
A note on SPHINCS+ parameter sets

Stefan Kölbl1

Security Engineering Research, Google
kste@google.com

Keywords: Hash-based signatures, post-quantum, SPHINCS+

Abstract. In this note, we discuss using parameter sets for SPHINCS+

which support a smaller number of signatures than the 264 target. This
includes a larger search through the SPHINCS+ parameter space, com-
paring it with the current parameter sets and providing data on how the
security degrades if one exceeds the limits.

1 Introduction

The NIST call for post-quantum digital signature schemes had a requirement
that every scheme must maintain the full security level when a single key pair
is used for up to 264 signatures. For most signature schemes this requirement
comes with little additional costs. However for hash-based signatures supporting
a large number of signatures for a single key pair increases both signature size
and computation time, as it requires choosing parameter which lead to larger
tree sizes.

In practice, a limit of 264 seems very conservative for some applications.
Consider for instance the limit of 250 signatures the original SPHINCS schemes
targeted. This would allow issuing 1 million signatures per second for 30 years
with a single key. There are many use cases in practice which will never need
264 signatures, and could benefit greatly from parameter sets which are tailored
towards those applications. To list a few:

– Firmware signing: Only a small number of firmware versions will exists in
the lifetime of a key and a few thousand signatures would already be enough
in some cases.

– Certificate signing: CAs sign a comparably small number of signatures com-
pared to the 264 target. This is especially true for root CAs, which sign
intermediates. As today the certificate transparency log contains a total of
around ≈ 233 certificates.

In particular, in these use cases it is difficult for an adversary to trigger a large
number of signatures being generated. For applications where this is possible,
e.g. TLS handshakes, a conservative choice is preferable.

There are significant risks of targeting a lower number of signatures, as en-
forcing a query limit for a key in practice can be difficult. We therefore would not



recommend to place these schemes alongside signature schemes which provide a
virtually unlimited number of signatures per key as this could lead to misuse.
In some environments this might not be easier than for instance managing the
state in a stateful hash-based signature scheme.

However, a stateless scheme like SPHINCS+ would still have several advan-
tages:

– Exceeding the limit is less severe. While stateful schemes fall quickly apart if
state gets reused, the security of SPHINCS+ degrades much slower (see sub-
section 2.1). If the parameters are chosen carefully, security degrades surpris-
ingly slow. In practice this means that the limit can be exceeded by several
order of magnitudes before it becomes a practical issue.

– Backing up the key becomes much easier, as no state has to be synchronized.
– Concurrently using the same key material in a distributed system is much

simpler.

We think it would be particular useful to have parameters, which target
the same number of signatures as the existing stateful hash-based signature
standards. These parameter sets then allow a direct comparison on how much it
would cost to get rid of the stateful property.

2 Parameter search

In the following we use q to denote the maximum number of signatures which
can be used, while the targeted security level is still guaranteed. We used the
same approach as for the parameter search done on the original SPHINCS+

parameter [BHK+19], sampling a large number of parameters from a reasonable
space in terms of signature size and expected signing costs.

We collected a large set of parameters, sorted them by signature size first
and signing speed as a second criteria. These are then filtered to only include
parameters which are strictly better, i.e. a smaller signature size or faster signing
speed. The results of this search can be seen in Figure 1, Figure 2 and Figure 3.

In this search we further include parameters with w = 256 for smaller q.
While w = 256 can lead to parameters which are better in both signature size
and signing speed, we expect the resulting verification speed to be significantly
worse. As verification speed is often critical in the applications which parameter
with small q would be used, we don’t think these offer a significant benefit.

For estimating the signing speed, we simply count the number of hash oper-
ations. This only provides a rough estimate of the real performance, as we treat
the costs for each hash operation the same. Depending on the platform and
choice of hash function there might be an asymmetry in the costs, and better
trade-offs could be possible.

In Table 1 we provide a comparison between the current SPHINCS+ pa-
rameters, and a selection of q = 220 parameters, which seem well-suited for the
previously mentioned use cases. In particular, they reduce signature size by more
than 50% and provide faster verification, while key generation and signing time
is slower.



2048

4096

8192

16384

32768

105 106 107 108

Round 3 F parameter set

Round 3 S parameter set

S
ig
n
a
tu

re
S
iz
e
,
B
y
te
s

Hashes Performed During Signature Generation

210 Signatures

220 Signatures

210 Signatures (w = 256)

220 Signatures (w = 256)

210 Signatures (100-bit sec for 220)

220 Signatures (100-bit sec for 230)

230 Signatures

240 Signatures

250 Signatures

264 Signatures

Fig. 1. Comparison of the size and signing speed for parameter sets providing 128-bit
security, for different target of max signatures.

2.1 Security degradation

It’s important to point out that while SPHINCS+ security will degrade when
exceeding the maximum number of signatures, this happens slowly. Figure 4
and Figure 5 shows how security degrades for some of the parameters we found.
With moderate additional costs it is possible to find parameter which guarantee
that security does not drop below a certain level after exceeding the maximum
number of signatures. In Figure 1, we explored parameter sets which:

– Support 210 signatures, but security does not drop below 100 bits if one signs
up to 220 signatures.

– Support 220 signatures, but security does not drop below 100 bits if one signs
up to 230 signatures.

These have been included in Figure 1 and can provide a more conservative ap-
proach, having a larger buffer before security would be affected in practice.

References

BHK+19. Daniel J. Bernstein, Andreas Hülsing, Stefan Kölbl, Ruben Niederhagen,
Joost Rijneveld, and Peter Schwabe. The sphincs+ signature framework.
In CCS, pages 2129–2146. ACM, 2019.



4096

8192

16384

32768

65536

105 106 107 108

Round 3 F parameter set

Round 3 S parameter set

S
ig
n
a
tu

re
S
iz
e
,
B
y
te
s

Hashes Performed During Signature Generation

210 Signatures

220 Signatures

210 Signatures (w = 256)

220 Signatures (w = 256)

230 Signatures

240 Signatures

250 Signatures

264 Signatures

Fig. 2. Comparison of the size and signing speed for parameter sets providing 192-bit
security, for different target of max signatures.

Table 1. Comparison of parameters for q = 220 with the round 3 SPHINCS+ parame-
ters.

n h d log(t) k w bitsec sec level sig bytes

SPHINCS+-128s 16 63 7 12 14 16 133 1 7,856

SPHINCS+-128s (q = 220) 16 17 1 20 8 16 132 1 3,424

SPHINCS+-192s 24 63 7 14 17 16 193 3 16,224

SPHINCS+-192s (q = 220) 24 26 2 16 12 16 192 3 7,992

SPHINCS+-256s 32 64 8 14 22 16 255 5 29,792

SPHINCS+-256s (q = 220) 32 24 2 16 17 16 257 5 14,336



8192

16384

32768

65536

105 106 107 108

Round 3 F parameter set

Round 3 S parameter set

S
ig
n
a
tu

re
S
iz
e
,
B
y
te
s

Hashes Performed During Signature Generation

210 Signatures

220 Signatures

230 Signatures

240 Signatures

250 Signatures

264 Signatures

210 Signatures (w = 256)

220 Signatures (w = 256)

Fig. 3. Comparison of the size and signing speed for parameter sets providing 256-bit
security, for different target of max signatures.



0

20

40

60

80

100

120

140

10 15 20 25 30

S
ec
u
ri
ty

in
b
it
s

Number of signatures (log2)

h = 14, d = 1, log(t) = 16, k = 8

h = 12, d = 1, log(t) = 22, k = 6

h = 16, d = 1, log(t) = 21, k = 6

Fig. 4. Plot showing how the security degrades for different parameters targeting 210

signatures with 128-bit security.



0

20

40

60

80

100

120

140

20 25 30 35 40

S
ec
u
ri
ty

in
b
it
s

Number of signatures (log2)

h = 17, d = 1, log(t) = 20, k = 8

h = 24, d = 2, log(t) = 21, k = 6

h = 26, d = 2, log(t) = 18, k = 7

Fig. 5. Plot showing how the security degrades for different parameters targeting 220

signatures with 128-bit security.


	A note on SPHINCS+ parameter sets

