Asymptotically Optimal Message Dissemination
with Applications to Blockchains

Chen-Da Liu-Zhang*!, Christian Matt?, and Sgren Eller Thomsen'?

'HSLU and Web3 Foundation, Switzerland
chen-da.liuzhang@hslu.ch
2Concordium, Zurich, Switzerland
cm@concordium. com
3The Alexandra Institute, Aarhus, Denmark
soeren.eller@alexandra.dk

October 11, 2023

Abstract

Messages in large-scale networks such as blockchain systems are typically disseminated
using flooding protocols, in which parties send the message to a random set of peers until
it reaches all parties. Optimizing the communication complexity of such protocols and, in
particular, the per-party communication complexity is of primary interest since nodes in
a network are often subject to bandwidth constraints. Previous flooding protocols incur
a per-party communication complexity of Q(I-~y~! - (log(n) +)) bits to disseminate an
[-bit message among n parties with security parameter x when it is guaranteed that a
fraction of the parties remain honest. In this work, we present the first flooding protocols
with a per-party communication complexity of O(l - y~1) bits. We further show that this is
asymptotically optimal and that our protocols can be instantiated provably securely in the
usual setting for proof-of-stake blockchains.

To demonstrate that one of our new protocols is not only asymptotically optimal but also
practical, we perform several probabilistic simulations to estimate the concrete complexity
for given parameters. Our simulations show that our protocol significantly improves the
per-party communication complexity over the state-of-the-art for practical parameters. Hence,
for given bandwidth constraints, our results allow to, e.g., increase the block size, improving
the overall throughput of a blockchain.

*The work was partly done while the author was at NTT Research.
fThe work was partly done while the author was at Aarhus University.

mailto:chendaliu@gmail.com
chen-da.liuzhang@hslu.ch
mailto:cm@concordium.com
cm@concordium.com
mailto:soeren.eller@alexandra.dk
soeren.eller@alexandra.dk

Contents

1 Introduction
1.1 Contributions e
1.2 Technical Overview e
1.3 Related Work e

2 Model and Preliminaries
2.1 Parties, Adversary and Communication Network,
2.2 Primitives e e e e e e e e e
2.3 Flooding oL
2.4 Additional Notation
2.5 Bounds e e e e e

3 Per-Party Communication Lower Bound
4 Warm Up: Optimal Flooding With Constant Diameter and Linear Neighbors

5 Optimal Flooding With Logarithmic Neighborhood and Diameter
5.1 Weak Flooding L
5.2 Analysisof FFlood
5.3 Flooding Amplification Lo
5.4 Communication Complexity of the Combined Protocol

6 Flooding in the Weighted Setting

7 Security in the UC Model
7.1 The UC Model e
7.2 Flooding as a UC Functionality,
7.3 Strong Flooding Implies UC Flooding

8 Practicality of ECFlood
8.1 Setup for Simulations Lo
8.2 Estimating Parameters for FFlood 0o
8.3 Estimating Parameters for ECFlood
8.4 Comparison to State-of-the-Art
8.5 Computational Overhead of using a WSCAS and a ECCS

9 Conclusion

A Channels in UC

11
12
12
13
14
14

14

17
17
18
24
27

28

30
30
31
31

32
33
33
35
37
39

39

43

1 Introduction

Current blockchain protocols rely on the availability of a multicast network that allows any party
to communicate with all other parties in the network, and therefore the security and efficiency
of the blockchain protocol are heavily influenced by its underlying multicast network.

In typical blockchain protocols, including Bitcoin [Nak08] and Ethereum [WT14], such
multicast networks are efficiently implemented via a flooding protocol, which lets the sender
select a set of neighbors randomly and forward the message to these parties, who will forward
the messages to another randomly chosen set of neighbors and so on. For an [-bit message
and n parties of which only 7 - n are guaranteed to be honest, current provably secure flooding
protocols that follows this design [MNT22, LMM™*22], incur Q(I - v~ - (log(n) + &)) bits of
per-party communication to ensure that the message is delivered to all parties with a probability
overwhelming in k. For practical blockchain systems where messages contain large blocks
(e.g., around 1MB), the incurred communication constitutes one of the main bottlenecks. As
a consequence, many practical systems rely on heuristics which guarantees low bandwidth
consumption rather than provable security. In fact, several works have shown such heuristic
approaches to be vulnerable to practical attacks [HKZG15, AZV17, MHG18, TCM*20].

A trivial lower bound for the per-party communication complexity of message dissemination
protocol is that for the message to reach all honest parties, some party must forward at least as
many bits as the length of the message, i.e. the per-party communication must be (7). This
leaves a gap between the lower bounds and what current provably secure flooding protocols
achieve. We bridge this gap by firstly proving that, in fact, a per-party communication complexity
of Q(I - y~1) is necessary, and secondly by providing two highly robust flooding protocols with a
per-party communication that matches the lower bound. Our protocols require no setup and are
practically efficient even for a small number of parties and message length. Moreover, we show
how to extend our protocols to the weighted setting, where each party is assigned a positive
weight of a certain resource (such as stake), and the adversary can corrupt any set of parties by
accumulating any fraction of the total resource. More details follow below.

Model and security definition. We consider flooding protocols that allow any honest party
to deliver their messages to all other parties within a certain time, but do not provide any
guarantees when the sender is corrupted. This seemingly weak primitive suffices in particular
for most blockchain protocols [GKL15, PS17, DGKR18,PS18, CM19, YMR " 19].

Our results are secure for a fixed set of parties connected by point-to-point channels, and
where messages sent by honest parties are eventually delivered (i.e., asynchronous channels). To
compute the concrete delivery time of the overall flooding protocol, we make use of an upper
bound on the channel delays.

For simplicity, our protocols are written with respect to a static adversary that can byzantinely
corrupt and control any fraction 1 — « (this can be, e.g., 99.9%) of the parties at the onset
of the protocol. However, the protocols can be modified to the setting of delayed adaptive
adversaries, where it takes a certain time from when an adversary decides to corrupt a party
until the adversary gains control of this party [MNT22], by regularly letting the parties choose a
fresh set of neighbors.

Terminology. We use the term flooding protocol to describe a protocol where parties can
input a message, and as a result, all other parties will receive the message. We use the term
diameter of a flooding protocol to describe the maximum number of point-to-point channels
some message must pass through before delivery is guaranteed to all parties. We use the term

per-party communication to describe the maximum number of bits any honest party must send
in a flooding protocol to deliver a particular message.

1.1 Contributions

Per-party communication lower bound. First, we present a new lower bound that shows
that any flooding protocol that ensures delivery of a message of length [to all honest parties,
assuming only ~y of them remain honest, must have a per-party communication complexity of at
least Q(I-y~!) bits. Concretely, we show that there exists an adversarial strategy obeying the
corruption bound that forces the initial sender of the message to send Q(I - v~!) bits if delivery
must be ensured with an overwhelming probability against this adversary.

Warm up: Optimal flooding with a linear neighborhood and constant diameter. We
then present a simple protocol ECCast!, that requires each party to send messages to all other
parties, but it achieves a constant diameter of just 2 with the asymptotically optimal per-party
communication complexity. The protocol works by letting the sender of a message divide their
message into n (the number of parties) different shares using an erasure-correcting code, and
then send a unique share to each party. When a party receives such a share, they forward it to
all other parties. Once a party receives sufficiently many shares, they are able to reconstruct the
original message.

Theorem 1 (ECCast (informal)). For n parties, ECCast ensures flooding with asymptotically
optimal per-party communication, a diameter of 2, and an overwhelming success probability in k,
for messages of length at least Q(n - (log(n) + k)).

Even though this protocol requires each party to send messages to all other parties, we
believe that it has wide applications as it allows one to “balance” the incurred communication
among parties, at the cost of doubling the diameter (over the naive protocol in which the sender
directly sends the whole message to all parties). In fact, independently and concurrently with
our work, Kaklamanis, Yang and Alizadeh [KYA22] use such techniques to speed up the Hotstuff
consensus protocol [YMR119)].

Optimal flooding with a logarithmic neighborhood and diameter. We then present
the protocol ECFlood,? which requires each party to connect to only O(y~! - (log(n) + x)) other
parties and use only O(l - y~1) of per-party communication.

At a high level, the protocol works by letting the sender of a message divide their message
into a number of shares u. Each of these shares will then be sent to a uniformly random subset
of parties of size d. When a party receives such a share, they again forward it to a random subset
of parties with size d. Once a party receives sufficiently many shares, they can reconstruct the
original message.

Theorem 2 (ECFlood (informal)). For n parties and security parameter k, there are pu =
O(log(n) + k) and d = O(y~ 1) such that ECFlood ensures asymptotically optimal flooding with a
logarithmic diameter and an overwhelming success probability in Kk, for messages of length at
least Q((log(n) + k) - (log(log(n)) +)).

Note that ECFlood shaves a factor of log(n) + & the per-party communication over previous
best-known constructions. This is done while keeping both the size of the neighborhood and
the diameter at the same level as these previously best-known constructions. We further note

LECCast from the use of Erasure-Correcting codes and each party multicasting messages to all parties.
2ECFlood from the use of Erasure-Correcting codes in the flooding protocol.

Table 1: Comparison of flooding for messages of length [among n parties where a v fraction of
the parties is guaranteed to remain honest. We consider the maximum number of neighbors, per-
party communication, and maximum distance between sender and any honest party (referenced
as diameter). For ECFlood to achieve this asymptotic complexity the length of the message must
be I = Q((logn + k)(loglogn + k)) and for ECCast it must be [= Q(n - (log(n) + k)).

Protocol Max. neighbors Per-party comm. Diameter
[MNT22,LMM*22] O(y~!- (log(n) +x)) O®-v~1-(log(n) +)) O(log(n))
ECFlood Oyt (log(n) + k)) ol -~y~h O(log(n))
Naive n—1 l-(n—1) 1
ECCast n—1 o(l-v1 2

that ECFlood requires no trusted setup but merely relies on an erasure-correcting code and
a weak cryptographic accumulation scheme, which can be realized efficiently from standard
cryptographic assumptions.

We summarize the properties of ECFlood and ECCast and compare them to other flooding
protocols with similar robustness in Table 1, where the “naive” protocol refers to the protocol
where the sender simply sends the message to all other parties. Note that both protocols
are secure for any message size; we only need sufficiently long messages to achieve optimal
communication complexity since for very short messages, the cryptographic primitives add a
communication overhead.

Concrete efficiency evaluation of ECFlood. While the theoretical analysis of ECFlood
shows that our protocol is asymptotically optimal, we use probabilistic simulations to evaluate
its practical efficiency. We compare this to the efficiency of the only approach known to be
provably-secure against a byzantine adversary — namely to increase the number of parties that
each party forward to make the protocol secure against a byzantine adversary.> The main results
of our simulations are shown in Figure 1. FFlood(k) is the protocol where each party forwards
the message to k parties and the parameter k is increased in order to make the error rate drop.?

In the figure, two configurations of ECFlood are included where each has a neighborhood
of 200 parties. ECFlood(8) is a configuration optimized for redundancy which has a slightly
higher latency than FFlood, whereas ECFlood(20) is a configuration optimized for latency. The
latter configuration has a latency that is as good as the latency of FFlood.It is noteworthy
that while FFlood needs to increase the per-party communication to obtain a constant failure
probability with an increasing number of parties the communication of ECFlood remains constant.
Our simulations also show that for both configurations of ECFlood that once the per-party
communication reaches a small constant factor our protocol virtually eliminates errors whereas
the communication of FFlood needs to be increased linearly in x to obtain an error rate of 277,
Further, to virtually eliminate errors, ECFlood needs a communication redundancy of ~12 (and
~25 for the latency optimized version) whereas FFlood needs a redundancy of > 45. Hence,
we conclude that our protocol is not only asymptotically optimal but offers actual efficiency
advantages over state-of-the-art for practical parameters.

Flooding in the weighted setting. We also consider the setting where parties are publicly
assigned a positive weight and any arbitrarily small fraction of the cumulated total weight

3For a discussion of why other classical approaches fails in the byzantine setting see Section 1.3.
4Further details on the general setup for our simulations can be found in Section 8.

g-1| —m—a—ay —e— FFlood, n = 22
9-5 | i - #- FFlood, n = 213
g 59| -4 FFlood, n = 214
: 22_13 i ~#-- ECFlood(8), n = 212
s po17 | 4 ECFlood(8), n = 213
- 9—21 | ECFlood(8), n = 214
—25 | —— ECFlood(20), n = 212
? - - #- ECFlood(20), n = 213
0 5 10 15 20 25 30 35 40 45 " ECFlood(20), n = 2!

Pr. party communication (MB)

Figure 1: The communication of ECFlood(d) (for d € {8,20} where d is an internal parameter of
the protocol) with a decreasing reconstruction threshold (to lower the error rate), and FFlood(k)
with an increasing k (to lower the error rate). The graphs shows the percentages of the simulated
executions (on the y-axis which is depicted logarithmicaly) where some party (for a different
number of parties n) did not receive the message as a function of the per party communication
of the protocol when the protocol sends out a message with size 1 MB, and the accumulators
used in ECFlood are implemented via. a Merkle-tree with 256 bit hashes. 100000 simulations
of each configuration has been executed for FFlood and for ECFlood. When a point is placed
directly on the x-axis this represents the communication needed to make none of the simulations
fail.

remains under the control of honest parties. This setting immediately fits the setting of Proof-
of-Stake protocols [DGKR18,DPS19, CM19], where the stake is publicly available. There are
also techniques to estimate the relative computing power in the Proof-of-Work setting; we refer
to [LMM™22] for an extended discussion.

We leverage the idea of emulation from [LMM™22] to make a general transformation from
a flooding protocol that is secure, assuming a fraction of the parties behaves honestly, to a
flooding protocol that is secure, assuming that a fraction of publicly assigned weights behaves
honestly. We do so by introducing the protocol Flood2WeightedFlood that reduces the task of
finding a secure flooding protocol among an actual set of parties to a secure flooding protocol
for an emulated set of parties. In more detail, let oy, denote the fraction of total weight assigned
to a party p, let there be n parties in total, and let the total fraction of weight given to honest
parties be given by 7. We observe that by letting each party p emulate [oy, - n| parties, the
fraction of these emulated parties that will behave honestly is lower bounded by 7 - 271 and
there will be at most 2 - n such emulated parties. By instantiating our protocols ECFlood and
ECCast such that they are secure assuming only 5 - 27! of the emulated parties remain honest,
we thereby allow them work in the weighted setting also. This happens while only increasing
the total communication complexity by a factor of at most 4. The per-party communication
will, however, in this case, be proportional to the amount of weight each party is assigned. We
note that in [LMM™22, Corollary 4], it was shown that it is inherent for the weighted setting
that parties with a large fraction of weight must send more messages.

Universal composable security for flooding from delivery guarantees. We prove a
general theorem that states that any flooding protocol that guarantees delivery UC [Can20]
realizes a flooding functionality. To do so we follow the strategy of Matt et al. [MNT22] by
letting the simulator simulate the actual protocol within itself (based on the non-secret inputs of

all parties) and adjust the ideal functionality for message delivery to deliver messages according
to the simulated actual protocol. Thereby, the security of the protocol is reduced to showing
that no messages will be delivered late w.r.t. the delivery guarantee. Our protocols, therefore,
benefit from universal composition properties, but for simplicity of presentation, we present
them without the overhead of the UC model and focus only on the theorems ensuring that no
messages are delivered late.

1.2 Technical Overview

As discussed above, prior works that let each party forward a message to a random subset of
neighbors (see, e.g., [MNT22, LMM™22]) need each party to connect to Q(y~!- (log(n) + &))
parties to ensure that the message is propagated to all parties with overwhelming probability
in the security parameter k. Intuitively, the term k is needed to make the probability that an
individual party has no honest neighbors negligible. Further, to ensure that the probability that
this happens for any party is negligible, the additional log(n) neighbors are needed. However,
for each neighbor there is only a v chance that this neighbor is honest which is why the y~!
factor is necessary.

In fact, it has been shown [KMGO03, Section 3.2, p. 6] that the probability that there is an
isolated honest party for n — oo when d =y~ - (log(n - v) + ¢+ o(1)) for some constant c is
given by 1 — e~¢". It is therefore not possible to decrease the number of needed neighbors for
such flooding protocols significantly. In order to further improve the communication complexity,
we focus instead on investigating how much we can reduce the number of bits sent by each party.

Per-party communication lower bound. We sketch our lower bound, stating that de-
liverying an I-bit message requires per-party communication (I - y~!) bits, where v denotes
the fraction of honest parties. To show this, we describe an explicit attack that an adversary
corrupting (1 —+) fraction of the parties can do to ensure that the sender needs to send Q(l-~y~1)
bits with overwhelming probability.

The attack works as follows. Divide the set of parties into y~! subsets Cf, ... , Cy—1 of size
~ -n parties each. The adversary chooses an index ¢ uniformly at random and corrupts all parties
except the sender s and the parties in C;. Each corrupted party in any other set C; # C; ignores
all messages that do not come from the sender s or parties in the same set C;. And moreover,
each corrupted party also drops all messages that are sent from C; to any other outside party
P ¢ C;U{s).

Intuitively, from the point of view of the honest sender s, it is impossible to identify which
C; is honest, and therefore, each of these sets needs to receive full information about the
whole message. Moreover, since effectively each set only receives information from the sender s
(messages between different sets are ignored or dropped), then the sender needs to transmit the
full message to each of these sets, and the total incurred communication is at least Q(I -y~ 1).

Optimal per-party communication upper bound. From the feasibility side, we deviate
from previous approaches and design our flooding protocol in two steps. First, we consider
a so-called weak flooding protocol that ensures that for every fixed party, there is a constant
probability, that this party receives the message within O(logn) steps. Secondly, we introduce
a compiler that lifts a weak flooding protocol to a (strong) flooding protocol that guarantees
delivery to all parties with overwhelming probability.

A weak flooding protocol. Our candidate for a weak flooding protocol is the protocol
FFlood(d) in which every party chooses d random neighbors and forwards each message to those.

As mentioned, [KMGO03| showed that for similar protocols, the probability that there is an
isolated party for n — co when d = y~1 - (log(n - ¥) + ¢+ o(1)) for some constant c is given by
1 — e~¢°. This means that one needs to set d = Q(y~! -log(n - 7)) to have a constant success
probability for all parties to receive the message. As a consequence, the expected size of each
neighborhood would be Q(y~! -log(n - 7)), which is too much communication. To overcome this,
a novel analysis of the protocol is required.

Obtaining a constant bound on the success probability. Similarly to [LMM™*22], we first
lower bound the probability of delivering a message to a specific party timely by the probability
that this party is reachable within O(logn) steps from the sender in the communication graph
produced by letting only the honest parties forward the message. We then observe that it is
sufficient to prove that for an honest sender of a message, there is a constant probability to
reach a constant fraction of all honest parties in O(logn) steps. Since the flooding is completely
random, this then implies that any fixed party receives the message with constant probability
within O(logn) steps.

To analyze how many honest parties can be reached in O(logn) steps, we look at a process
where in the first step, the sender sends the message to d random neighbors, and at the ith step,
we consider all parties at distance ¢ — 1 from the sender each sending the message to d random
neighbors. Within each step, we look at the parties in some arbitrary order and consider a party
successful, if the d random neighbors of that party contain at least two honest parties that have
not been reached, yet. If enough parties are successful, the number of honest parties reached
so far increases by some constant > 1 fraction in this step, in which case we consider the step
successful. This means after O(logn) successful steps, we can reach a constant fraction of all
honest parties.

We now fix some constant fraction we want to reach. If the targeted constant fraction has
already been reached, we can stop. Otherwise, there are enough unreached honest parties left
such that for appropriately chosen d independent of n, the probability that at least two of
the d neighbors are unreached and honest is at least some positive constant. We note that all
constants and parameters need to be set carefully at the end to obtain the desired constant
success probability. While the precise calculations are somewhat involved, we intuitively need
to set d = O(y~!) because when the number of corrupted parties is doubled, this halves the
probability that a random neighbor is honest, which can be countered by doubling the number
of neighbors.

We next fix some further constant k and look at the first k& steps and the remaining ones
separately. For the first & steps, we can use a simple union bound to conclude that (for carefully
chosen constants) the probability that there exists an unsuccessful party in the process is bounded
by a constant. Hence, we have that all the first k£ steps are successful with constant probability.

It remains to consider the remaining steps. Since there are O(logn) steps left, it is not
sufficient to bound the success probability of each of these steps by a constant. We thus show
that the failure probabilities of the remaining steps decrease as the summands in a geometric
series to bound the overall failure probability by a constant. We have already established a
constant success probability p for each individual party. If there are r parties involved in the
current step, the expected number of newly reached honest parties in this step is 2rp. If we
could apply the Chernoff bound to obtain that the actual number is at most a 1 — § factor away
from 2rp, and thus a constant > 1, except with probability negligible in r, we could conclude
the proof, using that r is increasing in every step under the assumption that previous steps
are successful. Unfortunately, we cannot directly apply the Chernoff bound here because the
success events of the individual parties are not independent: If the first party already reaches
many fresh honest parties, there are less left for the next parties, thereby reducing their success

probabilities.

We overcome this obstacle by considering a modified experiment as follows: Firstly, when a
party reaches more than two fresh honest parties, we only consider two of them as reached and
ignore the additional ones. It is clear that this modification can only decrease the probability
that there are enough fresh parties in the current step. We then modify the experiment further
by always adding two additional parties to the set of parties we consider “not fresh and honest”.
That is, whenever a party is not successful and reaches less than two fresh honest parties, we
add one or two extra parties to that set. We do, however, record that this party was not
successful. Note that this modification does not increase the success probabilities of any party
since removing additional parties from the set of fresh and honest parties can only decrease
the success probability of subsequent parties. In this new experiment, the success probabilities
of the individual parties are now indeed independent and we can use the Chernoff bound as
sketched before to bound the number of successful parties, which concludes the proof.

Flooding amplification. The protocol compiler WeakFlood2Flood splits a message into a
number u of shares using erasure-correcting codes and makes use of a weak flooding protocol
to distribute each of these shares independently. Since the shares are created using erasure-
correcting codes, it is not necessary for each party to receive all shares to reconstruct the original
message. More concretely, consider a reconstruction threshold of 7 = & - u, with constant &.
Using standard erasure-correcting codes (e.g., Reed-Solomon codes), this can be obtained with
a share size of O(l - 771), where [is the length of the original message. To achieve a flooding
protocol, we then need to ensure that each party receives 7 shares.

An apparent attack on such protocol would be for an adversary to try to inject “fake” shares
into the set of shares honest parties try to reconstruct the message from. We prevent this by
using a cryptographic accumulation scheme, to prove that a particular share is part of the
original shares. Such accumulator can be implemented efficiently, e.g., using Merkle trees or
signature schemes.

Flooding amplification security proof. We need to show that for appropriately chosen
parameters, all parties receive a constant fraction of the shares with overwhelming probability,
which allows all parties to reconstruct the original message. We know that the underlying weak
flooding protocol ensures that every fixed party receives each individual share with a constant
probability. However, even though the honest parties behave independently for flooding the
different shares, the events of receiving these shares are not independent. This is because the
adversary can, e.g., decide to always deliver some share if another share is delivered, thereby
correlating the events. We need to show that the adversary cannot use any correlations to reduce
the delivery probability of any of the shares.

To this end, we generalize a result by Maurer, Pietrzak, and Renner [MPRO7]| to more
than two systems. The high-level idea is that we can split the single adversary into smaller
adversaries where each of these interacts with a single instance of the weak flooding protocol.
Letting the adversaries communicate with each other allows them to jointly emulate an execution
of the original adversary and maintain the same advantage in preventing the delivery of the
shares. We now inductively reduce the number of messages sent among the adversaries until no
communication is needed as follows: The last message is not sent, and the adversary expecting
it instead considers all possible messages and behaves as if it received one that maximizes the
probability that the delivery guarantee in its flooding instance is violated. Note that this step
requires the adversaries to be computationally unbounded, but this is not a problem since security
of our weak flooding protocol holds against such adversaries (even though the amplification
protocol itself depends on computational assumptions).

Considering the now independent adversaries, we have independent delivery probabilities
for the individual shares and can use the Chernoff bound to show that with overwhelming
probability, all parties receive sufficiently many shares to reconstruct.

1.3 Related Work

Flooding protocols. Flooding protocols are used to implement so-called multicast networks,
which allow a party to distribute a message among a set of parties within some prescribed
time. Current flooding protocols (as in Bitcoin [Nak08|, Ethereum [W*14], etc.) are typically
implemented via a forwarding mechanism, where in order for a party to distribute a message,
the party simply selects a random subset of neighbors, who then forward the message to their
neighbors and so on.

The security of such a protocol relies on the fact that the graph induced by the neighbor
selection procedure among honest parties is connected. Kermarrec, Massoulié and Ganesh
[KMGO3] showed that when choosing each neighbor with probability p in a setting with up to

% to ensure that

t = (1 —+) - n corruptions (out of n parties), it is necessary that p >
messages are delivered to all honest parties with overwhelming probability in k.

Matt, Nielsen, and Thomsen [MNT22] formally proved security of such a flooding protocol
against a so-called delayed adaptive adversary (where it takes a certain delay for the adversary
to gain control over a party) corrupting any fraction of the total number of parties. In a followup
work [LMM™22], Liu-Zhang, Matt, Maurer, Rito, and Thomsen gave the first protocol that
remains secure in the setting where all parties are publicly assigned a positive weight and the
adversary can corrupt parties accumulating up to a constant fraction of the total weight. We
adapt the techniques from Liu-Zhang, Matt, Maurer, Rito, and Thomsen and provide a general
procedure for obtaining a flooding protocol for the weighted setting from one secure in the none
weighted setting. In particular, this allows our protocols to be used in the weighted setting.

The protocols of [MNT22, LMM™*22] incur a per-party communication of O(I-y~!-(log(n)+k))
bits, for a message of size I.° In contrast, our protocols incur the (asymptotically) optimal
per-party communication of O(l - y~1).

Coretti, Kiayias, Moore, and Russell [CKMR22] considered the problem of designing a message
diffusion mechanism based on the majority of honest stake assumption tailored specifically for
the Ouroboros Praos consensus protocol [DGKR18]. However, their flooding protocol achieves a
weaker guarantee in that it allows a certain set of honest parties to be eclipsed. In contrast, our
work focuses on flooding protocols that guarantee delivery to all honest parties.

Another line of work seeks to improve on the efficiency of flooding protocols for blockchains
by applying structured approaches and heuristics [FOA16,RT19, VT19]. However, the behavior
of these protocols under byzantine corruptions is not documented, and our focus is on provably
secure protocols. We do, therefore, not comment on this line of work further.

Agreement primitives for long messages. A significant line of work is dedicated to building
broadcast and Byzantine agreement primitives for long messages for different thresholds, setups,
and assumptions, starting from the work of Turpin and Coan [TC84]. Most works in this direction
focused on achieving optimal total communication complexity O(l - n + poly(n, x)) (see, e.g.,
[NRS*20,FH06, GP16, BLZLN22]), for sufficiently large messages. Recently, techniques similar
to those we use for our ECCast protocol were used to also achieve low per-party communication

To see this for the work of Matt et al., see [MNT22, Corollary 1, Eq (47)]. To make the failure probability
negligible in x, each party must forward to any other party with probability Q(%) and hence each party
will expectedly have Q(y~* - (log(n) + &)) neighbors.

10

in the context of agreement protocols [NRST20, LLTW20, YPA ™22, GLL 22|, and information
dispersal protocols [NNT21]. In all these works, however, parties communicate to all other
parties (so the neighborhood size is n — 1). In contrast, we provide ECFlood where each party
communicates to only O(y~!-(log(n) 4 k)) neighbors.

Classic randomized epidemic dissemination. Epidemic algorithms or gossip protocols
were first considered for data dissemination by Demers et al. [DGH"87], and have been studied
extensively since then, see e.g., [FPRU90, KSSV00, KMGO03,DF11] (and more).

[FPRU90] showed that if in each period of time, a rumor is forwarded to a random party,
then it takes only log(n) time before the message has reached all parties (thereby the message
complexity becomes O(l - n -log(n)). [KSSV00] extended this to show that if additionally parties
that have not heard about a message pull for it (and thereby they assume that it is known that
a new message is to arrive) the complexity drops to O(l - log(log(n)) - n). [DF11] showed that by
slightly “steering” the randomness based upon whether or not the most recent party already had
received the message, an asymptotically optimal message complexity of O(l - n) can be achieved.

The big difference between this line of work and our work is that no byzantine adversary
is considered and none of these protocols are proven secure against a byzantine adversary. A
natural approach to obtain a protocol with reduced communication complexity would be to try
to adapt the techniques of this line of work to the byzantine setting. This is however highly
non-trivial.

Any protocol which allows parties to pull information from other parties faces the problem that
an adversary might issue large amounts of false queries and thereby blow up the communication
complexity of the protocol (this would, for example, be a problem for the anti-entropy protocol
[DGH'87] and the protocol of [KSSV00]). Further, trying to detect the current state of the
network and limit the number of redundant messages based upon this (by either or steering whom
to send as in [DF11] to or how many parties to send to as in the rumor mongering of [DGH"87])
inherently has the problem of dishonest parties reporting false information. Finally, note that a
very minimal requirement for a protocol to possibly guarantee the delivery of a message is that
each honest party must communicate with at least one other honest party. To ensure this with
an overwhelming probability in k when a byzantine adversary controls a constant fraction of
the parties each party needs at least x connections, and if the entire message is forwarded over
these channels the communication complexity already becomes Q(k - [- n) when sending an [bit
message among n parties.

Due to the above difficulties, state-of-the-art in the byzantine setting is simply to increase
the number of parties each party forwards the message to, to obtain a secure protocol (as in
the protocols of [KMG03, MNT22, LMM*22] and FFlood which we compare our protocol to in
Figure 1). New insights are therefore needed to obtain an asymptotically optimal communication
complexity in the byzantine setting. The main contribution of our work is to give an efficient
protocol for the byzantine setting that achieves exactly such optimal communication complexity
and per-party communication.

2 Model and Preliminaries

In this section, we define the model, in which we prove our results, specify the primitives our
constructions rely on and give suggestions for how to instantiate these primitives. Additionally,
we define notation and basic bounds that we will use for our proofs.

11

2.1 Parties, Adversary and Communication Network

We consider a fixed set of n parties P = {p1,p2,...,pn}. For simplicity, we assume an adversary
that can statically corrupt a set of parties such that only a subset % C P will behave honestly.
The corrupted parties are byzantine, i.e. fully controlled by the adversary and can behave in an
arbitrary way. We will use h to denote a bound on the size of H. For the remainder of the paper,
we will assume that |H| > h. We will use 7 := % to denote the fraction of parties guaranteed to
be honest. We will use the execution semantics of UC [Can20] with the notion of time from
TARDIS [BDD*21] when reasoning about executions of our protocol. That is no global clock is
available but all parties is ensured to be activated in each time step.

We assume that all parties are connected via point-to-point channels, but our protocol does
not rely on a synchrony assumption and is secure in a fully asynchronous network. We only
use Angr to quantify the delivery guarantees of our protocol (parties do not need to know this
bound). This is the same as in previous works [MNT22, LMM*22|. In Appendix A, we recap
how such channels can modeled in UC.

2.2 Primitives

Erasure correcting codes. In our protocols we make use of a special type of weak error-
correcting code that is only able to tolerate a certain number of erasures. We refer to these as
erasure-correcting codes.

Definition 1 (Erasure Correcting Code Scheme). Let p € N be the number of shares, and
let ¢ € N be the number of erasures that are to be tolerated. A pair of algorithms (is a
(i, p)-erasure-correcting-code-scheme (abbreviated (u, 0)-ECCS) if it consists of two algorithms:

o (.Enc: An encoding algorithm that takes a message m € {0,1}* and produces a sequence
of shares s1,...,5,.

o (.Dec: A decoding algorithm that if a sequence of shares s, ... ,3; s.t. it holds for at least
p— o of them that s, = s; and for the remaining s, = L is input, then the original message
is m is returned.

We will use the notation (.ShareSize(l) for a function that bounds the size of each share
when a message of length [is encoded.

Standard Reed-Solomon codes [RS60] can be used to instantiate a (u, 0)-ECCS efficiently in
a straightforward manner for arbitrary message lengths. That is, to share a message m with
length [into u shares such that u — o shares can be used to reconstruct the original message, we
choose the symbol size a = [log(u)] (in bits) and split the message into chunks ¢y, ..., Cr_t

a-(p—e)
that each has size a - (u — 0). Because each of these chunks consists of ;1 — ¢ symbols, we can

use Reed-Solomon encoding to for chunk ¢; obtain micro shares sfM, .. s; ,, Where any p — o of
the micro shares can be used to obtain the entire chunk ¢; via. Reed-Solomon decoding. We now
define shares s1,...,s, by letting s; := S’Lj, . . Obtaining any u — ¢ of such shares

/
’ S{a.(‘f,g)]vj
allows to reconstruct all chuncks using Reed Solomon decoding. Thereby, the original message
can be reconstructed.
Let ¢ be this scheme, and we will have that
l
(.ShareSize(l) = O ——). 1
=0(.—,) (1)

50ne can extend our protocols to handle so-called delayed adaptive adversaries, using techniques presented
in [MNT22].

12

This implies that the total bitlength of the shares will be O(I - ﬁ) It has been shown that the
encoding and decoding of such codes be done in O(2% - a?) time [Did09]. This means that the
entire encoding and decoding for this scheme can be done in just O(u? - (log(x)?)) time. For
further comments on the practicality of this see Section 8.5.

Weak cryptographic accumulators. We will in the paper make use of a weak version of a
static positive accumulator. Weak refers to that we only require collision-freeness and correctness
to hold for honestly generated accumulators, static refers to that we do not need the set of
accumulated values to be dynamically extendable, and positive means that we only need to
prove membership of an accumulator (in particular we do not need to prove that an element is
not a part of the accumulator).

Definition 2 (Weak Static Cryptographic Accumulation Scheme). A weak static cryptographic
accumulation scheme (abbreviated WSCAS) « consists of two algorithms:

o a.Accumulate({m, ..., my}): A PPT algorithm for accumulating a set of values {m1, ..., my}.
It returns an accumulated value z and a sequence of proofs 1, ..., m, where m; can be
used to prove that m; is in the accumulated value z where each m; € {0,1}".

o a.Verify(m,, z): A function that checks if a proof 7 proves that a message m was in the
set of elements used to create the accumulated value z.

With the following properties:
Completeness: All honestly generated proofs are accepted by a.Verify.

Collision-freeness: No PPT adversary can find a set of values M = {my,...,m,}, a value
m’ ¢ M, and a proof 7 such that «.Verify(m/, 7, 2) = T for z + a.Accumulate(M) except
with negligible probability.

See [BP97] for the original formal definition of collision-freeness and [OMBS21] for an overview
of accumulator constructions. We use the notation a.AccSize for a bound on the size of the
accumulated value and a.ProofSize(n) for a function that bounds the size of each proof as a
function of the number of messages accumulated 7.

Because we only require collision-freeness for honestly generated accumulators, a WSCAS
scheme can be efficiently instantiated using a regular signature scheme by letting the accumulated
value z be the public verification key, and a proof for a message be a signature of that message.
For suitable signature schemes:

a.AccSize = O(k) and a.ProofSize(n) = O(k). (2)

The same complexity can be achieved by basing o on RSA accumulators [BAM93] or bilinear
accumulators [Ngu05]. To avoid generating keys or a setup assumption, one can also use
Merkle Trees [Mer89] as accumulators, at the cost of slightly increasing the proof size to
a.ProofSize(n) = O(log(n) - k).

2.3 Flooding

A flooding protocol allows a set of parties to send messages to each other subject to certain
delivery guarantees. Our definition is based on the one presented in [LMM™22] with minor
differences.

13

Definition 3 (Flooding). Let II be a protocol executed by parties P, where each party p € P
can input a message at any time, and as a consequence, all parties get a message as output. We
say that II is a strong A-flooding protocol if when a message m is input to an honest party at
time ¢, then by time t + A there is a probability overwhelming in the security parameter x that
all other honest parties output m.

Note that our definition allows a message sent by the adversary to be only received by a
subset of honest parties. This is sufficient for most blockchain protocols [GKL15,PS17, DGKR18,
PS18,CM19, YMR19]. If total delivery from dishonest senders is required, one can simply let
the honest parties re-distribute the received messages.

Preventing denial-of-service in a flooding network. As noted in [LMM™22], there exists a
trivial denial-of-service attack against flooding networks because they allow to flood any message.
An adversary can simply input a large number of arbitrary messages and as all messages must
be propagated by the definition of a flooding network, this will allow an adversary to exhaust
the bandwidth of honest parties. A simple solution to this is to only let honest parties forward
“valid” messages (w.r.t. some validity predicate determined by upper-level protocols). Such an
approach can also be applied to our setting. One can add an extra field of data to the shares
sent around by our FFlood protocol, and parties will then verify that this extra data proves
that this share should be forwarded. In the context of for example proof-of-stake blockchains,
such extra data can for example simply be a signature by the baker of the block and a proof
that this baker is allowed to create a block. For clarity of presentation, we have left this out of
our presentation as the details of such validity predicates necessarily must be determined by
upper-level protocols.

2.4 Additional Notation

We use the notation T')(G) for the set of neighbors of a party (usually the sender) s at distance
at most A in a graph G. When clear, we omit both s and G for this set and merely write T'*. We

write A & D to sample the value A from the distribution D. We let U(A) denote the uniform
distribution on a set A. We denote by log z the natural logarithm of z. For two random variables
X and Y, we will write X <Y if Y stochastically dominates X, i.e. Pr[Y > k] > Pr[X > k] for
all k.

2.5 Bounds

Lemma 1 (Chernoff bound). Let X;,..., X, be independent random variables with X; € {0,1}
for all i, and let p < E[>7_ X;|. We then have for all § € [0, 1],

52M

2
o _op
<e 3.

<e 2 and Pr lz Xi>1+0)u
1=1

Prli){i <(1—=0)u

i=1

3 Per-Party Communication Lower Bound

In this section, we present and prove a new lower bound that states that any protocol must have
a per-party communication of at least Q(- y~!) when sending a message of length .

Theorem 3. For any A, any protocol that is A-flooding protocol must have per party communi-
cation complexity QI -y~1) when sending a message of length 1.

14

Proof. Let A € N. For the sake of contradiction let us assume that there exists a protocol II
with o(l - y~!) per-party communication complexity when sending a message of length .

We select a party s as the initial sender and reason about an execution of the protocol where
a message of length [is input to s against a specific adversarial strategy. Before the protocol
execution starts the adversary divides the set of parties without the sender P \ {s} into sets
Ci,...,C|y-1 such that for all i we have that C; > n -+ — 1. At random the adversary now
chooses a j € {1,..., [7*11} and corrupts all sets C; where i # j. This is possible because for
any z we have

C:U{s} =7 n. (3)

In particular, this holds for €}, and therefore the corruption threshold is not exceeded. The
adversary now lets the corrupted parties in each of the sets C; execute the protocol I with the
following modifications:

o When a party p € C; receives a message from a party p’ € C; U {s}, the party p ignores
the message and acts as if they had not received it at all.

e Whenever the protocol dictates that a party p € C; should send a message to party
p & C; U{s}, the message is dropped and not send.

Now note that from the perspective of the sender, s it is impossible to distinguish which C; is
honest and which is corrupted, as it cannot be distinguished from the sender side whether a
message is dropped on the sending side or the receiving side, and by Equation (3), it could be
for any ¢ that each set C; is actually the only set of honest. If there exists a k such that C} has
a constant probability of receiving less than [bits from the sender, then there is at least |y~*] !
probability (because the non-corrupted set where selected uniformly at random) that k& = j and
hence the protocol would fail with a non-negligible probability. Therefore, the protocol must,
with overwhelming probability, let the sender send each set of parties at least [bits as they
would otherwise not be able to deliver the message to all honest parties with overwhelming
probability. Therefore, with overwhelming probability at least [- [y~1| = Q(l - y~1) bits are
sent by the sender. This contradicts that a protocol with o(l-y~1) per party communication
complexity exists. O

4 Warm Up: Optimal Flooding With Constant Diameter and
Linear Neighbors

In this section, we present our protocol ECCast and show that it is a flooding protocol with a
maximum per-party communication of O(I-y~!), a total communication complexity of O(l-y~1-n),
and a diameter of 2.

Our protocol ECCast is parameterized by an erasure correcting code scheme that shares a
message into n shares and a cryptographic accumulator. When a sender wishes to send, they will
share the message into n shares and send a unique share to each party. When a party receives
such a share, they will forward the share they receive to all other parties. This will ensure that
each party ends up receiving as least as many shares as there are honest parties. Therefore, the
only thing that can prevent honest parties from reconstructing the original message is if they
try to reconstruct from some shares that were not sent by the original sender. To prevent this,
we use the cryptographic accumulator.

15

— Protocol ECCast((, @)

The protocol is parameterized by, a (n, 0)-ECCS (¢ for some ¢ € N, and a cryptographic
accumulator a. Each party p; € P keeps track of a set of shares received for a particular
accumulator z, ReceivedShares;[z]. Additionally, each party p; keeps track of a set of
received messages Received;.

Initialize: Initially, each party p; sets ReceivedShares; := &, and Received; = &.

Send: When p; receives (Send,m) they share the message m into shares (.Enc(m) =
$1,...,8n. Furthermore, they obtain an accumulated value and proofs for each
share and its share number z,m,...,m, = a.Accumulate({(sj,7) | 1 < j < n}). For
1 < j < n, the party now sends (Forward, s, j, 7;, z) to party p; using the point-to-point
channel between them. Finally, they add m to Received;.

Get Messages: When p; receives (GetMessages) they return Received,.

When party p; receives a tuple (7,s,j,m, 2) over a point-to-point channel where
a.Verify((s,7),m,z) = T they add (s,j) to ReceivedShares;[z]. Furthermore, p; does
the two following checks:

o If |ReceivedShares;[z|| > n — o, then they

1. Obtain a sequence of shares si,...,s, by letting s; = s if (s,j) €
ReceivedShares;[z] and otherwise sets s; = L (i.e. if no such pair is in
ReceivedShares;[z]).

2. Decode the shares and add the recovered message to the set of received messages,
Received; := Received; U {(.Dec(s1,...,sp)}.

o If T'= Forward, it is the first time they receive (T s, j, 7, z), and j = i, then they send
(Receive, s, j, m, z) to all parties over their respective point-to-point channels.

Below, we state and prove that ECCast is flooding protocol.

Theorem 4. Let p > n- (1 —7), let ¢ be a (n,p)-ECCS, and let o be a WSCAS, then the
protocol ECCast((, «) is a strong (2 - Angr)-flooding protocol.

Proof. We consider an execution with a PPT adversary .4, where a message m is input to some
honest party s at time ¢, and let the accumulated value that is sent out be z. The delivery
guarantees for the underlying point-to-point channels ensures that at latest at time ¢ + Angr
any honest party p; will have received a (Forward, s;,1,r,7;, z) s.t. a.Verify((s,i),m;,z) =T (by
correctness of the WSCAS). This implies that this is the latest point any honest party will
forward (Receive, s;,1,m, z) to all other parties. By the delivery guarantees of the point-to-point
channels, these messages will be delivered at the latest at time ¢t + 2 - Axgr. Hence, if p; is an
honest party, then the size of ReceivedShares;|z] will be at least n-y=n—n-(1—7) >n—p.
Therefore any honest party p; will be able to reconstruct the original message at the latest at
time ¢ + 2 - Angr unless there are some tuple (s;,j) and m where a.Verify((s,j),m,2) = T and
where s; is not equal to an original share sent out by the sender s. To bound the probability
that this happens, we construct another PPT adversary A’ that emulates the execution of the
protocol against adversary A in order to break the collision-freeness of the WSCAS. Whenever
one of the emulated parties receives a tuple with (s;, j) and m where a.Verify((s, j), 7, 2) = T and

16

where s; is not equal to the original share sent out by the sender, the adversary A’ successfully
finds a collision. Hence, this can only happen with a negligible probability.
O

Communication complexity of ECCast. We now analyze the communication complexity of
ECCast((,) (for ¢ and « instantiated as suggested by Theorem 4) when a message of length [
is input. The neighborhood of each party is n as all parties will talk to all other parties. The
per-party communication is given by the size of the neighborhood times the size of the tuple
sent over each point-to-point channel. As each tuple consists of a bit (Forward or Receive), a share,
a sequence number of the share, an accumulator proof, and an accumulated value, we have that
the communication for each party is given by

n - (1 + (.ShareSize + log(n) + a.ProofSize + a.AccSize).

If we instantiate the ECCS with Reed-Solomon codes, we get that the size of each share is
bounded by (.ShareSize = O(l - (y-n)~!). By using an efficient WSCAS «a with size of the
accumulated value and proof O(k) (see Equation (2)), we get that the communication of each
party is bounded by

n-(1+0(- (v-n7h) +log(n) + O(k) + O(k)) = O(L- 7~ +n- (log(n) + K)).

This is optimal when [= Q(n - (log(n) + £)) by Theorem 3.

5 Optimal Flooding With Logarithmic Neighborhood and Di-
ameter

We show a flooding protocol with (asymptotically) optimal communication complexity, in two
steps. First, we define a weaker notion, denoted weak flooding and propose an instantiation of it.
Then we show how to lift the security guarantees from a weak flooding protocol to achieve a
full-fledged flooding protocol.

5.1 Weak Flooding

A weak flooding protocol is a flooding protocol that, instead of being guaranteed to deliver all
messages to all parties, only ensures that there is a lower bound on the probability that each
party receives a message.

Definition 4 (Weak Flooding). Let II be a protocol executed by parties P, where each party
p € P can input a message at any time, and as a consequence, parties may get a message as
output. We say that II is a weak (A, §)-flooding protocol if at any time ¢ when a message m is
input to some honest party, then it must be that for any p; € H

Pr[p; receives m at latest at time ¢ + A] > ¢&.

Protocol description. We now describe a simple flooding protocol, in which each party
samples a random set of d neighbors for some parameter d and relays all new messages to all
their neighbors.

17

—| Protocol FFlood(d)

Each party p; € P keeps track of a set of relayed messages Relayed,; which will also be used
to keep track of which messages party p; has received.

Initialize: Initially, each party p; sets Relayed, := @ and samples a uniform random
set N; C P, |N;| = d of d neighbors.

Send: When p; receives (Send, m), they forward the message to all parties in V;. Finally,
they set Relayed, := Relayed, U {m}.

Get Messages: When p; receives (GetMessages), they return Relayed,.

When party p; receives message m on a point-to-point channel where m ¢ Relayed,, party
p; continues as if they had received (Send, m).

We prove the following theorem in Section 5.2. Note that we explicitly quantify over the
number of parties n after the existential quantification of the success probability bound, to
highlight that the probability is independent of the number of parties.

Theorem 5. There exists £ € (0,1] such that for any n > 50 -y~ there is a d = O(y~!) and
A = O(log(n) - Angr) such that the protocol FFlood(d) is a weak (A,§)-flooding protocol. The
security also holds against computationally unbounded adversaries.

Previous analyses of related protocols [KMGO03, MNT22| only considered the probability to
deliver the message to all honest parties, and for this required d = Q(y~! - log(y - n)) to obtain a
constant probability. Our analysis instead proves that d = O(y~!) is sufficient to guarantee that
any fized party receives the message with constant success probability.

5.2 Analysis of FFlood

In order to prove that FFlood is a weak flooding protocol, we have to prove that for any party,
the probability that this party receives a specific message is constant. We do so by re-using the
honest sending process from [LMM™22]. The idea of the honest sending process, which we recap
below ,is to let it mimic the communication graph induced by the sending message where only
the honest parties participate in the distribution of the message, and the adversary only delivers
the message on the point-to-point channels at the latest point in time possible.

Definition 5 (The honest sending process). Let s € H be an honest party, let d be a neighborhood
size, and let A\ € N be a distance. We let the honest sending process, HSP(s,d, \), be a random
process that returns a directed graph G = (V, E) defined by the following random procedure:

1. Initially, £ := @. Furthermore, we keep track of a set Flipped := & that consists of
nodes that have already had their outgoing edges decided, and a first-in-first-out queue
ToFlip := {(s,0)} of nodes and their distance from p that are to have their edges decided.

2. The process proceeds with taking out the first element of ToFlip until ToFlip == @. Let
the element that is taken out of ToFlip be denoted by (p',i) and do the following:

(a) Let N be a uniformly random subset of P with d elements, and set N := N N H.
(b) Update the set of edges E := EU{(p/,p") | p”" € N} and let Flipped := FlippedU{p'}.
(c) If i+ 1< A, for all p” € N\ (Flipped U ToFlip), add (p”,i + 1) to ToFlip.

18

3. Finally, return G = (H, E).

The following lemma relates the probability of a party being in the neighborhood of the
sender in the graph produced by the honest sending process with FFlood being a weak flooding
protocol. The proof is analogous to the one of [LMM™22, Lemma 5 on p. 16] and therefore
omitted.

Lemma 2. Let A € N be a distance, let d € N, and let A := X\ - Angr. Further, let sy € H and
Dmin € H s.t. when G & HSP(Smin, d, \) then Pr[pmm € Fﬁmm(G)] is minimized over all such
s,peH. If

§ S Pr[pmin € F?mm(G)L
then FFlood(d) is a weak (A, &)-flooding protocol.

Next, we lower bound for any party the probability that this party is in a logarithmic
neighborhood of the sender in the honest sending process.
Lemma 3. Let a,0 € [0,1]. Further, let ¢ € R be an expected expansion factor, d,k € N, and

let \ == % Finally, let s € H and let G & HSP(s,d,\). If n > 117", a < 1/3,

11
11—~

d—1
<22+ (- (1-30)) (4)

and 3
(=662, %)

then for any party p € H

Prlp € T)G)] >

oM -1 (. d -1 1 R
—e 4

Proof. We let T'* be the set of neighbors of the sender s at a distance at most A in G. Note that

since G is here the result of the honest sending process, all nodes in I'* are honest. We note

that the probability that p is in the close neighborhood of the sender is lower bounded by the

probability that this is the case and the sender has a large honest neighborhood || > o - |H|:

PrlpeT >PrlpeTlna-|H| < TN =Pr[pel|a-[H| < |TY] Prla-|H| <|TY]. (6)

We next bound these two probabilities individually.

We first bound the probability that party p is in the set of neighbors, i.e., p € I'* given the
set of neighbors is “large”, a - || < |T'*|. For this, we use that all honest parties have an equal
probability of appearing inside T (except the sender, who is always there) and the law of total
probability.

PripeT*|a-|[H| < T]

[#H]
= Y Prpel | =a]-Pr[Y=ala-|H <[]
a=[c:|H][]
li% a—1 A A
> Prl=ala-[H| <|TY]
7
ooy 17 (7)
|H]
a-|Hl—1
> Y PelP=alas <
a=[alHl]
o H| -1
H

19

We now bound the probability that the neighborhood of the sender is “large”, i.e., the event
a - |H| > |T?|. To do so, we use some ideas of a proof by Matt et al. [MNT22, Lemma 3 on p.
23-25], but look at a more specific setting and extend this with a new result about the expansion
of constant out-degree graphs. Further, we only reuse parts of the proof as we are only interested
in bounding the neighborhood of the sender and not the neighborhoods of all parties.

We define D := (|T'*| < - |H]), i.e., the event that the sender does not reach at least a
a-fraction of the honest nodes within A\ steps. We have that

Prfo-[#] < T[] = 1~ Pr[D], ®)

and hence it is sufficient to bound Pr[D]. We let 6" be the set of honest parties that are at
exactly distance v from the sender, and define the parties at exactly distance 0 to be the sender,
0° £ {s}. We now define a series of events. First, we define the events that the number of honest
neighbors at distance v + 1 is strictly more than (1 —) - ¢ times the number of neighbors at
distance v:

By = (0" > (1-0)-¢-0"]).
Furthermore, we define the event that there are at least « - || neighbors within distance v:
Gy = (1| 2 a- [H)).
As convenient notation we let A, := B, VC, for v =0,...,A — 1. Now,

_log(a- |H))
log((1—4) -)
Therefore, if By, ..., Byx_1 hold, then

= ((1-0)-9)" =a-[H|

A
P =3716" = 16 > (1= 6)-) - |6°] = - |H].
v=0

Furthermore, if just some C, holds, then we get that |T*| > « - |#|. Therefore, we have that
A1 A1
(:/\ z4y-::>-ﬂl)> — <l).::> \V —u4y>.
v=0 v=0

Hence, we get the following:

A—1
Pr[D] < Pr| | ﬂAi]
=0
A—1 r
S Pr —|Al‘ ﬂ AJ]
=0 L 7<i
A—1 r)
= Z Pr|—B; N —=C; ﬂ Aj (9)
i=0 L j<i |
A—1 r 1
< Z Pr|-B; m Aj N —C;
i=0 L j<i i
A—1 r]
=> Pr|=Bi| () B;N-Cil.
i=0 L j<i]

We now state and prove a bound on the individual probabilities inside the sum.

20

Claim 1 (Fast expansion to small fraction). Forn >11-y1, a <1/3, ¢ <2—2(d+1)- (% :

d—1
(1—(1—304)-7)) , and for any v € {1,..., A — 1}, we have

Pr lﬁBy

fﬁf%ﬂCJ:Smm{éﬁ¢“1”@,d”%d+1V(11 -u-w1_3awvﬁ }.
j -7
J<v

Proof. We look at the probability space where (;<;., Bj N —~C) holds. We define the number
of honest parties that are reachable at a distance v to be r := |#¥| and let the number of honest
parties that have not been reached so far be U == H \ I'V.

Now order the parties in 6 in some arbitrary way and let N; be the set of neighbors
chosen by the i-th party in 6¥. Consider the following process: Sy := &, and for ¢ > 0, we let
N/ = N; N (U \ Si—1) and consider two cases: If [N/| < 2 (i.e., the i-th party has not chosen at
least two “new” parties as neighbors), then S; = S;_1 U N} and X; := 0. Otherwise, let s1, s2 be
two uniformly random elements in N/, define S; = S;_1 U {s1, 52}, and X; := 1. Note that

T
0V > |8, > 2> X
=1

Observing that adding more elements to 5; decreases the probability of X1, we define the
following related process that always adds two elements in each step: Let S;, Ni’ , and X; be
defined analogous to S;, N/, and X;, except that if |[N; N (U \ S;_1)| < 2, then we add one or
two random elements from U \ S;_; to N/ such that we always have |N/| = 2. We then have

ngg&g o (10)

Furthermore, the X; are independent. We now upper bound the probability that X; =0. Let
F;:=(P\H)UTIYUS;_1. Note that, assuming —C,, i.e., [I'V| < a - |H|, we have

|Fi| < (n—|H|)+a- |H|+2r

<n-—|Hl+a- [Hl+2a- |H|
=n—(1-3a)-|H]|

Further note that
Pr[X; = 0] < Pr[N; C Fi] + Pr[In* € Ny : N;\ {n*} C F].

We now bound these two probabilities individually.
For the first one, note that, for o < 1/3, the probability that one uniformly chosen neighbor
is in F; is at most
n—(1-3a)-|H|
n

<1—(1-3a)-y.

We are interested in the probability that d uniformly chosen neighbors without repetition are all
in F;. This is upper bounded by the probability to choose with repetition, since after choosing
one neighbor in F; without repetition, there is one element less in F; available. Hence,

Pr[N; C Fj] <(1—(1—3a)-7)%

The second probability can be upper bounded by fixing one out of the d chosen neighbors
(that could be n* ¢ F;), and then bounding the probability that the remaining d — 1 neighbors

21

chosen out of n — 1 remaining parties are all in F;. Since there are d ways of fixing one of the
neighbors, we can use the union bound to obtain

n—1

d—1
Pr[ﬂn*GNi:Ni\{n*}gFi]gd.<n_(1_30‘)"7’[|> ‘

Since we assume n > 11-~77!, we have n — 1 > n — T=n- 111—;7 Hence, the probability above
can be upper bounded by

d—1
o (S) ()

d—1

11 — v n 11—«

Note that

d—1
0=t s (G -0)

We can therefore conclude that

11
11—«

d—1
Pr[)”(izo}g(dﬂ).((1= (1-3q)-)) .
Let
11
11—~

d—1
p::1—(d+1)-< -(1—(1—3a)~ry)> <Pr[X; =1].
Then, for ¢ < 2p, we have E[>7_; X;] > rp > r$/2. Thus, Equation (10) and the Chernoff
bound imply

62r¢
4.

re
Z (1-0)- 3

PrlB,] = Pr[|6"*! < (1) - ¢- |6"]]

Furthermore, (,., B; ensures that
r=10"1 > ((1-9)-9)".

Therefore, ,
_8%9:((1=8)-¢)¥
Pr[-B,] <e 1 .

Further note that B, is true when all X; = 1. Thus,

UXi=o0
1=1

and the claim follows. O

Pr[-B,] < Pr <r-(1—-p <d -(1-p),

Equation (9) and the claim we have just proven imply for any k € N,

A—1

d=1 20.(01-5)-0)"
Zd (d+1)- (11_ (1—(1—304).7)) +> e

Vk

dk—l 11 -1 6%((1 6>¢>”
- 1) - (1= (1-3a)-
D (- (1 -3a)) +Ze

22

We further have

5 _ewner MEF _ewenertt AP 2enar) 1709
3 a5 et IS (e |
v=k v=0 v=0

Due to assumption (5), we have (1 —§) - ¢ > 3. Hence,

529 ((1-58)-¢)"
4

Further note that e~ < 1. Therefore:

A—1—k _5%e(1-8)-9)%
20

626-((1-8).)% \ (170)9)" 2¢-(1-0)0)% 1 X 826-((1—6)-0)% \ ¥ e
E e 4 < e 4 ‘5. g e 4 = -
- 1 _82¢:((1-6)-¢)
4

v=0 v=0 —e

Hence, it follows that

_ 826 (1-8)-9)"
e 20

b d—1
1_Pr[D]z1_C; 11(d+1)-< 11 -(1—(1—304)-7)) _

11—~ _82¢-((1=8)-p)k (11)
— e 4

The desired bound on the probability for late delivery now follows from Equations (6) to (8)
and (11). O

Using Lemmas 2 and 3, we now prove our main theorem for FFlood. For completeness we
restate it below.

Theorem 5. There exists £ € (0,1] such that for any n > 50 -y~ there is a d = O(y~!) and
A = O(log(n) - Angr) such that the protocol FFlood(d) is a weak (A, §)-flooding protocol. The
security also holds against computationally unbounded adversaries.

Proof. We let § == %, ¢ = %, and o == % Then, (1—9)-¢ = % Hence, Equation (5) is fulfilled.
Furthermore,

10 11 — 10y
1-(1-3a) y=1—— - y=— "1
(1-3a)-~vy T 1
Hence,
11 11—-10y 11—~ —9y 9~y 9~
1—(1-3a)-q)= = =1-— <1-21
1, (1=3a)) = 5 11—~ 11—~ 1

Note that since 1 —x < e™*, we have log(l —) < —z for all z € (0,1), and consequently
log(1 — z)/z < —1. Hence, (1 —2)'/* <e™! < 1. Setting x := 2L for some positive constant ¢

yields
11 5 /11— 107\ 9\ 1
1—(1-3a)- =(—— 1-) — 12
(11—7(a-sa)m) " = (11—7) <(1-7)" <z (12
This implies that for a sufficiently large constant ¢ and d = 19—170 +1=0(y7!), Equation (4) is

also satisfied.
Therefore, Lemma 3 implies that for some A = O(log(n)), any sender s and receiver p (in
particular the sender and receiver that minimize the probability for the event below), and for

G & HSP(s,d, \),

23

SH) -1 d¥—1
Pr[pGF?(G)]Z%-(l— d_l(d—i-l)

2.0 0(1-8).4F
T -1 Seln
' 11—7'(—(=3e)y)) - ook |
1—e 1

‘We note that n > 50 - v_l = h > 50 and therefore

H| |H| — h =33 50 ~ 100’

which is constant. Furthermore, for k = 20, we have §2¢ - (1 — 6) - ¢)* > 50, and thus

_820((1-8)-p)F
20

< efg < 1
) _676%»((14—5»@’“ T 1_e 3 " 10
Finally, Equation (12) implies that for a sufficiently large constant ¢ and d = 19—170 +1=0(y1),
we have 1
dF —1 o1
d+1)- (1 —(1—-3a)- < —.
) (T 0-0-30) <

Hence, for ¢ := 3= and A := Aygr - A = O(log(n) - Angr), Lemma 2 implies that FFlood(d) is a
weak (A, €)-flooding protocol. O

5.3 Flooding Amplification

We present a compiler that amplifies delivery guarantees of a weak flooding protocol to full-
fledged flooding. The protocol WeakFlood2Flood is parameterized by a weak flooding protocol,
an erasure correcting code scheme (ECCS), and a cryptographic accumulator. The idea of
the protocol is that when a sender wishes to send a message, they divide the message into
multiple shares using the ECCS. The sender will then send each of these shares using the weak
flooding protocol. Each receiver will receive a set of shares and try to reconstruct the original
message from this. Intuitively, if everybody receives sufficiently many of the original shares
within the given time, then the only thing that can prevent an honest party from reconstructing
the message sent by the sender is if an adversary managed to inject some “false shares” into
the set of shares an honest party tries to reconstruct their message from. To prevent this from
happening, the sender will create an accumulated value of all shares, and then instead of sending
out only the share, they will send out the share, an accumulated value, and a proof that this
share belongs to this accumulated value. On the receiving end, honest parties will group shares
by the accumulated value they belong to and only try to reconstruct from shares that belong to
the same accumulated value. Hence, an adversary will have to break the collision-free property
of the accumulator scheme in order to inject such false shares.

It is only left to ensure that all parties receive sufficiently many of the original shares. We
will ensure this by instantiating WeakFlood2Flood with a weak flooding protocol FFlood, such
that each party is guaranteed to receive a constant fraction of the shares if a message is split into
sufficiently many shares and set the parameters of the ECCS accordingly. For the security proof
of our amplification, we need the weak flooding protocol to be secure against computationally
unbounded adversaries, which is the case for the protocol we presented above, see Theorem 5.

24

— Protocol WeakFlood2Flood(IT, ¢, «)

The protocol is parameterized by a weak flooding protocol II, a (u, 0)-ECCS ¢ for some
u, 0 € N, and a cryptographic accumulator a.

Each party p; € P keeps track of a set of shares received for a particular accumulator z,
ReceivedShares;[z]. Additionally, each party p; keeps track of a set of received messages
Received;.

Initialize: Initially, each party p; sets ReceivedShares; := &, and Received; := &. Fur-
thermore, p independent instances Ily,...,II, of the weak flooding protocol are
initialized.

Send: When p; receives (Send,m) they share the message m into shares (.Enc(m) =
51,...,5,. Furthermore, they obtain an accumulated value and proofs for each share
and its share number (z,my,...,7,) = c.Accumulate({(s;,7) | 1 <i < u}). Now, the
party inputs the message (s;,7;,2) to II; for 1 < j < p. Finally, they add m to
Received;.

Get Messages: When p; receives (GetMessages) they return Received,.

When party p; receives a tuple (s, 7, z) in II; where a.Verify((s,), 7, 2) = T, they add (s, j)
to ReceivedShares;|z]. Furthermore, p; checks if |ReceivedShares;[z]| > u — o. If that is
the case, p; ignores further messages with this accumulated value z and does the following:

1. Obtain a sequence of shares s1,...,s, by letting s; = s if (s, j) € ReceivedShares;|?]
and otherwise sets s; = L if no such pair is in ReceivedShares;[z].

2. Decode the shares and add the recovered message to the set of received messages,
Received; := Received; U {(.Dec(s1,...,s,)}.

Security of WeakFlood2Flood. We now state and prove the security of WeakFlood2Flood.

Theorem 6. Let £ € (0,1], let A € N, and let II be a weak (A, §)-flooding protocol with security
against computationally unbounded adversaries. Further, let § € (0,1], let p € N, let o >
w- (1= (1=9)-¢), let ¢ be a (u, 0)-ECCS, and let o be a WSCAS. The probability in an execution
with a PPT adversary A that a message sent using the protocol WeakFlood2Flood(11, (, &) is not
delivered within time A to all honest parties is less than

52.¢

[H|-e= 2" +negl(x).

Proof. Consider an execution with a PPT adversary A in which a message is sent by an honest
sender s at time ¢ by flooding shares si,...,s, together with an accumulated value z and
the corresponding proofs mj. Further consider an adversary A" on the collision freeness of the
accumulator that emulates the full protocol execution with adversary .A. Whenever a party in
the emulation receives a tuple (sj, 7}, z), the adversary A’ checks whether 7; is valid, z matches
the accumulator value generated by the honest sender, and s; is not one of the honestly generated
shares. In that case, A’ has found a collision, which we assume is only possible with negligible
probability.

On the other hand, if an honest party p receives at least (1 —9)-& - pu > p — o of the original
shares with valid proofs and no different shares for the same accumulator value z, then by

25

properties of the (u, 0)-ECCS, p is able to reconstruct the original message. It is therefore
sufficient to bound the probability that there exists an honest party that does not receive at
least (1 —9) - & - p shares from the sender within time A.

For each honest party p; € ‘H we introduce random indicator variables S;1,S;2,...,5
where S; ; indicates whether or not party p; received share s; by time t+A. Further, we introduce
a variable that denotes how many shares party p; receives from honest parties S; = 27:1 S;,j at
latest at time ¢t 4+ A. Note that the S; ; are not necessarily independent, since the adversary can,
e.g., decide to on purpose increase the delivery probability for one of the shares if another share
is delivered. It is, however, not possible for the adversary to decrease the delivery probability
for some share by correlating the executions for different shares since all honest parties use
independent randomness for the different instances of II. This is formalized in the following

claim that is a generalization of [MPRO7, Lemma 4] and follows the same proof idea.

Claim 2. For an adversary A; j interacting with the jth instance of the weak flooding protocol I1;,

we denote by Sﬁ’j the event that the honest party p; receives the message sent in IL; by time t4 A.
As above, S; ; denotes the corresponding event in an interaction of a single adversary A with

the overall protocol WeakFlood2Flood(I1, (,). Further let S; = >°4_, S;j and S =>4 S;f;’j
Then, for every i, there exist independent, computationally unbounded adversaries A;1, ..., Aiu

such that S; stochastically dominates S;. That is, we have for any k € N,
Pr[S; < k] < Pr[S] < k]

Proof. We fix some arbitrary ¢ and first consider the adversaries Ag,o, g,l, e ,A;,# that can
exchange messages between each other and operate as follows: The adversary A;, emulates
A, but does not directly interact with any protocol. Instead, when A wants to interact with
protocol instance IT;, A ; sends a message to A; ; with the instruction to interact accordingly.
The result of this interaction is then passed back from A; ; to Aj . To allow all adversaries to
keep track of the total number of exchanged messages, .A;’O always sends a dummy message to
all other A; ;, so that all A; ; receive the same number of messages from A; ;. To further remove
any variance on timing and the total number of messages sent between the adversaries, we let
Ag’o send (dummy) messages at every activation, continuing until some upper bound on the
total number of activations needed to complete the whole protocol execution. Note that the
overall behavior is identical to an execution of WeakFlood2Flood(II, ¢,) with A, and therefore,
the probabilities of all events in the two experiments are identical.

Assume Aj ; sends £ messages to all parties. We now modify all adversaries as follows: Aj
does not send the fth message to any adversary, and A;7j>0 does not expect the last message,
but instead considers the set of all possibly received messages, and behaves as if it received a
message that minimizes the probability that p; receives the message in II; by time ¢t + A (note
that this step requires A;,j to be computationally unbounded). By doing so, we have reduced
the number of messages exchanged with each .A;’j such that for every j, the probability that p;
receives the message in II; is not increased. This ensures that for all k,

Pr[S; < k] < Pr

T
> s <4

J=1

We now inductively continue, until we arrive at adversaries A;o,A;1,...,4;, that do not
exchange any messages. They are therefore independent and A4; o is not needed anymore. [J

By the above claim, it is sufficient to bound the probability for the event that S < (1—9)-&-p
in order to bound the probability that party p; receives less than (1 — d) - £ - u shares by time

26

t + A. Because each II; is a weak (£, A)-flooding protocol, we have Pr[S}; = 1] > ¢ for all 4, ;.
By linearity of expectation, this implies

B[S] > ¢ - .

Note that the S7; for j = 1,..., u are independent because they are events in independent
protocol instances interacting with independent adversaries. We can therefore apply the Chernoff
bound to obtain that for any d € [0, 1),
N _8%ep
PrS;<(1-68)-&-pu] <e
Finally, the probability that there exists any honest party that does not receive at least (1—0)-&-p
shares is

Pr [3p; € H, s.t. p; receives less than (1 — J) - € - p shares]

2.,
< Y Pr[Si<(1-6)&-p <M
pi€H

by the union bound. O

It is noteworthy that WeakFlood2Flood inherits the delivery guarantee of the weak flooding
protocol that it is instantiated with. Next, we state a direct corollary of the above theorem,
stating that for appropriate parameters, WeakFlood2Flood is a strong flooding protocol.

Corollary 1. Let £ € (0,1], let A € N, and let II be a weak (A, §)-flooding protocol. Further, let
w> 8-%, let o> - (1 - %), let ¢ be a (p, 0)-ECCS, and let o be a WSCAS. The protocol
WeakFlood2Flood(I1, {, c) is a strong A-flooding protocol.

Proof. We note that |H| < n and use Theorem 6 instantiated with § :== £ to obtain that the
probability that some honest party does not obtain a message sent by an honest party within
time A is at most

52.¢-p

1H|- ez +negl(k) < n-e '8 7F L negl(k) = e + negl(x) < negl(x). O

5.4 Communication Complexity of the Combined Protocol

We consider the combined protocol
ECFlood(d, ¢, o) := WeakFlood2Flood(FFlood(d), ¢, a),

instantiated with a (i, 0)-ECCS ¢, and a WSCAS scheme «. Note that Corollary 1 and Theorem 5
imply that for u > 8-%, 0> (1—%), n>50-y"1 d=0(y"!),and A = O(log(n)-Axgr),
ECFlood(d, ¢, @) is a strong A-flooding protocol.

To analyze the (per-party) communication complexity, consider the case where a single
message of length [is input to an honest party. First note that the honest sender produces p
shares and sends these together with the sequence number of the share, an accumulator proof,
and an accumulated value using FFlood(d). Hence, the size of each of these messages is bounded
by (.ShareSize(l) + log(u) + a.ProofSize(u) + a.AccSize. The protocol FFlood(d) uses a
neighborhood of size d for every message and every honest party sends each message at most
once to their neighbors. Furthermore, no other messages related to this message is sent by
any honest party, unless the adversary breaks the collision freeness of the accumulator and

27

manages to inject additional shares, which is only possible with negligible probability. Hence,
each honest party sends at most u - d messages (except with negligible probability) and the
per-party communication complexity is upper bounded by

p-d- (¢.ShareSize(l) + log(u) + o.ProofSize(u) + a.AccSize). (13)

Using Reed-Solomon codes and since we can set ¢ == [p- (1 — %)], Equation (1) implies that
the share size can be bounded by

(.ShareSize = O(,ul—g> = O<'ul£> = O<L>

Furthermore, using efficient accumulators (see Equation (2)) that have accumulator and proof
sizes of O(k) bits, setting pu = O(%), d = O(y7!), and using that ¢ is just a constant, we
obtain from Equation (13) that the per-party communication complexity is bounded by

O((log(n) + &) -y~ - (1- (log(n) + k)~ + log(log(n) + k) + k))
= O(y™" - (I+ (log(n) +) - (log(log(n)) +))), (14)

and the total communication complexity is at most n times that.
Note that for

I = Q((log(n) + k) - (log(log(n)) +),
this simplifies to
O(l) '7_1)7

which is optimal by Theorem 3.

6 Flooding in the Weighted Setting

Model. We consider the setting where parties are assigned a fraction of the total weight, and
assume that the assigned weights are public. We let W), denote the weight assigned to party p,

and let oy, == ZWipW i.e., the fraction of the total weight assigned to party p. The adversary
peP P

can corrupt any subset of the parties such that the remaining set of honest parties together
constitutes more than a 7y € (0, 1] fraction of the total weight. That is, 37 ¢4, @p > 7, and all
parties have a non-zero positive weight i.e. Vp € P, W, > 0.

Transformation. We provide a general transformation for a flooding protocol in the equal-
weights setting to the weighted setting, leveraging ideas from [LMM™22]. The main idea of our
transformation is to let each party emulate a number of parties in another flooding protocol. We
use the same emulation function as [LMM™22] where each weighted party p € P emulates [a,-n]
non-weighted parties. For each party p € P, we define a set of parties that this party emulates
as E(p) = {pi | it € NAi < [a,-n]}. Note that because all parties have a non-zero weight, all
parties emulate at least one party, i.e., for any party p € P we have E(p) # &. For convenience,
we introduce notation for the set of emulated parties, Pz = U,ep E(p), the total number of
emulated parties ng = |Pg|, the set of emulated parties that are emulated by honest players
He = Upey E(p) and the number of honestly emulated parties hg = [Hg|. Following [LMM™*22],
we note that

ng=Y [ap-n] <Y ap-n+1=2-n, (15)

peEP peEP

28

and

hE:Z(ap'n]2§~n. (16)
pEH

When defining a strong flooding protocol in Section 2.3, we were not explicit about the set of
parties a flooding protocol has to provide guarantees for, as all of our previous flooding protocols
have simply worked for the same set of assumed parties P. Below, this will not be the case, as
the flooding protocols we discuss will work for a different set of parties. Hence, we will make
these sets explicit by using the phrase that “a protocol is a flooding protocol for a set of parties”.

—!| Protocol Flood2WeightedFlood(IT)

The protocol is parameterized by a protocol II that is a flooding protocol for Pg.
Each party p € P starts a process for each of their emulated parties, and lets these processes
participate in the protocol II.

Initialize: Initially, each party p initialize all of their emulated parties E(p) in II.
Send: When p receives (Send, m) they pick p; € E(p) and forward (Send, m) to p; in II.

Get Messages: When p receives (GetMessages) they pick p; € E(p) forward (GetMessages) to
p; in II, and return the set of messages returned to p;.

Below we prove that if Flood2WeightedFlood is instantiated with a strong flooding protocol
for ng, then Flood2WeightedFlood will be a strong flooding protocol.

Theorem 7. Let A € N. If 1l is a strong A-flooding protocol for Pg under the assumption
that at least ¥ - n of them behaves honestly, then Flood2WeightedFlood(11) is a strong A-flooding
protocol for P.

Proof. Let m be a message that is input to some honest party at time ¢. Since all parties emulate
at least one party, this implies that the message will also be input to some honest emulated party
in IT at time ¢t. Because II is a strong A-flooding protocol for Pg when 7 - n parties are honest
(Equation (16) ensures that this is actually the case), then there is an overwhelming probability
in k that all emulated parties receive m before t + A. As each honest party emulates at least
one party, this implies that all honest parties will also receive the message with a probability
that is overwhelming in II. O

Realising a strong flooding protocol for Pz. It may seem like Theorem 7 allows us to
easily translate the protocols presented in Section 5 to the weighted setting. However, even
though the protocols in these sections work for any set of parties, they make channels, which are
only assumed for the actual set of parties P and not the emulated set of parties Pg. To use these
protocols blackbox, we need to show how to establish channels between the emulated parties.

We note that channels for the emulated set of parties can easily be established from channels
between the original set of parties. One way to do this is by simply prepending (pe, per) to any
message that an emulated party p. wishes to send to another emulated party p’. When a party
receives such a message on a normal channel, they will take it as an input on the emulated
channel between the emulated parties p. and p.

Communication complexity analysis. The analysis in Section 5.4 also applies when the
protocol is transformed to work for the weighted setting because ng = O(n) (Equation (15))

29

and the fraction of honest emulated parties Z—E = O(%) (by Equations (15) and (16)). The only
thing that changes is that all messages will have identifiers for emulated parties prepended.
The size of such identifiers is bounded by O(log(n)). When this is threaded through the
analysis using the same parameters as in Section 5.4, we see that for a suitable d, ¢ and «,
the communication complexity of the Flood2WeightedFlood(ECFlood(d, ¢, «)) is bounded by
O(y~'-n- (I + (log(n) + x)?)), which is optimal when I = Q((log(n) + &)?). Tt is, however,
worth noting that for our particular protocol, it is not necessary to keep the messages delivered
to different emulated parties separate. In particular, Flood2WeightedFlood(ECFlood(d, (, «))
would have the same guarantees if any message sent from an emulated party of party p; to
an emulated party of p; is simply delivered to all emulated parties of p;. In that case, the
communication complexity of Flood2WeightedFlood(ECFlood(d, ¢, «)) would be optimal under

the same constraints as ECFlood(d, ¢, «).

7 Security in the UC Model

The Universal Composable (UC) model by Cannetti [Can20] is by many considered the golden
standard for security for cryptographic protocols, because security in this model ensures that
the protocol remains secure independently of the context it is deployed in. In this section, we
formalize a theorem that informally says that any protocol that is a flooding protocol w.r.t. the
property-based definition (Definition 3) is a UC secure implementation of a flooding network.
The theorem is basically a generalization of the proof ideas that appear in [MNT22] when proving
that their flooding protocol implements the ideal functionality.

Before stating and proving the actual theorem, we first summarize the necessary details of
the UC framework to understand the remainder of the section and present an ideal functionality
for flooding.

7.1 The UC Model

UC [Can20] is a framework that provides precise execution semantics for distributed protocols
using Turing machines.

Security. The intended behavior of a protocol in the UC framework is defined by comparing the
execution of distributed protocol to an execution of an ideal functionality. The ideal functionality
can informally be thought of as a trusted third party, which behavior defines the intended
behavior of the distributed protocol. Security is defined by comparing the two executions, and if
for all attacks there exists a program that translates an attack on the protocol to an attack on
the ideal functionality, which renders the attack to not be an attack by definition. Below, we
recap the formal definition of security in the UC model.

Definition 6 (Secure Implementation). Let II be a protocol, F an ideal functionality, and
~ mean that the statistical distance between two distributions is negligible in the security
parameter k. The protocol II is said to securely implement F if

VA 3S VZ,EXEC(Z, A, TI) ~ EXEC(Z, S, F) (17)

where EXEC denotes the random variable defined as the binary output that the environment Z
outputs after having executed protocol II with adversary A.

For further details on the UC model, we refer to [Can20).

30

Time. There is no build in notion of time in the UC model, which is needed when describing
the ideal functionality for a flooding network. We therefore use the notion of time from
TARDIS [BDD"21]. That is, to let a use a global ticker to ensure that all parties are activated
in each time step, without imposing specific assumptions about the exact time being available
to parties.

For further details about how this notion of time can be used in connection with flooding
networks, we refer to [MNT22].

7.2 Flooding as a UC Functionality

We base our flooding functionality on the flooding functionality from [MNT22] but do not
consider pre-corrupted parties (a corruption type specific to the model of delayed adversaries
used in their work) nor relay messages as this is not needed for most blockchains protocols
(see Section 2.3).

—1 Functionality F5,

The functionality is parameterized by a set of parties P and a delivery guarantee A.

It keeps track of a set of messages for each party Mailbox. These sets contain the messages
that each party will receive after fetching. Additionally, it keeps track of the set of parties
that has been corrupted by the adversary Corrupted.

Initialize: Initially, Corrupted := @ and Mailbox[p;| := & for all p; € P.
Send: After receiving (Send, m) from p; it leaks (LeakSend, p;, m) to the adversary.

Get Messages: After receiving (GetMessages) from p; it outputs Mailbox[p;] to party p;
and (LeakGet, p;,Mailbox[p;]) to the adversary.

Set Message: After receiving (SetMessage, m, p;) from the adversary, the functionality sets
Mailbox[p;| := Mailbox[p;] U {m}.

At any time after all parties have been initialized the functionality automatically enforces
the following: For any message m that is input to an honest party p; at some time t, it is
ensured for any honest party Vp; € P\ Corrupted that by time ¢ + A they have received
the message i.e., m € Mailbox[p;].

The property are ensured by the functionality automatically® making the minimal possible
additional calls with SetMessage.

“The global clock used to check the time ensures that the functionality is invoked at least once per time
step, and therefore such automatic checks are possible.

7.3 Strong Flooding Implies UC Flooding

We are now ready to state the main result of this section. The theorem informally says that any
flooding protocol that for UC executions is a strong flooding protocol (w.r.t. Definition 3) also
securely implements Friood-

Theorem 8. Let A € N and let I be a protocol. If 11 is a A-flooding protocol, then 11 securely
implements "rl—élood'

31

To prove this we exploit that the functionality has no secrecy and therefore the full protocol
can be simulated in black-box manner by simply forwarding the inputs that are leaked to the
simulator from the functionality.

Proof. We are to prove Equation (17). To do so, we let A be an adversary and show the
existence of a simulator S by constructing it explicitly. We define the simulator & similarly to
the simulator in [MNT22, proof of Lemma 5]. That is, we let S emulate an execution of II inside
itself. In more detail, for any party p € P it spawns a process that act as this party according to
protocol II, spawns a process that acts as the adversary A, and spawns an environment Z’. The
simulator S controls the environment and has the following behavior:

o Whenever the simulator receives (LeakSend, p,m) from the ideal functionality f,ﬁood the
simulator inputs (Send, m) via the environment Z’ to the process for p.

« Whenever the simulator receives (LeakGet,p, M) from the ideal functionality F& 4 the
simulator inputs (GetMessages) via the environment Z’ to the process for p.

o Whenever a party p receives a message m in the emulated execution of II the simulator
inputs (SetMessage, m, p) to the ideal functionality]-"ﬁood.

e Whenever the emulated adversary within the simulator output something to the emulated
environment, the simulator forwards this to the real environment outside the simulator.

Having defined the simulator, it is left to argue that for any environment Z we have
EXEC(Z, A,II) ~ EXEC(Z, S, F).

Observe that using the same randomness, the execution of II in the real world and inside the
head of the simulator will provide the same outputs as the same SetMessage and GetMessages inputs
are given. Therefore, the only time that the outputs of to the environment will be different
is when the ideal functionality automatically inserts messages to the mailbox of some party,
because the simulator failed to do so timely. However, this only happens when the emulated
protocol within the simulator fails to deliver messages to the emulated messages timely. Because
the protocol II is a A-flooding protocol, it in particular also ensures delivery within A for A and
Z'. Hence, it is ensured that the probability that this happens is negligible in k. O

A direct corollary of Theorem 8 is that ECFlood securely implements]-",ﬁood.

8 Practicality of ECFlood

In Section 5.4, it was shown that parameters could be set such that ECFlood theoretically
constitutes an asymptotically optimal flooding. We instantiated many variables to constants
required by our analysis, but these are most likely not instantiated optimally, and nor are our
analyses themselves optimal.

To provide a guideline for how to instantiate the parameters of our protocol for practical
performance and to compare its practical efficiency to the efficiency of state-of-the-art, we made
probabilistic simulations of the protocol executions that explore how the message complexity of
our protocols is affected by adjusting parameters, which we report on in the following sections.
Finally, in Section 8.5, we report on initial experiments that suggests that the computational
overhead associated with the WSCAS and ECCS are by no means hindrance for practical
adoption of the protocol.

32

100 %

| ——n = 1024
g | -m- n = 2048
G 80% an = 4096
9 | -em = 8192
: 60% | e = 16384
g 40 % |-
5 i
R 20%

| | | | | |
0% 2 4 6 8 10 12 14
Degree (d)

Figure 2: Results for simulations of FFlood(d) for different values of d and n. The delivery rate
for a fixed party different from the sender is plotted as a function of changing the expected
degree d.

8.1 Setup for Simulations

We implemented a probabilistic experiment among n nodes where 5 of them behave honestly
and will forward any received message according to our protocol if they receive a message. We
consider not forwarding any messages the worst-case adversarial behavior. So the remaining
5 parties, which we consider corrupt, will not participate in forwarding any messages sent to
them. That is, an initial party will distribute several messages by selecting a set of d uniformly
random neighbors (for varying values of d) for each message. These will then again forward
each message to a random set of neighbors. This continues until no honest party receives the
message for the first time. For simulations of FFlood, a single message is initially input, whereas,
for ECFlood, several messages will be input corresponding to the number of shares a message is
divided into in the protocol.

We have repeated our simulations 1000 times for each set of parameters except for Fig-
ure 1 where more simulations are done in order to make more accurate estimates of the error
probabilities.

Below, we report on various statistics from our simulations.

8.2 Estimating Parameters for FFlood

In Section 5.4 we showed that the communication complexity of WeakFlood2Flood instantiated
with FFlood(d) is directly proportional to %l, if FFlood is a weak (A, ¢) flooding protocol for
some A and &.

Initially, let us ignore how A is affected by changing the degree d and let us focus on finding
estimates of ¢ for different degrees. A simple way to estimate the maximum ¢ for which FFlood(d)
is a {-weak flooding algorithm is to select a party different from the sender and count the rate
with which this party receives a message throughout many executions. The results of this
approach for different values of n and d are in Figure 2.

Note that the graphs for different values of n are extremely close to each other. Hence, our
simulations confirm that the delivery rate of FFlood(d) (and thereby how well it acts as a weak
flooding algorithm) is truly independent of the number of parties n. In particular, this holds
even for very small values of d (and n).

It is striking that even for d = 3, where an honest party in expectation forwards the message

33

to just 1.5 other honest parties, the probability that a particular party receives the message is
about ~45%. To understand this behavior, we collected additional statistics on the fraction of
parties reached in each execution of the protocol. This data is presented in Figure 3.
Interestingly, it seems that for all the different degrees plotted; there is an initial drop before
the curves reach a plateau, where they stay for a while. Our interpretation of this phenomenon
is that there is quite a high probability that the initial sender or their close neighbors talk only
to dishonest parties, which stops the propagation. However, once a critical mass of parties has
been reached, it becomes very unlikely that they all select only dishonest parties or parties that
have already received the message as their neighbors (which is what is required to make the
propagation of the message stop). So even for d = 3, where on average each party only talks to

1.5 honest parties, there is more than 50% chance that the message will spread to more than
75% of the parties.

) 100 % p=)
5 80 \ I
g I N 'I 1o d=14
o]

g 60%7 ‘l : | _._..d:
g ' : A N I —
g 0% ‘. L] |d=T
= : IR b
-g 20% II i ||

N | | , |

O% s ‘

L I | I | I | I | I ! | I \. I 1
0 01 02 03 04 05 06 07 08 09 1
Fraction of reached parties (>)

Figure 3: Results for simulations of FFlood(d) for different values of d and a fixed n = 8192.
The graphs show the percentages of the simulated executions (on the y-axis) where at least a
certain fraction of parties received the message (on the x-axis).

With estimates on &, we are also able to estimate the size of the factor ¢ that is multiplied by
the message length in the communication complexity. In Figure 4, we plot this. Our simulations

indicates that the best value for d in order to get the lowest overall communication complexity
is ~4 where g will be just above 5.

We now turn our attention to how the A parameter of the weak flooding algorithm FFlood(d)
is affected by varying the value d. To provide an upper bound on A, we recorded the maximum
number of hops from the sender to any other party that receives the message in each execution.
Note that the number of hops times the maximum delay on the point-to-point channels directly
translates to an upper bound on the delivery time for a message in a real execution of the
protocol. In Figure 5, we plot the maximum number of hops across all the simulations (for a
single set of parameters) for the various number of parties n and degrees d. We include only
those degrees that are of interest w.r.t. an overall low communication complexity.

We note that during the execution, no message was delivered in more than 32 hops for
expected degrees at least 4. For degrees at least 5, this maximum number of observed hops
drops to 23, and for degrees larger than 10, no message is delivered in more than 10 hops.

34

15 —o—n = 1024
-m- n = 2048
- = 4096
- = 8192

10 4 = 16384

ot

Estimated redundancy (g)

4 6 8 10 12 14
Degree (d)

Figure 4: Results for simulations of FFlood(d) for different values of d and n. The graphs show
the degree normalized by the observed delivery rate as a function of the degree.

T | [—n=1024
a5 30 1]---n=2048
— [] n = 4096

§’ | [---n=8192
g 20 1] n = 16384
= |

= W !

8 e 1

g S e oeneenennnenns]

= 0 |

) 10 15 20 25 30 35 40 45
Degree (d)

Figure 5: Results for simulations of FFlood(d) for different values of d and n. The graphs show
the maximal latency from the sender to any party that receives the message for different values
of d.

8.3 Estimating Parameters for ECFlood

In the previous section, we established that FFlood(d) constitutes the “best” weak flooding
network when d is approximately 4. However, this does not necessarily translate to the protocol
WeakFlood2Flood instantiated with FFlood(d). The reason is that WeakFlood2Flood also needs
to be instantiated with an (u, 0)-ECCS, and the redundancy of the ECCS scheme is proportional
to (u — Q)_l. For WeakFlood2Flood to be secure, we need that all parties receive at least p — o
shares. In expectation, all parties receive £ - © when instantiated with a weak £-flooding protocol.
But for a secure combined protocol, we need that the probability that some parties receive
significantly less than £ - u shares is small.

In this section, we provide guidelines for how to select d, i, and o for a ¢ that is (u, 0)-ECCS,
such that ECFlood(d - n~1, () is both secure and has a small overall factor multiplied to n - [in
the communication complexity. We will abuse notation slightly and ignore the WSCAS scheme
that is also a parameter of ECFlood, as we will not do any simulations w.r.t. the efficiency of
such scheme. Sometimes we will also leave out the ECCS of the notation and treat the number
of shares explicitly.

To estimate how to set ¢ of the ECCS, we record the minimum fraction of shares received by

35

any party in any of the simulations (using the same parameters), and plot how this minimum
fraction of received shares across all simulations, 3, is affected by a varying number of shares
and degrees d. The results are in Figure 6.

1

[en}

10 30 50 70 90
Number of shares (u)

Min. fraction of received shares(S)

Figure 6: Results for simulations of ECFlood(d) for different values of d, a fixed number of parties
n = 8192, and a variable number of shares p. The graphs show the minimum fraction of shares
received by any party in the simulations for different number of expected neighbors p - d. The
number of shares is incremented in steps of 3.

Note that if one instantiates o such that p — o= - pu <= 0= - (1 — () then all parties
would be able to reconstruct the message in all simulations. For these parameters, the protocol
would have a total communication complexity of roughly 3! -d-n-1. So we will refer to 37! -d
as the redundancy of the protocol.

In Figure 7, we plot the redundancy when letting o = p- (1 —) as a function of the expected
size of the neighborhood p - d for a varying number of shares p and degrees d. We do not plot
the redundancy for d = 3 and d = 4 as it for all considered values of p will be so high that it is
of no interest. Note that even though the expected redundancy has a minimum around d = 4
(according to Figure 4), it seems that the actual redundancy of protocols instantiated securely
for relatively small expected neighborhoods < 100 is as small for degree d = 7. This is because if
¢ is higher (provided by a higher degree), then it will concentrate more quickly around the mean
(when p increases) than when ¢ is relatively small. Suppose you are willing to accept having 120
outgoing connections. In that case, d = 7 and p = 20 will deliver a flooding protocol that in
non of the simulations fails and has a redundancy of just 15. If you are willing to have larger
neighborhoods, then we can instantiate our protocol such that redundancy goes below 10 (for
example, with d = 5 and p = 70).

For a specific number of shares, u = 20, we additionally record the percentages of shares
where all parties received at least a certain fraction of shares for different parameters d. The
results are plotted in Figure 8. The maximum fraction of shares that all parties in all simulations
received in Figure 8 corresponds to 8 in Figure 6. From the plot, it can be seen that if one is
willing to accept a low rate of failing executions where not all parties can reconstruct, then one
can instantiate g slightly lower than p - (1 —).

Finally, we count the maximum number of hops throughout the executions for any party

to have received the minimum fraction of shares (at which point all parties could reconstruct
the message if parameters were set accordingly). We plot this for a fixed number of shares

36

23

— 20|
=
> 17
(]
g
= 14F
=i |
]
T 11
~ I
8 |
| | | | N
100 200 300 400 500 d=15
......... d =20

Neighbors (u - d)

Figure 7: Results for simulations of ECFlood(d) for different values of d, a fixed number of parties
n = 8192, and a variable number of shares . The graphs show the redundancy of the protocol
as a function of the expected number neighbors. The number of shares is incremented in steps
of 3.

u = 30 and a varying number of parties p and internal parameter d in Figure 9. The reason that
this is plotted for a fixed number of shares is that we observed that it does not change when
increasing the shares. Therefore the results are representative of latencies for all numbers of
shares discussed previously.

Surprisingly, the latency for ECFlood is significantly lower than that of FFlood (Figure 5).
We believe this is because it is a rare event that the maximum latency of FFlood occurs. So it
will become very unlikely that such rare events coincide for shares sent to the same party that
receives the minimum number of shares. Note that by adjusting the parameter d, ECFlood can
be tuned to achieve a similar latency to that in [LMM™22] while still maintaining a significantly
lower redundancy.

Figure 7 shows that increasing d also increases the redundancy and thus the communication
complexity. But Figure 9 shows that increasing d decreases the latency. Since there are p shares
to be sent to d parties, the total number of neighbors per parties is p - d. Figure 7 further shows
that increasing the number of shares p decreases the redundancy. For a practical implementation
Figures 7 and 9 can thus be used to find a tradeoff between latency, number of neighbors, and
redundancy.

As noted in Section 4, the protocol ECCast, has a redundancy of y~! (which for the parameters
of our simulations are only 2) and a latency of just 2. But to achieve this low redundancy and
latency, ECCast requires each party to talk to 8191 neighbors. So the protocols present a tradeoff
between low redundancy and diameter and a low number of neighbors.

8.4 Comparison to State-of-the-Art

To compare the practicality of ECFlood to existing approaches for byzantine fault-tolerant
protocols, we compare it to FFlood where the number of parties each party forwards to is
increased to obtain a decreasing failure probability.” To ensure that the comparison does not
hide any large constants, and therefore accurately depicts the performance that can be expected
in practice, we compare a scenario where both protocols are to sent out a 1 megabyte message
(corresponding to a Bitcoin block), and take into account the overhead of the additional nonce,
erasure correcting codes, and cryptographic accumulator used in the solution for ECFlood. As

"For a discussion of why other classic approaches fail in the byzantine setting, see Section 1.3.

37

100 % §

. . Q —o—d=23
2 80% y o -m-d=4
= L a-d=5
© 6% cd = 6
K . ctd =17
S 40% Y d=
,L; * ——d=09
E 20% : ~e-d=10
@ n s

0%0 0.1 02 03 04 05 06 0.7 08 09 1

Fraction of shares received by all parties (>)

Figure 8: Results for simulations of ECFlood(d) for different values of d, a fixed number of
parties n = 8192, and a fixed number of shares y = 20. The graphs show the percentages of the
simulated executions (on the y-axis) where all parties received at least a certain percentage of
all the shares sent out by the sender.

12 —

— —e—n = 1024
<l<%] | |-m- n =2048
~ 10 A |a o= 4096

g | e = 8192

g 4 | [aen = 16384
o)

E . 'x\ |

§ 6 —mw -/lj*-;*;-’;:--0----4----0----0----‘,‘. .

e oW m W lN A -m-m-E-%

= 4 | | Lo Ny o

Figure 9: Results for simulations of ECFlood(d) for different values of d and n, but with a fixed
number of shares ¢ = 30. The graphs show the maximal latency before any party has received
enough shares to be able to reconstruct for different values of d.

previously noted, the per-party communication overhead of ECFlood(d, (,) is upper bounded
by
p-d-(¢.ShareSize(l) + log(u) + k + a.ProofSize(u) + a.AccSize). (18)

We let ¢ be instantiated with Reed-Solomon codes s.t. it is a (i, 0)-ECCS, and let the accumulator
« is implemented with a Merkle-tree (using 256-bit hashes). Then the per-party communication
complexity in bits is upper bounded by

bed- quiJ + Tlog(1)] + 256 - Nlog(1)] + 256). (19)

This calculation is included in the comparison which is presented in Figure 1, and thereby it
depicts the actual number of bits communicated in a real execution, and not only an asymptotic
estimation. In the figure, two configurations of ECFlood(d) are included, where each has a
neighborhood of 200 parties (which we deem to be practical for blockchains as the Bitcoin

38

client currently allows up to 125 neighbors by default [GRKC15]). ECFlood(8) is a configuration
optimized for redundancy with the number of shares p = 25 which has a slightly higher latency
than FFlood, whereas ECFlood(20) is a configuration optimized for latency with the numbers of
shares being ;1 = 10. We note that the latter configuration has a latency that is as good as the
latency of FFlood.

If one wants to virtually eliminate errors our protocol enables a per-party communication of
just ~12 MB to send out a 1 MB message, and if the latency optimized version is used each
party communication will be roughly ~25 MB. FFlood which can be considered state-of-the-art,
on the other hand, needs a per-party communication of > 45 MB to eliminate delivery errors.
We conclude that our protocol allows to drastically (as much as ~75%) cut the communication
complexity at the cost slightly larger neighborhoods.

8.5 Computational Overhead of using a WSCAS and a ECCS

The results of the probabilistic simulations above neglect the computational overhead of using
an ECCS and a WSCAS. To ensure that the use of these primitives does not constitute a
bottleneck in a practical scenario, we have implemented the protocol WeakFlood2Flood in C++
using open-source libraries for Reed-Solomon codes as ECCS and Merkle trees as WSCAS. The
ECFlood would then send the encoded messages using a weak flooding protocol. Hence measuring
the overhead of WeakFlood2Flood, allows us to precisely measure the computational overhead
incurred by our protocol over existing protocols. We note that our implementation is just a
prototype to demonstrate the overall feasibility and is not heavily optimized. It should therefore
be possible to get even better results with an optimized production-ready implementation.

To send a 1 MB block using the WeakFlood2Flood protocol with 10 shares and a reconstruction
threshold of 8 (which is needed to make all of the ECFlood(20) simulations succeed), the sender
needs to encode the block into shares and construct an accumulator with the corresponding
proofs. This takes around 12 ms in our benchmark. The time for the other parties receiving the
data in the worst case where 2 out of 10 accumulators are corrupted to verify all the accumulator
proofs and reconstruct the message amounts to around 16 ms. The benchmarks leading to these
numbers were carried out on a desktop with an AMD Ryzen 9 5950X processor.

Based on these benchmarks, we can conclude that the total computational overhead for the
sender plus a receiver is less than 30 ms. With a 1 Gigabit internet connection, the parties could
communicate less than 4 MB during that 30 ms. As our simulations show, our new protocol
reduces the communication complexity per party by around 20 MB for this setting. Since this
reduction is substantially more than 4 MB, we conclude that our protocol has an improved
efficiency overall.

9 Conclusion

We presented two protocols for message dissemination, ECCast and ECFlood, and showed that
these are both asymptotically optimal w.r.t. per-party communication for sufficiently long
messages. Our simulations of ECFlood indicate that the protocol is not only asymptotically
optimal but actually offers significant improvements in terms of redundancy over existing provably
secure protocols for parameters within the practical realm. The two protocols present a tradeoff
between a low number of neighbors of each party and the per-party complexity and latency on
the other side. Additionally, we presented the protocol Flood2WeightedFlood, which allows our
protocols to be used in the weighted setting, which is typical for blockchains.

For blockchain protocols where parties’ bandwidth is a limiting factor for the protocol’s
throughput, our results allow to increase the throughput of the protocol, e.g., by increasing

39

the size of blocks or by simply benefiting from decreased latency of sending fewer bits on the
underlying point-to-point channels.

References

[AZV17]

[BDD*21]

[BAM93]

[BLZLN22]

[BPY7]

[Can20]
[CKMR22]

[CM19]

[DF11]

[DGH*87]

[DGKR18]

[Did09)]

[DPS19]

Maria Apostolaki, Aviv Zohar, and Laurent Vanbever. Hijacking bitcoin: Routing
attacks on cryptocurrencies. In IEFEE Symposium on Security and Privacy, pages
375-392. IEEE, 2017.

Carsten Baum, Bernardo David, Rafael Dowsley, Jesper Buus Nielsen, and Sabine
Oechsner. TARDIS: A foundation of time-lock puzzles in UC. In EUROCRYPT (3),
volume 12698 of Lecture Notes in Computer Science, pages 429-459. Springer, 2021.

Josh Cohen Benaloh and Michael de Mare. One-way accumulators: A decentralized
alternative to digital sinatures (extended abstract). In EUROCRYPT, volume 765
of Lecture Notes in Computer Science, pages 274—285. Springer, 1993.

Amey Bhangale, Chen-Da Liu-Zhang, Julian Loss, and Kartik Nayak. Efficient
adaptively-secure byzantine agreement for long messages. ASTACRYPT, 2022.

Niko Bari¢ and Birgit Pfitzmann. Collision-free accumulators and fail-stop signature
schemes without trees. In Walter Fumy, editor, Advances in Cryptology — EURO-
CRYPT 97, pages 480-494, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg.

Ran Canetti. Universally composable security. J. ACM, 67(5):28:1-28:94, 2020.

Sandro Coretti, Aggelos Kiayias, Cristopher Moore, and Alexander Russell. The
generals’ scuttlebutt: Byzantine-resilient gossip protocols. In CCS, pages 595-608.
ACM, 2022.

Jing Chen and Silvio Micali. Algorand: A secure and efficient distributed ledger.
Theor. Comput. Sci., 777:155-183, 2019.

Benjamin Doerr and Mahmoud Fouz. Asymptotically optimal randomized rumor
spreading. In Automata, Languages and Programming: 38th International Collo-
quium, ICALP 2011, Zurich, Switzerland, July 4-8, 2011, Proceedings, Part II 38,
pages 502-513. Springer, 2011.

Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker,
Howard Sturgis, Dan Swinehart, and Doug Terry. Epidemic algorithms for replicated
database maintenance. In Proceedings of the sixzth annual ACM Symposium on
Principles of distributed computing, pages 1-12, 1987.

Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. Ouroboros
praos: An adaptively-secure, semi-synchronous proof-of-stake blockchain. In FU-
ROCRYPT (2), volume 10821 of Lecture Notes in Computer Science, pages 66-98.
Springer, 2018.

Frédéric Didier. Efficient erasure decoding of reed-solomon codes. CoRR,
abs/0901.1886, 2009.

Phil Daian, Rafael Pass, and Elaine Shi. Snow white: Robustly reconfigurable con-
sensus and applications to provably secure proof of stake. In Financial Cryptography,
volume 11598 of Lecture Notes in Computer Science, pages 23—41. Springer, 2019.

40

[FHO6]

[FOA16]

[FPRU90]

[GKL15]

[GLL*22]

[GP16]

[GRKC15]

[HKZG15]

[KMGO3]

[KSSV00]

[KYA22]

[LLTW20]

[LMM*22]

Matthias Fitzi and Martin Hirt. Optimally efficient multi-valued byzantine agree-
ment. In Proceedings of the twenty-fifth annual ACM symposium on Principles of
distributed computing, pages 163—168, 2006.

Muntadher Fadhil, Gareth Owenson, and Mo Adda. A bitcoin model for evaluation
of clustering to improve propagation delay in bitcoin network. In 2016 IEEE
Intl Conference on Computational Science and Engineering (CSE) and IEEE Intl
Conference on Embedded and Ubiquitous Computing (EUC) and 15th Intl Symposium
on Distributed Computing and Applications for Business Engineering (DCABES),
pages 468-475, 2016.

Uriel Feige, David Peleg, Prabhakar Raghavan, and Eli Upfal. Randomized broadcast
in networks. Random Structures & Algorithms, 1(4):447-460, 1990.

Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone
protocol: Analysis and applications. In EUROCRYPT (2), volume 9057 of Lecture
Notes in Computer Science, pages 281-310. Springer, 2015.

Bingyong Guo, Yuan Lu, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng Zhang.
Speeding dumbo: Pushing asynchronous bft closer to practice. Cryptology ePrint
Archive, 2022.

Chaya Ganesh and Arpita Patra. Broadcast extensions with optimal communication
and round complexity. In Proceedings of the 2016 ACM Symposium on Principles
of Distributed Computing, pages 371-380, 2016.

Arthur Gervais, Hubert Ritzdorf, Ghassan O. Karame, and Srdjan Capkun. Tam-
pering with the delivery of blocks and transactions in bitcoin. In Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications Security,
CCS ’15, page 692-705, New York, NY, USA, 2015. Association for Computing
Machinery.

Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg. Eclipse attacks
on bitcoin’s peer-to-peer network. In USENIX Security Symposium, pages 129-144.
USENIX Association, 2015.

Anne-Marie Kermarrec, Laurent Massoulié, and Ayalvadi J. Ganesh. Probabilistic
reliable dissemination in large-scale systems. IEFEE Trans. Parallel Distributed Syst.,
14(3):248-258, 2003.

Richard Karp, Christian Schindelhauer, Scott Shenker, and Berthold Vocking. Ran-
domized rumor spreading. In Proceedings 41st Annual Symposium on Foundations
of Computer Science, pages 565-574. IEEE, 2000.

Ioannis Kaklamanis, Lei Yang, and Mohammad Alizadeh. Poster: Coded broadcast
for scalable leader-based BF'T consensus. In CCS, pages 3375-3377. ACM, 2022.

Yuan Lu, Zhenliang Lu, Qiang Tang, and Guiling Wang. Dumbo-mvba: Optimal
multi-valued validated asynchronous byzantine agreement, revisited. In Proceedings
of the 39th symposium on principles of distributed computing, pages 129-138, 2020.

Chen-Da Liu-Zhang, Christian Matt, Ueli Maurer, Guilherme Rito, and Sgren Eller
Thomsen. Practical provably secure flooding for blockchains, 2022.

41

[Mer89]
MHG18]

[MNT?22]

[MPRO7]

[Nak08]
[Ngu05]
[NNT21]
[NRS*20]
[OMBS21]
[PS17]

[PS18]

[RS60)]
[RT19)
[TC84]

[TCM*20]

[VT19]

Ralph C. Merkle. A certified digital signature. In CRYPTO, volume 435 of Lecture
Notes in Computer Science, pages 218-238. Springer, 1989.

Yuval Marcus, Ethan Heilman, and Sharon Goldberg. Low-resource eclipse attacks
on ethereum’s peer-to-peer network. 2018. https://eprint.iacr.org/2018/236.

Christian Matt, Jesper Buus Nielsen, and Sgren Eller Thomsen. Formalizing delayed
adaptive corruptions and the security of flooding networks. In Yevgeniy Dodis
and Thomas Shrimpton, editors, Advances in Cryptology — CRYPTO 2022, pages
400—430, Cham, 2022. Springer Nature Switzerland.

Ueli Maurer, Krzysztof Pietrzak, and Renato Renner. Indistinguishability amplifica-
tion. In Alfred Menezes, editor, Advances in Cryptology - CRYPTO 2007, pages
130-149, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decentralized
Business Review, page 21260, 2008.

Lan Nguyen. Accumulators from bilinear pairings and applications. In CT-RSA,
volume 3376 of Lecture Notes in Computer Science, pages 275—292. Springer, 2005.

Kamilla Nazirkhanova, Joachim Neu, and David Tse. Information dispersal with
provable retrievability for rollups. arXiv preprint arXiv:2111.12323, 2021.

Kartik Nayak, Ling Ren, Elaine Shi, Nitin H. Vaidya, and Zhuolun Xiang. Improved
extension protocols for byzantine broadcast and agreement. In DISC, 2020.

Ilker Ozcelik, Sai Medury, Justin T. Broaddus, and Anthony Skjellum. An overview
of cryptographic accumulators. In ICISSP, pages 661-669. SCITEPRESS, 2021.

Rafael Pass and Elaine Shi. Fruitchains: A fair blockchain. In PODC, pages 315-324.
ACM, 2017.

Rafael Pass and Elaine Shi. Thunderella: Blockchains with optimistic instant
confirmation. In EUROCRYPT (2), volume 10821 of Lecture Notes in Computer
Science, pages 3—-33. Springer, 2018.

Irving S. Reed and Gustave Solomon. Polynomial codes over certain finite fields.
Journal of The Society for Industrial and Applied Mathematics, 8:300-304, 1960.

Elias Rohrer and Florian Tschorsch. Kadcast: A structured approach to broadcast
in blockchain networks. In AFT, pages 199-213. ACM, 2019.

Russell Turpin and Brian A. Coan. Extending binary byzantine agreement to
multivalued byzantine agreement. Inf. Process. Lett., 18(2):73-76, 1984.

Muoi Tran, Inho Choi, Gi Jun Moon, Anh V. Vu, and Min Suk Kang. A stealthier
partitioning attack against bitcoin peer-to-peer network. In IEEE Symposium on
Security and Privacy, pages 894-909. IEEE, 2020.

Huy Vu and Hitesh Tewari. An efficient peer-to-peer bitcoin protocol with prob-
abilistic flooding. In Mahdi H. Miraz, Peter S. Excell, Andrew Ware, Safeeullah
Soomro, and Maaruf Ali, editors, Emerging Technologies in Computing, pages 2945,
Cham, 2019. Springer International Publishing.

42

https://eprint.iacr.org/2018/236

[WT14] Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger.

Ethereum project yellow paper, 151(2014):1-32, 2014.

[YMR"19] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan-Gueta, and Ittai Abra-

ham. Hotstuff: BFT consensus with linearity and responsiveness. In PODC, pages
347-356. ACM, 2019.

[YPAT22] Lei Yang, Seo Jin Park, Mohammad Alizadeh, Sreeram Kannan, and David Tse.

{DispersedLedger }:{High-Throughput} byzantine consensus on variable bandwidth
networks. In 19th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 22), pages 493-512, 2022.

A Channels in UC

Turing machines in the UC framework communicate with each other by writing directly on their
respective tapes. To model unstable and leaky real world communication channels, it is therefore
necessary to model each of these channel as an ideal functionality. Below, we recap a simple
functionality for time bounded channels.

Functionality 75, ..(s,7)

The functionality is parameterized by two parties s (the sender) and r (the receiver) and
a delivery guarantee A. It maintains a mailbox for the receiver Mailbox and the set of
corrupted parties Corrupted.

Initialize: Initially, Mailbox := &.
Send: After receiving (Send, m) from s it leaks (LeakSend, s, m) to the adversary.
Get Messages: After receiving (GetMessages) from r it outputs Mailbox to party 7.

Set Message: After receiving (SetMessage,m) from the adversary, the functionality sets

At any time the functionality automatically enforces the following property:

The property is ensured by the functionality automatically making the minimal possible
additional calls with SetMessage.

Mailbox := Mailbox U {m}.

1. If m is a message that is input for the first time by an honest party s ¢ Corrupted at
some time ¢ then by time ¢ + A it is ensured that m € Mailbox.

We emphasize that even though these channels are time-bounded, the upper bound on the

delivery time does not need to be known by parties. The modeling does, therefore, not tie us to
a specific synchrony assumption.

43

	Introduction
	Contributions
	Technical Overview
	Related Work

	Model and Preliminaries
	Parties, Adversary and Communication Network
	Primitives
	Flooding
	Additional Notation
	Bounds

	Per-Party Communication Lower Bound
	Warm Up: Optimal Flooding With Constant Diameter and Linear Neighbors
	Optimal Flooding With Logarithmic Neighborhood and Diameter
	Weak Flooding
	Analysis of FFlood
	Flooding Amplification
	Communication Complexity of the Combined Protocol

	Flooding in the Weighted Setting
	Security in the UC Model
	The UC Model
	Flooding as a UC Functionality
	Strong Flooding Implies UC Flooding

	Practicality of ECFlood
	Setup for Simulations
	Estimating Parameters for FFlood
	Estimating Parameters for ECFlood
	Comparison to State-of-the-Art
	Computational Overhead of using a WSCAS and a ECCS

	Conclusion
	Channels in UC

