

the number of descriptions in FS (in other words, the
number of rows in the truth table when considering all
descriptions in FS as boolean variables).

c) For all rows i of the truth table generated by FS , where
the result is false, it must hold that outcomei := (0, α).

d) For each outcomei it must hold that outcomei.P +
outcomei.V = α for some number α

e) TV > TP are both times in the future
f) n ∈ N
g) {inputV} is a (potentially empty) set of inputs under

control of V and {inputP} is a (potentially empty) set
of inputs under control of P

h) |{inputV} ∪ {inputP}| > 0 and the sum of coins stored
in {inputV} ∪ {inputP} ≥ α+ d · ϵ

i) If these checks hold continue, else go idle.
2) Send (id,FS , [outcomei]i∈[1,r], TP , TV , n, {inputP},
{inputV}) τ+1

↪−−→ P , receive (id)
τ+1←−−↩ P .

3) At round τ1 ≤ τ + 1 + ∆D , if a transaction TxG ap-
pears on LD which takes {inputP} and {inputV} as in-
put and has at least one output θα holding α coins, add
(id,FS , TP , TV , n, P, V, [outcomei]i∈[1,r],TxG) in Φ.

(a) Weak atomicity (Functionality FW−Glimpse)

Verify & Commit on LD (in every round τ )

For every (id,FS , TP , TV , n, P, V, [outcomei]i∈[1,r],TxG) in
Φ, if current round τ is smaller than TP , do the following.
1) If there is a transaction Tx on LD , such that Tx spends output

θα of TxG and has two outputs θP := (x,OneSig(pkP ))
and θV := (y,OneSig(pkP )), s.t. x ≥ outcomei.P and
y ≥ outcomei.V corresponds to the k-th element in the
list [outcomei]i∈[1,r]. Check the k-th row in the truth table
corresponding to FS .

2) For each description Desc ∈ FS which is set to true in the k-
th row in the truth table, a transaction Txi with n subsequent
blocks, s.t. [Txi]←↩ Desc, must be on LS . Additionally, for
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each description Desc ∈ FS which is set to true in the k-
th row in the truth table, there must not be a transaction
Txj , s.t. [Txj ]←↩ Desc on LS . If this does not hold, output
(id,error).

(b) Strong atomicity (Functionality FS−Glimpse)

Verify & Commit on LD from (a) (in every round τ )

Verify & Commit on LD: P (in every round τ )

For every (id,FS , TP , TV , n, P, V, [outcomei]i∈[1,r],TxG) in
Φ where P is honest and θα of TxG is unspent, do the following.
1) If current round τ is TP −∆D . Let {Txi} be the set of all

transactions on LS where the block in which each transaction
is each has at least n subsequent blocks, and where for each
Txi ∈ {Txi} there exists Desc ∈ FS where [Txi]←↩ Desc.
Evaluate the statement FS by setting to true all descriptions
for [Txi] whose corresponding transaction Txi is on LS . Set
all other descriptions to false.

2) If the statement evaluates to true, do the following, let k be
the row in the truth table corresponding to the evaluation of
the statement of the previous step and proceed. Otherwise go
idle.

3) Expect a transaction Tx to appear on LD after at most
2 · ∆D rounds, such that Tx spends output θα of TxG
and has two outputs θP := (x,OneSig(pkP )) and
θV := (y,OneSig(pkP )), s.t. x ≥ outcomei.P and y ≥
outcomei.V of the k-th element in the list [outcomei]i∈[1,r].
If no such transaction appears within said time, output
(id,error).

Verify & Commit on LD: V (in every round τ )

For every (id,FS , TP , TV , n, P, V, [outcomei]i∈[1,r],TxG) in
Φ where V is honest and θα of TxG is unspent, do the following.

1) If current round τ is TP − ∆D . Let {Txi} be the set
of all transactions on LS where the block in which each
transaction is each has at least n subsequent blocks, and
where for each Txi ∈ {Txi} there exists Desc ∈ FS

where [Txi]←↩ Desc. Evaluate the statement FS by setting
to true all descriptions for [Txi] whose corresponding
transaction Txi is on LS . Set all other descriptions to false.

2) If the statement evaluates to false, the following must
happen.

3) At time TV , a transaction Tx, that takes as input θα of
TxG and as output θ := (α,OneSig(pkV )), must appear
on LD within ∆D rounds. If no such transaction appears
within said time, output (id,error).

A.2. Glimpse Protocol
In this section we present the formal UC protocol Π

of Glimpse. Π is a hybrid protocol with access to the
functionalities GClock, GGDC and GLedger. In contrast to the
simplified pseudocode protocol shown in Section 4.1, this
formal protocol includes communication with the environ-
ment and the notion of time, and it is more generic. Indeed,
similar to the ideal functionality, the protocol allows for
verifying logical formulas of descriptions instead of single
transactions and there can be multiple different outcomes
for the prover. To keep our protocol definition generic, we
parameterize it over two ledgers LS , LD, ∆D (which is
explicitly stated for readability, even though it is implicitly
given by LD), as well as over a function parameter genP ,
which should generate a proof P for LD that a transaction
has appeared on LS . The two ledger parameters LS and LD

have to have the same properties as the ledger parameters
of the functionality, which Π should realize. I.e., to realize
FW−Glimpse, LS and LD have to have consistency, whereas

to realize FS−Glimpse LD needs also to have liveness.

Properties of genP . The proof generation function is
specific to LS and LD and is parameterized over a transac-
tion Tx, a description Desc (as defined in Figure 2) and a
consensus parameter cp that is specific to LS . The function
generates a proof proving that a transaction Tx that matches
description Desc, i.e., [Tx]←↩ Desc, is on LS , in a witness-
like format that is readable by the scripting of LD. In our
protocol instantiation, we use “Construct Pn

i ” defined in
Figure 6, which uses n as consensus parameter cp. We
require this function genP to have the following properties:
complete and T -sound.

Definition 4. A function genP is complete, if for every
transaction Tx that is on LS and every description Desc,
such that [Tx] ←↩ Desc, it returns a proof P which is a
witness that is accepted by LD.

Definition 5. A function genP is T -sound (or T -
unforgeable), if within a given time T , no proof P can be
generated for Tx with non-negligible probability unless Tx
is on LS .

Access to LS . In this protocol, if we want to achieve
strong atomicity, we require both P and V to have access
to LS (and, of course, also LD). In the model, a party P
having access to LS means that P is an element of the
set of registered parties of the functionality LS . In practice,
it means, for example, P runs a full node. Indeed, in the
pseudocode protocol in Section 4.1, V does not need access
to LS . This requirement comes from the fact that we allow
logical formulas (or DNFs) instead of single transactions.
An intuitive example for this is FS := Tx1 ⊕ Tx2 (xor),
where V needs to prevent P from claiming the money from
the Glimpse contract if both Tx1 and Tx2 are posted on
LS . In a simplified case, e.g., where there is only a single
transaction, this requirement can be dropped.

As explained in the main body (see Figure 1), we note
that we can replace the requirement that P and V need
access to LS by an untrusted (i, weak atomicity) or trusted
(ii, strong atomicity) relayer R, that provides the parties with
the necessary data of LS . We model this by simply replacing
the parameter LS with a wrapper functionality, which can
be seen as a relayer R, which provides the same interface
as LS . R simply forwards any calls to LS . Similarly, the
calls to LS within the macro “Construct Pn” defined in
Figure 6 are replaced with calls to this functionality. The
adversary S can replace modify responses of R to parties,
that do not have access to LS . We allow (weak atomicity,
untrusted relayer) or do not allow (strong atomicity, trusted
relayer) the adversary S to modify responses made by this
functionality. Note that the weak atomicity notion also holds
when parties have no access to LS at all. For the security
proof, we introduce the definition of direct access to L.

Definition 6. A party has direct access to L if it is an
element of the set of registered parties of L or it has access
to a trusted relayer wrapper functionality (as defined above)
of L.
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Restriction on the Environment. As we explain in Sec-
tion 3.3, we need to introduce randomness to prevent upfront
mining on the proof. In the general case, we need to have
randomness in every description Desc ∈ FS . Since FS is
part of the initial message to the ideal functionality and
therefore also part of the initial message in Π, we put a
restriction on the environment to only send an FS , where
every Desc ∈ FS has a newly generated random value in its
body. In practice, this can be achieved by P and V running
a pre-setup before the protocol, where they both generate a
value of length λ uniformly at random rP ←$ {0, 1}λ and
rV ←$ {0, 1}λ, concatenate them yielding rP ||rV and add
an output (0,OP_RETURN(rP ||rV )).

Definition 7. A Glimpse protocol Π has strictly randomized
input, if its environment is restricted in the way defined
above.

Parties Exhibiting Liveness. Unfortunately, malicious par-
ties could simply go idle and not post anything on LD, even
though they could, in accordance to what was posted on LS .
This behavior would violate strong atomicity. We therefore
introduce the following definition. We also emphasize again,
that the outcome that parties can enforce is always non-
negative, so they are incentivized to enforce it.

Definition 8. Parties in a Glimpse protocol Π exhibit live-
ness, if they enforce the outcome that corresponds to the
transactions on LS w.r.t FS , if they can.

Protocol Description. The protocol proceeds in the same
phases Setup and Verify & Commit on LD as the ideal func-
tionality. Because we explicitly omit modelling the issuer
of the transaction(s) of FS on LS (this is external to the
protocol, the environment does it and it can proceed in any
conceivable way), we do not have the Commit on LS phase
which we show in the simplified pseudocode Figure 4.

1) Setup: In this phase, the parties V and P create the
necessary transactions to set up a Glimpse contract cor-
responding to the input data they received, and post the
transaction TxG carrying the Glimpse contract. In more
detail, if we again consider FS where the descriptions
are boolean variables and the resulting truth table (as
in Appendix A.1), the two parties create a transaction
sequence for each of the rows that allows the respective
party P or V to enforce their balance with the respective
proofs. An example how such a transaction sequence
looks like can be seen in Appendix C in Figure C.1,
and is formally described later in the protocol.

2) Verify & Commit on LD: In this phase, both P and V
check LS to see if any transactions fulfilling a description
in FS has appeared there. If yes, they post the transaction
sequence which corresponds to the row in the truth table,
claiming their respective outcome.

To ease readability of the protocol, we take some key
macros out and define them in the following box, before
presenting the protocol itself. Note that there is only one
protocol, depending on our assumptions, it realizes the

functionality with weak or strong atomicity, as we show
in Appendix B.

Macros for Π(LS ,LD,∆D, genP)

• genTxsFromF(α,FS , [outcomei]i∈[1,r], TP , TV , cp, n,
{inputs})
1) Create transaction TxG, with inputs TxG.

−−−→
input :=

{inputs} and outputs TxG.
−−−−→
output := {θα} ∪

{θϵi}i∈[1,var] as list, where var is the number of Desc in
FS , s.t. θα := (α,MuSig(pkP , pkV ) ∨ (OneSig(pkV ) ∧
TV )) and θϵi := (ϵi, (scriptG(Desci, TP , cp, n, (P, V )) ∧
OneSig(pkP ))) ∨MuSig(pkP , pkV ))

2) Create a truth table for FS .
3) For each row in the truth table, do the following.

a) Create transactions TxT, TxF and TxP (see also Ap-
pendix C or Figure C.1) as follows:

b) TxT takes as inputs all outputs θϵi of TxG, where the
corresponding input variable Desci is set to true and
TxF takes as inputs all outputs θϵi of TxG, where the
corresponding input variable Desci is set to false.

c) The single output of TxT is θ := (ϵ,OneSig(pkP ) and
the single output of TxF is θ := (ϵ,OneSig(pkP ) ∧
TP ∨ truevar), where truevar is a disjunction of
scriptG(Desci, TP , cp, n, (P, V )) for each input vari-
able Desci of the truth table that is set to true for thisrow.

d) Finally, TxP takes as inputs θα of TxG as well as
both outputs of TxT and TxF. Its output is θ :=
(outcomei.P,OneSig(pkP )).

4) We define the result of this as set of tuples
{(TxTi,TxFi,TxPi)}i∈[1,row], where row is the number
of rows in the truth table.

5) Return (TxG, {(TxTi,TxFi,TxPi)}i∈[1,row])

• postTxsFP(FS , TP , n,TxG, {(TxTi,TxFi,TxPi, σV (TxFi),
σV (TxPi))}i∈[1,row])
1) If current time is TP − ∆D and output θα of TxG is

unspent, check if there exist transactions {Txi} on LS ,
such that for each Txi ∈ {Txi} there exists exactly one
Desc ∈ FS , s.t. [Txi]←↩ Desc.

2) Looking at the truth table for statement, consider the row
k where exactly the description for which Txi is on LS
are marked as true.

3) Extract the corresponding tuple for row k out of
the set sent in the parameters of this function, i.e.,
(TxTk,TxFk,TxPk, σV (TxFk), σV (TxPk))

4) For each Txi and Txi where Txi is on LS , construct
a proof using the Construct Pn

i (Txi,Desci, n) function
defined in Figure 6, yielding a set of proofs {Pn}.

5) Generate signatures σP (TxTk), σP (TxFk), σP (TxPk).
6) Send a message “post” for transaction TxTk with

σP (TxTk) and {Pn} as witnesses to functionality LD .
7) Send a message “post” for transaction TxFk with

σV (TxFk) and σP (TxFk) as witnesses to functionality
LD .

8) At time TP , send a message “post” for transaction TxPk
with σV (TxPk) and σP (TxPk) to LD .

• postTxsFV(FS , TP , TV , n, P, V, [outcomei]i∈[1,r],TxG)
1) If current time is after TV and output θα of TxG is

unspent, send a “post” message for a transaction Tx to
LD , where Tx takes as input θα of TxG and as out-
put θ := (α,OneSig(pkV )), generate and use signature
σV (Tx) as a witness.

2) Else, if current time is before TP and a transaction TxF
(as defined in step 3a of genTxsFromF) is on LS and
a transaction Tx′ is on LS , s.t. it fulfills one of the
descriptions of the output of TxF, i.e., [Tx′] ←↩ Desc,
do the following.
a) Construct a proof using the Construct
Pn(Tx′,Desc, n) function defined in Figure 6,
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yielding Pn.
b) Send a message “post” for a transaction Tx′′ to LD ,

where Tx′′ takes as input the output of TxF and as out-
put θ := (α,OneSig(pkV )), using Pn and σV (Tx′′)
as witnesses.

Protocol Π(LS ,LD,∆D, genP)

Parameters:
LS , LD ... two instances of GLedger , representing the source and
destination blockchain. We let cp be the difficulty of LD , i.e.,
this is a parameter of the functionality GLedger .
∆D ∈ N ... the blockchain delay of LD , i.e., the upper bound
on the time it takes from posting a valid transaction Tx to Tx
appearing on the the ledger.
genP ... a function that takes as input a transaction Tx, a
description Desc (as defined in Figure 2) and a consensus
parameter cp that is specific to LS . The function generates a
proof that a transaction Tx that matches description Desc, i.e.,
[Tx] ←↩ Desc, is on LS , as a witness that is readable by the
scripting of LD . In our protocol instantiation, we use “Construct
Pn

i ” defined in Figure 6, which uses n as consensus parameter
cp.

Variables:

ΦP ... a set of tuples (id,FS , TP , TV , n,TxG, {(TxTi,TxFi,
TxPiσV (TxFi), σV (TxPi))}i∈[1,row]), where id ∈ {0, 1}∗ is
an identifier unique to the pair P and V . P and V are in
turn both distinct elements of the set of all users U . FS is a
logical formula as defined in Figure 2. Further, TP , TV , n ∈ N,
and [outcomei] is a list of outcomes, which in turn are tu-
ples (outcome.P, outcome.V ) ∈ N2. TxG is a transaction and
{(TxTi,TxFi,TxPiσV (TxFi), σV (TxPi))}i∈[1,row] is a set of
tuples containing transactions and signatures.
ΦV ... a set of tuples (id,FS , TP , TV , n,TxG), where id ∈
{0, 1}∗ is an identifier unique to the pair P and V . P and V
are in turn both distinct elements of the set of all users U . FS is
a logical formula as defined in Figure 2. Further, TP , TV , n ∈ N.
TxG is a transaction.

Setup

Verifier V

1) Upon (SETUP,id,FS , P, [outcomei]i∈[1,r], TP , TV , n,

{inputP}, {inputV})
τV←−−↩ Z , check that the following holds:

a) [outcomei] is a list of r := 2d outcomes, where d is
the number of descriptions in FS (in other words, the
number of rows in the truth table when considering all
descriptions in FS)

b) For all rows i of the truth table generated by FS , where
the result is false, it must hold that outcomei := (0, α).

c) For each outcomei it must hold that outcomei.P +
outcomei.V = α for some number α

d) TV > TP are both times in the future
e) n ∈ N
f) {inputV} is a (potentially empty) set of inputs under

control of V and {inputP} is a (potentially empty) set
of inputs under control of P

g) |{inputV} ∪ {inputP}| > 0 and the sum of coins stored
in {inputV} ∪ {inputP} ≥ α+ d · ϵ

h) If these checks hold continue, else go idle.
2) (TxG, {(TxTi,TxFi,TxPi)}i∈[1,row]) :=

genTxsFromF(α,FS , [outcomei]i∈[1,r], TP , TV , cp, n,
{inputs})

3) Sign each transaction TxFi and TxPi in
{(TxTi,TxFi,TxPi)}i∈[1,row] and append
the signatures to each tuple yielding a set
{(TxTi,TxFi,TxPi, σV (TxFi), σV (TxPi))}i∈[1,row]

4) Sign TxG yielding σV (TxG)

5) Send (open-req,id, [outcomei]i∈[1,r], TP , TV , n,
{inputP}, {inputV},TxG, σV (TxG),
{(TxTi,TxFi,TxPi, σV (TxFi), σV (TxPi))}i∈[1,row])
τV
↪−−→ P .

6) Add (id,FS , TP , TV , n,TxG) to ΦV .

Prover P

7) Upon (open-req,id, [outcomei]i∈[1,r], TP , TV , n,
{inputP}, {inputV},TxG, σV (TxG), {(TxTi,TxFi,TxPi,

σV (TxFi), σV (TxPi))}i∈[1,row])
τP←−↩ V .

8) Perform checks of protocol Setup phase, steps 1a through
1h. If one or more fail, go idle.

9) Verify that (TxG, {(TxTi,TxFi,TxPi)}i∈[1,row]) is the result
of genTxsFromF(α,FS , [outcomei]i∈[1,r], TP , TV , cp, n,
{inputs}). If not, go idle.

10) For each entry of the set
{(TxTi,TxFi,TxPi, σV (TxFi), σV (TxPi))}i∈[1,row],
check that σV (TxFi) and σV (TxPi) are valid signatures of
V for TxFi and TxPi, respectively.

11) Verify that σV (TxG) is a valid signature of V for TxG.
12) (id,FS , [outcomei]i∈[1,r], TP , TV , n, {inputP}, {inputV})

τP
↪−→ Z .

13) Upon (id)
τP←−↩ Z , sign TxG yielding σP (TxG).

14) Send a message “post” for transaction TxG with σP (TxG)
and σV (TxG) as witnesses to functionality LD

15) If it appears on the ledger of LD at round τP1 ≤
τP + 1 + ∆D , add (id,FS , TP , TV , n,TxG, {(TxTi,TxFi,
TxPiσV (TxFi), σV (TxPi))}i∈[1,row]) in ΦP .

Verify & Commit on LD: P (in every round τ )

For every (id,FS , TP , TV , n,TxG, {(TxTi,TxFi,
TxPi, σV (TxFi), σV (TxPi))}i∈[1,row]) in ΦP ,
execute postTxsFP(FS , TP , n,TxG, {(TxTi,TxFi,
TxPi, σV (TxFi), σV (TxPi))}i∈[1,row]).

Verify & Commit on LD: V (in every round τ )

For every (id,FS , TP , TV , n,TxG) in ΦV , execute
postTxsFV(θP , θV ,FS , cp, n, T ).

Appendix B.
Security Proof

In this section, we prove Theorems 1 and 2. We provide
the code for the ideal world adversary, the simulator, S. The
main challenge is for the simulator to provide a simulated
transcript that is computationally indistinguishable for the
environment Z from the transcript generated by the real pro-
tocol execution. We remark that as with the protocol, there is
a single simulator for both FW−Glimpse and FS−Glimpse,
and the difference comes from the assumptions we show
below. The following properties refer to Definitions 4 to 8
in Appendix A.2.
• Necessity of genP being T -sound (for Theorems 1

and 2). Without this property, the environment can simply
forge a proof for Tx with non-negligible probability before
T expires, without Tx being on LS . Using this forged
proof, they can proceed violate weak atomicity, e.g., for
example by posting transaction TxT even though the
corresponding transaction Tx is not on LS . More formally,
this can be shown by a trivial reduction: Assume weak
atomicity does not hold, we can use the witness in LD

to extract the proof before T , even though there is no
corresponding Tx on LS . We discuss in Section 5.1 under
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which conditions the proof generation function “Construct
Pn
i ” defined in Figure 6 is T -sound.

• Necessity of strictly randomized input (for Theorems 1
and 2). As explained in Appendix A.2 and Section 3.3,
without this property the environment has more time than
the time from the protocol start until the T . Effectively,
with more time than T the environment can potentially
forge a proof with non-negligible probability, which leads
to similar problems than with T -soundness violations.

• Necessity of parties having direct access to LS and
LD (for Theorem 2). Obviously, without direct access to
LD parties cannot post their transaction to enforce their
outcome. However, they also need direct access to LS , in
order to identify if transactions have been posted and to
query the necessary information to generate a proof P .

• Necessity of genP being complete (for Theorem 2).
Similarly, we require genP to be complete, otherwise,
there might be a case where even though parties have
access to the information on LS and a transaction Tx has
appeared there, they cannot construct a proof.

• Necessity of parties exhibiting liveness (for Theorem 2).
To achieve strong atomicity, we require parties to exhibit
liveness. Indeed, if parties do not post the corresponding
transactions on LD according to what was posted on LS ,
and instead go idle, strong atomicity does not hold. How-
ever, as we already argued, every enforceable outcome on
LD is non-negative for both P and V , so parties who are
incentivized to always enforce their correct balance rather
than not posting anything.

On a high level, the simulator’s job is to keep track of the
transactions and witnesses necessary to post the according
transactions at the correct moment, which ensures that the
execution transcript is the same as in the real world. More
formally, the code for the simulator follows.

Simulator for Setup phase

a) Case P is honest, V dishonest
1) Upon V sending (open-req,id, [outcomei]i∈[1,r], TP , TV ,

n, {inputP}, {inputV},TxG, σV (TxG),

{(TxTi,TxFi,TxPi, σV (TxFi), σV (TxPi))}i∈[1,row])
τV
↪−−→

P , send (OK,id, P, [outcomei]i∈[1,r], TP , TV , n, {inputP},
{inputV})

τV
↪−−→ FGlimpse, If not, go idle.

2) For each entry of the set
{(TxTi,TxFi,TxPi, σV (TxFi), σV (TxPi))}i∈[1,row],
check that σV (TxFi) and σV (TxPi) are valid signatures of
V for TxFi and TxPi, respectively.

3) Verify that σV (TxG) is a valid signature of V for TxG.
4) Upon (id)

τP←−↩ P , sign TxG on P ’s behalf yielding
σP (TxG).

5) Send a message “post” for transaction TxG with σP (TxG)
and σV (TxG) as witnesses to functionality LD

6) If it appears on the ledger of LD at round τP1 ≤ τP + 1 +
∆D , let Φ(P ) := (id,FS , TP , TV , n,TxG, {(TxTi,TxFi,
TxPiσV (TxFi), σV (TxPi))}i∈[1,row]).

b) Case P is dishonest, V honest

1) Upon V sending (SETUP,id,FS , P, [outcomei]i∈[1,r], TP ,

TV , n, {inputP}, {inputV})
τV
↪−−→ FGlimpse, perform checks

of protocol Setup phase, steps 1a through 1h. If one or more
fail, go idle.

2) (TxG, {(TxTi,TxFi,TxPi)}i∈[1,row]) :=
genTxsFromF(α,FS , [outcomei]i∈[1,r], TP , TV , cp, n,
{inputs})

3) Sign each transaction TxFi and TxPi in
{(TxTi,TxFi,TxPi)}i∈[1,row] on behalf of V and
append the signatures to each tuple yielding a set
{(TxTi,TxFi,TxPi, σV (TxFi), σV (TxPi))}i∈[1,row]

4) Sign TxG yielding σV (TxG)
5) Send (open-req,id, [outcomei]i∈[1,r], TP , TV , n,
{inputP}, {inputV},TxG, σV (TxG),
{(TxTi,TxFi,TxPi, σV (TxFi), σV (TxPi))}i∈[1,row])
τV
↪−−→ P .

6) Let Φ(V ) := (id,FS , TP , TV , n,TxG).

c) Case P is honest, V honest

1) Upon V sending (OK,id, P, [outcomei]i∈[1,r], TP , TV , n,

{inputP}, {inputV})
τV
↪−−→ FGlimpse, perform checks of pro-

tocol Setup phase, steps 1a through 1h. If one or more fail,
go idle.

2) (TxG, {(TxTi,TxFi,TxPi)}i∈[1,row]) :=
genTxsFromF(α,FS , [outcomei]i∈[1,r], TP , TV , cp, n,
{inputs})

3) Sign each transaction TxFi and TxPi in
{(TxTi,TxFi,TxPi)}i∈[1,row] on behalf of V and
append the signatures to each tuple yielding a set
{(TxTi,TxFi,TxPi, σV (TxFi), σV (TxPi))}i∈[1,row]

4) Sign TxG on behalf of V yielding σV (TxG).
5) Let Φ(V ) := (id,FS , TP , TV , n,TxG).
6) Sign TxG on behalf of P yielding σP (TxG).
7) Send a message “post” for transaction TxG with σP (TxG)

and σV (TxG) as witnesses to functionality LD
8) If it appears on the ledger of LD at round τP1 ≤ τP + 1 +

∆D , let Φ(P ) := (id,FS , TP , TV , n,TxG, {(TxTi,TxFi,
TxPiσV (TxFi), σV (TxPi))}i∈[1,row]).

Simulator for Verify & Commit on LD: P phase

P is honest
For every (key, value) pair P , (id,FS , TP , TV , n,TxG,

{(TxTi,TxFi,TxPi, σV (TxFi), σV (TxPi))}i∈[1,row]) in
Φ, execute postTxsFP(FS , TP , n,TxG, {(TxTi,TxFi,
TxPi, σV (TxFi), σV (TxPi))}i∈[1,row]) on behalf of P .

Simulator for Verify & Commit on LD: V phase

P is honest
For every (key, value) pair V , (id,FS , TP , TV , n,TxG) in

Φ, execute postTxsFV(θP , θV ,FS , cp, n, T ) on behalf of V .

Appendix C.
DNF Formulas with Glimpse

Glimpse can efficiently encode Disjunctive Normal
Forms (DNFs) over descriptions (Figure 2) and use them to
encode complex synchronization patterns between a source
ledger LS and a destination ledger LD. DNFs express
truth tables and logical formulas in terms of disjunctions
of conjunctions of one or more descriptions (literals).

Let us consider two oracles O1 and O2 operating on
LS (they could also be on different ledgers), and regularly
posting information about a real-world event. On LD, prover
P and verifier V , e.g., bet on a specific outcome of the event
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by locking α
2 coins each in the Glimpse transaction TxG and

condition the spendability of the coins to a specific outcome
being attested by at least one of the two oracles. If either
O1 or O2 attests the desired outcome for the event, P can
get the α coins by providing a valid proof Pn; otherwise,
if the coins are still unspent V can claim the coins after T .
We recall that the selected outcome for the event is defined
within the descriptions, and hard coded within TxG. We let
Desc1 and Desc2 be descriptions for O1 and O2, respec-
tively, and we let the to-be-verified DNF formula be FS =
(Desc1 ∧ ¬Desc2) ∨ (¬Desc1 ∧ Desc2) ∨ (Desc1 ∧ Desc2).
The Glimpse protocol proceeds as follows.

Setup. Let θP and θV be unspent outputs on LD controlled
by P and V respectively, holding α

2 coins each. These are
the funds P and V want to lock in Glimpse. We let α :=
θP .coins + θV .coins, and we denote with ζP and ζV the
inputs that θP and θV point to.

The parties construct [TxG] :=
(2, [ζP , ζV ], 3, [θα, θϵ1 , θϵ2 ]), such that the output
θα := (α, (MuSig(pkP , pkV )) ∨ (OneSig(pkV ) ∧ T3))
holds the Glimpse value, and the outputs θϵ1 :=
(ϵ, (scriptG(Desc1, T1, TS , n1, P )) ∨ MuSig(pkP , pkV ))
and θϵ2 := (ϵ, (scriptG(Desc2, T1, TS , n2, P )) ∨
MuSig(pkP , pkV )) hold the Glimpse scripts.

We note that now TxG has as many additional outputs
as the number of literals in the DNF (θϵ1 , θϵ2), each one
holding a negligible amount ϵ (e.g., 1 satoshi). Conversely
from the single transaction case, we now require P to also
plug in randomness in the descriptions. Then, on LD, for
each disjunctive term in FS , parties need to:
• Create a transaction TxT that allows P to prove inclusion

for the transactions published by the oracles. To do so,
TxT takes as inputs the θϵi for the non-negated literals,
and has a single output θ := (ϵ,OneSig(pkP )).

• Create a transaction TxF that protects V from P falsely
claiming some transaction was not published. TxF takes
as inputs the θϵi outputs of the negated literals, and has
as many outputs as the number of inputs. Outputs are
of the form θi := (ϵ, (scriptG(Desci, T2, TS , ni, (P, V )).
TxF enables V to react to P ’s false claim by submitting a
proof within T2 thereby proving i-th transaction inclusion
and spending θi. In some cases TxF is not needed, as for
(Desc1 ∧ Desc2).

• Create a transaction TxP that takes as inputs the output
of TxT, the θi outputs of TxF, and the output θα. If V
has not spent any TxF output publishing TxF, TxP allows
P to spend the funds in TxG.

Then, parties create a unique transaction TxV
that spends the output θα. At this point, P
signs TxV and [TxF]i=1,2 and sends message
(ζP , ζV ,Desc1,Desc2, T1, T2, TS , n1, n2, α, scriptG, [TxG],
([TxT], [TxF], [TxP])i=1,2, [TxV], σP ([TxV]), σP ([TxF])i=1,2)
to V . Upon receiving the message, if V is interested in
opening a Glimpse instance with P at the given parameters,
after checking correctness of the parameters and well-
formedness of transactions, V signs TxG, TxF and TxPi=1,2,
and sends the signatures to P .

Figure C.1: Set (TxG, (TxT,TxF,TxP)i,TxV) of transac-
tions to be constructed for verifying a DNF with two literals.
The arrows refer to the term i = (Desc1 ∧ ¬Desc2) of FS .

Upon receiving (σV ([TxG]), σV ([TxF]), σV ([TxP])i=1,2)
from V , P checks signatures validity. If valid, P publishes
TxG on LD, while both parties locally store the tuples
(TxT,TxF,TxP)i and the signatures.

Commit on LS . The oracles publish transactions attesting
the outcome of the real-world event.

Verify & Commit on LD. P and V monitor LS (or
make use of a trusted relayer) checking for transactions
matching descriptions Desc1 and Desc2 being published. If
at least one of such transactions are published, P constructs
the proofs and publishes the transactions TxTi and TxFi
corresponding to the event realization. V checks whether
the set of transactions published by P corresponds to the
correct term of FS realized by the oracles. If V detects any
misbehavior from P , V can react within T2 by constructing
a proof and spending one of TxF’s outputs. In this way,
V spends an input of TxPi, thereby invalidating TxPi. V
can consequently publish TxV, redeeming the coins after
T3. If V does not spend any of TxF’s outputs, P will get
the funds after T2 via TxPi. If P does not publish any set
of transactions, V can similarly redeem the α coins after
T3. We note that T1 < T2 < T3. Figure C.1 shows an
example of transaction set (TxG, (TxT,TxF,TxP)i),TxV for
i = (Desc1 ∧ ¬Desc2) of FS .

Remarks. We stress that parties can set a specific fund
distribution for multiple different outcomes for P . Contrarily
to what we have for a simple 1-transaction verification,
this optimized Glimpse for DNF verification requires V to
construct and submit a proof Pn in the pessimistic case,
where P is cheating. Therefore, for Glimpse, V needs to
interact with R to obtain LS’s data (or to run a full node).

In general, although increasing the off-chain communi-
cation overhead, this construction results in up to three on-
chain transactions in the optimistic case, regardless of the
complexity of the DNF to verify.
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Figure D.1: Merkle
tree of four
transactions. The
two elements MP1
and MP2 we need
for reconstructing
the Merkle root are
marked, along with
Tx.

Appendix D.
Glimpse Script example for Bitcoin-like chains

We present examples for the Glimpse locking and un-
locking scripts used in Glimpse for Bitcoin-based source
and destination chains. In particular, we construct the script
for Liquid, where we have the Taproot optimization and
the necessary opcodes for concatenating strings as well as
comparing hashes. Finally, we show how to cope with the
lack of Taproot by discussing Glimpse for Bitcoin Cash.

For Liquid, we have the following setting: Taproot is
enabled (granting access to the MAST functionality), the
opcodes OP_CAT as well as OP_SUBSTR are active. We
point the reader to [35], [36] for a high-level description of
how locking and unlocking scripts work and for the Bitcoin-
like chains transaction format.
Example. To ease readability, we consider the simple case
where P publishes TxP with witness Pn=0 on Liquid as
a result of Tx being published on Bitcoin. The TxG in
Liquid hard codes the description Desc = (1, [(x1)], 1, [(θ)])
having a variable input. Assume Tx being part of block B,
accommodates 4 transactions in total, as in Figure D.1.
Scripts. The Bitcoin scripting language is stack-based
and only comprises two types of values: opcodes, i.e., the
instructions, and data, e.g., public keys, signatures, hashes.
It processes instructions sequentially, meaning the locking
and unlocking scripts execute one after the other. If the
whole computation ultimately yields true, the validation
is successful. We recall from Section 2.1 that an unspent
output locks some funds employing a locking script and,
to spend such funds, one needs to provide some witness as
unlocking script. We consider TxP solely spending TxG’s
output θG. We recall Bitcoin-like chains process instructions
sequentially: For TxP to spend θG, the locking script of θG
is executed after the witness for TxP. If the computation
ultimately yields true, the validation is successful.

We denote data by using angle brackets, i.e., <data>,
and to ease readability we implicitly assume that data to
be pushed on the stack uses the OP_PUSHDATA opcode
and followed by the data byte-length. We now provide the
witness and locking script for the simple case described
above, along with a high-level description. As an amusing
exercise, we let the reader verify the whole computation
correctness step by step.
Unlocking Script (Witness). In line 1 of Figure D.2, we
have P and V signatures over TxP necessary to verify
the 2-2 multi-signature spending condition. In line 2, we

1 <σP> <σV >
2 <HeaderSuffix> <HeaderPrefix>
3 <MP2> <MP1>
4 <txid> <outid>

Figure D.2: Example of witness containing the realization
for the x1 input of Desc (to be read from bottom to top and
from left to right). The witness for Glimpse is the proof
itself.

have the block header suffix and prefix (HeaderSuffix
, HeaderPrefix) which, along with the to-be-computed
Merkle root, give the block header. In line 3, we have the
Merkle proof elements that, along with the hash of Tx,
allow to reconstruct the Merkle root for the transactions
in B. Finally, line 4 shows the realization of x1 (txid and
outid).
Locking Script. In line 1 and 2, the script ensures <

1 OP_SIZE <4> OP_EQUALVERIFY
2 <1> OP_PICK OP_SIZE <32> OP_EQUALVERIFY

OP_DROP
3 OP_CAT <txSuffix> OP_CAT <txPrefix>

OP_SWAP OP_CAT OP_HASH256
4 OP_CAT OP_HASH256 OP_SWAP OP_CAT

OP_HASH256
5 OP_CAT OP_SWAP OP_CAT OP_HASH256
6 <target> OP_SUBSTR <4> OP_ROT OP_ROT

OP_SUBSTR <4> OP_ROT OP_ROT OP_LESSTHAN
OP_VERIFY OP_SWAP

7 OP_SUBSTR <4> OP_ROT OP_ROT OP_SUBSTR
<4> OP_ROT OP_ROT OP_LESSTHAN OP_VERIFY
OP_SWAP

8 OP_SUBSTR <4> OP_ROT OP_ROT OP_SUBSTR
<4> OP_ROT OP_ROT OP_LESSTHAN OP_VERIFY
OP_SWAP

9 OP_SUBSTR <4> OP_ROT OP_ROT OP_SUBSTR
<4> OP_ROT OP_ROT OP_LESSTHAN OP_VERIFY
OP_SWAP

10 OP_SUBSTR <4> OP_ROT OP_ROT OP_SUBSTR
<4> OP_ROT OP_ROT OP_LESSTHAN OP_VERIFY
OP_SWAP

11 OP_SUBSTR <4> OP_ROT OP_ROT OP_SUBSTR
<4> OP_ROT OP_ROT OP_LESSTHAN OP_VERIFY
OP_SWAP

12 OP_SUBSTR <4> OP_ROT OP_ROT OP_SUBSTR
<4> OP_ROT OP_ROT OP_LESSTHAN OP_VERIFY
OP_SWAP

13 OP_LESSTHAN OP_VERIFY
14 <pkV > OP_CHECKSIG <pkP> OP_CHECKSIGADD

<2> OP_NUMEQUAL

Figure D.3: Example of locking script contained in one
branch of the MAST.

txid> and <outid> have the expected byte-length, i.e.,
<outid> of 4-bytes and <txid> of 32-bytes. This step is
necessary as Glimpse needs to verify the input and output
strings of the witness are not malicious: concretely, the
strings have to be interpreted by the nodes as intended at

22



the beginning, not changing the validation process, e.g., by
injecting malicious instructions or data. For this, Glimpse
first verifies the number of strings and their length: this is
possible because, even if they are a priori undefined, they
are of known number and size. In line 3, the transaction
body is reconstructed by concatenating <txid> and <outid
> with the Desc (<txSuffix>, <txPrefix>) - we stress the
description must be hard-coded in the locking script so that
no malicious party can tamper with it or change it during the
lifetime of Glimpse. The transaction body is finally hashed.
In line 4, the transaction Merkle root MR of block B is
computed using txid, <MP2>, and <MP1>. In line 5, B’s
header is reconstructed by concatenating <HeaderPrefix
>, the Merkle root, and <HeaderSuffix>, and it is finally
hashed. From line 6 to 13 we check the header hash is
smaller than the target (<target>): since there is no opcode
for hash comparison, we essentially split (OP_SUBSTR) the
two hashes in 4-bytes shares and compare them all. Finally,
in line 14, we check validity of the signatures of P and V ,
satisfying the 2-2 multi-signature condition.

D.1. Taproot: Merkelized Abstract Syntax Tree
(MAST)

Real-world use cases are not as simple as the example
we just presented, as the number of transactions per block
varies and is unpredictable a priori. The position of Tx
within the block is also unpredictable. Since there are no
loops in Bitcoin script, we need to explicitly provide a script
for each possible size of the the merkle tree in the block
header and each position of the to-be-verified transaction
in the merkle tree. As we see below, we can use MAST
to efficiently encode this size blow-up in a constant size
output, but estimating the number of opcodes in total is
more difficult.
MAST. Luckily, in some chains as Bitcoin, Litecoin,
and Liquid, Taproot comes to the rescue by enabling the
Merkelized Abstract Syntax Tree (MAST) functionality, also
known as script path spending or TapTree. On a high level,
a MAST is a Merkle tree whose leaves are scripts allowing
a user to commit not to a single spending script but to a
Merkle tree of scripts or, concretely, to a Merkle root. The
user chooses which script to execute at spending time, when
the inclusion of the chosen script within the committed tree
has to be proven revealing the public Taproot internal key,
the Merkle proof to the Taproot leaf, and the to-be-executed
script in the leaf. For Glimpse the parties can thus construct
a MAST whose leaves are the scripts for all the possible
realizations of number of transactions and positions of the
to-be-verified transaction in of the block.

Number of Transactions in a Block: Say, the number of
transactions in a Bitcoin block is at most 4000 (the average
is closer to 2000), so we can assume to have an upper limit
of 212 = 4096 transactions in a block. By design, Bitcoin
Merkle trees have an even number of elements on each level,
as every last element in an odd position gets duplicated. This
affects the number of elements in the Merkle proof, such
that if one has k leaves, with 2n ≤ k ≤ 2n+1, the number

of elements will be the same as for a tree of 2n+1 leaves.
It follows that from 20 to 212 transactions in a block, we
have to encode the Merkle root reconstruction for only 13
different trees.

Position of the Transaction in the Block: Assuming∑12
i=0 2

i = 8191 different leaves in the tree, we obtain
8191 scripts in the MAST; however, we consider 8192
different scripts, as we also include spending condition for
the verifier. Taproot limits set to 2128 the maximum number
of scripts allowed within the MAST [9]. Furthermore, the
largest script to reconstruct the Merkle root is when the
transaction Merkle tree has 212 leaves, resulting in 36 op-
codes. Considering that the number of opcodes for all the
other checks and validations is not larger than 100 opcodes,
we are well within the Taproot limits, where 201 is the
maximum number of opcodes allowed per script [37].
Without MAST. If the MAST feature is unavailable on
the destination blockchain, as is the case for Bitcoin Cash,
Glimpse can still be encoded, although with a more complex
script. Indeed, one could unroll the MAST tree and encode
the branches with nested if-else conditions. Of course,
this leads to a large script whose number of opcodes is given
by

∑log2(M)
l=0 2l · (3l + 3) + 1, where M is the maximum

number of transactions in a block. Concretely,
∑log2(M)

l=0 2l

gives the total number of scripts necessary to consider the
different possible positions of the transaction within the tree,
while

∑log2(M)
l=0 (3l + 3) + 1 is the maximum number of

opcodes per script (upper bound). For instance, being 550
transactions/hour the throughput of Bitcoin Cash, we reason-
ably assume M = 1000: this results in an upper bound of
136k opcodes, each opcode size being of 1 bytes. While
this is by far within the transaction size limits, Bitcoin-
like chains limit the maximum number of opcodes within a
transaction (MAX_OPS_PER_SCRIPT is 201 Bitcoin Cash
and 500 in Bitcoin SV). Missing Taproot, one can use these
chains as Glimpse destination chains only if this constraint
is removed.
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