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Abstract—Payment Channel Hub (PCH) is a promising solution
to the scalability issue of first-generation blockchains or cryp-
tocurrencies such as Bitcoin. It supports off-chain payments
between a sender and a receiver through an intermediary
(called the tumbler). Relationship anonymity and value pri-
vacy are desirable features of privacy-preserving PCHs, which
prevent the tumbler from identifying the sender and receiver
pairs as well as the payment amounts. To our knowledge, all
existing Bitcoin-compatible PCH constructions that guarantee
relationship anonymity allow only a (predefined) fixed payment
amount. Thus, to achieve payments with different amounts,
they would require either multiple PCH systems or running one
PCH system multiple times. Neither of these solutions would
be deemed practical.

In this paper, we propose the first Bitcoin-compatible PCH
that achieves relationship anonymity and supports variable
amounts for payment. To achieve this, we have several layers of
technical constructions, each of which could be of independent
interest to the community. First, we propose BlindChannel,
a novel bi-directional payment channel protocol for privacy-
preserving payments, where one of the channel parties is
unable to see the channel balances. Then, we further propose
BlindHub, a three-party (sender, tumbler, receiver) protocol for
private conditional payments, where the tumbler pays to the
receiver only if the sender pays to the tumbler. The appealing
additional feature of BlindHub is that the tumbler cannot
link the sender and the receiver while supporting a variable
payment amount. To construct BlindHub, we also introduce
two new cryptographic primitives as building blocks, namely
Blind Adaptor Signature (BAS), and Flexible Blind Conditional
Signature (FBCS). BAS is an adaptor signature protocol built
on top of a blind signature scheme. FBCS is a new crypto-
graphic notion enabling us to provide an atomic and privacy-

preserving PCH. Lastly, we instantiate both BlindChannel
and BlindHub protocols and present implementation results
to show their practicality.

1. Introduction

Payment Channels (e.g. [2], [16], [46]) are regarded as
one of the most widely deployed solutions to the scalability
of Bitcoin. A payment channel allows users to deposit a
certain amount of coins in a shared address (the channel)
controlled by both. The corresponding transaction will be
stored on-chain. Both parties can then exchange authen-
ticated off-chain transactions to re-distribute the channel
funds. Users finally close the channel by publishing the last
authenticated transaction on-chain. This splits the channel
coins among parties according to the last agreed distribution.

The payment channel model allows payments between
only two users. If there are more than two users, each pair
of users needs to establish their own payment channel to
facilitate the payment, which is a non-scalable approach.
To solve this issue, Payment Channel Networks (PCN) (e.g.
[21], [46]) enable two users with no direct payment channel
to pay each other through the channels of some interme-
diaries. Nevertheless, PCN payments may require multi-
channel paths and intermediaries to actively participate in
relaying the payments, which can lead to their failure.

As an alternative, a Payment Channel Hub (PCH) [20],
[25], [27], [29], [51] deploys a star topology where users can
pay each other via a single intermediary (called the tumbler).
However, having a single intermediary raises two issues:
(i) The tumbler might steal coins from the sender by not
forwarding the payment to the receiver, and (ii) The tumbler
might link the sender to the receiver. These security and
privacy issues can be linked to atomicity, value privacy and



relationship anonymity properties [1], [22], [25], [29], [36],
[51]1. Atomicity ensures balance security of honest parties
(i.e. sender, receiver, and tumbler), and value privacy and
relationship anonymity guarantee that the tumbler cannot
know the payment amount and cannot associate the sender
and receiver of a payment, respectively.

Another important property for a PCH is interoperability
which determines the variety of cryptocurrencies supported
by the PCH construction. A highly interoperable PCH allows
the tumbler to relay payments between users who possess
wallets in a wide variety of cryptocurrencies. Among the
existing PCHs, [25], [51] provide the highest interoperability
by requiring the most basic functionalities from the under-
lying cryptocurrencies, i.e., digital signature and timelocks,
and hence supporting the most varied cryptocurrencies.

1.1. Problem Statement

To the best of our knowledge, all the existing Bitcoin-
compatible PCH constructions that guarantee relationship
anonymity would require the transaction amount to be fixed.
Fixing the amount requires either multiple PCH systems
or running one PCH system multiple times. For example,
assume Alice wants to pay Bob n coins, then it requires
either (i) ⌊log2 n⌋ PCH systems, whose denominations are
fixed to 1, 2, 4, . . . , 2⌊log2 n⌋ coins, respectively, or (ii) one
PCH system to be run for O(n) times. However, for the
first approach, it is unknown how to preserve the relation-
ship anonymity and atomicity across multiple PCH systems
simultaneously (existing fixed amount PCH systems only
guarantee the security of a single PCH system). Running
only one PCH system multiple times for one payment will
also be very inefficient.

This state of affairs in the state-of-the-art leads us to
consider the following question:

Is it possible to construct a Bitcoin-compatible PCH
system with value privacy and relationship anonymity that
also supports variable payment amounts?

1.2. Our Contributions

In this paper, we construct a new PCH as an affirmative
answer to the above question. Specifically,

• We introduce BlindChannel, a new bi-directional pay-
ment channel for privacy-preserving payments. In
BlindChannel, although both users reach an agreement
on each channel update, only one of the users sees
the way channel funds are redistributed. The other user
only learns the initial and final balances published on-
chain. We formalize BlindChannel in the Universal
Composability Framework [10] and formally prove its
security. We believe BlindChannel does not only serve
BlindHub but also can be of independent interests.

1. In existing privacy-preserving PCHs [25], [29], [51], since the pay-
ment amount is fixed, the privacy goal (referred as unlinkability property)
does not deal with the value privacy. However, since we do not require
fixed payment amount, we modified the existing definitions for PCNs [1],
[22], [36] supporting variable values into the PCH model.

• We introduce BlindHub, a three-party (sender (S), tum-
bler (T), receiver (R)) protocol for private conditional
variable-amount payments, where T only pays to R if
S pays to T, but T could not link S and R. BlindHub
protocol only requires digital signatures and timelocks
from the underlying blockchain. Combining BlindHub
and BlindChannel, we give the first Bitcoin-compatible
PCH construction that achieves atomicity, relationship
anonymity, and supporting variable amounts simulta-
neously (see Fig. 7).

• We introduce a new primitive, as a building block of
BlindHub, namely Blind Adaptor Signatures (BAS).
BAS is an adaptor signature protocol built on top of
a blind signature scheme. We give a concrete instanti-
ation and the corresponding security proof of BAS.

• We provide an instantiation of BlindHub based on
an ECDSA-based BAS and randomizable signatures
on randomizable commitments, which can be instan-
tiated by the scheme in [3]. To analyze the security of
BlindHub and inspired by Blind Conditional Signatures
(BCS) [25], we also introduce a new cryptographic
notion that we call Flexible Blind Conditional Signa-
tures (FBCS). This enables us to analyze the security
of BlindHub. Finally, we provide a concrete instanti-
ation of BlindChannel that is compatible with Bitcoin
utilizing garbled circuits-based zero-knowledge proofs.
The implementation results show that our protocol is
relatively practical, and by leveraging state-of-art proof
techniques can be further optimized. The source code
for implementation of our protocol can be found in
https://github.com/blind-channel/blind-hub.

1.3. Related Work

Monero and ZCash, the most famous privacy-preserving
cryptocurrencies, provide confidential transactions. To pro-
vide relationship anonymity, they use some on-chain crypto-
graphic mechanisms (e.g. ring signature and zero-knowledge
proof) that other currencies do not necessarily support. In
addition, Monero and Zcash have been a target of attacks
that reduce transaction privacy [11], [15], [31], [33], [42],
[55], [57], [58]. Towards a different direction, mixing pro-
tocols provide relationship anonymity using a centralized
tumbler that mixes users’ coins. Some of these mixing
protocols are on-chain and hence suffer the scalability issue
of their underlying blockchain [7], [9], [23], [30], [38], [39],
[41], [48]–[50], [52], [53], [59]. In the off-chain protocols,
BOLT [27] is built upon Zcash, Perun [20], NOCUST [32]
and MixCT [19] can only be deployed on Turing complete
blockchains (e.g. Ethereum), TeeChain [34] relies on trusted
execution environments (e.g. Intel SGX) and Tumblebit [29]
and A2L [51] do not support variable amount payments. In
Table 1, we present a comparison of the state-of-the-art off-
chain mixing services.

The authors of [29] informally introduced the concept
of a synchronization puzzle enabling relationship anonymity
from a corrupt hub point of view in TumbleBit. In addition,
TumbleBit relies on hashed time-lock contracts (HTLCs),
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TABLE 1. STATE-OF-THE-ART IN OFF-CHAIN MIXING SERVICES.
Atomicity Value Privacy Relationship Anonymity Interoperability Amount Flexibility

BOLT [27]    # (Blind signatures, Script modifications)  
Perun [20]  # # # (Ethereum)  

NOCUST [32]  # # # (Ethereum)  
MixCT [19]    # (Ethereum)  

Teechain [34]    H# (Trusted Hardware)  
Tumblebit [29]  N.A.b  H# (HTLC-based currencies) #

A2La [51]  N.A.b   (Digital signature and timelocks) #
A2L+, A2LUC [25]  N.A.b   (Digital signature and timelocks) #

BlindHub     (Digital signature and timelocks)  
a The model of A2L is proven to be insecure by [25].

b N.A.: not applicable since the amount in these protocols is fixed.

which suggests it cannot be an interoperable solution. Tairi,
et al. [51] then introduced A2L and further gave a formal
security notion of synchronization puzzle in the universal
composability (UC) framework. The synchronisation puzzle
of [51] is more interoperable and efficient compared to the
one in TumbleBit. Very recently, Glaeser et al. [25] pointed
out that there is a gap in the security model of A2L, and their
UC proof is flawed. To amend this situation, they proposed
a new notion called blind conditional signatures (BCS) and
provided the corresponding game-based security definitions.
Besides, they proposed A2L+, a modified version of A2L,
and proved that A2L+ satisfies the security notions of BCS.
However, we observe that the notion of BCS is limited.
If a coin-mixing service is built upon BCS, the messages
(transactions) shared between T and S/R are required to
be the same. This allows T to access the payment amount
on the transaction, which enables T to link the sender and
receiver through the amount when the amount is allowed to
be variable. We later introduce FBCS to tackle this issue.

Comparison with BOLT [27]. BOLT is also an off-chain
mixing protocol that achieves privacy-preserving variable-
amount payments. On a high level, BlindHub and BOLT
both achieve privacy for variable-amount payments by hid-
ing the amount and leveraging blind signatures to validate
the channel update. However, there are some differences
between BlindHub and BOLT. For example, BOLT relies
on the anonymous payment channel (APC) scheme that
allows different transactions in the same channel to be un-
linkable. This is important to achieve privacy and atomicity
simultaneously in BOLT. However, the APC scheme used in
BOLT utilizes a blind signature scheme that is not Bitcoin-
compatible.2 We use a different idea to achieve the privacy
and atomicity, for which we leverage adaptor signatures,
randomizable puzzles, and randomizable signatures. In par-
ticular, the adaptor signature enables the atomicity of the
payments on both sides of the tumbler. The randomizable
puzzle helps to transfer the adaptor witness in an unlinkable
way, and the randomizable signature is used to link the
adaptor witness and the amount.

2. In [40], it is conjectured that BOLT can be modified to be Bitcoin-
compatible with the cost of using hash-based commitments and generic
circuit-based multi-party computation for blind signing with ECDSA.

2. SOLUTION OVERVIEW

We first give the system model and security and pri-
vacy goals for the PCH construction, then, we provide
an overview of our solution. It is noted that the privacy
definitions are adopted from [22].
System Model. BlindHub, as a payment channel hub (PCH)
protocol, is composed of a payment hub (referred as Tum-
bler T) and multiple users, who have established payment
channels with the Tumbler T. PCH allows one user (referred
as Sender S) to be able to pay another (referred as Receiver
R) via T. Users have authenticated communication channels
with T, and any two users intending to make payments
also have a private communication channel. For the sake
of simplicity, we focus on the payment of a single pair of
sender and receiver. It is noted that there can be multiple
senders paying multiple receivers at the same time.
Threat Model. As commonly done in the literature [29],
[36], [37], we consider a static attacker, who corrupts parties
at the beginning of each epoch. Note that the privacy of
sender/receiver could be compromised if the tumbler col-
ludes with receiver/sender. We will discuss this in more
details in the Appendix A. Moreover, it is important to state
that Blindhub runs over epochs, and our privacy guarantees
are valid if the users do not abort during an epoch. More
specifically, Blindhub guarantees relationship anonymity
(which we will introduce later) when all the payments are
successful. However, anonymity can be undermined if the
tumbler launches the abort attack. In the case of an abort,
the anonymity set of the sender and receiver pairs will be
reduced from the epoch set to the uncompleted payments
within the epoch. For example, if the tumbler aborts a
payment from the sender, the receiver whose payment also
fails is regarded as the potential one that is linked to the
sender. Note that privacy in the presence of an abort is a
common problem in existing schemes that rely on epoch-
based anonymity sets, such as A2L [51], A2L+/A2LUC [25]
and TumbleBit [29]. However, we believe that a rational
tumbler would not abort because it would also hurt its
reputation. Yet, how to avoid the abort attack in the Bitcoin-
compatible PCHs remains an interesting open problem.

2.1. Security and Privacy Goals

We now informally define the security and privacy goals
of PCH. The formal definitions are given in Appendix C.
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Griefing Resistance. The PCH should only initiate a pay-
ment procedure if R can prove that the payment request are
previously backed by some coins locked by a S during the
payment procedure.
Atomicity. For any payment of m coins from S to R, the
PCH should ensure that either R receives m coins from T
and T receives m coins from S, or both parties receive none.
Value Privacy. T should not know the payment amount
between S and R.
Relationship Anonymity. T should not be able to find out if
there is any relation between S and R of a specific payment.

2.2. Our Solution

We present a payment channel hub that achieves grief-
ing resistance, atomicity, value privacy and relationship
anonymity and supports variable amounts simultaneously.
Below we propose our solution in an incremental way. We
first give a naive approach to solve the problem, then we
discuss the challenges of this naive approach and show how
to overcome them. We repeat this process until we reach the
final version of our protocol.
Recall that in A2L [51] or Tumblebit [29], the amount is
required to be fixed for achieving the relationship anonymity
since, otherwise, T can easily link the corresponding sender
and receiver just by observing which sender-receiver pair
shares the same amount. To circumvent the fix-amount
limitation, our idea is to hide the amount from T, so that
T can no longer learn the relationship information from the
amount. Specifically, we hide the amount by committing
to it. However, using this approach for our purpose is far
from simple. Recall that in a payment channel, users need to
reach an agreement on the channel state when they update
the channel. If one user commits and hides the amount, the
other user will be prevented from confirming the channel
state, which will lead to a failure of channel update.
BlindChannel. For the challenge of updating the channel
while hiding the amount, we propose a new model for the
payment channel, to capture this scenario, called BlindChan-
nel, as shown in Fig. 1.

Figure 1. Comparison between a normal channel and a BlindChannel. The
black colour represents the party that does not know the balance after the
update. c(m) denotes the commitment of m.

To present the idea of BlindChannel, we first recall some
background knowledge of payment channels. Suppose there
are two users sharing a channel, and their initial balances
are Bs and Br coins. Now one user (sender) wants to pay
the other user (receiver) m coins. After the payment, the

sender’s and receiver’s balances become Bs −m coins and
Br +m coins, respectively. In such a normal channel setting,
both parties are aware of the payment amounts and their
updated balances. However, in the BlindChannel setting,
only one user can know the channel balances, while the
other cannot. We call the former unblind party and the latter
blind party. To reach an agreement between the parties on
the payment amount and securely update the channel, we
utilize zero knowledge proofs [14], [43]. Roughly speaking,
each time they need to update the channel, the unblind party
is required to send the blind party the commitments of the
payment amount and their updated balances, and prove to
the blind party that the payment amount in the BlindChannel
equals the one committed in the given commitment. For ease
of presentation, we call this proof amount consistency proof.
Value Privacy: A Simple PCH from BlindChannel. To
further explain the idea, we present a simple payment chan-
nel hub based on BlindChannel, as shown in Fig. 2

Figure 2. A simple PCH based on BlindChannel.

In this example, S and R try to make a payment via
T without revealing the amount. The order of payment is
as follows: first, T pays R, then, S pays T. Assume that
all parties are honest. Firstly, R invokes a channel update
request with T and performs the amount consistency proof
(step 1). After the success of the channel update, R sends
a commitment of m, com(m), to S (step 2). On receiving
com(m), similar to step 1, S invokes a channel update
with T and performs the amount consistency proof (step
3). This concludes the payment. With this example, we
show a private payment between S and R without revealing
the payment amount to T, assuming the honesty of the
parties. This assumption is critical to the above example
since otherwise, a malicious S can just refuse to pay T after
R is paid by T, hence a loss of T’s money. Namely, the
atomicity does not hold in the malicious case.
Atomicity: Linking Puzzle with Transaction Amount. To
ensure atomicity, we first try to use puzzles introduced in
A2L [47], as shown in Fig. 3. Then, we show that this is
not secure for the variable transaction amounts. Finally, we
give a solution by linking the puzzle with the amount.

Figure 3. Adding a puzzle to a PCH based on BlindChannel.

After adding a puzzle to our simple PCH based on
BlindChannel, R first sends the commitment of the amount
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to T and gives the amount consistency proof. Afterwards,
T generates a puzzle to which it already knows the solution
and shares it with R. Then, instead of directly updating
the BlindChannel state with R to finalize the payment, T
updates the channel with R to a conditional state. Namely,
the channel update could only be completed if the condition
is satisfied. Now T sets the condition to be the puzzle being
solved. To solve the puzzle, R needs to send it to S, who
will buy the solution of the puzzle from T, and sends it back
to R, and finally, R can claim the same amount of money
from T with this solution.

However, this technique is not enough to guarantee the
atomicity when the amount is hidden and allowed to be
variable since a malicious sender can use another amount
m2 which is smaller than m1 to make the payment with
T. As a result, T receives less money than what he sends
out. Observe that the cause of this attack is that we do not
correlate the amount to the puzzle solution.

Figure 4. Linking the amount with the puzzle.

To address this issue, we should link the amount to the
puzzle solution. Besides, the link should be authenticated
by T. We capture the link using a red box and show this in
Fig. 4. By linking the commitments, T is ensured that the
aforementioned attack cannot be launched.

Relationship Anonymity: Randomizable Commitment,
Puzzle and Linkage. So far, we build up a PCH satis-
fying atomicity, below we focus on how to guarantee the
relationship anonymity. Observe that T can easily know
the relationship between S and R by observing which pair
of sender and receiver share the same commitment of the
amount, the puzzle, and the link. To hide their relationship,
our approach is to make all the above primitives randomiz-
able. Specifically, each time R sends the required elements
to S, he sends randomized ones rather than the original ones.
In this manner, we can hide their relationship perfectly.

Figure 5. Rerandomize the commitment, the puzzle and the link.

Griefing Resistance: Linking Token with transaction
amount. The remaining security goal to achieve is griefing
resistance. The idea in A2L [51] to achieve griefing resis-
tance is as follows: S firstly asks for a one-time anonymous

credential from T and forwards it to R, who just shows the
credential to T before initiating the payment. But to apply
it to our scenario, we should also “link” the credential to
the amount, since otherwise, the aforementioned attack can
be carried out similarly.

Figure 6. Protocol for the registration phase before initiating the payment.
Randomized contents are put in a box with different colours.

In more detail, our approach is illustrated in Fig. 6.
Firstly, S generates a token and commits it. Then, S
sends the commitment of the token, the commitment of
the amount, as well as an amount consistency proof to
T. Secondly, they involve in updating the channel to a
conditional state. The condition is set to be a timelock state.
Thirdly, if the channel update is successful, T returns a
linked commitment of the token and the commitment of the
amount to S, who forwards them to R. Then, R randomizes
the “linked” commitment of the token and the commitment
of the amount and sends them to T. To enable T to check the
uniqueness of the committed token, R attaches an additional
token-uniqueness proof πtup to prove that the committed
token indeed has not been used before. Finally, T checks
the validity of the “link” and the uniqueness of the token.
If the check passes, R and T starts the payment.
Our solution Overview. After introducing our ideas in
several steps, we wrap them up now and give an overview
of our PCH protocol, as shown in Fig. 7. In our protocol, we
instantiate the link as randomizable signatures on random-
izable commitments (RSoRC), which will be introduced in
Section 3. Besides, we instantiate the randomizable puzzle
as linear-only encryption, which is similar to the approach
adopted in A2L+ [25]. Also inspired by A2L and A2L+ [25],
[51], we leverage adaptor signatures to realize conditional
channel update. Detailed descriptions of BlindChannel and
BlindHub are provided in Section 5 and 6, respectively.

3. PRELIMINARIES

We denote by 1λ, for λ ∈ N, the security parameter.
We assume that the security parameter is given as an
implicit input to every function, and all our algorithms
run in polynomial time in λ. We denote by x ← $X the
uniform sampling of the variable x from the set X . We
write x ← A(y) to denote that a probabilistic polynomial
time (PPT) algorithm A on input y, outputs x. We use the
same notation also for the assignment of the computational
results, for example, s ← s1 + s2. If A is a deterministic
polynomial time (DPT) algorithm, we use the notation
x := A(y). We use the same notation for expanding the
entries of tuples, for example, we write σ := (σ1, σ2) for a
tuple σ composed of two elements. We say a function negl
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Figure 7. Overview of our solution. Sender pays receiver via tumbler. The overview can be divided into two layers: one layer is the BlindHub protocol,
which corresponds to the interactions in the gray box. BlindHub protocol can be divided into three phases: 1) registration, 2) puzzle promise, and 3) puzzle
solver. For the ease of presentation, we present the transcripts transferred among the paries and ignore the process of generating them. The definitions
of all the notations written in the gray box can be found in BlindHub protocol given in Section 6. Another layer is the BlindChannel protocol, which
corresponds to the interactions with the BlindChannel (the long red/black rectangle) in the green box. For the sake of simplicity, we just present the
simplified input and output of BlindChannel. c(·) denotes commitment. Bs,Bt denotes the balances of sender and tumbler in the channel shared with
sender. B′

t,B
′
r denotes the balances of tumbler and receiver in the channel shared with receiver. The balance in the square bracket [·] represents that the

balance is still in conditional state while balance that is not in [·] represents that the balance is already in the normal state.

is negligible in λ if it vanishes faster than any polynomial
with input λ.

Commitment scheme. Denote message space, random-
ness space and commitment space as M,R, and CM,
respectively. A commitment scheme ΠCOM consists of the
following algorithms: on input m ∈ M, r ∈ R, (r,C)
← ΠCOM.com(m, r), and should satisfy hiding and biding
properties. Hiding states that given the commitment, one
cannot determine the values. Biding requires that one cannot
change the value after they have committed to it.
Non-interactive zero-knowledge. Let R be an NP relation
and L be defined as the set L := {x | ∃w, s.t. R(x,
w) = 1}. We say R is a hard relation if: 1) there is a
PPT sampling algorithm GenR that on input 1λ and output
a statement/witness pair (Y, y) ∈ R. 2) R is poly-time
decidable. 3) for all PPT A, A on input Y outputs a
valid witness y with negligible probability. A non-interactive
zero-knowledge proof scheme ΠNIZK consists of two PPT
algorithms: PNIZK(w, x): The prover algorithm that on input
a witness w and its statement x, outputs a proof π. VNIZK(x,
π): The verification algorithm that on input the statement x
and the proof π, outputs a bit b ∈ {0, 1}. The prover can
provide a verifier with π to convince her of the prover’s
knowledge of the witness w for the statement x without
disclosing any further information.

Linear-Only Homomorphic Encryption. A public key
encryption scheme ΠEnc with a message space M and
ciphertext space C consists of the following algorithms:
KGen(λ): On input the security parameter λ, outputs a key
pair (ek, dk). Enc(ek,m): on input the public key ek and
a message m ∈ M, outputs a ciphertext c ∈ C. Dec(dk,
c): A deterministic algorithm that on input the private key
dk and the ciphertext c ∈ C, outputs a message m ∈ M.
Correctness of a public key encryption scheme ΠEnc guar-
antees that for every message m ∈ M and every key pair
(dk, ek) ← KGen(λ), Dec(sk,Enc(ek,m)) = m holds. The
encryption scheme that is used in this work is required to
provide CPA-security [26]. Also, ΠEnc is called additively
homomorphic if for every m1,m2 ∈ M and every public
key ek generated by (ek, dk) ← KGen(λ), it holds that
Enc(ek,m1) · Enc(ek,m2) = Enc(ek,m1 + m2). Linear-
Only encryption (LOE) [28] models homomorphic encryp-
tion by oracle queries rather than concrete algorithms. The
formal description of the oracles modelled by homomorphic
encryption can be found in Fig. 18. By homomorphically
adding 0 to the desired ciphertext, this paradigm enables
(perfect) re-randomization of the ciphertext.
Digital signature scheme. A digital signature scheme Σ
usually contains three algorithms: KeyGen(1λ): inputs a
security parameter 1λ and outputs a secret key/public key
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pair (sk, pk). Signsk(m): input a secret key sk and message
m ∈ {0, 1}∗ and outputs a signature σ. Vfpk(m,σ): on the
input of a public key pk, a signature σ and a message m,
outputs a bit b indicating whether a signature is valid (b = 1)
or not (b = 0). The correctness property holds as long as for
any key pair (sk, pk) created by the key generation function
and any message m, if a signature σ is produced using
the signing algorithm with input (sk,m), the verification
algorithm output 1 on input (pk, σ,m).
Adaptor signature scheme. An adaptor signature scheme
is defined upon a hard relation R and a signature scheme
Σ = (KeyGen,Sign,Vf) and it consists of four algo-
rithms ΠR,Σ = (PreSign,Adapt,PreVf,Ext) with the fol-
lowing syntax: for each statement/witness pair (Y, y) ∈ R,
PreSign(sk,m, Y ) is a PPT algorithm that outputs a pre-
signature σ̂ and σ := Adapt(σ̂, y) is a valid signature.
PreVf(pk,m, Y, σ̂) is a DPT algorithm that outputs a bit b.
Finally, Ext(σ, σ̂, Y ) is a DPT algorithm that outputs witness
y, s.t., (Y, y) ∈ R. An adaptor signature achieves pre-
signature correctness if the pre-signature w.r.t. a statement
Y is valid and it can be adapted into a full signature,
from which we can extract the witness y. Adaptor signature
achieves unforgeability if producing a forgery for some
message m is hard even given a pre-signature on m w.r.t. a
random statement Y ∈ LR. Adaptor signature achieves pre-
signature adaptability if for any valid pre-signature w.r.t. Y
can be completed into a valid signature using a witness y
with (Y, y) ∈ R. A more detailed description can be found
in the Appendix E.1.
Randomizable signatures on randomizable commitments
scheme. Randomizable commitment allows anyone to trans-
form a commitment into a fresh one of the same message.
In this paper, we need a signature scheme that satisfies
the following requirements: 1) it enables the issuance of
signatures on randomizable commitments and 2) anyone,
knowing neither the signing key nor the committed mes-
sage, can randomize the commitments, and compute a new
signature on these randomized commitments. Specifically,
we call a signature scheme randomizable on randomiz-
able commitments (RSoRC) if it provides the following
algorithms: RCSign and RCRand in addition to the ones
given by a standard digital signature scheme. Given a
set of randomizable commitments CM1, . . . ,CMn, a signer
can generate a randomizable signature σ̃ ← RCSign(CM1,
. . . ,CMn). Given a randomizable signature σ̃ , the corre-
sponding commitments CM1, . . . ,CMn and a randomness
r, anyone can generate a new valid randomizable signature
and a set of randomized commitments (CM′

1, . . . ,CM
′
n,

σ̃′) ← RCRand(σ̃,CM1, . . . ,CMn, r). The signature that
fulfils these requirements, and which we use in our construc-
tion, can be instantiated by the signature on randomizable
ciphertexts scheme [3]. Though in the scheme of [3] the
message space is defined upon ciphertexts, actually, it can
also be defined upon commitments which can be presented
as group elements on the elliptic curves where discrete
logarithm problem is hard. We give the formal definition,
security properties and concrete construction of the primitive
in the Appendix D.

One-more Discrete logarithm (OMDL) problem.
OMDL problem [5] says that one cannot solve q + 1
challenge group elements given only q DL solving oracles.
A more detailed definition of OMDL can be found in the
Appendix E.2.2.

4. Blind Adaptor Signature

In this section, we introduce a new primitive called Blind
Adaptor Signature (BAS), which is an important building
block to construct BlindHub. Before introducing BAS, we
first briefly recall what a blind signature is. In a blind
signature scheme, a user can obtain a signature from a
signer on a message m such that: (1) the signer cannot
recognize the signature later (blindness, which implies that
the message m is unknown to the signer) and (2) the user can
compute only one single signature per interaction with the
signer (one-more unforgeability). A more detailed definition
of a blind signature can be found in the Appendix E.2.
Combining a blind signature and an adaptor Signature, we
give a new primitive called Blind Adaptor Signature. We
first give the formal definition as follows.

Definition 1 (Blind Adaptor Signature Scheme). A blind
adaptor signature (BAS) scheme ΠBAS with respect to a
hard relation R with a language LR := {Y |∃y : (Y, y) ∈
R} consists of the following algorithms:

• BAS.Setup(1λ): It takes the security parameter 1λ and
returns public parameters param.

• BAS.KeyGen(param): It takes the public parameters
param and returns a secret/public key pair (sk, pk).

• (b, σ̂) ← ⟨BAS.PreSign(sk, Y ),BAS.User(pk,m, Y )⟩
an interactive protocol is run between the signer with
private input a secret key sk and the user with signer’s
public key pk and a message m as inputs. A statement
Y ∈ LR is the public input. The signer outputs b = 1
if the interaction completes successfully and b = 0
otherwise, while the user outputs a pre-signature σ̂ if
interaction completes correctly, and ⊥ otherwise.

• BAS.PreVerify,BAS.Adapt and BAS.Ext are the same
as PreVerify,Adapt and Ext of the adaptor signature.

For a 1-round (i.e., two messages) protocol, the in-
teraction can be realized by the following algorithms:
(msgU,0) ← BAS.User0(pk,m), (msgS,1, b) ← BAS.Sign1
(sk,msgU,0), σ ← BAS.User1(msgS,1). Below we give in-
formal security definitions of BAS. We present the formal
definitions in the Appendix B .
One-more Unforgeability. The unforgeability model is de-
fined to capture the attack that the adversary returns n dis-
tinct message-signature pairs when he is only given k2 < n
pairs during the oracle queries. It is commonly known as
the one-more unforgeability in blind signature [24].
Blindness. In many scenarios, blind signatures should sat-
isfy the following blindness property: a signer cannot link a
message/signature pair to a particular execution of the sign-
ing protocol. But to realize the BlindChannel (as formally
defined in the Appendix J.2, we only need a weak blindness:
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given the transcript, the signer could not figure out what
the message is. Compared to the normal blindness, weak
blindness allows the signer to link the message/signature
pair to a particular execution, as long as the signer can obtain
the message/signature pair.
Pre-signature Adaptability. The pre-signature adaptability
of ΠBAS is the same as that of an adaptor signature. It is
because the PreSign algorithm is not involved in the model.
Witness extractability. The witness extractability guaran-
tees that given a valid signature/pre-signature pair w.r.t. a
message/statement pair (m,Y ) one can extract the corre-
sponding witness y of Y .

5. Description of BlindChannel

This section first provides some security and privacy
properties required by a payment channel in the BlindHub
protocol. Then, we present an overview as well as the
protocol description of BlindChannel, which was briefly
mentioned in Section 2. In the Appendix J.2 we will prove
that BlindChannel is a secure realization of an ideal func-
tionality that achieves the security and privacy properties
stated in this section.

5.1. Security and Privacy Properties

Below we give informal definitions of security and
privacy properties required by BlindChannel. Appendix J.2
provides more details.
The BlindChannel scheme ΠBC is secure if the followings
hold: 1) the blind party could not figure out the way channel
funds are redistributed. 2) A BlindChannel is successfully
created/updated only if both parties in the channel agree with
the creation/update. 3) An honest party P in the channel has
the guarantee that either the current state of the channel can
be enforced on the ledger, or P can enforce a state where
she gets all coins in the channel.

5.2. BlindChannel Overview

Similar to other payment channels, BlindChannel al-
lows two parties to pay to each other arbitrarily many
times without publishing every single transaction on the
blockchain. However, in BlindChannel protocol, only one of
the parties, i.e. the unblind party, determines the payment
amount and the other party, i.e. the blind party, cannot
see the payment amount. Also, as required by BlindHub
protocol, all payments are conditioned on solving a puzzle,
introduced in [37]. We start by reviewing the generalized
channels [2], and then gradually introduce our solution.
Generalized Channel. To create a generalized channel [2],
Alice (denoted by A) and Bob (denoted by B) publish a
funding transaction TXFU to respectively send a and b coins
into a shared address. Both parties also hold the same copy
of two transactions, by broadcasting which they can close
the channel: 1) The commit transaction TXCM that sends the
channel funds, held in the funding transaction’s output, into

a new shared address and 2) The split transaction TXSP that
splits the channel funds, held in the commit transaction’s
output, among parties. So, the split transaction has two out-
puts holding a and b coins owned by A and B, respectively.

Now assume A decides to pay 0 < v ≤ a coins to B. To
do so, A and B create a new commit and split transactions
where the split transaction contains two outputs holding a−v
and b+ v coins owned by A and B, respectively. Since one
of the parties may submit a stale state to the blockchain,
channel parties need a way to detect and penalize such
frauds. So, after each channel update, channel parties ex-
change revocation secrets that allow the honest party to send
all the funds in the stale commit transaction’s output to his
own address. But we still need a way to guarantee that the
malicious party cannot publish the stale commit transaction
and spend its output using her counter-party’s revocation
secret. In the generalized channel, the adaptor signature is
leveraged to guarantee that once a party, e.g. A, publishes
a commit transaction, a secret, called the publishing secret,
is revealed to B. Thus, once A publishes a stale commit
transaction, the honest party B can use A’s revocation secret
and A’s publishing secret to take all the channel funds.
Also, to guarantee that the malicious party cannot publish
both a stale commit transaction and its corresponding split
transaction, the split transaction cannot be published within
T rounds since the commit transaction is published on
the blockchain. Therefore, the commit transaction has one
output that can be spent by: 1) A if she knows B’s revocation
and publishing secrets, 2) split transaction after T rounds,
or 3) B if he knows A’s revocation and publishing secrets.
Adding Privacy to the Channel. Now assume two parties
U and B create a channel like a generalized channel.
However, we want the channel update in this channel to be
different from the channel update in a generalized channel.
Particularly, B in this channel is a blind party, i.e. he is
not supposed to see the payment amount. Since the commit
transaction contains no data about the payment amount
(i.e. v in the previously stated scenario), the two sides
can exchange their signatures on the commit transaction
like a generalized channel. But since outputs of the split
transaction reveal data about the payment amount, B should
blindly sign it. However, before signing the split transaction,
the unblind party U , using the zero-knowledge proofs and
without revealing the value of each output in the split trans-
action, performs amount consistency proof (as informally
defined in Section 2) and also proves that the transaction
that B will blindly sign contains the correct elements, i.e.,
the correct input and outputs ( details of zero knowledge
proof used in BlindChannel are provided in the Appendix
H).

By publishing the latest commit and split transaction,
U can close the channel. However, since B does not hold
the split transaction, it is possible that after publishing the
commit transaction, U becomes unresponsive to lock B’s
funds in the channel and raise a hostage situation. So a new
sub-condition is added to the commit transaction’s output
that allows B to claim the output after 2T rounds. Thus,
once the commit transaction is published by either of two
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parties, U has to publish its corresponding split transaction
within 2T rounds. Otherwise, B would get all channel funds.

Adding Conditional Payment to the Channel. In the
BlindHub protocol, which we will present later, a payment
from T to R is performed provided the corresponding pay-
ment from S to T completes. Correspondingly, BlindChan-
nel parties need to perform conditional payments. Let us
provide a high-level overview of the required modifications.
Assume that U and B have a and b coins in the channel,
respectively, and U wants to conditionally pay v coins to B
(for v < a). So, B and U create a new commit and split
transaction where the split transaction has three outputs: 1)
the first output holding a − v coins owned by U , 2) the
second output holding b coins owned by B, and 3) the
third output for conditional payment of v coins to the party
B where party B has a pre-signature from party U on a
transaction called the adaptor execution delivery (or briefly
delivery) transaction TXAED that spends this output and sends
its coins to B. So if B has the corresponding secret to
adapt the pre-signature to a valid signature, he can claim the
third output of the split transaction. Otherwise, party U , who
has B’s signature on another transaction called the timeout
transaction TXTO, can claim the output after a timeout.

Although B receives U ’s pre-signature on the delivery
transaction, the transaction body itself cannot be given to
B, as it reveals the payment amount; Only the hash of
the transaction body, which is used to create and verify
the pre-signature, is given to B. However, B should not be
able to guess the payment amount by exhaustively search-
ing all possible payment amounts to find the body of the
delivery transaction for which the hash value matches. This
requirement is satisfied if the delivery transaction’s input
or equivalently transaction identifier of the split transaction
is difficult to guess. To achieve this requirement, U keeps
the address that she is using in the first output of the split
transaction private. Then, finding the transaction identifier
of the split transaction and hence the body of the delivery
transaction would be infeasible to B. Nevertheless, U uses
zero-knowledge proofs to prove that once the split transac-
tion is published on the blockchain, B will learn the cur-
rently unknown elements of the delivery transaction, i.e., its
input transaction identifier as well as the payment amount.
Moreover, since the timeout transaction reveals data about
the payment amount, B should blindly sign it. However,
before signing the timeout transaction, the unblind party U ,
using the zero-knowledge proofs and without revealing the
payment amount and the split transaction identifier, proves
the transaction that B will blindly sign is well-structured.

For the case where U is the payee of the payment,
everything is the same, but the delivery transaction is
signed by the payer using the BAS scheme, introduced in
Section 4. Also, U ’s signature on the timeout transaction
is given to the payer without letting him guess the body of
the timeout transaction itself.

Figure 8. Creation of a Blind Channel

5.3. BlindChannel Protocol Description

The BlindChannel lifetime can be divided into 4 phases,
including “create”, “update”, “close”, and “punish”. We
introduce these phases through the following sub-sections.

Create. A blind channel between two parties B and
U is created like a generalized channel [2], i.e. through
publishing a funding transaction TXFU, parties send their
coins into a joint account. However, to prevent parties from
locking each other’s coins into this joint account and raising
a hostage situation, they must commit to the initial channel
state in advance. So, before signing and publishing the fund-
ing transaction, parties create two transactions: 1) a commit
transaction TXCM that sends the channel funds into a new
joint address and 2) a split transaction TX

[2]
SP that distributes

the channel funds among parties. Fig. 8 summarizes the
channel creation phase. Following [2], we use charts to
show transaction flows. Each transaction is denoted by a
rectangle containing a box for each output. The output value
is written inside the box, and the output condition is written
above (used for timelocks) and below (used for public keys)
the arrow coming out of the output. Outputs with multiple
subconditions are denoted by a diamond inside the output
box with an arrow corresponding with each subcondition.
If a transaction contains a non-zero timelock, it is written
inside the transaction rectangle. Let us explain in more detail
the different steps of the channel creation phase.

1) Create [TXFU]: At the first step, B and U create the
body of the funding transaction [TXFU]. To do so, they
send each other their funding sources.

2) Create [TXCM]: Each party P ∈ {B,U} generates a
revocation public/private pair (RP , rP ) ← GenR and
a publishing public/secret pair (YP , yP )← GenR, and
sends the public values RP and YP to the other party.
Using the transaction identifier of TXFU and each other’s
public values, parties create the body of the commit
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transaction, i.e. [TXCM].
3) Create [TX

[2]
SP ]: Using the transaction identifier of TXCM,

parties create the body of the split transaction [TX
[2]
SP ].

4-6) Create TX
[2]
SP/TXCM/TXFU: Parties exchange the re-

quired signatures to transform [TX
[2]
SP ]/[TXCM]/[TXFU] into

TX
[2]
SP /TXCM/TXFU.

7) Publish TXFU: Parties publish TXFU on the blockchain.
Update. Channel update is performed by adding a third

output for a conditional payment to the split transaction
where the payer in the channel between S and T (resp. the
channel between T and R) is S (resp. T). This third output
can be claimed by the payee if having the value of a secret,
the payee can adapt a pre-signature on the corresponding
delivery transaction to a full signature. Otherwise, after a
specific timeout, the payer publishes the corresponding time-
out transaction and gets refunded. Fig. 9 Summarizes the
channel update phase when the payer is the unblind party.
The channel update phase in more details is as follows.

1) Create [TXCM]: The same as step 2 in the create phase.
2) Create [TX

[3]
SP ]: Having the transaction identifier of TXCM,

U firstly creates the body of the split transaction [TX
[3]
SP ],

commits it into coms, and generates a zero knowledge
proof πs to perform amount consistency proof and
also prove that coms is the commitment on the well-
structured split transaction.

3) Create [TXAED]: Having the transaction identifier of
TX

[3]
SP , U generates the body of the adaptor execution

delivery (AED) transaction [TXAED], uses the adaptor
statement from the external application (e.g., obtained
in the puzzle promise phase of ΠBH) to generate a
pre-signature σ̃Ua on [TXAED], and also generates a zero
knowledge proof πa to prove to B that the pre-signature
is on the well-structured delivery transaction [TXAED].
Party U sends the pre-signature σ̃Ua , the hash value
SigHash([TXAED]) and the proof to B.

4) Create [TXTO]: Having the transaction identifier of TX[3]SP ,
U generates the body of the timeout transaction [TXTO].

5) Create TXTO: U commits [TXTO] into comt, and gen-
erates a zero knowledge proof πt to prove to B that
the committed message is the well-structured timeout
transaction [TXTO]. After verifying πt, B generates a
blind signature σBt on TXTO for U .

6) Create TX
[3]
SP : B generates a blind adaptor signature

with YP as the adaptor statement on TXSP for U .
7) Create TXCM: the same as step 5 in the create phase.
8) Revoke: Both parties revoke the previous state by ex-

changing the corresponding revocation keys.
9) Create TXAED: B adapts the pre-signature σ̃Ua into σUa

and sends the corresponding witness ys to U .
10) Create [TX′CM]: the same as step 2 in the create phase.

11-12) Create [TX
[2]
SP ]/TX

[2]
SP : Having the transaction identifier of

TXCM, U firstly creates the body of the split transaction
[TX

[2]
SP ], commits it into coms, and generates a zero

knowledge proof πs to perform amount consistency
proof and also prove that coms is the commitment
on the well-structured TXSP. Then, B sends the blind

signature on TX
[2]
SP to U .

13 Create TX′CM: the same as step 5 in the create phase.
14 Revoke: Both parties revoke the previous state by ex-

changing the corresponding revocation keys.
The case where the unblind party is the payee of payment is
similar to the above scenario. The main differences are that
B uses the BAS scheme to blindly create a pre-signature on
delivery transaction for U . Moreover, U sends her signature
on the timeout transaction to B without sending him the
body of the transaction. We refer the corresponding diagram
to Appendix I in Fig. 24 .

Close. To close the channel, party U reveals the value
of the latest split transaction and B verifies it. Then, U and
B collaboratively create a new transaction that spends the
funding transaction’s output, and its outputs are the same as
the latest split transaction. By publishing this transaction
on the blockchain, parties close the channel. Each party
P ∈ {B,U} can also non-collaboratively close the channel,
given that the other party is unresponsive. To do so, if P is
an unblind party, he simply publishes the latest commit and
split transaction on the blockchain. If P is a blind party, he
publishes the commit transaction. Then, U will have to pub-
lish the corresponding split transaction within 2T rounds.
Given that the published split transaction contains a third
output with conditional payment, if U is the payer of that
conditional payment, either B extracts the split transaction
identifier and the payment amount from the published split
transaction, creates [TXAED], adapts U ’s pre-signature σ̃Ua into
σUa , and finally creates and publishes TXAED before a specific
timeout or U publishes TXTO. For the case where U is the
payee, either U publishes TXAED before a specific timeout or
B extracts the split transaction identifier and the payment
amount from the published split transaction, creates TXTO
and publishes it on the blockchain.

Punish. Once the latest commit transaction is published,
if U does not publish its corresponding split transaction
within 2T rounds, B uses the fourth sub-condition of the
commit transaction’s output to claim all channel funds.
Moreover, if one of the parties, e.g., U , publishes an old
commit transaction TXCM, B uses his own signature in TXCM
and its corresponding adaptor statement and pre-signature to
extract U ’s publishing secret yU . Then, having yU as well
as U ’s revocation secret rU , B claims TXCM’s output.

6. Description of BlindHub

In this section, we describe the protocol of BlindHub.
before the description, we first give the system assumptions.

System assumptions. As in TumbleBit [29], we assume
the protocols are run in phases and epochs. Each epoch is
composed of four phases: (i) registration phase, (ii) puzzle
promise phase, (iii) puzzle solver phase, and (iv) open phase.
We assume that both S and R have already carried out the
key generation procedure. We assume that communication
between honest sender and receiver is unnoticed by T
when exchanging the puzzle and its solution. We further
assume that T will provide NIZK proofs to prove to a
user during their first interaction that his encryption key
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Figure 9. Update of a Blind Channel Initiated by Payer

and his verification key of RSoRC scheme are in support of
ΠEnc.KeyGen(1

λ) and ΠRSoRC.KeyGen(1
λ), respectively.

Protocol of BlindHub. We now describe the registration,
puzzle promise, puzzle solver and open phases.

Registration. The Registration Phase is as follows:
1) S starts by generating a random token identifier tkid

and commits token tkid and amount amt to Ctkid and
Camt respectively. Besides, S generates NIZK proofs
πtkid, πamt to prove knowledge of tkid and amt, re-
spectively. Then S sends Ctkid,Camt, πtkid, πamt to T.

2) T aborts if πtkid or πamt is incorrect. Else, T generates
randomizable signatures on Ctkid and Camt : σtkid ←
RCSign(Ctkid,Camt) and sends σtkid to S.

3) S aborts if σtkid is invalid. Else, S randomizes Ctkid,
Camt, σtkid to obtain C′

tkid,C
′
amt, σ

′
tkid and sends C′

tkid,
C′
amt, tkid, r

′
tkid, r

′
amt, σ

′
tkid to R, where r′tkid, r

′
amt are

the openings of C′
tkid C′

amt, respectively.
Puzzle Promise. Once the registration protocol is com-

pleted, the Puzzle Promise protocol starts and proceeds as:
1) On receiving C′

tkid,C
′
amt, tkid, r

′
tkid, r

′
amt, σ

′
tkid, R gen-

erates a token-uniqueness proof πtup to prove the tkid
committed in C′

tkid has not been used before. In addi-
tion, R generates π′

amt to prove knowledge of amt in
C′
amt. Then, R sends C′

tkid,C
′
amt, σ

′
tkid, πtup, π

′
amt to T.

2) T aborts if one of the followings is not valid: σ′
tkid, πtup,

π′
amt. Else, T firstly samples the adaptor witness and

statement (Y, y), encrypts the witness y into a cipher-
text cy, and produces a NIZK proof πy proving that y
is a valid solution to puzzle cy. Secondly, T performs
randomizable signatures of randomizable commitments
(RSoRC) on adaptor statement Y and the commitment
of the amount Camt : σ̃ ← RCSign(Y,Camt). After
these, T uses Y as adaptor statement to run the blind
adaptor signature protocol with R to generate σ̂′

t on the
transaction for R : σ̂′

t ← BAS.Sign1(sk
Σ
t , h, Y ), where

h = H(tx)(In BlindChannel , R has sent h to T and
proven knowledge of the pre-image of h, which is tx.
So T is convinced that h is a valid hash value). Finally,
T sends Y, cy, πy, σ̃, σ̂′

t to R.
3) R aborts if πy is invalid. Else, R randomizes Y,C′

amt,
σ̃ : (Y ′,C′′

amt, σ̃
′, β) ← RCRand(pp, Y,C′

amt, σ̃), and
the puzzle cy : c′y ← PRand(β, cy). Finally, R sends
c′y, Y

′,C′′
amt, σ̃

′ and r′′amt, the opening of C′′
amt, to S.

Puzzle Solver. The Puzzle solver protocol is follows:
1) S firstly randomizes c′y, Y

′,C′′
amt, σ̃

′ received from R
into c′′y , Y

′′,C′′′
amt, σ̃

′′ to preserve its own anonymity
and thwart attacks involving collusion of T and R.
Secondly, S generates π′′

amt to prove knowledge of amt
in C′′

amt. Thirdly, S generates a proof πskΣs to prove
that (skΣs , pk

Σ
s ) is in support of ΠAS.KeyGen(1

λ). Then
Sgenerates an adaptor signature σ̂s on the transaction
tx′ using the randomized adaptor statement Y ′′ : σ̂s ←
PreSign(skΣs , h

′, Y ′′), where h′ is already proven to
be a valid hash value in BlindChannel, as explained
before. Finally, S sends c′′y , Y

′′,C′′′
amt, π

′′
amt, σ̂s, σ̃

′′ to T.
2) T aborts if one of the followings is incorrect: the

adaptor signature σ̂s(T has obtained h′ = H(tx′) in
BlindChannel, so T is able to perform the verification),
the randomizable signature σ̃′′ and the proof π′′

amt. Else,
T decrypts c′′y to obtain the doubly randomized version
y′′ of the value y (i.e., the secret value required by
R to complete the adaptor signature σ̂′

t from puzzle
promise). As y′′ is randomized, T cannot link it to
R and yet can adapt σ̂s with y′′ to generate the full
signature σs, which is then sent to S.

3) S aborts if the signature σs is not valid. Else, S ex-
tracts y′′ using the adaptor signature σ̂s and the valid
signature σs, recovers y′ by getting rid of one layer of
the randomization and shares it with R.

Open. R further removes its part of the randomness from
y′ and gets the original value y, which it uses to adapt the
adaptor signature σ̂′

t into a full valid one σ′
t.

Figures illustrating the above protocols are given in the
Appendix K .

7. PCH Instantiation

Here we realize a PCH by combining BlindChannel and
BlindHub. In particular:

1) Collateral Setup: Before the BlindHub registration
phase begins, S updates the channel state of BlindChan-
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nel to the conditional payment state with T to establish
an escrow for the remainder of the protocol between S
and T, where the payment amount is the one committed
in Camt used in the BlindHub. It is noted here that since
it is in the BlindChannel setting, T has no idea how
much the collateral is, but T is still able to verify if
R has some collateral backed up in the puzzle promise
phase. Besides the invisibility, the collateral has two
other properties: 1) it can be recovered by S after the
timeout expires unless S authorizes the spending of it,
and 2) it is locked and cannot be reused before the
timeout unless T authorizes the releasing of it.

2) Payment channel update proposals: Before the puz-
zle promise phase of BlindHub starts T updates the
BlindChannel with R to conditionally pay m coins
from the balance of T to the balance of R, where m is
committed in Camt used in BlindHub. Here T cannot
see the amount, but T is able to verify if the same
amount of coins has been paid to itself when deciding
whether or not to release the coins to R. A similar
payment for the same amount of coins is proposed in
the BlindChannel between S and T before the puzzle
solver phase is initiated. As a part of atomicity, here
there is an expiration time set for both payments so
that the coins can be redeemed by the original owners
when the payment is not successful (e.g., one of the
parties does not collaborate).

3) Payment channel update resolutions: If BlindHub
protocol is finally successful, the channel between S
and T is updated first, and the channel between T and
R is updated next. On the other hand, if BlindHub
protocol fails, the balances of both channels are left
as before the start of the execution of the payment.

4) Collateral release: At the end of the protocol, the
coins locked by S at the beginning of the payment are
released and sent back to S.

8. Flexible Blind Conditional Signature

In a recent work [25], Blind conditional signature (BCS)
is proposed to capture the functionality of a synchronization
puzzle from [29], [51]. Briefly speaking, synchronization
puzzle protocol is a protocol among S, R and T, where
R and T execute puzzle promise protocol and generate a
puzzle τ , which is used as input in the puzzle solver protocol
executed by S and T, and finally a signature is produced. We
refer reader to [25] for the original definitions. Below we
propose a variant of BCS to better capture the functionality
of BlindHub. We call it Flexible Blind Conditional Signature
(FBCS). The main difference between BCS and FBCS is
follows: 1) In BCS, the T and S/R can both have access
to the transaction, while in FBCS, only S/R can have
access to the transaction, and T can only access to the
commitment of the transaction. 2) In FBCS, we additionally
introduce RSoRC scheme ΠRSoRC. 3) In BCS, the output
of the promise protocol is a puzzle τ := (Y, cy), while in
FBCS, the output of the promise protocol includes τ := (Y,
cy,Camt, σ̃), where Y, cy,Camt, σ̃ are as defined in Section

6. It is noted that since synchronization puzzle only covers
promise and solver protocol, the parts related to registration
phase in the promise protocol of BlindHub(the token tkid,
randomizable signature σ̃ and the token-uniqueness proof)
are removed from the promise algorithm of FBCS.

Definition 2 (Flexible Blind Conditional Signature). A
blind conditional signature ΠFBCS := (Setup,Promise,
Solver,Open) is defined with respect to two signature
schemes ΠDS := (KGen,Sign,Vf),ΠBAS := (KGen,Sign,
Vf), ΠRSoRC := (KGen,Sign,Vf) and consists of the fol-
lowing efficient algorithms.

• (ekt, dkt) ← Setup(1λ): The setup algorithm takes as
input the security parameter 1λ and outputs a key pair
(ekt, dkt).

• (⊥, {τ,⊥})← Promise

〈
T
(
dkt, sk

Σ
t , sk

χ, com(mTR)
)

R
(
ekt, pk

Σ
t , pk

χ,mTR

) 〉
:

The puzzle promise algorithm is an interactive protocol
between two users T (Tumbler) (with inputs the
decryption key dkt, the signing key of the underlying
digital signature scheme skΣt , the signing key of RSoRC
scheme skχ, and a message mTR) and R (Receiver) (with
inputs the encryption key ekt, the verification key of the
underlying digital signature scheme pkΣt , the verification
key of RSoRC scheme pkχ and a message mTR) and
returns ⊥ to T and either a puzzle τ or ⊥ to R.

• ({(σ∗, s),⊥}, {σ∗,⊥}) ←

Solver

〈
S
(
skΣs , ekt, pk

χ,mST, τ
)

T
(
dkt, pk

Σ
s , pk

χ, com(mST)
)〉: The puzzle

solving algorithm is an interactive protocol between
two users S (Sender) (with inputs the signing key of the
underlying digital signature scheme skΣs , the encryption
key ekt, the verification key of RSoRC scheme pkχ, a
message mST, and a puzzle τ ) and T (Tumbler) (with
inputs the decryption key dkt, the verification key of the
underlying digital signature scheme pkΣs , the signing key
skχ of ΠRSoRC and a message mST) and returns to both
users either a signature σ∗ (S additionally receives a
secret s) or ⊥.

• {σ,⊥} ← Open(τ, s): The open algorithm takes as input
a puzzle τ and a secret s and returns a signature σ or ⊥.

The security of FBCS is defined as Correctness, Blind-
ness, Unlockablity, and Unforgeability. Below we only
present the informal definitions of these security properties.
We leave the complete formal definitions in the Appendix
F .

ΠFBCS is correct if S and R are able to obtain the valid
signatures on mST and mTR, respectively after the BlindHub
protocol is successfully completed. ΠFBCS is blind if T
cannot link two promise/solve sessions together. ΠFBCS is
unlockable if it is hard for T to generate a valid signature on
a message from S that prevents R from being able to unlock
the entire signature in the accompanying promise session.
ΠFBCS is unforgeable if R could not output a valid signature
on mTR before S successfully complete the solver protocol
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with T. ΠFBCS is secure if it is correct, blind, unlockable,
and unforgeable.

Finally, we can give our main theorem in this section.
The corresponding proofs can be found in the Appendix G.

Theorem 1. Let ΠEnc be a linear-only homomorphic en-
cryption scheme, ΠAS is a secure adaptor signature scheme,
ΠBAS is a secure BAS scheme, ΠRSoRC is a secure signature
on randomizable commitments scheme, ΠNIZK is a sound
proof system. Assuming the hardness of one-more discrete
logarithm problem, the BlindHub protocol is a secure flexi-
ble blind conditional signature scheme.

9. Security Analysis of PCH

We now analyze the security of our PCH system. More
formal security definitions and proofs of the following the-
orems can be found in Appendix C .
Griefing Resistance. It requires a user to prove that the
payment request is previously backed by some locked coins
during the payment procedure. In our construction, the
authenticity is enforced by T performing σ̃ ← RCSign(Ctkid,
Camt) and securely updating the BlindChannel during the
registration phase, and R proving the uniqueness of the
token committed in Ctkid as well as securely updating the
BlindChannel in the promise phase. The security depends on
the unforgeability of ΠRSoRC, the biding property of ΠCOM,
the security of ΠBC and the soundness of ΠNIZK.

Theorem 2. Assuming the security of ΠBC, the unforgeabil-
ity of ΠRSoRC , the biding of ΠCOM and the soundness of
ΠNIZK, our PCH system achieves griefing resistance.

Atomicity ensures that the money received by R from T
should be the same as that received by T from S. Below
we analyze the balance security of T and S respectively. T
loses money if the money it paid to the R is more than that
received from S. This will violate either the unforgeability
of ΠFBCS or the security of ΠBC. S loses money if at the
end of the puzzle solver protocol T receives money, but R
does not get paid. This will violate either the unlockability
of ΠFBCS or the security of ΠBC.

Theorem 3. Assuming the unlockability and unforgeability
of ΠFBCS and the security of ΠBC, our PCH system achieves
atomicity.

Value Privacy requires that the payment value could not be
leaked to T. This is enforced by committing the amounts
throughout the protocol. The security depends on the blind-
ness of ΠFBCS and the privacy of ΠBC.

Theorem 4. Assuming the blindness of ΠFBCS and security
of the ΠBC, our PCH system achieves value privacy.

Relationship anonymity requires that the relationship of
S and R should be hidden from T. This is enforced as
follows. Firstly, we assumed that all protocols are phase-
and epoch-coordinated, which eliminates timing attacks in
which T purposefully delays or accelerates its interactions
with another party. Secondly, we assumed that S and R

communicate through a secure and anonymous communica-
tion channel, so T cannot eavesdrop and utilize the network
information to link S and R. Thirdly, the elements generated
in the registration/promise phase will be randomized before
being used in the promise/solver phase. Fourthly, our PCH
system achieves value privacy, which prevents the tumbler
to learn the relationship from the payment value.

Theorem 5. Assuming the blindness of ΠFBCS and security
of ΠBC, our PCH system achieves relationship anonymity.

10. Performance Analysis

Implementation details. To benchmark the performance
of our protocol, we implemented3 our protocol with Rust
programming language, Swanky4 multiparty computation
library, and ZenGo-X/curv5 curve library, where ZenGo-
X/curv is a pretty wrapper of the real Bitcoin curve library.
The GC circuit files are generated with Verilog hardware
description language and the Yosys6 tool.

We instantiate adaptor signature scheme and blind adap-
tor signature scheme as ECDSA-based adaptor signature
and ECDSA-based blind adaptor signature, respectively, and
both instantiations are over the elliptic curve secp256k1,
which is used on Bitcoin. We instantiate the RSoRC scheme
using the generalized version of the scheme introduced in
[3] over the BLS12-381 curve7. The linear-only encryption
scheme is instantiated using HSM-CL encryption scheme
[13]. We instantiate the commitment scheme as Pedersen
commitment scheme [44]. We instantiate BlindChannel in
the Bitcoin setting, and we instantiate the proof used in
Bitcoin-based BlindChannel as garbled circuit-based zero
knowledge proof [14], [43]. Concrete instantiation of our
whole protocol can be found in the Appendix K.

We leverage garbled circuit-based zero-knowledge proof
(GCZK) to prove the correctness of the committed transac-
tion. In a nutshell, the unblind party is going to prove the
following statements to the blind party: 1) the committed
message is a correct transaction, 2) the payment amount
written in the transaction is the one committed in a given
commitment, 3) the message is committed according to the
transaction digest algorithm defined in BIP-01438. We de-
sign a circuit to capture the transaction digest algorithm. The
circuit for proving this statement uses 33 SHA-256 modules
and consequently reaches 721054 AND gates. More details
about the GCZK can be found in the Appendix H.

Computation time and communication overhead. The
benchmark for the GCZK is taken on a Ryzen 5800H, 8GB
RAM laptop computer, where the test data is generated

3. https://github.com/blind-channel/blind-hub
4. https://github.com/GaloisInc/swanky
5. https://github.com/ZenGo-X/curv
6. https://github.com/YosysHQ/yosys
7. To enable RSoRC over BLS12-381 curve to sign on group element

over secp256k1 curve, we leverage an equality proof to bridge the gap
between these two different curves. Detailed discussions about this can be
found in the Appendix K.

8. https://github.com/bitcoin/bips/blob/master/bip-0143.mediawiki
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Role Bandwidth (KB) Comp. (ms) Optimized.Comp. (ms)
Sender 55843 8172 3083
Tumbler 87855 16245 8160
Receiver 32017 9063 6067
Phase Bandwidth (KB) Comp. (ms) Optimized Comp. (ms)
Register 23832 2687 594
Promise 23834 7887 5773
Solver 23831 4381 2267
Open 16357 2284 520
Total 87860 17239 9154

TABLE 2. BANDWIDTH OVERHEAD AND COMPUTATION COST. THE
OPTIMIZED COST IS OUR ESTIMATION OF THE PROTOCOL WITH [56].

from Bitcoin regtest network9. In the local area network
(LAN) setting, performing this GCZK itself consumes 1.716
seconds. Besides, the circuit needs additional 5 seconds
to be read from the disk, but such a time cost could be
stripped since the circuit could be preloaded into RAM in
the real world. In addition, we use the tc tool (in Linux)
to emulate the WAN setting with 250mbps bandwidth and
200ms latency, and achieve an overall running time of ∼31
s for one payment. We show the computation time and
communication overhead by phases in Table 2. Observe that
the required computation time for different parties varies
even in the same phase, which occurs when one party
finishes all the required computations and sends messages to
the other one while the other party needs to do verification
and other computation. And accordingly, the phase-based
computation time would contain some idle time. To capture
this, we also show the performance by role in Table 2.

Discussion. We note that our implementation is a proof-
of-concept realization of our work, and the bandwidth and
computational cost can be improved by using alternative
zero knowledge proofs. Our implementation results given
in Table 2 show that our protocol is feasible and relatively
practical. However, replacing the GCZK protocol we used
to realize proofs for circuits, with other zero-knowledge
proof techniques (e.g., [4], [17], [54], [56]) can provide
better efficiency. For example, Quicksilver [56] can prove
boolean circuits at a speeding of 7.7 million AND gates per
second and 1bit/gate in bandwidth. We conjecture that we
can finish the proof in less than 1 second and have 128 times
improvement in bandwidth usage by utilizing Quicksilver.
In this regard, we estimate the time and overhead of our
solution leveraging quicksilver and add them as optimized
computation time in Table 2.

Comparing performance with A2L versions. A2L pro-
tocol completes in 3 seconds regarding the implementation
results given by the authors [51]. However, as pointed out in
[18], the CL encryption parameters10 chosen in A2L may not
be sufficient for security reasons. When, we use the param-
eters suggested in [18], the A2L protocol is expected to run
in 6 seconds, which is in the same order of computational
cost of our protocol with the optimized implementation.

9. https://developer.bitcoin.org/examples/testing.html
10. The discriminant, which is a parameter of unknown order group,

used in A2L is only around 1800 bits, which is lower than the required
length of 3800-bit pointed out in [18].

11. Conclusion

We present the first Bitcoin-compatible PCH that
achieves value privacy, relationship anonymity and supports
variable amounts for payment. To achieve this, we pro-
pose BlindChannel, a new payment channel protocol for
privacy preserving payment, and BlindHub, a novel three
party protocol to synchronize the payment channel update
in the PCH. We formally analyze their security and give an
implementation to show their practicality.
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Appendix A.
Discussion Regarding Privacy

Here, we discuss additional aspects of our PCH per-
taining to privacy limitations. As mentioned in A2L [51],
these limitations are inherent in the PCH settings, and thus
affecting our construction as well.

Epoch anonymity. Our payment channel hub protocol
runs in epoch. The anonymity level of the PCH system
running in epoch depends on the number of the participants
within the epoch. Say, during an epoch, if there are k
payments completed successfully, the anonymity set is of
size k(i.e., k-anonymity), since there exists k compatible
interaction graphs, as defined in Section 2.1.

However, the above k-anonymity can only be achieved if
there is no intersection between sender-receiver pairs from
different epochs. Otherwise, tumbler can further eliminate
the anonymity sets.

Intersection attack. The tumbler can correlate the infor-
mation across phases and epochs to eliminate the anonymity
sets. Namely, tumbler can observe which pairs of senders
and receivers fall in the intersection of different epochs and
break their anonymity. This is called intersection attack.

We observe that fix-amount PCH system are vulnerable
to intersection attack when there is only one single hub
to provide the service. Since unless the amount a sender
is going to pay the receiver is exactly the same as the
one fixed in the system, he needs to run the protocol for
multiple times for one payment, which means that he needs
to interact with tumbler for multiple epochs in order to
complete the payment. As a result, the tumbler can easily
link the sender and receiver by observing which pair of
sender-receiver appear continuously. That is, the tumbler
can break their anonymity by a simple intersection attack.
In contrast, BlindHub allows variable-amount payment. It
means that users only need to run the protocol once, which
protect them from the aforementioned intersection attack.

Tumbler-Sender(Receiver) Collusion. It is possible for
the tumbler T to figure out who the sender S (receiver R) is
if R (S) is corrupted. During some anonymous payments, S
or R does not want to reveal his real identity, T can leverage
the corrupted party to make some fake payment and explore
the real identity of the uncorrupted party. For example, when
R is corrupted, he can send a fake puzzle to S, and anyone
who is asking T to solve the puzzle will be identified as S
in this payment. This can be mitigated by requiring R to
prove that the given puzzle is randomized from the original
one. When S is corrupted, T can explore who the R is by
asking S not to send the witness to R. The one who fails to
provide the witness and claim coins from T is the potential
R.

Attacks with Auxiliary Information. The privacy prop-
erties are discussed without auxiliary information from the
outside. Otherwise, they cannot be guaranteed as well. For
example, when T knows that there is a certain S pays a milk
company every week at a certain time, and T can observe
such periodical payments and infer the users identify with
higher possibility. This can be mitigated by making the
unregular payment.

Appendix B.
Security Model and Concrete Construction of
Blind Adaptor Signature

Here, we give detailed security models, security analysis
and concrete construction of blind adaptor signature.

B.1. Security Model

Suppose that there are Ns (resp. Np) interactions by
the signer in the Sign(sk) (resp. PreSign(sk, Y )) algorithm.
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wBlindnessA,
∏

R,Σ
(λ)

1 : (pk,m0,m1)← A(1λ)
2 : b←$ {0, 1}
3 : b∗ ← AUser(pk,mb),User(pk,m1−b)(1λ)

4 : return (b == b∗)

Figure 10. Experiment wBlindnessA,
∏

R,Σ
.

We use (m′, st1) ← Sign1(sk,m) (resp. (m′, st1) ←
PreSign1(sk, Y,m)) to represent the first interaction, where
m is the message received by the signer, m′ is the mes-
sage output and st1 is the internal state. Similarly, (m′,
sti) ← Signi(sti−1,m) (resp. (m′, st1) ← PreSigni(sti−1,
m)) denotes the i-th interaction, for i ∈ [2, Ns − 1] (resp.
i ∈ [2, Np − 1] ), and (m′, b) ← SignNs

(stNs−1,m) (resp.
(m′, b) ← PreSignNp

(stNp−1,m)) denotes the last interac-
tion, where b is a bit. Below we give the formal definitions
of the properties of BAS given in Section 4 and give the one-
more unforgeability game of BAS in Fig. 12, weak blindness
game in Fig. 10 and witness extractability game in Fig. 11.

Definition 3 (Weak Blindness). A BAS scheme ΠBAS

achieves weak blindness if for every PPT adversary A
running the experiment wBlindnessA,ΠBAS

defined in Fig. 10,
Pr[wBlindnessA,ΠBAS

(λ) = 1] ≤ negl(λ).

Witness Extractability of BAS is different from that of
the adaptor signature. It is because the message signed by
the oracles OS and OpS (as shown in Fig. 12) is unknown
to the challenger. Hence, we have to change the definition
of the oracles to avoid giving a full signature/pre-signature
to the adversary.

Definition 4 (Witness Extractability). A BAS scheme ΠBAS

is witness extractable if for every PPT adversary A run-
ning the experiment baWitExtA,ΠBAS

defined in Fig. 11,
Pr[baWitExtA,ΠBAS

(λ) = 1] ≤ negl(λ).

baWitExtA,
∏

R,Σ
(λ)

1 : (pk, sk)← KeyGen(1λ)

2 : (M∗, Y )← AO′
S,O

′
pS(pk)

3 : σ̂ ← PreSign(sk, Y )↔ User(pk,M∗, Y )

4 : σ∗ ← AOS,OpS(σ̂, Y )

5 : y∗ ← Ext(Y, σ∗, σ̂)

6 : return ((Y, y∗) /∈ R ∧ Vf(pk, σ∗,M∗) = 1)

Figure 11. Experiment baWitExtA,
∏

R,Σ
. O′

S, O
′
pS are the same as OS,

OpS in Algorithm 12 except that OS(·, Ns, ·), OpS(·, ·, Np, ·) are not
allowed.

Definition 5 (One-more Unforgeability). A BAS scheme
ΠBAS is omaEUF–CMA secure if for every PPT adversary
A running the experiment omaSignForgeA,ΠBAS

defined in
Fig. 12, Pr[omaSignForgeA,ΠBAS

(λ) = 1] ≤ negl(λ).

omaSignForgeA,
∏

R,Σ
(λ)

1 : Ss := ∅,Sp := ∅, ks1 := 0, kp1 := 0, ks2 := 0

2 : (pk, sk)← KeyGen(1λ)

3 : (M∗
1 , . . . ,M

∗
n)← AOS,OpS(pk)

4 : (Y, y)← GenR(1λ)

5 : σ̂i ← PreSign((pk, sk), Y,M∗
i ),∀i ∈ [1, n]

6 : (σ∗
1 , . . . , σ

∗
n)← AOS,OpS(σ̂1, . . . , σ̂n, Y )

7 : return (ks2 < n ∧M∗
i ̸= M∗

j ,∀i ̸= j ∈ [1, n]∧
8 : Vf(pk,M∗

i , σ
∗
i ) = 1, ∀i ∈ [1, n]

OS(M, i, j)

1 : if i = 1 :

2 : ks1 = ks1 + 1

3 : (M ′, stks1 ,1)← Sign1(sk,M)

4 : Ss = Ss ∪ {ks1}
5 : return (ks1 ,M

′)

6 : if i = Ns :

7 : if j /∈ Ss : return ⊥
8 : (M ′, b)← SignNs

(stj,Ns ,M)

9 : if b = 1 : Ss = Ss \ {j}, ks2 = ks2 + 1

10 : return M ′

11 : if i ∈ [2, Ns − 1] :

12 : if j /∈ Ss : return ⊥
13 : (M ′, stj,i)← Signi(stj,i−1,M)

14 : return M ′

15 : return ⊥
OpS(M,Y, i, j)

1 : if i = 1 :

2 : kp1 = kp1 + 1

3 : (M ′, stkp1
,1)← PreSign1(sk, Y,M)

4 : Sp = Sp ∪ {kp1}
5 : return (kp1 ,M

′)

6 : if i = Np :

7 : if j /∈ Sp : return ⊥
8 : (M ′, b)← SignNp

(stj,Ns ,M)

9 : if b = 1 : Sp = Sp \ {j}, k2 = k2 + 1

10 : return M ′

11 : if i ∈ [2, Ns − 1] :

12 : if j /∈ Sp : return ⊥
13 : (M ′, stj,i)← PreSigni(stj,i−1,M)

14 : return M ′

15 : return ⊥

Figure 12. Experiment omaSignForgeA,ΠBAS
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B.2. Concrete Construction

We now construct a provably secure blind adaptor sig-
nature scheme based on ECDSA digital signatures that are
commonly used by blockchains. Although in the literature,
there are already blind signatures schemes [24], [47] that
are compatible with Bitcoin, their blindness property is
the strong one, which requires that a signer cannot link
a message/signature pair to a particular execution of the
signing protocol. Here the blind adaptor ECDSA we propose
satisfies weak blindness.

Blind Adaptor ECDSA Construction.
Setup. On input a security parameter λ, it runs (p,G, G)←
GpGen(1λ) and picks a cryptographic hash function H : {0,
1}∗ → Zp. It returns par = (p,G, G,H).
KeyGen. On input par, it picks sk := x←$ Zp and computes
pk := X = xG.
Sign. The signer’s input includes security parameter 1λ,
signer’s public key X and secret key x, adaptor statement Y ,
adaptor statement y, a and the proof of knowledge π of the
witness of Y . The user’s input includes security parameter
1λ, signer’s public key X and the message to be signed m.

1) The user hashes the message m: h = H(m), and
generates a proof-of-knowledge πh of the pre-image
of h. Then the user sends h, πh to the signer.

2) On receiving h, πh, the signer verifies the validity of
the proof πh and aborts if the proof is not correct. Then
the signer samples ka from Zp\{0}, then computes
R̂ = kaY = (r, ·), R = kaG, and gives a zero
knowledge proof πa to prove that R̂ and R share the
same discrete log under Y and G respectively. finally,
the signer generates s′ = ka

−1(h+ rx), and sends R̂,
R, πa, s

′ to the user.
3) The user aborts if s′ = 0 or PreVf(m, IY ; s

′) = 0 or
NIZKVerify(πa) = 0. Else, the user returns (r, s′) as
the adaptor ECDSA signature.

Verify. To verify an adaptor signature σ̂ = (r, s, Y ) for a
message m and a public key X , where Y is a adaptor
statement, it computes R = Y (H(m)

s G + r
sX). It returns

1 if r = f(R), or returns 0 otherwise.
Security Analysis. Now we analyze the security of the

blind adaptor ECDSA proposed above. Firstly, the protocol
achieves weak blindness trivially, since the user only for-
wards the hash of the message to the signer. Below we prove
the one-more unforgeability of our protocol by reducing it
to the EUF-CMA security of ECDSA adaptor signature,
which is introduced in [2]. It is noted that the one-more
unforgeability of our blind adaptor ECDSA scheme does not
rely on ROS (Random inhomogeneities in a Overdetermined
Solvable system of linear equations) assumption, and thus
not affected by the ROS attack proposed recently [6].

Theorem 6. Assuming the unforgeability of ECDSA adaptor
signature and the soundness of non-interactive zero knowl-
edge proof, our blind adaptor ECDSA protocol achieves
one-more unforgeability.

Proof. Assume there is an adversary A that can break
the one-more unforgeability of our blind adaptor ECDSA

protocol, we construct an algorithm B that uses A to break
the unforgeability of ECDSA adaptor signature. First, the
challenger C of the ECDSA adaptor signature gives param,
adaptor statement Y and pk to B. B forwards param, Y and
pk to A, and A outputs (M∗

1 , . . . ,M
∗
n). When A queries

the signing oracle with hi, πhi as input, B first extract the
pre-image M∗

i of hi from πhi . Then B forwards (Y,M∗
i )

to C and returns the oracle reply to A. After running n− 1
queries to the signing oracle, A outputs n distinct message-
signature pairs (Mj , σj = (sj , rj)) for j ∈ [1, n] such that
Rj = Y (

H(mj)
sj

G+
rj
sj
X) and rj = f(Rj). Then B forwards

(M∗
i0
, σ∗
i0
) as a forgery to C, where M∗

i0
has not been queried

in the signing oracle.

Appendix C.
Formal Security Analysis of PCH

Here, we formally define security properties of our PCH
and the proofs for the theorems given in Section 9.

Definition 6 (Griefing Resistance). A PCH system achieves
griefing resistance if for all PPT senders and receivers, at
any time t, the locked coins of the tumbler is no larger than
the locked coins to be sent to the tumbler.

Before proving Theorem 2, we first recall that in our
PCH construction, the griefing resistance is enforced as fol-
lows: firstly, before the registration phase, the sender S and
the tumbler T updates their BlindChannel to a conditional
payment state, where the payment amount is m committed
in the commitment of the amount Camt. Then during the reg-
istration protocol, S sends the commitment of the token Ctkid

and Camt = com(m) to T. Then, T generates a randomizable
signature σ̃ upon Ctkid and Camt to S, who forwards (C′

tkid,
C′
amt, σ̃

′), which is the randomized version of (Ctkid,Camt,
σ̃), to the receiver R. Before the puzzle promise protocol, R
and T updates their BlindChannel to a conditional payment
state with payment amount m. Later R shows (C′

tkid,C
′
amt,

σ̃′) to T, and generates a token-uniqueness proof to prove
that the token committed in C′

tkid has never been used before.

Proof of Theorem 2 (Sketch). Assume there is an adversary
A that can break the griefing resistance of our PCH system.
It means that A is able to lock more coins of T than those
of S. Then, there are three cases:

1) Before the registration phase, S and T updates their
BlindChannel to a conditional payment state, where
the payment amount is m. But m < m′, where m′ is
committed in Camt. But in the channel update phase, S
and T have reached agreement that the payment amount
equals to the amount committed in Camt. This violates
the security of BlindChannel, which guarantees that
the BlindChannel is successfully updated only if both
parties in the channel agree with the update.

2) S and T have updated their BlindChannel to a con-
ditional payment state, where the payment amount is
m committed in Camt. But after receiving a random-
izable signature σ̃ upon Ctkid and Camt = com(m),
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the adversary (S or R) forges a new randomizable
signature σ̃′ upon the new commitment of the token
Ctkid = com(tkid′) and the new commitment of the
amount C′

amt = com(m′), where m′ > m. This
voilates the unforgeability of andomizable signatures
on randomizable commitments.

3) In the puzzle promise phase, R shows (C′
tkid,C

′
amt, σ̃

′)
to T, and provides a zero knowledge proof to prove the
token is unique, and the proof passes the verification
of T. But the token is not unique. This violates the
soundness of the zero knowledge proof.

Value Privacy Game: Let T chooses two payment val-
ues v0 and v1 for a payment pair of sender and receiver
(S,R), where the both channels (with T) have sufficient
capacities for both values. Let b ∈ {0, 1} be chosen
randomly. Let payb be the corresponding payment with
payment value vb. In case of successful payment of payb,
A wins the game by guessing the value of b: PrVP :=

Pr
[
b′ = b : b′ ← Av0,v1 , b R← {0, 1}

]
.

Definition 7 (Value Privacy). A PCH satisfies value privacy
if for every PPT tumbler T, the probability of winning Value
Privacy Game is PrVP = 1/2 + ϵ, where ϵ is negligible.

Proof of Theorem 4 (Sketch). In our PCH system, the infor-
mation of the value can either be obtained from ΠFBCS or
ΠBC . If there is an adversary A (T) that can win the value
privacy game, i.e., guess the payment value with more than
1/2 probability, it implies that A is able to obtain useful
information of the value from ΠFBCS or ΠBC , which violates
the blindness of ΠFBCS and the security of ΠBC.

Relationship Anonymity Game: Let T chooses two can-
didate senders S0, S1 and receivers R0, R1. Let b ∈ {0,
1} be chosen randomly. If b = 0, then payi = (Si,Ri),
otherwise payi = (Si,R1−i) for i = 0, 1. Let Mi be the
message(s) that T exchanged (sent and received) with the
corresponding parties for the payment pairs payi for i = 0,
1. In case of simultaneous successful payments of the pairs
pay0 and pay1, T wins the game by guessing the value of
b: PrRA := Pr

[
b′ = b : b′ ← TM0,M1 , b

R← {0, 1}
]
.

Definition 8 (Relationship Anonymity). A PCH satisfies
relationship anonymity if for every PPT tumbler T, the
probability of winning the Relationship Anonymity Game
is PrRA = 1/2 + ϵ where ϵ is negligible in λ.

Proof of Theorem 5 (Sketch). Assume there is an adversary
A (T) that can break the relation anonymity and guess the
right payment pairs with probability of 1/2+ϵ0, where ϵ0 is
non-negligible. It means the adversary can get information
of the relationship from either BlindChannel or BlindHub.
The only information in BlindChannel can reveal the in-
formation of the relationship is the payment amount. If the
adversary A can get information of the payment amount
from BlindChannel, it violates the security of ΠBC. Other-
wise, since T can link the parties with the corresponding

promise/solver sessions trivially, it means the adversary A
can link the promise-solver sessions with probability of
1/2 + ϵ0, where ϵ0 is non-negligible. This violates the
blindness of flexible blind conditional signature.

Definition 9 (Atomicity). Suppose γs and γr represent the
channels shared by (S,T) and (T,R), respectively. Let payv
be the payment of (S,R) with payment value v. A PCH
satisfies atomicity if for every PPT sender S, PPT T and
PPT R, for any payment payv of S and R with any values
v, the following conditions hold:

1) If S pays v coins in γs, T pays v coins in γr.
2) If T pays v coins in γr, S pays v coins in γs.

Proof of Theorem 3 (Sketch). Assume the atomicity of our
PCH system is broken. There are two cases: 1) S pays T v
coins in γs, but R cannot receive any coin from T in γr,
2) T pays v coins in γr, but S only pays T v′ coins in γs,
where v′ < v. It is noted that since in BlindChannel, the
amount is picked by the unblind party(S/R). Assuming the
unblind party is rational, T can only pay v coins or 0 coins
in γr. Below we discuss these two cases separately:

1) S pays T v coins in γs, but R cannot receive any coin
from T in γr: in this case, T is the adversary A. This
means either A is able to generate a valid signature on
a message from the sender that prevents the receiver
from being able to unlock the entire signature on the
message from the T, or R cannot still claim coins
from the channel even if R obtain the full signature
on the message from the T. The former case implies
the unlockability of ΠFBCS is broken, and the latter case
implies the insecurity of BlindChannel.

2) T pays v coins in γr, but S only pays T v′ coins in γs,
where v′ < v: then, S and R are both adversaries. This
implies either the unforgeability of ΠFBCS is broken, or
the insecurity of BlindChannel scheme.

Appendix D.
Construction of Randomizable Signatures on
Randomizable Commitments

D.1. Preliminaries

Bilinear groups. We assume the existence of a proba-
bilistic polynomial-time (p.p.t.) algorithm BGGen that takes
as input an integer λ in unary and outputs a description
of an (asymmetric) bilinear group

(
p,G, G, Ĝ, Ĝ,GT , e

)
consisting of groups (G,+) and (Ĝ,+), generated by G
and Ĝ, resp., and (GT , ·), all of cardinality a prime number
p ∈

{
2λ, . . . , 2λ+1

}
, and a bilinear map e : G× Ĝ → GT ,

such that e(G, Ĝ) generates GT , called pairing.
The decisional Diffie-Hellman assumption for BGGen

states that no p.p.t. adversary A can distinguish a triple (dG,
rG, drG) for d, r ← Zp from a random triple from G3 with
better than negligible advantage.
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Below we firstly give the definition of RSoRC and then
give the security definition of RSoRC. Finally, we give a
concrete instantiation of RSoRC.

We first give the definition of randomizable commitment
and randomizable signatures, following the definition of
randomizable ciphertext given in [8]. It is noted that our
definition of randomizable signatures is slightly different
from the one given in [8] in the way that we remove the
part of hash the message m and the corresponding proof of
knowledge of m.

Definition 10 (Randomizable Commitment Scheme). Let
ΠCOM be a commitment scheme with the following addi-
tional algorithm:

- RndCM(C, r′) input commitment C, using the addi-
tional random coins r′ ∈ R, output a new commitment
C′,

A commitment scheme is called randomizable if for any
param← Setup(1λ), message m ∈M, randomness r ∈ R,
and commitment C = com(m; r), the following distribu-
tions are statistically indistinguishable: D0 = {r′ ←$ R :
com(m; r′)} and D1 = {r′ ←$R : RndCM(C; r′)}

Definition 11 (Randomizable Signature Scheme). Let
(Setup,KeyGen,Sign,Vf) be a signature scheme, with the
following algorithm:

- RCRand(pk,m, σ; r′) : input message m, signature σ,
using the additional randomness r′ ∈ R, outputs a new
signature σ.

A signature scheme is called randomizable if for any
param← Setup(1λ), message m ∈M, randomness r ∈ R,
and signatures σ = Sign(m; r), the following distribu-
tions are statistically indistinguishable: D0 = {r′ ←$ R :
Sign(m; r′)} and D1 = {r′ ←$R : RCRand(pk,m, σ; r′)}.
We now combine the randomizable signatures and random-
izable commitments:

Definition 12 (Randomizable Signatures on randomizable
commitments). A scheme of randomizable signatures on
randomizable commitments ΠRSoRC = (Setup,SKeyGen,
RndCM,RCSign,RCRand,RCVerify) with a message space
M, a randomness space R, a commitment space CM, a
signature space SIG consists of six algorithms defined as:
pp ← Setup(1λ) : a PPT algorithm that on input security
parameter 1λ, outputs public parameters pp.
(skχ, pkχ)← SKeyGen(pp) : a PPT algorithm that on input
public parameters pp, outputs signing key/verification key
pair (sk, vk).
CM ← com(m) : is a PPT algorithm that on input public
parameters pp and a message m, outputs a randomizable
commitment CM.
CM′ ← RndCM(CM, r) : a PPT algorithm that on input
a randomization factor r and a commitment CM, outputs a
randomized commitment CM′.
σ ← RCSignskχ(CM1, ...,CMn) : input a secret key skχ and
a set of randomizable commitment CM1, ...,CMn, output a
signature σ.
(CM′

1, ...,CM
′
n, σ

′) ← RCRand(CM1, ...,CMn, σ, r) : a

Game CL-HIDA
RSoRC(λ)

1 : pp←$ Setup(1λ)

2 : CM1, · · · ,CMn ←$ A(pp)
3 : CM01, · · · ,CM0n ←$ CMpp

4 : µ←$Rpp, b←$ {0, 1}
5 : CM1i := RndCM(CM0i, µ),

6 : b′ ←$ A(CMbi, i = 1, · · · , n)
7 : return (b′ == b)

Figure 13. Games for class-hiding

PPT algorithm that on input a randomization factor r, a
set of randomizable commitments CM1, ...,CMn and a sig-
nature σ, outputs randomized commitments CM′

1, ...,CM
′
n

and a randomized signature σ′.
0/1← RCVerify(pkχ, σ,CM1, ...,CMn) : a DPT algorithm
that on input public key pk, a set of randomizable com-
mitment CM1, ...,CMn and a signature σ, outputs 1 if the
signature σ is valid or 0 otherwise.

We define the equivalence class [CM1, · · · ,CMn] of a
set of commitments CM1, · · · ,CMn as all randomizations
of CM1, · · · ,CMn, i.e., [CM′

1, · · · ,CM
′
n] := {(CM1, · · · ,

CMn)|∃r ∈ R : CM′
i = RndCM(CMi, r),∀i ∈ [n]}.

D.2. Correctness and Security Definitions

Correctness of RSoRC requires that the commitment
scheme and the signature scheme are correct.

Definition 13. A RSoRC scheme is correct if for all pp ∈
PP , for all pairs (skχ, pkχ) in the range of SKeyGen(pp),
respectively, and all mi, i = 1, · · · , n ∈Mpp, ri, i = 1, · · · ,
n ∈ Rpp and CMi, i = 1, · · · , n ∈ CMpp:

Decom(r,Com(mi, ri)) = mi, and
σ = RCSign(skχ,CM1, · · · ,CMn)

Pr[Verify(pkχ,CM1, · · · ,CMn, σ) = 1] = 1.

Note that together with signature-adaptation (Def. be-
low), this implies that adapted signatures verify as well.

Class-Hiding states that given a representative of an
equivalence class, then a random member of that class is
indistinguishable from a random element of the whole space.
We give a stronger definition, which we call fully class-
hiding (analogously to full anonymity).

Definition 14. Let game CL-HID be as defined in Fig.
13. A RSoRC scheme is fully class-hiding if for all p.p.t.
adversary A, the following function is negligible in λ:∣∣Pr [CL−HIDA

RSoRC(λ) = 1
]∣∣.

Signature-randomizability requires that signatures that
have been randomized are distributed like fresh signatures
on the randomized commitments.

Definition 15. A RSoRC scheme is signature-randomizable
(under malicious keys) if for all pp ∈ PP , all (pkχ,CM1,
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Game UNFA
RSoRC(λ)

1 : par← RSoRC.Setup(1λ)

2 : (skχ, pkχ)← RSoRC.KeyGen(par)

3 : S := ∅
4 : (CM∗

1, · · · ,CM∗
n, σ

∗)← AORCSign(par, pkχ)

5 : return Verify(CM∗
1, · · · ,CM∗

n, σ
∗)∧

6 : {[CM∗
1, · · · ,CM∗

n]} /∈ S

ORCSign(CM1, · · · ,CMn)

1 : σ ← RCSign(skχ,CM1, · · · ,CMn)

2 : S := S ∪ {[CM1, · · · ,CMn]}
3 : return Sign(skχ,CM1, · · · ,CMn)

Figure 14. The unforgeability game for RSoRC.

· · · ,CMn, σ) ∈ VKpp×CMn
pp×Spp that satisfy Verify(pkχ,

CM1, · · · ,CMn, σ) = 1 and for all r ∈ Rpp, the output of
RCRand(σ, r) is uniformly distributed over the set

{σ′ ∈ Spp |
RCVerify

(
pkχ,RndCM(CM1, r), · · · ,RndCM(CMn, r), σ

′) = 1}.

Unforgeability. We present our notion of unforgeability,
which is defined w.r.t. equivalence classes. That is, after the
adversary queries a signature for (CM1,CM2), all tuples
(CM1,CM2) with CM′

1,CM
′
2 ∈ [CM1,CM2] are added to a

set S of signed objects. The adversary’s goal is to produce
a signature on a pair (CM⋆

1,CM
⋆
2) that is not contained in

S.

Definition 16 (EUF-CMA). Let UNF be the game de-
fined in Fig.14. A RSoRC scheme is unforgeable if for all
PPT adversary A the following function is negligible in λ:
Pr[UNFA

RSoRC(λ) = 1].

D.3. Construction

Below we give the construction of randomizable signa-
ture on randomizable commitment (RSoRC). Our construc-
tion is almost the same as the generalized scheme in [3](the
generalized case is discussed at the end of the paper), except
that we replace all the encryption keys Pi with generators
Hi. This is correct, since for a user who does not know
the secret key sk, the encryption public key P = sk · G
is the same as a normal group element. Thus, the security
of our construction directly follows from the security of the
generalized case of their scheme.
Setup(1λ): Define Mpp := G, CMpp := G,
Rpp := Zp,SKpp :=

(
Z∗
p

)n
,VKpp :=

(
Ĝ∗

)n
and Spp := G × G∗ × Ĝ∗ × G. Return
pp =

(
p,G, G,Hi, i = 1, · · · , n ∈ G, Ĝ, Ĝ ∈ Ĝ,GT , e

)
←$ BGGen

(
1λ

)
KeyGen(pp) : pick xi, i = 1, · · · , n ←$ Z∗

p and set
Ŷi = xiĜ, i = 1, · · · , n. Output (sk = (xi, i = 1, · · · , n),
vk = (Ŷi, i = 1, · · · , n).

GenCOM(m,G,H): pick t←$ Zp, return CM = mG+ tH .
RndCM(CM = mG + tH): pick µ ←$ Zp, return
CM′ = mG+ tH + µH .
RCSign(CM0, · · · ,CMn, sk

χ: Given CM0, · · · ,CMn ∈ G
of class [CMi], i = 0, · · · , n and secret key skχ = (x0,
· · · , xn), pick v ←$ Zp, output σ = (A, V, V̂ , T ),
with A = 1

v (G +
∑n

0 xiCMi), V = vG, V̂ = vĜ,
T = 1

v

(
x0G+

∑n
1 xiHi

)
.

RCRand(CM0, · · · ,CMn, σ, µ, pk
χ): Given representative

CM0, · · · ,CMn ∈ G, σ = (A, V, V̂ , T ), scalar µ ∈ Z∗
p and

pkχ, pick ψ ← Z∗
p and return

(
CM′

i = CMi + µHi, σ
′) with

σ′ ← (A′ = 1
ψ (A+ µT ) , V ′ = ψV, V̂ ′ = ψV̂ , T ′ = 1

ψT ).
RCVerify(σ,CM1, · · · ,CMn) : Given representative CM1,
· · · ,CMn ∈ G, σ = (A, V, V̂ , T ), return 1 if the following
conditions hold and 0 otherwise: e(A, V̂ ) = e(G,
Ĝ)

∏n
i=0 e(CMi, Ŷi)∧ e(V, Ĝ) = e(G, V̂ )∧ e(T, V̂ ) = e(G,

Ŷ0)e
∏n
i=1(Hi, Ŷi).

We define the equivalence class [CM1, · · · ,CMn] of a
set of commitment CMi, i = 1, · · · , n as all randomizations
of (CM1, · · · ,CMn):

[CM1, · · · ,CMn] := {(CM′
1, · · · ,CM

′
n) | ∃µ ∈ Rpp :

CM′
i = RndCM(CMi, µ)}.

Appendix E.
Additional Preliminaries

E.1. Adaptor Signatures

Adaptor signature was firstly introduced as a mean to
exercute smart contracts off-chain by Andrew Poelstra [45].
It is also called “scriptless script”. Essentially, adaptor sig-
nature takes two steps to simulate a contract that authorizes
the completeness of a signature with leakage of a secret
value: firstly, an “incomplete” signature is generated such
that it can only be completed by someone knowing a certain
secret. Later this signature is completed, and the secret
will be revealed. Here we give a more detailed and formal
description of adaptor signatures, following the definitions
and security experiments from [2].

Definition 17 (Adaptor signature scheme). An adaptor sig-
nature scheme, w.r.t. a hard relation R and a signature
scheme Σ = (KeyGen,Sign,Vf) consists of four algorithms
ΞR,Σ = (PreSign,Adapt,PreVf,Ext) with the following
syntax: PreSign(sk,m, Y ) is a PPT algorithm that on input
a secret key sk, message m ∈ {0, 1}∗ and statement Y ∈ LR
outputs a pre-signature σ̃. PreVf(pk,m, Y, σ̂) is a DPT
algorithm that on input a public key pk, message m ∈ {0,
1}∗, statement Y ∈ LR and pre-signature σ̂ outputs a bit b.
Adapt(σ̂, y) is a DPT algorithm thaton input a pre-signature
σ̃ and witness y , outputs a signature σ; and Ext(σ, σ̂, Y ) is
a DPT algorithm that on input a signature σ, pre-signature
σ̃ and statement Y ∈ LR, outputs witness y, s.t., (Y, y) ∈ R,
or ⊥.
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An adaptor signature scheme ΞR,Σ must satisfy pre-
signature correctness stating that for every m ∈ {0, 1}∗
and every (Y, y) ∈ R , the following holds:

Pr


PreVfpk(m,Y ; σ̃) = 1

∧
Vfpk(m;σ) = 1

∧
(Y, y′) ∈ R

∣∣∣∣∣∣∣∣∣
(sk, pk)← KeyGen

(
1λ

)
σ̃ ← PreSignsk(m,Y )
σ ← Adaptpk(σ̃, y)
y′ := Extpk(σ, σ̃, Y )

 = 1.

Definition 18 (Existential unforgeability). An adaptor sig-
nature scheme ΞR,Σ is aEUF–CMA secure if for every PPT
adversary A = (A1,A2) there exists a negligible function
ν such that: Pr

[
aSigForgeA,ΞR,Σ

(λ) = 1
]
≤ ν(λ), where

the experiment aSigForgeA,ΞR,Σ
is defined as follows:

aSigForgeA,ΞR,Σ
(λ)

1 : Q := ∅
2 : (pk, sk)← KeyGen(1λ)

3 : (Y, y)← GenR(λ)

4 : M∗ ← AOS,OpS

1 (pk, Y )

5 : σ̂ ← PreSign((pk, sk), Y,M∗)

6 : σ ← AOS,OpS

2 (σ̂, Y )

7 : a1 ← (M∗ /∈ Q)
8 : a2 ← Vf(pk, σ,M∗)

9 : return (a1 ∧ a2)

OS(m)

1 : σ ← Sign(sk,M)

2 : Q := Q∪ {M}
3 : return σ

OpS(m,Y )

1 : σ̂ ← PreSign(sk, Y,M)

2 : Q := Q∪ {M}
3 : return σ

Figure 15. Experiment aSigForgeA,
∏

R,Σ
.

Definition 19 (Pre-signature Adaptability). An adaptor sig-
nature scheme ΞR,Σ satisfies pre-signature adaptability if
for every message M in the message space, every state-
ment/witness pair (Y, y) ∈ LR and for all pre-signature
σ̂, any key pair (pk, sk) ← KeyGen(1λ) with PreVerify(Y,
pk, σ̂,M) = 1 and σ ← Adapt((Y, y), pk, σ̂,M), we have
Verify(pk, σ,M) = 1.

Definition 20 (Witness Extractability). An adaptor sig-
nature scheme ΞR,Σ is witness extractable if for every
PPT adversary A running the experiment aWitExtA,ΞR,Σ

,
Pr[aWitExtA,ΞR,Σ

(λ) = 1] ≤ negl(λ).

E.2. Blind Signature

Following the definition of [24], we give the formal
security notions as follows:

aWitExtA,ΞR,Σ
(λ)

1 : Q := ∅
2 : (pk, sk)← KeyGen(1λ)

3 : (M∗, Y )← AOS,OpS(pk)

4 : σ̂ ← PreSign(sk, Y,M∗)

5 : σ∗ ← AOS,OpS(σ̂)

6 : y∗ ← Ext(Y, σ∗, σ̂)

7 : a1 ← (M∗ /∈ Q)
8 : a2 ← (Y, y∗) /∈ LR

9 : a3 ← Vf(pk, σ∗,M∗) = 1)

10 : return (a1 ∧ a2 ∧ a3)

OS(m)

1 : σ ← Sign(sk,M)

2 : Q := Q∪ {M}
3 : return σ

OpS(m,Y )

1 : σ̂ ← PreSign(sk, Y,M)

2 : Q := Q∪ {M}
3 : return σ

Figure 16. Experiment aWitExtA,
∏

R,Σ
.

E.2.1. Security Notions. A blind signature scheme BS
consists of the following algorithms:

• BS.Setup(1λ): It takes the security parameter λ and
returns public parameters param.

• BS.KeyGen(param): It takes the public parameters
param and returns a secret/public key pair (sk, pk).

• (b, σ)← ⟨BS.Sign(sk),BS.User(pk,m)⟩: an interactive
protocol is run between the signer with private input a
secret key sk and the user with private input a public
key pk and a message m. The signer outputs b = 1
if the interaction completes successfully and b = 0
otherwise, while the user outputs a signature σ if it
ends correctly, and ⊥ otherwise.

• BS.Verify(pk,m, σ): it takes a public key pk, a message
m, and a signature σ, and returns 1 if σ is valid on m
under pk and returns 0 otherwise.

For a 2-round protocol the interaction can be realized by the
following algorithms:

(msgU,0, stateU,0)← BS.User0(pk,m)

(msgS,1, stateS)← BS.Sign1(sk,msgU,0)

(msgU,1, stateU,1)← BS.User1(stateU,0,msgS,1)
(msgS,2, b)← BS.Sign2(stateS ,msgU,1)

σ ← BS.User2(stateU,1,msgS,2)

E.2.2. One-more Discrete Logarithm Problem. Here we
give a widely-used hardness assumption for blind signature,
which is one-more discrete logarithm problem(OMDL), in
Fig. 17.
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Game OMDLA
Setup,n,q(λ)

(p,G, G)← Setup(1λ);S := ∅;
for i = 1, . . . , n+ 1,

xi ←$ Zp;Xi := xiG

x′
i, ∀i ∈ [n+ 1]← ADLO(p,G, G,X1, . . . , Xn+1)

return (xi == x′
i,∀i ∈ [n+ 1])

Oracle DLO(W )
if i ∈ S or i /∈ [n], return ⊥
S := S ∪ {i}
return log(W )

Figure 17. The OMDL problem.

E.3. Randomizable puzzle

Below we give the definition of randomizable puzzzle,
which is introduced in [51].
A randomizable puzzle scheme PRand = (PSetup,PGen,
PSolve,PRand) with a solution space S (and a function ϕ
acting on S) consists of four algorithms defined as:

(pp, td) ← PSetup(1λ) : is a PPT algorithm that on
input security parameter 1λ, outputs public parameters pp
and trapdoors td.

cy ← PGen(pp, ζ) : is a PPT algorithm that on input
public parameters pp and a puzzle solution ζ, outputs a
puzzle cy.

ζ := PSolve(td, cy) : is a DPT algorithm that on input
a trapdoor td and puzzle cy, outputs a puzzle solution ζ.

c′y ← PRand(cy, pp) : a PPT algorithm that on input a
randomization factor r and a puzzle cy, outputs a random-
ized puzzle c′y.

A randomizable puzzle (RP) satisfies correctness, se-
curity and privacy properties. Correctness property ensures
that using the trapdoor we can always recover the correct
solution to the puzzle (where a randomized puzzle’s solution
depends on the randomization factor). Security property
ensures that it is infeasible for an adversary that has access
only to the puzzle and the public parameters to obtain the
underlying solution. Privacy property ensures that it is hard
to tell if a puzzle is randomized or not.

E.4. Linear-Only Encryption

The definition of Linear-Only Encryption oracles are
given in Figure 18.

Definition 21 (LOE-Encryption Scheme). Below we give
a definition of linear-only encryption(LOE). The LOE-
Encryption Scheme is defined with respected to a linearly
homomorphic encryption scheme Π∗

E := (KeyGen∗,Enc∗,
Dec∗) over Zp with additional algorithms:

• KeyGen(1λ) : Sample (ek∗, dk∗) ← KeyGen∗(1λ) and
some α←$ Zp. Return dk := (dk∗, α) as the decryption
key and ek := (ek∗,Enc∗(ek∗, α)) as the encryption
key.

OGen(i)

1 : eki ←$ {0, 1}n

2 : Either (i, eki) into table K

3 : return eki

OEnc(eki,m)

1 : cj ←$ {0, 1}n

2 : Either (m, cj) into table Mi

3 : return cj

ODec(eki, c)

1 : if (·, c) /∈Mi then return ⊥
2 : else

3 : Look up m corresponding to c in Mi

4 : return m

OAdd(eki, c0, c1)

1 : Look up (m0,m1) corresponding to c0, c1 in table Mi

2 : c̃←$ {0, 1}n

3 : Enter (m0 +m1, c̃) into table Mi

4 : return c̃

Figure 18. Oracles of Linear-Only Encryption

• Enc(ek∗, x) Compute c as (Enc∗(ek∗, x),Enc∗(ek∗,
α · x)), where Enc∗(ek∗, α · x) is computed homomor-
phically using ek.

• Dec(dk∗, c): Parse c as (c0, c1) and compute x0 ←
Dec∗(dk∗, c0) and x1 ← Dec∗(dk∗, c1). If x1 = α · x0
return x0, else return ⊥.

E.5. Castagnos-Laguillaumie Encryption Scheme

The Castagnos-Laguillaumie encryption scheme, known
as CL encryption, is the additive homomorphic encryption
with prime order message space, which was raised in 2015
[13]. This scheme works on class group of quadratic imag-
inary field K = Q(

√
D) where D < 0 and square-free.

The discriminant of K is ∆K = D if D ≡ 1( mod 4) and
∆K = 4D otherwise. Let O be the subring of K and a
free Z-module of rank 2, then O is defined as order. Let
O∆K

be the maximal order of K and f = [O∆K
: O] the

finite index of any order O in O∆K
. O could be written as

Z + fωKZ where ωK = ∆K+
√
∆K

2 . By taking f = p as
a prime and ∆K = −pq divisible by f where pq ≡ −1(
mod 4), we have ∆p = p2∆K for order O∆p

. Accordingly,
we could pick gq to generate Gq = ⟨gq⟩ such that F = ⟨f⟩
and G = ⟨f · gq⟩. Finding the discrete logarithm in F is
easy.

The CL encryption is defined as the algorithm tuple as
(CLSetup,CLKeyGen,CLEncrypt,CLDecrypt,CLEvalScal,
CLEvalSum).

(param) ← CLSetup(1λ) generates public parameter
param by security parameter 1λ.

(sk, pk) ← CLKeyGen(param) picks secret key sk in
some space and set pk← gskq .
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(C1, C2) ← CLEncrypt(param, pk,m) picks random-
ness ρ firstly and computes C1 ← fmpkρ and C2 ← gρq .

(m) ← CLDecrypt(param, sk, C1, C2) computes M ←
C1/C

sk
2 and returns the discrete logarithm of M .

(Ĉ1, Ĉ2) ← CLEvalScal(param, C1, C2, s) scalar the
encrypted message by s with Ĉ1 ← Cs1 and Ĉ2 ← Cs2 .

(Ĉ1, Ĉ2) ← CLEvalSum(param, C1, C2, C
′
1, C

′
2) com-

putes the ciphertext of the sum of the two corresponding
messages by Ĉ1 ← C1C

′
1 and Ĉ2 ← C2C

′
2

Appendix F.
Flexible Blind Conditional Signature

Here we give a complete formal definitions and security
properties of flexible blind comditional signature(FBCS).
We first repeat the definition of FBCS, given in Section
8.

Definition 22 (Flexible Blind Conditional Signature). A
blind conditional signature ΠFBCS := (Setup,Promise,
Solver,Open) is defined with respect to a signature scheme
ΠDS := (KGen,Sign,Vf), ΠRSoRC := (KGen,Sign,Vf) and
consists of the following efficient algorithms.
• (ekt, dkt) ← Setup(1λ): The setup algorithm takes as

input the security parameter 1λ and outputs a key pair
(ekt, dkt).

• (⊥, {τ,⊥})← Promise

〈
T
(
dkt, sk

Σ
t , sk

χ, com(mTR)
)

R
(
ekt, pk

Σ
t , pk

χ,mTR

) 〉
:

The puzzle promise algorithm is an interactive protocol
between two users T (Tumbler) (with inputs the
decryption key dkt, the signing key of the underlying
digital signature scheme skΣt , the signing key of RSoRC
scheme skχ, and a message mTR) and R (Receiver) (with
inputs the encryption key ekt, the verification key of the
underlying digital signature scheme pkΣt , the verification
key of RSoRC scheme pkχ and a message mTR) and
returns ⊥ to T and either a puzzle τ or ⊥ to R.

• ({(σ∗, s),⊥}, {σ∗,⊥}) ←

Solver

〈
S
(
skΣs , ekt, pk

χ,mST, τ
)

T
(
dkt, pk

Σ
s , pk

χ, com(mST)
)〉: The puzzle

solving algorithm is an interactive protocol between
two users S (Sender) (with inputs the signing key of the
underlying digital signature scheme skΣs , the encryption
key ekt, the verification key of RSoRC scheme pkχ, a
message mST, and a puzzle τ ) and T (Tumbler) (with
inputs the decryption key dkt, the verification key of the
underlying digital signature scheme pkΣs , the signing key
skχ of ΠRSoRC and a message mST) and returns to both
users either a signature σ∗ (S additionally receives a
secret s) or ⊥.

• {σ,⊥} ← Open(τ, s): The open algorithm takes as input
a puzzle τ and a secret s and returns a signature σ or ⊥.

The security of FBCS is defined as Correctness, Blind-
ness, Unlockablity, and Unforgeability, which are defined
below.

Definition 23 (Correctness). A Flexible Blind Condi-
tional Signature ΠFBCS is correct if for all λ ∈
N, all (ekt, dkt) in the support of ΠEnc.Setup(1

λ),
all (pkχ, skχ) in the support of ΠRSoRC.Setup(1

λ),
all (pkΣt , sk

Σ
t ), (pk

Σ
s , sk

Σ
s ) and pkΣr , sk

Σ
r in the sup-

port of ΠDS.KGen(1
λ), and all messages (mTR,mST),

it holds that Pr
[
Vf(pkΣt ,mTR,Open(τ, s)) = 1

]
= 1,

Pr
[
Vf(pkΣs ,mST, σ

∗) = 1
]
= 1, where

• τ ← Promise

〈
T
(
dkt, sk

Σ
t , sk

χ, com(mTR)
)

R
(
ekt, pk

Σ
t , pk

χ,mTR

) 〉
and

• ((σ∗, s), σ∗)← Solver

〈
S
(
skΣs , ekt, pk

χ,mST, τ
)

T
(
dkt, pk

Σ
s , sk

χ, com(mST)
)〉.

Blindness essentially states that the tumbler cannot link
two promise/solve sessions together. It is noted that there
are some differences between our blindness game and the
one defined in [25]: firstly, the message held by the tumbler
is the commitment of the message(transaction) generated
by the user. Secondly, in the blindness experiment given in
[25], the messages are output by the adversary A, while in
our blindness experiment, the messages are sampled in the
message space M. The reason for this is that in BlindHub,
the amount is allowed to be variable. If it is the tumbler to
pick the message(transaction), it is easy for the tumbler to
break the blindness by picking transactions with different
payment amounts. Although the messages are chosen by
the experiment, the keys are still picked by the tumbler, and
thus we can still provide anonymity even when the tumbler
is malicious and picks its keys adversarially to try to link a
sender/receiver pair.

Definition 24 (Blindness). A Flexible Blind Conditional
Signature ΠFBCS is blind if there exists a negligible function
negl(λ) such that for all λ ∈ N and all PPT adversaries
A, the following holds: Pr

[
ExpBlndAΠFBCS

(λ) = 1
]
≤ 1

2 +

negl(λ), where ExpBlnd is defined in Figure 19.

Unlockability requires that it is hard for Tumbler to
generate a valid signature on a message from the sender
that prevents the receiver from being able to unlock the
entire signature in the accompanying promise session. In
the unlockability game, we only focus on the security issue
and ignore the privacy, so we allow that adversary(tumbler)
to choose even the messages used in the game.

Definition 25 (Unlockability). A Flexible Blind Con-
ditional Signature ΠFBCS is unlockable if there exists
a negligible function negl(λ) such that for all λ ∈
N and all PPT adversaries A, the following holds:
Pr

[
ExpUnlockAΠFBCS

(λ) = 1
]
≤ negl(λ), where ExpUnlock

is defined in Figure 20.

To define unforgeability, we first define two sets: STR
and SST. STR contains the amounts sent from the tumbler
to the receiver in the puzzle promise phase. SST contains the
amounts sent from the sender to the tumbler in the puzzle
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ExpBlndAΠFBCS
(λ)

(mTR,i,mST,i)←$ M, i = 0, 1

(ekt, pk
χ, pkΣt,0, pk

Σ
t,1)← A(1

λ)

(pkΣs,i, sk
Σ
s,i)← ΠDS.KGen(1

λ), i = 0, 1

for i = 0, 1 : τi ←

Promise
〈
A(pkΣs,0, pk

Σ
s,1, com(mTR,i)),R(ekt, pkχ, pkΣt,i,mTR,i)

〉
b← {0, 1}
for i = 0, 1 : (σ∗

i , si)←

Solver
〈
S
(
skΣs,i, ekt, pk

χ,mST,i, τi⊕b

)
,A (com(mST,i))

〉
if (σ∗

0 = ⊥) ∨ (σ∗
1 = ⊥) ∨ (τ0 = ⊥) ∨ (τ1 = ⊥)

σ0 := σ1 := ⊥
else

for i = 0, 1 : σi⊕b ← Open(τi⊕b, si)

b′ ← A(σ0, σ1)

return (b = b′)

Figure 19. Blindness experiment

ExpUnlockAΠFBCS
(λ)

(ekt, pk
Σ
t , pk

χ,mTR,mST)← A(1λ)
(pkΣs , sk

Σ
s )← ΠDS.KGen(1

λ)

τ ← Promise
〈
A(pkΣs ),R(ekt, pk

Σ
t , pk

χ,mTR)
〉

if τ = ⊥ :

(σ̂, m̂)← A, b0 := (Vf(pkΣs , σ̂, m̂) = 1)

if τ ̸= ⊥ :

(σ∗, s)← Solver
〈
S
(
skΣs , ekt, pk

χ,mST, τ
)
,A

〉
(σ̂, m̂)← A
b1 := (Vf(pkΣs , σ̂, m̂) = 1) ∧ (m̂ ̸= mST)

b2 := (Vf(pkΣs , σ
∗,mST) = 1)

b3 := (Vf(pkΣt ,mST,Open(τ, s)) ̸= 1)

return b0 ∨ b1 ∨ (b2 ∧ b3)

Figure 20. Unlockability experiment

solver phase. Besides, we define mamt as a transaction m
with a payment amount amt. Then we define unforgeability
as follows:

Unforgeability requires that sender and receiver could
neither produce more than q − 1 signatures of the tumbler
after successfully querying the solving oracle for q − 1
times, nor SST /∈ STR. The former requirement is the
same as the definition of unforgeability of BCS [25], while
the latter requirement ensures the set of the amounts sent
by S to T should be the subset of amounts sent by T
to R. This latter requirement captures the fact that in the
variable-amount PCH, the sender may cheat by sending to
T an amount which does not match the puzzle. These two
requirements implicitly requires that the sender and receiver
could not steal the tumbler’s coins. The winning requirement

b0 encapsulates the situation in which an adversary forges a
signature of the tumbler on a message that has never been
used in a promise oracle query. The remaining conditions
b1, b2, b3 and b4 capture following scenarios: 1) adversary
outputs q valid distinct key-message-signature tuples but
has only queried q − 1 times for the solutions, 2) the set
of the amounts sent from the S to T should be a subset
of the amounts sent from the T to R. It is noted that
not only the first winning conditions(b0) and the remaining
conditions(b1, b2, b3, b4) are incomparable, but also b3, b4 are
incomparable: a successful attack under b0 does not imply a
successful attack under b1, b2, b3/b4(and vice versa), and a
successful attack under b1, b2, b3 does not imply a successful
attack under b1, b2, b4 either(and vice versa). This is indeed
correct: in the condition b0, the attacker comes up with a
fresh signature that is not the completion of any promise
interaction, while in the other conditions, the attacker only
manages to query the solving oracle in unexpected ways.
In the condition b3, the attacker tries to queries the solving
oracle less than required, whereas in the condition b4, the
attacker uses different set of amounts from the ones used in
the puzzle promise phase.

Definition 26 (Unforgeability). A Flexible Blind Con-
ditional Signature ΠFBCS is unforgeable if there exists
a negligible function negl(λ) such that for all λ ∈
N and all PPT adversaries A, the following holds:
Pr

[
ExpUnforgAΠFBCS

(λ) = 1
]
≤ negl(λ), where ExpUnforg

is defined in Figure 21.

The security of FBCS is defined as follows:

Definition 27 (Security). A Flexible Blind Conditional
Signature ΠFBCS is secure if it is blind, unlockable, and
unforgeable.

Theorem 7. Let ΠE be an LOE scheme, ΠAS is a secure
adaptor signature scheme, ΠBAS is a secure blind adaptor
signature scheme, ΠRSoRC is a secure signature on random-
izable commitments scheme, ΠNIZK is a sound proof system.
Assuming the hardness of OMDL, the BlindHub protocol is
a secure blind conditional signature scheme.

The proof for Theorem 7 can be found in Appendix G.

Appendix G.
Security Analysis of BlindHub

G.1. OM-CCA-BlindHub

In this section we present our security results. Before
proving our main theorem, we define a property which is
going to be useful for our analysis.

Definition 28 (OM-CCA-BlindHub). An encryption
scheme ΠE is one-more CCA-BlindHub-secure (OM-CCA-
BlindHub) if there exists a negligible function negl(λ) such
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ExpUnforgAΠFBCS
(λ)

L := ∅, T := ∅,U := ∅,M := ∅, Q := 0

(ekt, dkt)← Setup(1λ)

(pkχ, skχ)← ΠRSoRC.KGen(1
λ)

{(pkΣt,i,m
[amti]
i , σi)}∀i∈[q] ← AOPP(·),OPS(·)(ekt, pk

χ)

b0 := ∃i ∈ [q] s.t. (pkΣt,i, ·) ∈ L ∧ (pkΣt,i,m
[amti]
i ) /∈ L

∧ Vf(pkΣt,i,m
[amti]
i , σi) = 1

b1 := ∀i ∈ [q], (pkΣt,i,m
[amti]
i ) ∈ L ∧ Vf(pkΣt,i,m

[amti]
i , σi) = 1

b2 :=
∧

i,j∈[q],i ̸=j

(pkΣt,i,m
[amti]
i , σi) ̸= (pkΣt,j ,m

[amtj ]

j , σj)

b3 := (Q ≤ q − 1)

b4 := (T /∈ {amt1, · · · , amtq})
return b0 ∨ (b1 ∧ b2 ∧ (b3 ∨ b4))

OPP(m[amtTR]
TR ,Camt)

(pkΣt , sk
Σ
t )← ΠBAS.KGen(1

λ)

L := L ∪ {(pkΣt ,m
[amtTR]
TR )}

(σ̃, Y,Camt, ·)← Promise⟨T(dk, skΣt , skχ,m
[amtTR]
TR ),A(pkΣt )⟩

OPS(pkΣs , Y ′, c′y, σ̃
′,C′

amt,m
[amtST]
ST )

σ∗ ← Solver⟨A,T(dkt, skχ, pkΣs ,m
[amtST]
ST )⟩

if σ∗ ̸= ⊥ then Q := Q+ 1, T := T ∪ {amtST},
U := U ∪ {(amtST, Y

′, c′y,C
′
amt, σ̃

′)}

Figure 21. Unforgeability experiment

that for all λ ∈ N, all polynomials q = q(λ), and all PPT
adversaries A, the following holds:

Pr
[
OM-CCA-BlindHubA

ΠE,q
(λ) = 1

]
≤ negl(λ),

where OM-CCA-BlindHub is defined in Figure 22.

The following technical lemma shows that an LOE
scheme satisfies this property, assuming the hardness of the
OMDL problem.

Lemma 1. Let ΠE be an LOE scheme. Assuming the hard-
ness of OMDL, ΠE is OM-CCA-BlindHub secure.

Proof. We proof by reduction. Let A be a PPT adver-
sary that can win the OM-CCA-BlindHub game with non-
negligible advantage. We construct another adversary B that
uses A to break the security of OMDL.

Firstly, B is given (Y1, · · · , Yq+1) = (gy1 , · · · , gyq+1) by
the OMDL game. Then, it samples q + 1 uniform λ− bit
strings (c∗y,1, · · · , c∗y,q+1), which are identically distributed
to outputs of OEnc. It enters

(
X1, c

∗
y,1

)
, . . . ,

(
Xq+1, c

∗
y,q+1

)
into a table M , where the Xi are random variables. Af-
terwards, B samples a random group elements as a com-
mitment of the amount Camt. Then it signs the Yi and
Camt : σ̃i ← RCSign(Yi,Camt),∀i ∈ [q + 1]. Now it sends

OM-CCA-BlindHubA
ΠE,q

Q := 0

(ek, dk)← ΠE.KGen(1
λ)

(pkχ, skχ)← ΠRSoRC.KGen(1
λ)

y1, . . . , yq+1 ←$ {0, 1}λ, Yi ← gyi , i = 1, · · · , q + 1

Camt ← OΠCOM , σ̃i ← RCSign(skχ,Camt, Yi), i = 1, · · · , q + 1

cy,i ← ΠE.Enc(ek, yi)

(y′
1, . . . , y

′
q+1)←

AOBlindHub
dk,ΠE,ΠBAS,ΠRSoRC (ek, pkχ, (cy,i, g

yi ,Camt, σ̃i), ∀i ∈ [q + 1])

if y′
i = yi ∀i ∈ 1, . . . , q + 1 ∧Q ≤ q then return 1

else return 0

OBlindHub
dk,ΠE,ΠBAS,ΠRSoRC

(pkΣs , pk
χ,m, σ̂, Y, cy,Camt, σ̃)

check if
vk ∈ Supp(ΠBAS.KGen(1

λ)) ∧ RCVerify(pkχ, Y,Camt, σ̃) = 1 :

y ← ΠE.Dec(dk, cy)

if ΠBAS.PreVf(pk
Σ
s ,m, Y, σ̃) = 1 ∧ gy = Y

Q := Q+ 1

return σ′ ← ΠBAS.Adapt(σ̂, y)

else return ⊥

Figure 22. OM-CCA-BlindHub game

(c∗y,1, Y1,Camt, σ̃1), · · · , (c∗y,q+1, Yq+1,Camt, σ̃q+1) toA. For
A’s oracle queries to the encryption scheme oracles (OGen,
OEnc,ODec,OAdd), B just forwards them to the oracle and
returns the oracle replies unchanged, but records them in
M . When A makes some query (pkΣs,i, pk

χ,mi, σ̂i, Y
′
i , cy,i,

Camt,i, σ̃i), B first check that if pkΣs is in the support if
ΠBAS.KGen(1

λ) and if the signature σ̃i on Yi and Camt,i is
valid. After this, there are the following four cases:

1) If cy,i = c∗y,j and Y ′
i = Y ∗

j for some j, it checks
PreVf(pkΣs,i,mi, Y

′
i , σ̂i) = 1∧RCVerify(pkχ, Y ′

i ,Camt,
σ̃i) = 1. If not, return ⊥. Otherwise, it queries
the discrete log oracle on Y ′

i to get yi and returns
ΠBAS.Adapt(σ̂i, yi) to A.

2) if cy,i = c∗y,j but Y ′
i ̸= Y ∗

j : return ⊥.
3) if (·, cy,i) /∈M : return ⊥.
4) Otherwise, let pi be the plaintext entry corresponding

to cy,i in M . Since we are in the linear-only encryp-
tion(LOE) model, pi must be a polynomial in X1, · · · ,
Xq+1 with deg(pi) ≤ 1.

a) if deg(pi) = 0, which means pi is just a constant
value xi. In this case, B uses xi to run the normal
OBlindHub and sends its output to A.

b) if deg(pi) = 1, define pi := α0 + α1X1 +
. . . + αnXq+1. If Y ′

i = gα0
∏q+1
t=1 Y

αt
t = gpi and

PreVf(pkΣs,i,mi, Y
′
i , σ̂i) = 1, B queries the discrete

log oracle on Y ′
i and uses the oracle replies to adapt

σ̂i and sends the full signature to A. Otherwise,
returns ⊥ to A.
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Finally, if A outputs (y1, · · · , yq+1), B returns them as
the answers in the OMDL game. Since A wins with non-
negligible probability, B wins the OMDL game with non-
negligible probability. The theorem follows.

G.2. Proof of Theorem 7

Lemma 2 (Blindness). Assuming ΠNIZK is sound, Πσ̃
achieves class hiding, ΠCOM is randomizable, the BlindHub
scheme achieves blindness in the LOE model.

Proof. Fix any two Promise executions, we now show, via
a series of hybrid experiments, that the cases of b = 0 and
b = 1 are computationally close.
Hybrid H0 : Run ExpBlnd with b = 0.
Hybrid H1 : the same as H0 except in both runs of Solver,
σ̃′′ ← RCSign(skχ, Y ′′,C′′

amt)
Hybrid H2 : the same as H1 except in both runs of Solver,
sample y ←$ Zq, and set Y ′′ ← gy and c′′y ← ΠEnc(ekt, y),
σ̃′′ ← RCSign(skχ, Y ′′,C′′

amt)
Hybrid H3 : the same as H2 except that in both runs of
Solver, sample ramt ←$ Zp, compute C′′

amt ← com(amt,
ramt), σ̃

′′ ← RCSign(skχ, Y ′′,C′′
amt)

Hybrid H4 : Compute c′′y , Y
′′ honestly using τ1 in the first

run of Solver and τ0 in the second run of Solver.
Hybrid H5 : Compute C′′

amt honestly using τ1 in the first
run of Solver and τ0 in the second run of Solver.
Hybrid H6 : Compute σ̃′′ honestly using τ1 in the first run
of Solver and τ0 in the second run of Solver.
Hybrid H7 : Run ExpBlnd with b = 1.

Claim 1. For all PPT adversaries A,

EXECH0,A ≈ EXECH1,A

Proof. The difference between H0 and H1 is that in
H1, rather than computing σ̃′′ by (σ̃′′, Y ′′,C′′

amt) ←
RCRand(pkχ, Y ′,C′

amt, α) for some randomness α, we first
randomize Y ′,C′

amt using the randomness α, than com-
pute σ̃′′ ← RCSign(skχ, Y ′,C′

amt). The secret key skχ

is obtained by extracting the witness from the NIZK
proof given by the tumbler: πskχ ← PNIZK{(skχ, pkχ)| ∈
Supp(ΠRSoRC.KGen(1

λ))}. Then the indistinguishability of
H0 and H1 follows from the class hiding property of
ΠRSoRC.

Claim 2. For all PPT adversaries A,

EXECH1,A ≈ EXECH2,A

Proof. Y ′′ are g raised to a uniform element and c′′y is an
encryption of the same uniform element in both experiments,
conditioned on the ciphertext provided by the Hub being
well-formed. Thus, any distinguishing advantage necessarily
corresponds to a violation of the soundness property of
ΠNIZK. It follows that the executions are statistically indis-
tinguishable.

Claim 3. For all PPT adversaries A,

EXECH2,A ≈ EXECH3,A

Proof. Since we sample ramt uniformly, due to the homo-
morphic property of ΠCOM, the indistinguishability holds
unconditionally.

Claim 4. For all PPT adversaries A,

EXECH3,A ≈ EXECH4,A

Proof. This holds by the same logic as Claim 2.

Claim 5. For all PPT adversaries A,

EXECH4,A ≈ EXECH5,A

Proof. This holds by the same logic as Claim 3.

Claim 6. For all PPT adversaries A,

EXECH5,A ≈ EXECH6,A

Proof. This holds by the same logic as Claim 1.

Claim 7. For all PPT adversaries A,

EXECH6,A ≈ EXECH7,A

Proof. The change is only syntactical and the executions are
identical.

Hence, the cases of b = 0 and b = 1 are computationally
indistinguishable.

Lemma 3 (Unlockability). Assuming that ΠAS and ΠBAS

are witness extractable, pre-signature adaptable, and un-
forgeable, the BlindHub scheme is unlockable.

Proof. the same logic as that in [25].

Lemma 4 (Unforgeability). Assuming the hardness of
OMDL and that ΠAS is witness extractable and unforgeable,
the BlindHub scheme is unforgeable in the LOE model.

Proof. We give a series of hybrid experiments, show they
are indistinguishable, and prove by reduction to OM-CCA-
BlindHub that no adversary exists with non-negligible ad-
vantage against the final hybrid.
Hybrid H0 : This is the normal game ExpUnforg.
Hybrid H1 : the same as H0 except that all NIZK proofs
are simulated using ΠNIZK.Sim.
Hybrid H2 : the same as H1 except that if ∃i ∈ [q] such that

Vf(pkΣt,i,mi, σi) = 1 and (pkΣt,i, ·) ∈ L but
(
pkΣt,i,mi

)
/∈ L,

return 0.
Hybrid H3 : the same as H2 except that if ∃i ∈ [q] such
that Vf(pkΣt,i,mi, σi) = 1 and gExt(σ̂i,σi) ̸= Yi, return 0.
Hybrid H4 : the same as H3 except that if T /∈ {amt1, · · · ,
amtq}, return 0.

Claim 8. For all PPT adversaries A,

EXECH0,A ≈ EXECH1,A
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Proof. This follows directly from zero-knowledge of ΠNIZK.

Claim 9. For all PPT adversaries A,

EXECH1,A ≈ EXECH2,A

Proof. The hybrids differ only in the case where the attacker
returns a valid signature on a message that was not part of
the transcript. By the unforgeability of the adaptor signature,
this happens only with negligible probability.

Claim 10. For all PPT adversaries A,

EXECH2,A ≈ EXECH3,A

Proof. suppose the distinguishing advantage is non-
negligible. Then there exists an adversary that can output
tuples (pkΣt,i,mi, σi) such that Vf(pkΣt,i,mi, σi) = 1 and
gExt(σ̂i,σi) ̸= Yi with non-negligible probability. Then we
can give a reduction to the witness-extractability of ΠAS.
The proof for this is similar to the one given in claim 6,
lemma C.3 in [25], and we omit it here.

Claim 11. For all PPT adversaries A,

EXECH3,A ≈ EXECH4,A

Proof. Suppose there exists an adversary A with non-
negligible success probability in H3. We can construct an
adversary B that uses A to break the unforgeability of the
RSoRC scheme. B is constructed as follows: at the begin-
ning, given pkχ from the RSoRC challenger C, B set it be the
RSoRC signing key and forwards it to A. When A queries
the puzzle promise oracle OPP, B computes everything
the same as the protocol, except following: 1) rather than
computing RSoRC signature by itself, B computes RSoRC
signature by forwards commitment of amount Camt and
adaptor statement Y to the signing oracle of RSoRC and
sends the oracle replies σ̃ to A. 2)B records (y, Y, amt,Camt,
σ̃) in the list Y . Finally, A terminates and outputs {(pkΣt,i,
m

[amti]
i , σi)}∀i∈[q] which satisfy conditions b1, b2, b4. Since
L /∈ {amt1, · · · , amtq}, B is able to figure out the difference
between L and {amt1, · · · , amtq}: S− := {amtST,1, · · · ,
amtST,q′} − {amtST,1, · · · , amtST,q′} ∩ {amt1, · · · , amtq}.
If ∃amtST,i∗ ∈ S− such that amtST,i∗ /∈ {amt1, · · · ,
amtq}, then Y ′∗,C′∗

amt, σ̃
′∗, which satisfies (amtST,i∗ , Y

′∗,
·,C′∗

amt, σ̃
′∗) ∈ U , is a valid forgery. If ∀amt ∈ S−1,

amt ∈ {amt1, · · · , amtq}, B returns (Y ′∗∗,C′∗∗
amt, σ̃

′∗∗) as
a forgery, where (Y ′∗∗,C′∗∗

amt, σ̃
′∗∗) satisfies the following

requirements: 1)∃amt∗∗ST ∈ S−1, cy
′∗∗, s.t., (amt∗∗ST, Y

′∗∗,
c′∗∗y ,C′∗

amt, σ̃
′∗∗) ∈ U , 2) ∃(y, Y, amt,Camt, σ̃) ∈ Y, s.t.,

amt = amt∗∗ST, (C
′∗∗
amt, Y

′∗∗, σ̃′∗∗) = RCRand(Camt, Y, σ̃, α),
where α = y∗∗/y and y∗∗ is the solution of c′∗∗y .

Now we give a reduction from hybrid H4 to OM-CCA-
BlindHub.

Suppose there exists an adversary A with non-negligible
success probability in H4. We give a reduction that uses
A to win the OM-CCA-BlindHub game. The reduction

is given (cy,1, g
y1), . . . , (cy,q+1, g

yq+1). It generates (ek,
dk) ← ΠEnc.KGen(1

λ), (pkχ, skχ) ← ΠRSoRC.KGen(1
λ)

and (pkΣt , sk
Σ
t ) ← KGen(1λ) as in H3 and starts A on

input ek. For the promise oracle OPP queries, the re-
duction follows the same steps as H3 except it uses a
group element gyi(given by the challenger in the OM-CCA-
BlindHub game) as adaptor statement each time to generate
a pre-signature. When A queries solver oracle OPS, the
reduction computes the completed signature σts as the output
of OBlindHub run on A’s outputs (pkΣts,mST, σ, c

′′
y , Y

′′,Camt,
σ̃). Note that since A makes at most q non-⊥ queries to
OPS, the reduction also makes at most q non-⊥ queries to
OBlindHub, as the oracles return ⊥ in exactly the same cases.

Once A returns q + 1 tuples (pkΣt,i,mi, σi), , the re-
duction computes yi ← ΠBAS.Ext(pk

Σ
t,i,mi, σ̂i, σj , Yi),∀i,

j ∈ [q + 1] until it has q + 1 non-⊥ values yi and outputs
those values. By the definition of H3, we have gyi = Yi,
∀i ∈ [q + 1]. By assumption, the reduction wins the OM-
CCA-BlindHub game with non-negligible probability. This
violates OM-CCA-BlindHub-security of ΠEnc. The theorem
follows.

Appendix H.
Instantiation of BlindChannel based on Bitcoin

In this section, we show how to realize BlindChannel
for Bitcoin. Recall that in the BlindChannel model (de-
scribed in Section 5), when the unblind party updates the
channel with the blind party, the splitt transaction (TXSP),
the adaptor execution delivery transaction (TXAED) and the
timeout transaction (TXTO) should be hidden from the blind
party, otherwise the amounts on the transactions will be
revealed. However, the unblind party requires the signature
on the transaction from the blind party. To convince blind
party that the unblind party is honest, the unblind party
should prove the correctness of the hidden transaction before
the blind party blindly signing the protocol. Recall that in
ECDSA signature, the signing algorithm used in Bitcoin,
the message to be signed is hashed by a cryptographic hash
function. It means that the unblind party needs to prove
knowledge of pre-image of a hash value used in the signing
algorithm. But for different transactions (TXSP/TXTO/TXAED),
the corresponding proofs are different. Below we present
details of the proof for each transaction.

H.1. Relations for Zero Knowledge Proof

Before we dive into the details, we first recall some back-
ground knowledge of blockchain transactions. According to
[2], a transaction tx can be formally defined as a tuple of
the form (txid, In,Out,Witness), where txid ∈ {0, 1}∗ is the
unique identifier of tx and is calculated as txid := H(tx),
where H is a hash function and [tx] is the body of the
transaction defined as [tx] := (In,Out); In = ((tid1,
ind1), . . . , (tidn, indn)) is a vector of strings identifying
all transaction inputs, where tid is the transaction id of
previous transactions and ind is the output index of them;
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Out = (θ1, . . . , θn) is a vector of new outputs, where each
output has two attributes: the value cash ∈ Z∗ representing
the amount of coins and the function φ : {0, 1}∗ → {0, 1}
defining the spending condition; Witness ∈ {0, 1}∗ contains
the witness to spend the transaction inputs. The signature
hash of a transaction can be formalized as hs := Hsig(tx),
where Hsig is the cryptographic hash function mapping the
transaction to a hash value used in the signing algorithm.

For the ease of presentation, we use the notation in Fig. 9
and Fig. 24.

1) TXSP: We parse TXSP as (txid, In = (tidTXCM , 0),Out =
(θ1 = (x1, pk

′
U ), θ2 = (x2, pkB), θ3 = (x3, (pkU ,

pkB))),Witness). In can be revealed because TXCM can
be accessed by both parties. But amounts in Out should
be hidden and set as relation witness. All data in TXSP
could be revealed and become public inputs except
amounts and pk′U .

2) TXAED: We parse TXAED as (txid, In = (tidTXSP , 0),Out =
(θ = (x3, φ)),Witness). tidTXSP in the TXAED can not be
revealed, x3 in Out should be hidden and set as the
relation witness, otherwise the payment amount will be
leaked by brute-force. The correctness of tidTXSP relies
on the garbled circuit internal wires. We could compute
the TXSP.txid in the garbled circuit and fill up tidTXSP
and let the circuit output hAED.

3) TXTO: We parse TXTO as (txid, In = (tidTXSP , 0),Out =
(θ = (x3, φ)),Witness). The TXTO works indeed the
same as TXAED except it contains a relative timelock,
which ensures TXAED cannot be invalidated immediately.
Besides, the timelock needs to be a public input.

We merge all the three ZKGC relations into one as
the following. We remark that it’s essential to prevent
overflow of

∑
TXSP.Outi.cash when checking the balance

since all the amounts are denoted in 64-bit unsigned
number. Otherwise, unblind party could cheat by setting∑

TXSP.Outi.cash = (1 << 63) + TXCM.Out.cash.

Rall =



TXSP.txid,

TXSP.Out1.cash,

TXSP.Out2.cash,

TXSP.Out3.cash,

TXSP.Out1.φ

TXAED.In.tid,

TXAED.Out1.cash

TXTO.In.tid,

TXTO.Out1.cash



∣∣∣∣∣∣∣∣∣
δ holds.
∧ C1 = com(TXSP.Out1.cash)

∧ C2 = com(TXSP.Out2.cash)

∧ Camt = com(TXSP.Out3.cash)



where the condition δ is defined as

δ =



TXSP.In.tid = TXCM.txid

∧
∑

TXSP.Outi.cash = TXCM.Out.cash

∧ hS = Hsig(TXSP)

∧ TXAED.In.tid = TXSP.txid

∧ TXAED.Out1.cash = TXSP.Out3.cash

∧ hAED = Hsig(TXAED)

∧ TXTO.In.tid = TXSP.txid

∧ TXTO.Out1.cash = TXSP.Out3.cash

∧ hTO = Hsig(TXTO)

H.2. Transaction digest algorithm

According to BIP-014311, the transaction digest algo-
rithm is defined as Double SHA256 of the serialization of:

1) nVersion of the transaction (4-byte little endian)
2) hashPrevouts (32-byte hash)
3) hashSequence (32-byte hash)
4) outpoint (32-byte hash + 4-byte little endian)
5) scriptCode of the input (serialized as scripts inside

CTxOuts)
6) value of the output spent by this input (8-byte little

endian)
7) nSequence of the input (4-byte little endian)
8) hashOutputs (32-byte hash)
9) nLocktime of the transaction (4-byte little endian)

10) sighash type of the signature (4-byte little endian)
From the above we see that our task is to prove the

knowledge of pre-image of hash values output from multiple
layers of hash functions. To perform such a zero knowledge
proof, we use garbled circuits based zero knowledge proof,
specifically the technique introduced in [43].

H.3. Garbled-Circuits Based Zero Knowledge
Proof

Before we give our GCZK protocol, we first give some
priliminaries of garbled circuits and committed oblivious
transfer. We follow the definitions of garbled circuits and
committed oblivious transfer from [43].

H.3.1. Garbled Circuits.

Definition 29 (Garbled Circuits). A garbled circuit scheme
is a triple GC of ppt algorithms GC = (Garble,Eval,Verify)
where:

• Garble(1λ, f) → (GC, {L(i)
0 , L

(i)
1 }i∈[m], {Z

(i)
0 ,

Z
(i)
1 }i∈[n]) on input λ and the description of a

function f : {0, 1}m → {0, 1}n, outputs a garbled
circuit, a set of m input label pairs and a set of n
output label pairs.

• Eval(GC, {L(i)}i∈[m]) → {Z(i)}i∈[n] on input a gar-
bled circuit and a set of input labels, outputs a set of
output labels.

11. https://github.com/bitcoin/bips/blob/master/bip-0143.mediawiki
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• Verify(GC, {L(i)
0 , L

(i)
1 }i∈[m], {Z

(i)
0 , Z

(i)
1 }i∈[n]) → {0,

1} on input a garbled circuit, a function and a set
of input label pairs and a set of output label pairs,
outputs a bit (1 for acceptance and 0 for rejection).

We say a garbled circuit scheme is correct
if for all polynomial-size in λ functions f : {0,
1}m → {0, 1}n and all x ∈ {0, 1}m, for y = f(x),
the following probability is overwhelming in λ,

Pr

 (GC, {L(i)
0 , L

(i)
1 }i∈[m], {Z(i)

0 , Z
(i)
1 }i∈[n])

← Garble(1λ, f), {Ẑ(i)}i∈[n] ← Eval(GC, {L(i)
xi }i∈[m]) :

Ẑ(i) = Z
(i)
yi ∀i ∈ [n]

 .

We say a garbled circuit scheme has authenticity if for
all polynomial-size in λ functions f : {0, 1}m → {0, 1}n
and all x ∈ {0, 1}m, for y = f(x), and for all ppt
adversaries A, the following probability is negligible in λ,

Pr

 (GC, {L(i)
0 , L

(i)
1 }i∈[m], {Z(i)

0 , Z
(i)
1 }i∈[n])

← Garble(1κ, f), (Z∗, i∗)← A(f, x,GC, {L(i)
xi }i∈[m]) :

Z∗ = Z
(i∗).
¬yi∗

 .

We say a garbled circuit scheme is verifiable if for all
polynomial-size in λ functions f : {0, 1}m → {0, 1}n
and all x ∈ {0, 1}m, for y = f(x), and for all ppt
adversaries A, the following probability is negligible in λ,

Pr


(GC, {L(i)

0 , L
(i)
1 }i∈[m], {Z(i)

0 , Z
(i)
1 }i∈[n])← A(1κ, f)

{Ẑ(i)}i∈[n] ← Eval(GC, {L(i)
xi }i∈[m]) :

Verify(GC, f, {L(i)
0 , L

(i)
1 }i∈[m], {Z(i)

0 , Z
(i)
1 }i∈[n]) = 1

∧∃i ∈ [n], Ẑ(i) ̸= Z
(i)
yi

 .

H.3.2. Committing oblivious transfer. Below we describe
the ideal functionality associated to committing oblivious
transfer FCOT. We assume a fixed n ∈ N :

1) Choose: on input (choose, {bi}i∈[n]) from the receiver,
where bi ∈ {0, 1},∀i ∈ [n], inform receiver that a
choice was received.

2) Transfer: on input (transfer,
{
m

(i)
0 ,m

(i)
1

}
i∈[n]

) from

the sender, send messages
{
m

(i)
bi

}
i∈[n]

to the receiver.

3) Open: on input (open-all) from the sender, reveal all
pairs

{
m

(i)
0 ,m

(i)
1

}
i∈[n]

to the receiver and halt.

We propose the overall GCZK protocol ΠZK in Fig.
23. The protocol is roughly the same as the one in [43],
except that we finally generate 3 different commitments
respectively for 3 different cashs in TXSP.Out. We give
the definitions of circuit public input PubIn and circuit
functionality f as below, in which we use “ − ” to denote
set difference, i.e. A−B = {x|x ∈ A∧x /∈ B}. We remark
that although the circuit functionality contains no TXSP.txid
as input, this value could be computed from TXSP.In and
TXSP.Out. Accordingly, TXAED.In.tid and TXTO.In.tid could
be filled internally using the inner-computed value, the
circuit is able to successfully compute the signature hash
for both transactions. We also note that the changes of the
GCZK does not affect the security of our protocol, thus the
security of our protocol is also guaranteed by the proof given
in [43]. We refer readers to [43] for the proof.

PubIn =



TXCM.Out1.cash

TXSP

TXAED

TXTO

hS

hAED

hTO


−



TXSP.txid

TXSP.Out1.cash

TXSP.Out2.cash

TXSP.Out3.cash

TXSP.Out1.φ

TXAED.In.tid

TXAED.Out1.cash

TXTO.In.tid

TXTO.Out1.cash


fPubIn(m1,m2,m3, pkU ) =

{
(m1,m2,m3) , if δ′ holds.
0 , otherwise.

where condition δ′ is defined as

δ′ =



δ holds when setting
TXSP.Out1.cash := m1

TXSP.Out2.cash := m2

TXSP.Out3.cash := m3

TXSP.Out1.φ = pkU
TXAED.In.tid := H(TXSP)

TXTO.In.tid := H(TXSP)

Appendix I.
Complementary to BlindChannel Protocol

Figure 24 describes the process to update a BlindChan-
nel when the unblind party is payee.

Appendix J.
UC Model of BlindChannel

J.1. Universal Composability Framework

To capture the concurrent executions, we employ the
Universal Composability (UC) framework with gloable
setup [10] to model the security and privacy of BlindChan-
nel. Let P = {P1, . . . , Pn} be the set of Turing machine
that are executing the protocol. We assume that all the
participated Turing machines are under static corruptions,
which are fully controlled by the adversary A for the entire
protocol execution. In order to capture the execution rounds,
we also assume synchronous communication among partic-
ipants and authenticated communication channels between
users with guaranteed delivery.

Let E be the environment including everything outside
the execution of the protocol. We denote Π a real protocol
and A an adversary, EXECΠ,A,E be the execution of Π by
A. We also denote F the ideal functionality, S the simulator,
and EXECF,S,E the distribution ensemble of the execution
of F by S. We then give the definition of Universal Com-
posability in Definition 30.
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Prover(m1,m2,m3, pkU′ ; com1, com2, com3, fPubIn) Verifier(com1, com2, com3, fPubIn)

s = (m1,m2,m3, pkU )
FCOT(choose,{si}i∈[3α+β]]) Garble(1k, fPubIn)→

(GC,{L(i)
0 , L

(i)
1 }i∈[3α+β], {Z(i)

0 , Z
(i)
1 }i∈[3α])

∀i ∈ [3α], z
(i)
0

$← Zpand set z(i)1 := z
(i)
0 + δ

{Ẑ(i)
si }i∈[3α] ← Eval(GC, {L′(i)}i∈[3α+β])

{c(i)0 , c
(i)
1 }i∈[3α]

GC, FCOT(transfer,{L(i)
si }i∈[3α+β])

∀b ∈ {0, 1},∀i ∈ [3α], c
(i)
b := z

(i)
b +H(Z

(i)
b )

∀i ∈ [3α], set ẑ(i)si := c(i)si −H(Ẑ(i)
si )

set t̂1
$←− Zp; compute B̂1 =

α∑
i=1

2i−1ẑ(i)si G+ t̂1H

set t̂2
$←− Zp; compute B̂2 =

2α∑
i=α+1

2i−1ẑ(i)si G+ t̂2H

set t̂3
$←− Zp; compute B̂3 =

3α∑
i=2α+1

2i−1ẑ(i)si G+ t̂3H B̂1, B̂2, B̂3 compute B1 := δ−1(B̂1 −
α∑

i=1

2i−1z
(i)
0 )

compute B2 := δ−1(B̂2 −
2α∑

i=α+1

2i−1z
(i)
0 )

FCOT(open all), {Z(i)
0 , Z

(i)
1 }i∈[3α], δ compute B3 := δ−1(B̂3 −

3α∑
i=2α+1

2i−1z
(i)
0 )

set ẑ(i)¬si = ẑ(i)si + (−1)siδ,∀i ∈ [3α]

set t′1 := δ−1t̂1, t
′
2 := δ−1t̂2, t

′
3 := δ−1t̂3

abort if Verify(GC, f, {L(i)
0 , L

(i)
1 }, {Z

(i)
0 , Z

(i)
1 }) = 0

or ∃i ∈ [3α], b ∈ {0, 1} : c(i)b ̸=p z
(i)
b +H(Z

(i)
b )

PoK consistency for (Bi, B̂i)i∈[3]

accept iff PoK is accepting

Figure 23. Description of our protocol ΠZK for hybrid statements for Rall. The amount length is α and public key length is β.

Definition 30 (Universal Composability). A protocol Π UC-
realizes an ideal functionality F if for any PPT adversary
A there exists a simulator S such that for any environment
E the ensembles EXECΠ,A,E and EXECF,S,E are computa-
tionally indistinguishable.

J.2. Ideal Functionality

For BlindChannel, there are unblind and blind parties
in a channel. Namely, one party (the unblind) knows the
transaction amount in each state within their channel, while
the other (the blind) knows nothing about these transactions’
amounts. We denote the unblind party by U and the blind
party by B.

Blind Channel Syntax. Let γ be the BlindChannel with
a tuple of attributes (γ.id, γ.users, γ.cash, γ.st), where
γ.id ∈ {0, 1}∗ is the channel identifier, γ.user ∈ {U,
B} defines the identities of channel users, γ.cash ∈ R≤0

represents the capacity of γ, and γ.st = (θ1, . . . , θn) is the
state of γ composed of a list of outputs. Each outputs θ
has two attributes: the value θ.cash ∈ R≤0 representing the
amount of coins and the function θ.φ : {0, 1}∗ → {0, 1}
defining the spending condition.

Before the formalization, we introduce some security
properties required by BlindChannel. BlindChannel inherits
all properties form Generalized Channel with an additional
properties Privacy.

Consensus on creation. A BlindChannel, γ, is success-
fully created only if both parties γ.users in the channel
agree with the creation.

Consensus on update. A blind channel γ is successfully
updated only if both parties in γ.users agree with the up-
date. Moreover, parties in γ.users reach agreement whether
the update is successful or not after an a-priori bounded
number of rounds.

Optimistic update. If both parties in γ.users are honest,
the update procedure takes a constant number of round
(independent of the blockchain delay ∆).

Finality with punish. An honest party P ∈ γ.users has
the guarantee that either the current state of the channel can
be enforced on the ledger, or P can enforce a state where
she gets all γ.cash coins.

Privacy. Only the unblind party knows the amount of
each payment, while the blind party knows nothing but the
amount is correct.

We assume our protocol is executed among a fixed set
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TimeLock

Figure 24. Update of a Blind Channel Initiated by Payee

P = {P1, . . . , Pn}. Let A be an adversary who can fully
control a party Pi ∈ P for the entire protocol execution.
All participants are connected to the environment E , which
represents anything “external” to the current protocol ex-
ecution. We also assume a synchronized network, so that
protocol is executed in round with the an authenticated
communication channel and guaranteed delivery. We assume
that local computation and any additional communication
(such as messages conveyed between A and E) take zero
round.

Since Blind Channel are constructed based on General-
ized Channel [2], our model inherits some notations from
them. First, we denote the global ideal ledger functionality
L(∆,Σ), where ∆ is an upper bound of the number of
blocks that takes to publish a transaction, Σ is the signature
scheme. To generalize BlindChannel’s construction, we use
T to denote the upper bounds the maximal number of con-
secutive off-chain communication rounds between channel
users, and k be the number of ways the channel state γ.st
can be published on the ledger. Let P be one of the channel
parties and Q be the other one, where P ∈ {U,B} and
Q ∈ {U,B} \ P .

(Simplified) Ideal Functionality L(∆,Σ)

This functionality keeps the list of (the public keys
of) the parties in PKI, and stores all the published
transactions in the ledger. A transaction is validated
with respect to the owners signature via Σ, and possible
other conditions. Once a valid transaction is posted, it
takes at most ∆ rounds to be added in the ledger.

Register: Upon (register, pkP )
τ0←↩ P , add (pkP , P ) to

PKI.

Post a transaction: Upon (post, tx)
τ0←↩ P where P ∈

PKI and tx is valid, publish tx on the ledger L in round
τ1 ≤ τ0 +∆.

As a global setup, we employ a simplified version
of global UC framework (GUC) expanding the basic UC
framework to explicitly model the security of our architec-
ture on off-chain channels. To capture the desired function-
alities, we construct the ideal functionality of BlindChannel
FL(∆,Σ,V)

BC . The core construction of FL(∆,Σ,V)
BC is extended

from [2], since our model is constructed based on them.
Create. A transaction tx is expected to be recorded on L

within time T after FL(∆,Σ,V)
BC received messages (CREATE,

γ, tidP)
τ0←↩ P from both channel parties γ.users. tx spends

sources from both channel parties, and contains at least one
output γ.cash. If it is true, FL(∆,Σ,V)

BC stores the channel
γ and transaction tx in Γ and informs both parties about
the successful channel creation via the message CREATED.
Since a successfully channel creation requires FL(∆,Σ,V)

BC to
receive the CREATE messages from both parties, the property
“consensus on creation” can be guaranteed.

Close. We consider two scenarios of channel closure:
First, FL(∆,Σ,V)

BC received (CLOSE, id) from both parties
within T , which indicates that both channel parties agree to
close the channel identifier id. This scenario is regarded as
the “peaceful closure”. If a transaction tx1, whose input is
tx.txid and output is the latest channel state γ.st, appears
on ledger within τ0 +∆, FL(∆,Σ,V)

BC sends (CLOSED, id) to
both parties; otherwise, sends (ERROR) to both parties.

Second, FL(∆,Σ,V)
BC received only one (CLOSE, id) mes-

sage within T , the ForceClose subprocedure will be exe-
cuted in round τ0 + T . Let S := {γ.st | γ ∈ X}, if tx has
been spent and there is a transaction, whose output contains
S, FL(∆,Σ,V)

BC sends (CLOSED, id) to both parties.
Update. There are two phases in a channel update: 1)

prepare phase, and 2) revocation phase12. Prepare phase
is for both parties to negotiate some auxiliary information
on a payment, such as the estimated time for processing
a payment and proof on the current payment to B, since

12. Actually, in the formal BlindChannel protocol, the update follows
the lock-then-pay rule, thus we have four phases to update a channel: 1)
preparing for the state i, 2) revoking for the state i − 1, 3) preparing for
the state i+ 1, and 4) revoking for the state i)
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he cannot see the payment amount. The entire update are
processed as follows:

BlindChannel update is always triggered by U by send-
ing a message (UPDATE, id, θ⃗, tstp, (Yγ ,wγ)) to FL(∆,Σ,V)

BC
at time τ0, where id is the identifier of the channel to be
updated, θ⃗ is the newest state, tstp is the required number of
round for this update among channel parties, and (Yγ ,wγ)
is a pair of statement and witness satisfying the relation R.

Prepare phase. The prepare phase then starts when
FL(∆,Σ,V)

BC receives a vector of transaction identifiers t⃗id =
(tid1, . . . , tidk) from the simulator S, where k denotes
the number of ways the channel state γ.st can be pub-
lished on the ledger. Functionality FL(∆,Σ,V)

BC then sends
(UPDATE–REQ, id, tstp) to B and (SETUP, id, t⃗id, θ⃗) to U .
If received (SETUP–OK, id) from U within τ0 + T + tstp,
FL(∆,Σ,V)

BC sends (SETUP–OK, id) to B, else B can stop and
reject this close channel request or FL(∆,Σ,V)

BC stores the two
channel states Γ(id) := ({γ, γ′}, tx) and ForceClose(id).
Since the blind party B cannot access the channel state in
the BlindChannel setting, we should take some additional
steps to guarantee the Privacy property: B sends a message
(VERIFY–REQ, id,Y′

γ) to FL(∆,Σ,V)
BC , who checks if Y′

γ = Y′
γ

and R(Yγ ,wγ) holds, FL(∆,Σ,V)
BC sends (VERIFIED, id) to

B. Otherwise, FL(∆,Σ,V)
BC sends (NOT–VERIFIED, id) to B.

If FL(∆,Σ,V)
BC received (UPDATE–OK, id) from B, FL(∆,Σ,V)

BC
forwards the same message (UPDATE–OK, id) to U . Oth-
erwise, FL(∆,Σ,V)

BC stops this channel update or executes
the ForceClose. In the optimistic case, U receives an
UPDATE–OK message from FL(∆,Σ,V)

BC within 5T + tstp.
Revocation phase. Revocation phase is also started

by FL(∆,Σ,V)
BC receiving a (REVOKE, id) message from U ,

FL(∆,Σ,V)
BC then sends (REVOKE–REQ, id) to B. If FL(∆,Σ,V)

BC
did not receive (REVOKE, id) message from U until τ0+4T ,
FL(∆,Σ,V)

BC sets Γ(id) := ({γ, γ′}, tx), run ForceClose(id)
and stop. If received (REVOKE, id) from B, sets Γ(id) :=
({γ′}, tx) and sends (UPDATED, id) to both parties within
τ0+5T . Then channel γ is updated to the new channel state.
Since a BlindChannel can only be updated successfully
if FL(∆,Σ,V)

BC received messages (REVOKE, id) from both
parties, the “consensus on update” is guaranteed.

Punish. To prevent the honest party from losing coins,
there is also a punishment mechanism in BlindChannel
model for satisfying the property “instant finality with pun-
ish”. FL(∆,Σ,V)

BC checks at each round whether the funding
transaction (on-chain) is spent or not. If so, one of the
following is anticipated to occur: 1) a punish transaction,
which allocates all coins within the channel to the honest
party, appears on L, or 2) a transaction, which allocates
coins according to the latest channel state γ.st, appears on L.
3) the message (ERROR) returns to both parties. The security
property “instant finality with punish” can be guaranteed, if
no ERROR was returned.

Ideal Functionality of BlindChannel FL(∆,Σ,V)
BC

Upon (CREATE, γ, tidP)
τ0←↩ P, distinguish:

Both agreed: If already received (CREATE, γ, tidQ)
τ←↩

Q, where τ0 − τ ≤ T : If tx s.t. tx.In = (tidU, tidB)
and tx.Out = (γ.cash, φ), for some φ, appears on L in
round τ1 ≤ τ + ∆ + T , set Γ(γ.id) := ({γ}, tx) and
(CREATED, γ.id)

τ1
↪→ γ.users. Else stop.

Wait for Q: Else wait if (CREATE, id)
τ≤τ0+T←↩ Q (in

that case “Both agreed” option is executed). If such
message is not received, stop.
Upon (UPDATE, id, θ⃗, tstp, (Yγ ,wγ))

τ0←↩ U :

1) Parse ({γ}, tx) := Γ(id), set γ′ := γ, γ′.st := θ⃗;
2) In round τ1 ≤ τ0 +T , let S define t⃗id s.t. |t⃗id| = k.

Then (UPDATE–REQ, id, t⃗id, tstp)
τ1
↪→ B and (SETUP,

id, t⃗id, θ⃗)
τ1
↪→ U .

3) If (SETUP–OK, id)
τ2≤τ1+tstp←↩ U , then (SETUP–OK,

id)
τ3≤τ2+T
↪→ B. Else stop.

4) The verification procedure is parameterized by a
binary relation R:
If (VERIFY–REQ, id,Y′

γ)
τ3←↩ B:

• If Y′
γ = Yγ and R(Yγ ,wγ) holds, (VERIFIED,

id)
τ4≤τ3+T
↪→ B.

• Else (NOT–VERIFIED, id)
τ4≤τ3+T
↪→ B and stop.

Else stop.
5) If (UPDATE–OK, id)

τ4←↩ B, (UPDATE–OK, id)
τ5≤τ4+T
↪→

U .
Else distinguish:
• If B honest or if instructed by S, stop (reject).
• Else set Γ(id) := ({γ, γ′}, tx), run
ForceClose(id) and stop.

6) If (REVOKE, id)
τ5←↩ U , send (REVOKE–REQ,

id)
τ6≤τ5+T
↪→ B. Else set Γ(id) := ({γ, γ′}, tx), run

ForceClose(id) and stop.
7) If (REVOKE, id)

τ5←↩ B, set Γ(id) := ({γ′}, tx),
(UPDATED, id)

τ6≤τ5+T
↪→ γ.users and stop (accept).

Else set Γ(id) := ({γ, γ′}, tx), run ForceClose(id)
and stop.

Upon (CLOSE, id)
τ0←↩ P , distinguish:

Both agreed: If already received (CLOSE, id)
τ←↩ Q,

where τ0 − τ ≤ T , run ForceClose(id) unless both
parties are honest. In this case, let ({γ}, tx) := Γ(id)
and distinguish:

• If tx1, with tx1.In = tx.txid and tx1.Out = γ.st
appears on L in round τ1 ≤ τ0+∆, set Γ(id) := ⊥,
send (CLOSED, id)

τ1
↪→ (γ.users) and stop.
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• Else output (ERROR)
τ0+∆
↪→ γ.users and stop.

Wait for Q: Else wait if (CLOSE, id)
τ≤τ0+T←↩ Q (in

that case “Both agreed” option is executed). If such
message is not received, run ForceClose(id) in round
τ0 + T .

At the end of every round τ0: For each id ∈ {0, 1}∗
s.t. (X, tx) := Γ(id) ̸= ⊥,

• For U, check if L contains tx1 such that tx1.In =
tx.txid.

• For B, check if L contains tx1 such that tx1.In =
tx.txid, or tx2 such that tx2.In = tx1.txid.

If yes, then define S := {γ.st | γ ∈ X}, τ := τ0 + 2∆
and distinguish:
Close: If tx3 s.t. tx3.In = tx2.txid appears on L in
round τ1 ≤ τ0+∆, where tx3.Out ∈ S, set Γ(id) := ⊥
and (CLOSED, id)

τ1
↪→ (γ.P, γ.Q) if not sent yet.

Punish: If tx2 s.t. tx2.In = tx1.txid and tx2.Out =
(γ.cash, One–SigpkP) appears on L in round τ1 ≤ τ ,

for P honest, set Γ(id) := ⊥, (PUNISHED, id)
τ1
↪→ P

and stop.

Error: Else (ERROR)
τ
↪→ γ.users.

ForceClose(id):
Let τ0 be the current round and (X, tx) := Γ(id).
If within ∆ rounds tx is still unspent on L, then
(ERROR)

τ0+∆
↪→ γ.users and stop. Note that otherwise,

message m ∈ {CLOSED, PUNISHED, ERROR} is output
latest in round τ0 + 4 ·∆+ ttimeout.

J.2.1. Security Analysis. Our main theorem is formally
presented as follows: The ΠBC protocol constitutes a secure
implementation, according to the UC framework’s defini-
tion, of the ideal functionality FL(∆,Σ,V)

BC .

Theorem 8. Let Σ be a secure signature scheme, ΠBAS be a
secure blind adaptor signature scheme, ΠZK be a secure zero
knowledge proof scheme. Let L(∆,Σ,V) be a ledger, where
V allows for transaction authorization w.r.t. Σ, relative time-
locks and constant number of Boolean operations ∧ and ∨.
Then the protocol ΠBC UC-realizes the ideal functionality
FL(∆,Σ,V)

BC .

The formal UC proof of theorem 8 can be found in
appendix J.4.

J.3. Formal Description of BlindChannel

The party P ∈ γb.users maintains a set ΓP that contains
data about all party P ’s channels. Party P also maintains a
set ΘP that contains all revoked commit transactions along
with their corresponding revocation secrets.

Blind Channel Protocol ΠBC

Create

Party P upon (INTRO, γ, tidP )
t0←−↩ E

1) Set id := γ.id, generate (RP , rP ) ← Gen and
(YP , yP ) ← Gen and send (createInfo, id, tidP ,
RP , YP )

t0
↪−→ Q.

2) If (createInfo, id, tidQ, RQ, YQ)
t0+1←−−−↩ Q, create:

[TXFU] := GenFund((tidP , tidQ), γ)

[TXCM] := GenCommit([TXFU].txid∥1, IP , IQ)
[TX

[2]
SP ] := GenSplit2([TXCM].txid∥1, γ.st)

for IP := (pkP , RP , YP ) and IQ := (pkQ, RQ,
YQ). Else stop.

3) Compute σPs := SignskP ([TX
[2]
SP ]) and σ̂Pc :=

PreSignskP ([TXCM], YQ) and send (createCom, id,

σPs , σ̂
P
c )

t0+1
↪−−−→ Q.

4) If (createCom, id, σQs , σ̂
Q
c ))

t0+2←−−−↩ Q
s.t. PreVfpkQ([TXCM], YP ; σ̂

Q
c ) = 1

and VfpkQ([TX
[2]
SP ];σ

Q
s ) = 1, compute

σPf := SignskP ([TXFU]) and send (createFund, id,

σPf )
t0+2
↪−−−→ Q. Else stop.

5) If (createFund, id, σQf )
t0+3←−−−↩ Q s.t.

VfpkQ([TXFU];σ
Q
f ) = 1, set TXFU := ([TXFU],

{σPf , σ
Q
f }) and post (post, TXFU)

t0+3
↪−−−→ L. Else

stop.
6) If TXFU is accepted by L in round t1 ≤ t0 +

3 + ∆, set TXCM := ([TXCM], {SignskP ([TXCM]),
Adapt(σ̂Qc , yP )}) and TX

[2]
SP = ([TX

[2]
SP ], {σPs , σQs }),

store ΓU (γ.id) := (γ, TXFU, (TXCM, rU , RB , YB ,

σ̂Uc ), TX
[2]
SP ,⊥) if P = U and ΓB(γ.id) := (γ,

TXFU, (TXCM, rB , RU , YU , σ̂
B
c ),⊥,⊥) otherwise and

send (CREATED, id)
t1
↪−→ E . Else stop.

Update

Party U upon (UPDATE, id, v, ttimeout)
t0←−↩ E

1) Generate (RU , rU ) ← Gen and (YU , yU ) ← Gen

and send (updateReq, id, RU , YU , ttimeout)
t0
↪−→ B.

Party B upon
(updateReq, id, RU , YU , ttimeout)

τ0←−↩ U
2) Generate (RB , rB) ← Gen and (YB , yB) ← Gen

and send (updateInfo, id, RB , YB)
τ0
↪−→ U .

Party U upon (updateInfo, id, RB , YB)
t0+2←−−−↩ B
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3) Extract γ and TXFU from ΓU (id) and create:

[TXCM] := GenCommit([TXFU].txid∥1, IU , IB)
[TX

[3]
SP ] := GenSplit3([TXCM].txid∥1, γ.st, v, I)

[TXAED] := GenAED([TX
[3]
SP ].txid∥3, |v|, pk)

[TXTO] := GenTO([TX
[3]
SP ].txid∥3, |v|, ttimeout, pk′)

for I = (pkB , pkU , pk
′
U ), IB := (pkB , RB , YB)

and IU := (pkU , RU , YU ) and with pk := pkB and
pk′ := pkU if v > 0 (or equivalently if U is the
payer) and pk := pkU and pk′ := pkB otherwise
(or equivalently if U is the payee). Else stop.

4) Compute (coms, decoms) ← PCOM([TX
[3]
SP ]).

If U is the payer, compute (comt,
decomt) ← PCOM([TXTO]). Otherwise, compute
(coma, decoma)← PCOM([TXAED]).

5) Compute πs, πa and πt. If U is the payer, com-
pute σ̂Ua := PreSignskU ([TXAED], Ys) and h =
SigHash([TXAED]), and send (updateProofU, id, πs,
πa, πt, σ̂

U
a , h, coms, comt))

t0+2
↪−−−→ B . Other-

wise, compute σUt := SignskU ([TXTO]) and h =
SigHash([TXTO]) and send (updateProofU, id, πs,
πa, πt, σ

U
t , h, coms, coma)

t0+2
↪−−−→ B.

Party B
6) Extract γ and TXFU from ΓB(id) and create:

[TXCM] := GenCommit([TXFU].txid∥1, IU , IB)
(1)

for IB := (pkB , RB , YB) and IU := (pkU ,
RU , YU ). If B is the payee and (updateProofU,
id, πs, πa, πt, σ̂

U
a , h, coms, comt)

τ0+2←−−−↩ U , s.t.
πs, πa, πt, σ̂

U
a are valid, or B is the payer

and (updateProofU, id, πs, πa, πt, σUt , h, coms,

coma)
τ0+2←−−−↩ U , s.t. πs, πa, πt, σ

U
t are valid,

then create σ̂Bc := PreSignskB ([TXCM], YU ),
σ∗B
s := BlindSigskB (coms). Else stop. If B is the

payee, compute σ∗B
t := BlindSigskB (comt) and

send (updateComB, id, σ̂Bc , σ
∗B
s , σ∗B

t )
τ0+2
↪−−−→ U .

Else compute σ̂Ba := BAS.Sign1skB (coma, Ys) and

send (updateComB, id, σ̂Bc , σ
∗B
s , σ̂Ba )

τ0+2
↪−−−→ U .

Party U
7) If U is the payer and (updateComB, id, σ̂Bc , σ

∗B
s ,

σ∗B
t )

t0+4←−−−↩ B s.t. PreVfpkB ([TXCM], YU ; σ̂
B
c ) =

1 and σ∗B
s , σ∗B

t are valid, or U is the payee
and (updateComB, id, σ̂Bc , σ

∗B
s , σ̂Ba )

t0+4←−−−↩ B s.t.
PreVfpkB ([TXCM], YU ; σ̂

B
c ) = 1 and σ∗B

s , σ̂Ba are

valid, then output (UPDATE− OK, id)
t0+4
↪−−−→ E . Else

stop.
8) If (UPDATEB, id)

t0+4←−−−↩ E , continue. Else send
(updateNotOK, id, rU )

t0+4
↪−−−→ B and stop.

9) If U is the payer, then sign σUt := SignskU ([TXTO]),
compute σBt := UnBlindSig(σ∗B

t , decomt), set
TXTO := ([TXTO], {σUt , σBt }). Else, sign σUa :=
SignskU ([TXAED]).

10) Sign σUs := SignpkU ([TX
[3]
SP ]), compute σBs =

UnBlindSig(σ∗B
s , decoms), set TX

[3]
SP := ([TX

[3]
SP ],

{σUs , σBs }), sign σUc := SignskU ([TXCM]), compute
σBc := Adapt(σ̂Bc , yU ), set TXCM := ([TXCM], {σUc ,
σBc }), sign σ̂Uc := PreSignskU ([TXCM], YB) and

send (updateComU, id, σ̂Uc )
t0+4
↪−−−→ B.

Party B
11) In round τ0 + 4, distinguish the following cases:

• If (updateComU, id, σ̂Uc )
τ0+4←−−−↩ U , s.t.

PreVfpkU ([TXCM], YB ; σ̂
U
c ) = 1, then

sign σBc := SignskB ([TXCM]), compute
σUc := Adapt(σ̂Uc , yB), set TXCM := ([TXCM],
{σUc , σBc }) and output (UPDATE− OK,

id)
τ0+4
↪−−−→ E .

• If (updateNotOK, id, rU )
τ0+4←−−−↩ B, s.t. (RU ,

rU ) ∈ R, then add ΘB(id) := ΘB(id)∪([TXCM],
rU , YU , σ̂

B
c ) and stop.

• Else, execute the procedure ForceCloseB(id)
and stop.

12) If (REVOKE, id)
τ0+4←−−−↩ E , then parse ΓB(id) as (γ,

TXFU, (TXCM, rB , RU , Y U , σ̂
B

c ),⊥,⊥), update the
channel space as ΓB(γ.id) := (γ, TXFU, (TXCM, rB ,
RU , YU , σ̂

B
c ), σ, ttimeout) with σ := σ̂Ua if B is the

payee and σ := σUt otherwise and send (revokeB,
id, rB)

τ0+4
↪−−−→ U . Else, execute the procedure

ForceCloseB(id) and stop.
Party U

13) Parse ΓU (id) as (γ, TXFU, (TXCM, rU , RB , Y B , σ̂
U

c ),

⊥,⊥). If (revokeB, id, rB)
t0+6←−−−↩ B, s.t. (RB ,

rB) ∈ R, (REVOKE− REQ, id)
t0+6
↪→ E . Else execute

the procedure ForceCloseU (id) and stop.
14) If (REVOKE, id)

t0+6←−−−↩ E , continue. Else, execute
the procedure ForceCloseU (id) and stop.

15) Set ΘU (id) := ΘU (id) ∪ ([TXCM], rB , Y B , σ̂
U

c ).
If U is the payer, then set ΓU (γ.id) := (γ,

TXFU, (TXCM, rU , RB , YB , σ̂
U
c ), TX

[3]
SP , TXTO). Other-

wise, set ΓU (γ.id) := (γ, TXFU, (TXCM, rU , RB , YB ,

σ̂Uc ), TX
[3]
SP , ([TXAED], {σUa , σ̂Ba }). Send (revokeU,

id, rU )
t0+6
↪−−−→ B, (UPDATED)

t0+6
↪−−−→ E .

Party B

16) If (revokeU, id, rU )
τ0+6←−−−↩ U , s.t. (RU , rU ) ∈ R,

set ΘB(id) := ΘB(id)∪ ([TXCM], rU , Y U , σ̂
B

c ) and
send (UPDATED, id)

τ0+6
↪−−−→ E . Else, execute the

procedure ForceCloseB(id) and stop.
17) For the case where B is the payee, if (ADAPT,
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id)
τ1←−↩ E with τ0 + 6 ≤ τ1 ≤ τ0 + T1, then

send (adapt, ys, id)
τ1
↪−→ U . Else set τ1 = τ0 + T1

and continue. For the case where B is the payer,
continue.
Party U

18) For the case where U is the payer, continue. For
the case where U is the payee, if (ADAPT, id)

t1←−↩ E
with t0 + 6 ≤ t1 ≤ t0 + T ′

1, then (updateReq, id,
ys)

t1
↪−→ B. Else set t1 = t0 + T ′

1 and continue.
Party B

19) For the case where B is the payee, continue. For
the case where B is the payer, if (updateReq, id,
ys)

τ1←−↩ U with τ0 + 6 ≤ τ1 ≤ τ0 + T ′
1 s.t. (Ys,

ys) ∈ R, continue. Else, execute the procedure
ForceCloseU (id) and stop.

20) For the case where B is the payee, continue. For
the case where B is the payer, if (UPDATE, id)

τ1←−↩
E , send (updateReq, id)

τ1
↪−→ U . Else, execute the

procedure ForceCloseU (id) and stop.
Party U

21) For the case where U is the payer , if (adapt, ys,
id)

t1←−↩ B with t0 + 8 ≤ t1 ≤ t0 + 2 + T1, s.t.
(Ys, ys) ∈ R continue. Else, execute the procedure
ForceCloseU (id) and stop. For the case where U
is the payee, continue.

22) For the case where U is the payer, if (UPDATE,

id, θ⃗)
t1←−↩ E , then set t2 := t1 and continue. Else,

execute the procedure ForceCloseU (id) and stop.
For the case where U is the payee, if (updateReq,
id)

t1+2←−−−↩ B, then set t2 := t1 + 2 and continue.
Else, execute the procedure ForceCloseU (id) and
stop.

23) Generate (RU , rU ) ← Gen and (YU , yU ) ← Gen

and send (updateReq, id, RU , YU )
t2
↪−→ B.

Party B

24) If (updateReq, id, RU , YU )
τ1+2←−−−↩ U , Send

(UPDATE− REQ, id)
τ1+2
↪−−−→ E . Else, execute the

procedure ForceCloseB(id) and stop.
25) If (UPDATE− REQ− OK, id)

τ1+2←−−−↩ E , then Gen-
erate (RB , rB) ← Gen and (YB , yB) ← Gen

and send (updateInfo, id, RB , YB)
τ1+2
↪−−−→ U . Else,

execute the procedure ForceCloseB(id) and stop.
Party U

26) If (updateInfo, id, RB , YB)
t2+2←−−−↩ B, create:

[TXCM] := GenCommit([TXFU].txid∥1, IU , IB)
[TX

[2]
SP ] := GenSplit2([TXCM].txid∥1, θ⃗)

for IB := (pkB , RB , YB) and IU :=
(pkU , RU , YU ). Else, execute the procedure
ForceCloseB(id) and stop.

27) Compute (coms, decoms)← PCOM([TX
[2]
SP ]).

28) Compute πs and send (updateProofU, id, πs,
coms)

t2+2
↪−−−→ B.

Party B
29) Create:

[TXCM] := GenCommit([TXFU].txid∥1, IU , IB)

for IB := (pkB , RB , YB) and IU := (pkU ,

RU , YU ). If (updateProofU, id, πs, coms)
τ1+4←−−−↩

U, s.t. πs, coms are valid, then create σ∗B
s :=

BlindSigskB (coms) and σ̂Bc := PreSignskB ([TXCM],

YU ) and send (updateComB, id, σ∗B
s , σ̂Bc )

τ1+4
↪−−−→

U . Else, execute the procedure ForceCloseB(id)
and stop.
Party U

30) If (updateComB, id, σ∗B
s , σ̂Bc )

t2+4←−−−↩ B s.t. σ∗B
s ,

σ̂Bc are valid, output (UPDATE− OK, id)
t1+4
↪−−−→ E .

Else, execute the procedure ForceCloseU (id) and
stop.

31) If (UPDATE, id)
t2+4←−−−↩ E , then create σ̂Uc :=

PreSignskU ([TXCM], YB) and send (updateComU,

id, σ̂Uc )
t2+4
↪−−−→ B. Else, execute the procedure

ForceCloseU (id) and stop.
Party B

32) If (updateComU, id, σ̂Uc )
τ1+6←−−−↩ U , s.t. σ̂Uc is valid,

then output (UPDATE− OK, id)
τ1+6
↪−−−→ E . Else, ex-

ecute the procedure ForceCloseB(id) and stop.
33) If (REVOKE, id)

τ1+6←−−−↩ E , then set TXCM := ([TXCM],
{SignskB ([TXCM]),Adapt(σ̂

U
c , yB)}), parse ΓB(id)

as (γ, TXFU, (TXCM, rB , RU , Y U , σ̂
B

c ), σ, ttimeout),
update the channel space as ΓB(id) := (γ, TXFU,
(TXCM, rB , RU , YU , σ̂

B
c ),⊥,⊥) and send (revokeB,

id, rB)
τ1+6
↪−−−→ U . Else, execute the procedure

ForceCloseB(id) and stop.
Party U

34) If U is the payer, then Parse ΓU (id) as (γ, TXFU,

(TXCM, rU , RB , Y B , σ̂
U

c ), TX
[3]
SP , TXTO). Else, Parse

ΓU (id) as (γ, TXFU, (TXCM, rU , RB , Y B , σ̂
U

c ), TX
[3]
SP ,

([TXAED], {σUa , σ̂
B

a })). If (revokeB, id, rB)
t2+6←−−−↩

B, s.t. (RB , rB) ∈ R, (REVOKE− REQ, id)
t2+6
↪→ E .

Else execute the procedure ForceCloseU (id) and
stop.

35) If (REVOKE, id)
t2+6←−−−↩ E , set ΘU (id) := ΘU (id) ∪

([TXCM], rB , Y B , σ̂
U

c ). Else, execute the proce-
dure ForceCloseU (id) and stop. Set TXCM :=
([TXCM], {SignskU ([TXCM]),Adapt(σ̂

B
c , yU )}), Sign

σUs := SignpkU ([TX
[2]
SP ]), compute σBs =

UnBlindSig(σ∗B
s , decoms), set TX

[2]
SP := ([TX

[2]
SP ],

{σUs , σBs }), set ΓU (id) := (γ, TXFU, (TXCM, rU , RB ,

YB , σ̂
U
c ), TXSP,⊥). Send (revokeU, id, rU )

t2+6
↪−−−→
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B, (UPDATED)
t2+6
↪−−−→ E and stop.

Party B

36) If (revokeU, id, rU )
τ1+8←−−−↩ U , s.t. (RU , rU ) ∈ R,

set ΘB(id) := ΘB(id)∪ ([TXCM], rU , Y U , σ̂
B

c ) and
send (UPDATED, id)

τ1+8
↪−−−→ E . Else, execute the

procedure ForceCloseB(id) and stop.

Closure

Party U upon (CLOSE, id)
t0←−↩ E

1) Extract TXFU and TX
[2]
SP from ΓU (id) and create

[TXSP] as follows:

[TXSP] := GenSplit2(TXFU.txid∥1, TX[2]SP .Output)

Compute σUs := SignskP ([TXSP]) and send

(closeReq, TX[2]SP , [TXSP], σ
U
s )

t0
↪−→ B.

Party B upon (CLOSE, id)
τ0←−↩ E

2) Extract TXFU and TXCM from ΓB(id). If
(closeReq, TX[2]SP , [TXSP], σ

U
s )

τ0+1←−−−↩ U s.t.
VfpkU ([TXSP];σ

U
s ) = 1, [TXSP].Output =

TX
[2]
SP .Output, TX

[2]
SP .Input = TXCM.txid∥1 and

[TXSP].Input = TXFU.txid∥1, continue. Else,
execute the procedure ForceCloseB(id) and
stop.

3) Parse TX[2]SP as ([TX[2]SP ], {σUs , σBs }). If VfpkB ([TX
[2]
SP ],

σBs ) = 1, then Sign σBs := SignskB ([TXSP])
set TXSP := ([TXSP], {σUs , σBs }), send (closeRes,
σBs )

τ0+1
↪−−−→ U and post (post, TXSP)

τ0+2
↪−−−→ L. Else,

execute the procedure ForceCloseB(id) and stop.
4) If in round τ1 ≤ τ0 + 2 +∆, the transaction TXSP

is accepted by L, set ΓB(id) :=⊥, ΘB(id) :=⊥
and send (CLOSED, id)

τ1
↪−→ E .

Party U

5) If (closeRes, σBs )
t0+2←−−−↩ B s.t.

VfpkB ([TXSP];σ
B
s ) = 1, then set TXSP := ([TXSP],

{σUs , σBs }) and post (post, TXSP)
t0+2
↪−−−→ L. Else,

execute the procedure ForceCloseU (id) and
stop.

6) If in round t1 ≤ t0 + 2 +∆, the transaction TXSP
is accepted by L, set ΓU (id) :=⊥, ΘU (id) :=⊥
and send (CLOSED, id)

τ1
↪−→ E .

Punish

Party P upon (PUNISH)
t0←−↩ E

For each id ∈ {0, 1}∗, s.t. ΓP (id) ̸=⊥, extract ΓP (id)
as (γ, TXFU, (TXCM, rU , RB , YB , σ̂

U
c ), TXSP, x) if P = U

or (γ, TXFU, (TXCM, rB , RU , YU , σ̂Bc ), σ) otherwise.
Check if TXFU is spent by any transaction TX s.t.

[TX] ̸= [TXCM]. If yes:

• Parse ΘP (id) := {([TX(i)CM ], r
(i)
Q , Y

(i)
Q , σ̂

P (i)
c )}i∈m

and find i s.t. [TX
(i)
CM ] = [TX]. Then, parse the

witness as (σPc , σ
Q
c ) := TX.Witness and set y(i)Q :=

Ext(σPc , σ̂
P (i)
c , Y

(i)
Q ).

• Define the body of the punishment transaction
[TXPU] as:

TXPU.Input : = TX.txid∥1
TXPU.Output : = {(γ.cash, pkP )}

• Compute σyp ← Sign
y
(i)
Q

([TXPU]), σrp ←
Sign

r
(i)
Q

([TXPU]), σPp ← SignskP ([TXPU]), set

TXPU := {[TXPU], {σyp , σrp, σPp }} and (post,

TXPU)
t0
↪−→ L.

• Let TXPU be accepted by L in round t1 ≤ t0 +
∆. Set ΘP (id) :=⊥, ΓP (id) :=⊥ and output
(PUNISHED, id)

t1
↪−→ E .

For the case that P is B, if TX.Output is still unspent
in round t1 = t0 + 2T , then

• Define the body of the punishment transaction
[TXPU] as:

TXPU.Input : = TX.txid∥1
TXPU.Output : = {(γ.cash, pkB)}

Compute σBp ← SignskB ([TXPU]), set TXPU :=

{[TXPU], σBp } and (post, TXPU)
t0+2T
↪−−−−→ L.

• Let TXPU be accepted by L in round t1 ≤ t0 +
2T+∆. Set ΘB(id) :=⊥, ΓB(id) :=⊥ and output
(PUNISHED, id)

t1
↪−→ E .

Close

Party U

For each id ∈ {0, 1}∗, s.t. ΓU (id) ̸=⊥, extract ΓU (id)
as (γ, TXFU, (TXCM, rU , RB , YB , σ̂

U
c ), TXSP, x). If TXFU is

spent by a transaction TX s.t. [TX] = [TXCM], then

• Post (post, TXSP)
t0+T
↪−−−→ L.

• Let TXSP be accepted by L in round t1 ≤ t0+T +
∆. If x =⊥, then set ΘP (id) :=⊥, ΓP (id) :=⊥
and output (CLOSED, id)

t1
↪−→ E and stop.

• If U is the payer, set TXTO := x and ttimeout :=

TXTO.nLT and post (post, TXTO)
ttimeout
↪−−−−−→ L. Else,

parse x as ([TXAED], {σUa , σ̂Ba }), possibly adapt σ̂Ba
to σBa , set TXAED := ([TXAED], {σUa , σBa }) and post
(post, TXAED)

t1
↪−→ L.

• Let TXSP.Output[2] (the HTLC output) be spent in
round t2 ≤ ttimeout+∆. Output (CLOSED, id)

t2
↪−→

E and stop.

Party B
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For each id ∈ {0, 1}∗, s.t. ΓB(id) ̸=⊥, extract ΓB(id)
as (γ, TXFU, (TXCM, rB , RU , YU , σ̂

B
c ), σ, ttimeout). If

TXFU is spent by a transaction TX s.t. [TX] = [TXCM],
then

• If TX.Output is spent in round t1 ≤ t0 + 2T by a
transaction TX′, then if σ ̸=⊥:
– If B is the payee, set θ := [TX′].Output[2] and
v := θ.Cash and create:

[TXAED] := GenAED([TX′].txid∥3, v, pkB)

, set σ̂Ua := σ and possibly adapt σ̂Ua to
σUa , sign σBa := SignskB ([TXAED]), create
TXAED := ([TXAED], {σUa , σBa }), and post (post,
TXAED)

t2<ttimeout−∆
↪−−−−−−−−−−→ L.

– If B is the payer, set θ := [TX′].Output[2] and
v := θ.Cash and create:

[TXTO] := GenTO([TX′].txid∥3, v, ttimeout, pkB)

, set σUt := σ, sign σBt := SignskB ([TXTO]),
create TXTO := ([TXTO], {σUt , σBt }), and post
(post, TXTO)

ttimeout
↪−−−−−→ L.

– Let TXSP.Output[2] (the HTLC output) be spent
in round t ≤ ttimeout + ∆. Output (CLOSED,

id)
t
↪−→ E and stop.

Else, Output (CLOSED, id)
t1
↪−→ E and stop.

Subprocedures

GenFund((tidP , tidQ), γ):

Return [TXFU] where [TXFU].Input := (tidP , tidQ) and
[TXFU].Output := (γ.Cash, Multi− Sigγ.Users)

GenCommit(tid, (pkU , RU , YU ), (pkB , RB , YB)):

Let (c, Multi− SigpkU ,pkB ) := [TXFU].Output and
denote:

φ1 := Multi− SigRB ,YB ,pkU

φ2 := Multi− SigRU ,YU ,pkB

φ3 := CheckRelativeT ∧ Multi− SigpkU ,pkB
φ4 := CheckRelative2T ∧ SigpkB

Return [TX] with [TX].Input := tid,
[TX].Output := (c, φ1 ∨ φ2 ∨ φ3 ∨ φ4).

GenSplit2(tid, θ⃗):

Return [TX] where TX.Input := tid and
TX.Output := θ⃗.

GenSplit3(tid, θ⃗, v, (pkB , pkU , pk
′
U )):

Return [TX] where TX.Input := tid and
TX.Output[0] := (θ⃗[0].Cash− v, One− Sigpk′U

),
TX.Output[1] := (θ⃗[1].Cash, One− SigpkB ) and

TX.Output[2] := (v, Multi− SigpkB ,pkU ) if v > 0
and TX.Input := tid and

TX.Output[0] := (θ⃗[0].Cash, One− Sigpk′U
),

TX.Output[1] := (θ⃗[1].Cash+ v, One− SigpkB ) and
TX.Output[2] := (−v, Multi− SigpkB ,pkU )

otherwise.

GenAED(tid, v, pkP ):

Return [TX] where TX.Input := tid and
TX.Output := (v, One− SigpkP ).

GenTO(tid, v, ttimeout, pkP ):

Return [TX] where TX.Input := tid,
TX.Output := (v, One− SigpkP ) and

TX.nLT := ttimeout.

ForceCloseP (id):

Let t0 be the current round. Extract TXCM from ΓP (id).

• Post (post, TXPCM)
t0
↪−→ L.

(Publishing the corresponding split transaction takes
place in the Punish phase.)

J.4. Simulator

We provide the code for a simulator below. It simulates
the protocol of BlindChannel in the ideal world having ac-
cess to the functionalities of FL(∆,Σ,V)

BC . The main challenge
in providing a simulation in UC proofs usually arises from
the fact that the simulator is not given the secret inputs of the
parties in the protocol, which makes it difficult to provide a
simulated transcript that is indistinguishable to a transcript
of a real protocol execution. As both channel parties do not
obtain any secret inputs, and only receive commands from
environment, and hence the only challenge that arises during
the simulation is handling different behavior of malicious
parties. For this reason, we omit the case that both channel
parties are honest.

Simulator S for Create

Let T1 = 3.

Case P is honest and Q is corrupted

Upon P sending (CREATE, γ, tidP)
τ0
↪→ FL(∆,Σ,V)

BC , if Q
does not send (CREATE, γ, tidQ)

τ
↪→ FL(∆,Σ,V)

BC , where
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|τ0 − τ | ≤ T1, then distinguish the following cases:

1) If Q sends (createInfo, id, tidQ, RQ, YQ)
τ0
↪→ P ,

then sends (CREATE, γ, tidP)
τ0
↪→ FL(∆,Σ,V)

BC on
behalf of Q;

2) Otherwise stop.

Do the following:

1) Set id := γ.id, generate (RP , rP ) ← Gen and
(YP , yP ) ← Gen and send (createInfo, id, tidP ,
RP , YP )

τ0
↪−→ Q.

2) If (createInfo, id, tidQ, RQ, YQ)
τ0+1
↪−−−→ P , create:

[TXFU] := GenFund((tidP , tidQ), γ)

[TXCM] := GenCommit([TXFU].txid∥1, IP , IQ)
[TXSP] := GenSplit([TXCM].txid∥1, γ.st)

for IP := (pkP , RP , YP ) and IQ := (pkQ, RQ,
YQ). Else stop.

3) Compute σPs := SignskP ([TXSP]) and σ̂Pc :=
PreSignskP ([TXCM], YQ) and send (createCom, id,

σPs , σ̂
P
c )

τ0+1
↪−−−→ Q.

4) If (createCom, id, σQs , σ̃
Q
c ))

τ0+2←−−−↩ Q
s.t. PreVfpkQ([TXCM], YP ; σ̃

Q
c ) = 1

and VfpkQ([TXSP];σ
Q
s ) = 1, compute

σPf := SignskP ([TXFU]) and send (createFund, id,

σPf )
τ0+2
↪−−−→ Q. Else stop.

5) If (createFund, id, σQf )
τ0+3←−−−↩ Q s.t.

VfpkQ([TXFU];σ
Q
f ) = 1, set TXFU := ([TXFU],

{σPf , σ
Q
f }) and post (post, TXFU)

τ0+3
↪−−−→ L. Else

stop.
6) If TXFU is accepted by L in round τ1 ≤ τ0+3+∆,

set TXCM := ([TXCM], {SignskP ([TXCM]),Adapt(σ̃
Q
c ,

yP )}) and TXSP = ([TXSP], {σPs , σQs }), store
ΓP (γ.id) := (γ, TXFU, (TXCM, rU , RB , YB , σ̃

U
c ),

TXSP,⊥) if P = U and ΓB(γ.id) := (γ, TXFU,
(TXCM, rB , RU , YU , σ̃

B
c ),⊥,⊥,⊥) otherwise and

send (CREATED, id)
τ1
↪−→ E . Else stop.

Simulator for Update

Let T1 = 2 and T2 = 1 and let |t⃗id| = 1.

Case B is honest and U is corrupted

Upon B receives (updateInfo, id, RB , YB)
τ0←−↩ U , send-

ing (UPDATE, id, tstp, (Yγ ,wγ))
τ
↪−→ FL(∆,Σ,V)

BC on be-
half of U , if U not sends, where τ ≤ τ0 + T1, and let
S define t⃗id s.t. |t⃗id| = k. If received (UPDATE–REQ, id,
t⃗id, tstp)

τ0+2←↩ FL(∆,Σ,V)
BC , proceed as follows:

1) Generate (RB , rB) ← Gen and (YB , yB) ← Gen

and send (updateInfo, id, RB , YB)
τ0+2
↪−−−→ U .

2) If received (SETUP–OK, id)
τ0+2←↩ FL(∆,Σ,V)

BC , then
sends (VERIFY–REQ, id,Y′

γ)
τ3
↪→ FL(∆,Σ,V)

BC .
3) Extract γ and TXFU from ΓB(id) and create:

[TXCM] := GenCommit([TXFU].txid∥1, IU , IB)

for IB := (pkB , RB , YB) and IU := (pkU , RU ,
YU ).
Distinguishing the following cases:
If B is the payee and (updateProofU, id, πs, πa, πt,
σ̃Ua , h, e, (π, com), (π′, com′))

τ0+2←−−−↩ U , s.t. πs, πa,
πt, σ̂

U
a , or B is the payer and (updateProofU, id,

πs, πa, πt, σ
U
t , h, e, coms, coma)

τ0+2←−−−↩ U , s.t. πs,
πa, πt, σ

U
t , then create σ̃Bc := PreSignskB ([TXCM],

YU ), σ̃∗B
s := BAS.Sign1skB (com, Y

′
U ). Else

stop. If B is the payee, compute σ∗B
t :=

BlindSigskB (comt) and send (updateComB, id,

σ̂Bc , σ̂
B
s , σ

∗B
t )

τ0+2
↪−−−→ U . Else compute σ̃∗B

a :=
BAS.Sign1skB (com

′, Y ′
s ) and send (updateComB,

id, σ̃Bc , σ̃
∗B
s , σ̃∗B

a )
τ0+2
↪−−−→ U .

4) In round τ0+4, if (VERIFIED)
τ0+4+T←↩ FL(∆,Σ,V)

BC ,
distinguish the following cases:

• If received (updateComU, id, σ̃Uc )
τ0+4←−−−↩ U ,

s.t. PreVfpkU ([TXCM], YB ; σ̃
U
c ) = 1, then sign

σBc := SignskB ([TXCM]), compute σUc :=
Adapt(σ̃Uc , yB), set TXCM := ([TXCM], {σUc , σBc })
and output (UPDATE− OK, id)

τ0+4
↪−−−→ E and

(UPDATE–OK)
τ0+4
↪→ FL(∆,Σ,V)

BC .

• If (updateNotOK, id, rU )
τ0+4←−−−↩ B, s.t. (RU ,

rU ) ∈ R, then add ΘB(id) := ΘB(id)∪([TXCM],
rU , YU , σ̃

B
c ) and stop.

• Else, execute the procedure ForceCloseB(id)
and stop.

Otherwise stop.

5) If received (REVOKE, id)
τ0+4←−−−↩ E , then sends

(REVOKE, id)
τ6≤τ5+T
↪→ FL(∆,Σ,V)

BC on behalf of U ,
if U not sends.

6) If received (REVOKE–REQ, id)
τ0+4←↩ FL(∆,Σ,V)

BC ,
parse ΓB(id) as (γ, TXFU, (TXCM, rB , RU , Y U ,

σ̂
B

c ),⊥,⊥), update the channel space as
ΓB(γ.id) := (γ, TXFU, (TXCM, rB , RU , YU , σ̃

B
c ), Y

′
U ,

σ̃∗B
s , e, σ) with σ := σ̃Ua if B is the payee and
σ := σUt , and send (revokeB, id, rB)

τ0+4
↪−−−→ U .

Otherwise stop.
7) If received (revokeU, id, rU )

τ0+6←−−−↩ U , set
ΘB(id) := ΘB(id) ∪ ([TXCM], rU , Y U , σ̂

B

c ) and
send (UPDATED, id)

τ0+6
↪−−−→ E , and send (REVOKE,
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id)
τ0+6
↪→ FL(∆,Σ,V)

BC , s.t. (RU , rU ) ∈ R. Else,
execute the procedure ForceCloseB(id) and stop.

8) For the case where B is the payee, if (ADAPT,

id)
τ1←−↩ E with τ0 + 6 ≤ τ1 ≤ τ0 + T1, then

send (adapt, ys, id)
τ1
↪−→ U . Else set τ1 = τ0 + T1

and continue. For the case where B is the payer,
continue.

9) For the case where B is the payee, continue. For
the case where B is the payer, if (updateReq, id,
y′s)

τ1←−↩ U with τ0 + 6 ≤ τ1 ≤ τ0 + T ′
1 s.t. (Y ′

s ,
y′s) ∈ R, continue. Else, execute the procedure
ForceCloseU (id) and stop.

10) For the case where B is the payee, continue.
For the case where B is the payer, if (UPDATE,

id, θ⃗)
τ1←−↩ E , send (updateReq, id)

τ1
↪−→ U . Else,

execute the procedure ForceCloseU (id) and stop.
11) If received (updateReq, id, RU , YU )

τ1+2←−−−↩ U ,
send (UPDATE, id, θ, tstp, (Yγ ,wγ))

τ1+2
↪→

FL(∆,Σ,V)
BC on behalf of U , if U not send at τ1+2.

Else, execute the procedure ForceCloseU (id)
and stop.

12) If (UPDATE–REQ, id, tstp)
τ1+2←↩ FL(∆,Σ,V)

BC , send

(UPDATE− REQ, id)
τ1+2
↪−−−→ E .

13) If (UPDATE− REQ− OK, id)
τ1+2←−−−↩ E , then gen-

erates (RB , rB) ← Gen and (YB , yB) ← Gen

and sends (updateInfo, id, RB , YB)
τ1+2
↪−−−→ U , and

sends (SETUP–OK, id)
t0+2
↪→ FL(∆,Σ,V)

BC on behalf
of U , if U not sends at t0 + 2. Else, execute the
procedure ForceCloseB(id) and stop.

14) If received (SETUP–OK, id)
τ0+2←↩ FL(∆,Σ,V)

BC ,
countine. Else, execute the procedure
ForceCloseB(id) and stop.

15) Create:

[TXCM] := GenCommit([TXFU].txid∥1, IU , IB)
for IB := (pkB , RB , YB) and IU :=
(pkU , RU , YU ). If received (updateProofU, id, πs,
coms)

τ1+4←−−−↩ U, s.t. πs, coms are valid, then
create σ∗B

s := BlindSigskB (coms) and σ̂Bc :=
PreSignskB ([TXCM], YU ) and send (updateComB,

id, σ∗B
s , σ̂Bc )

τ1+4
↪−−−→ U . Else, execute the procedure

ForceCloseB(id) and stop.
16) If received (updateComU, id, σ̂Uc )

τ1+6←−−−↩ U , s.t.

σ̂Uc is valid, or received (VERIFIED)
τ4≤τ3+T←↩

FL(∆,Σ,V)
BC , send (UPDATE− OK, id)

τ1+6
↪−−−→ E and

(UPDATE− OK, id)
τ1+6
↪−−−→ FL(∆,Σ,V)

BC . Else, exe-
cute the procedure ForceCloseB(id) and stop.

17) If (REVOKE, id)
τ1+6←−−−↩ E , then set TXCM := ([TXCM],

{SignskB ([TXCM]),Adapt(σ̂
U
c , yB)}), parse ΓB(id)

as (γ, TXFU, (TXCM, rB , RU , Y U , σ̂
B

c ), σ, ttimeout),
update the channel space as ΓB(id) := (γ, TXFU,
(TXCM, rB , RU , YU , σ̂

B
c ),⊥,⊥) and send (revokeB,

id, rB)
τ1+6
↪−−−→ U . Else, execute the procedure

ForceCloseB(id) and stop.
18) Sends (REVOKE, id)

τ1+6
↪→ FL(∆,Σ,V)

BC on behalf of
U , if U not sends.

19) If (REVOKE− REQ, id)
τ1+6←−−−↩ FL(∆,Σ,V)

BC , then
parse ΓB(id) as (γ, TXFU, (TXCM, rB , RU , Y U , σ̂

B

c ),

Y
′
U , σ̂

∗B
s , e, σ), update the channel space as

ΓB(id) := (γ, TXFU, (TXCM, rB , RU , YU , σ̂
B
c ),⊥,⊥,

⊥,⊥) and send (revokeB, id, rB)
τ1+6
↪−−−→ U . Else,

execute the procedure ForceCloseB(id) and stop.
20) If received (revokeU, id, rU )

τ1+8←−−−↩ U or

(UPDATED, id)
τ6≤τ5+T←↩ FL(∆,Σ,V)

BC , s.t. (RU , rU ) ∈
R, set ΘB(id) := ΘB(id) ∪ ([TXCM], rU , Y U , σ̂

B

c )

and send (UPDATED, id)
τ1+8
↪−−−→ E . Else, execute the

procedure ForceCloseB(id) and stop.

Case U is honest and B is corrupted

Upon U receiving (UPDATE, id, θ⃗)
τ0←−↩ E , sends

(UPDATE, id, θ⃗, (Yγ ,wγ))
τ0
↪−→ FL(·,±,V)

BC , parses ({γ},
tx) := ΓU (id), set γ′ := γ, γ′.st := θ⃗. If received
(SETUP, id, t⃗id)

τ0←↩ FL(∆,Σ,V)
BC , then distinguish the

following cases:

1) Generate (RU , rU ) ← Gen, (YU , yU ) ← Gen and
(Y ′
U , y

′
U )← Gen.

2) If received (updateInfo, id, RB , YB)
τ0+2←−−−↩ B, cre-

ate:

[TXCM] := GenCommit([TXFU].txid∥1, IU , IB)
[TXSP] := GenSplit([TXCM].txid∥1, θ⃗)
[TXAED] := GenAED([TXSP].txid∥3, θ⃗, pk)
[TXTO] := GenTO([TXSP].txid∥3, θ⃗, ttimeout, pk′)

for IB := (pkB , RB , YB) and IU := (pkU , RU ,
YU ) and with pk := pkB and pk′ := pkU if U is
the payer and pk := pkU and pk′ := pkB other-
wise. Then sends (SETUP–OK, id)

τ0+2
↪→ FL(∆,Σ,V)

BC
as U . Else stop.

3) If (updateInfo, id, RB , YB)
τ2+2←−−−↩ B, sends

(VERIFY–REQ, id,Y′
γ)

τ2+2
↪→ FL(∆,Σ,V)

BC on behalf
of B, of B not sends in τ0 + 2. Compute (coms,
decoms)← PCOM([TXSP]). If U is the payer, com-
pute (comt, decomt)← PCOM([TXTO]). Otherwise,
compute (coma, decoma)← PCOM([TXAED]).

4) Compute πs, πa and πt. If U is the payer,
compute σ̂Ua := PreSignskU ([TXAED], Y

′
s ), h =

SigHash([TXAED]), and ct := Ency′U([TXAED])
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and send (updateProofU, id, πs, πa, πt, σ̂Ua , h, ct,
(π, com), (π′, com′))

τ0+2
↪−−−→ B. Otherwise, com-

pute σUt := SignskU ([TXTO]), h = SigHash([TXTO])
and ct := Ency′U([TXTO]) and send (updateProofU,

id, πs, πa, πt, σ
U
t , h, ct, coms, comt))

t0+2
↪−−−→ B.

5) If received (updateComB, id, σ̂Bc , σ̂
∗B
s ,

σ∗B
t )

τ0+4←−−−↩ B:
• For the case U is the payer and
PreVfpkB ([TXCM], YU ; σ̂

B
c ) = 1, and σ∗B

s ,
σ∗B
t are valid;

• For the case U is the payee and
PreVfpkB ([TXCM], YU ; σ̂

B
c ) = 1, σ∗B

s , σ̂Ba .

• Send (UPDATE–OK)
τ0+4←↩ FL(∆,Σ,V)

BC on be-
half of B, if he does not send. If received
(UPDATE–OK)

τ0+4←↩ FL(∆,Σ,V)
BC , then outputs

(UPDATE− OK, id)
τ0+4
↪−−−→ E .

6) If (UPDATEB, id)
t0+4←−−−↩ E , continue.; Else send

(updateNotOK, id, rU )
τ0+4
↪−−−→ B, and stop.

7) If U is the payer, then sign σUt := SignskU ([TXTO]),
compute σBt := UnBlindSig(σ∗B

t , decom′),
set TXTO := ([TXTO], {σUt , σBt }). Else, sign
σUa := SignskU ([TXAED]), compute σ̂Ba :=
UnBlindSig(σ̂∗B

a , decom′).
8) Sign σUs := SignpkU ([TX

[3]
SP ]), compute σBs =

UnBlindSig(σ∗B
s , decoms), set TX

[3]
SP := ([TX

[3]
SP ],

{σUs , σBs }), sign σUc := SignskU ([TXCM]), compute
σBc := Adapt(σ̂Bc , yU ), set TXCM := ([TXCM], {σUc ,
σBc }), sign σ̂Uc := PreSignskU ([TXCM], YB) and

send (updateComU, id, σ̂Uc )
τ0+4
↪−−−→ B.

9) Parse ΓU (id) as (γ, TXFU, (TXCM, rU , RB , Y B , σ̂
U

c ),

⊥,⊥). If received (revokeB, id, rB)
τ0+6←−−−↩ B,

s.t. (RB , rB) ∈ R, sends (REVOKE, id)
τ0+6
↪→

FL(∆,Σ,V)
BC and (REVOKE− REQ, id)

τ0+6
↪→ E . Else

execute the procedure ForceCloseU (id) and stop.
10) If (REVOKE, id)

τ0+6←−−−↩ E , continue. Else, execute
the procedure ForceCloseU (id) and stop.

11) If (UPDATED, id)
τ0+6←↩ FL(∆,Σ,V)

BC , set
ΘU (id) := ΘU (id) ∪ ([TXCM], rB , Y B , σ̂

U

c ).
If U is the payer, then set ΓU (γ.id) := (γ, TXFU,
(TXCM, rU , RB , YB , σ̂

U
c ), TXSP, TXTO). Otherwise,

set ΓU (γ.id) := (γ, TXFU, (TXCM, rU , RB , YB ,
σ̂Uc ), TXSP, ([TXAED], {σUa , σ̂Ba }). Send (revokeU,
id, rU )

τ0+6
↪−−−→ B and (UPDATED)

τ0+6
↪−−−→ E . Also,

sends (REVOKE, id)
τ0+6
↪→ E on behalf of B, if he

does not send.
12) For the case where U is the payer, continue.

For the case where U is the payee:

• if (ADAPT, id)
τ1←−↩ E with τ0+6 ≤ τ1 ≤ τ0+T ′

1,
and (updateReq, id, y′s)

t1
↪−→ B;

• Else set t1 = t0 + T ′
1 and continue.

13) If received (UPDATE–REQ, id, tstp)
τ1←↩ B, then

• For the case where U is the payer, if (adapt, y′s,
id)

t1←−↩ B with t0 + 8 ≤ t1 ≤ t0 + 2 + T1, s.t.
(Y ′
s , y

′
s) ∈ R, continue.

• Else, execute the procedure ForceCloseU (id)
and stop.

14) If received (UPDATE, id, θ⃗)
τ1←−↩ E , sends (UPDATE,

id, θ⃗, tstp, (Yγ ,wγ))
τ1
↪→ FL(∆,Σ,V)

BC , set τ2 := τ1
and continue; Otherwise, execute the procedure
ForceCloseU (id) and stop.

15) For the case where U is the payee:

• if (updateReq, id)
τ1+2←−−−↩ B, then set τ2 := τ1+2

and continue.
• Else, execute the procedure ForceCloseU (id)

and stop.
16) If received (SETUP, id, t⃗id, θ⃗)

τ1←↩ FL(∆,Σ,V)
BC :

Generate (RU , rU ) ← Gen and (YU , yU ) ← Gen

and send (updateReq, id, RU , YU )
τ2
↪−→ B, sends

(SETUP–OK, id)
τ2≤τ1+tstp

↪→ FL(∆,Σ,V)
BC . Otherwise,

execute the procedure ForceCloseU (id) and stop.
17) If (updateInfo, id, RB , YB)

τ2+2←−−−↩ B, sends
(VERIFY–REQ, id,Y′

γ)
τ2+2
↪→ FL(∆,Σ,V)

BC on behalf of
B, of B not sends in τ2 + 2, then proceed as
follows:
• Create:

[TXCM] := GenCommit([TXFU].txid∥1, IU , IB)
[TXSP] := GenSplit([TXCM].txid∥1, θ⃗)

for IB := (pkB , RB , YB) and IU :=
(pkU , RU , YU ). Else, execute the procedure
ForceCloseB(id) and stop.

• Computes (coms, decoms)← PCOM([TXSP]).
• Computes πs and send (updateProofU, id, πs,
coms)

τ2+2
↪−−−→ B.

18) If (updateComB, id, σ∗B
s , σ̂Bc )

τ2+4←−−−↩ B s.t. σ∗B
s ,

σ̂Bc are valid, outputs (UPDATE− OK, id)
τ2+4
↪−−−→ E .

Else, execute the procedure ForceCloseU (id)
and stop.

19) If (UPDATE, id)
τ2+4←−−−↩ E , then create σ̂Uc :=

PreSignskU ([TXCM], YB) and send (updateComU,

id, σ̂Uc )
τ2+4
↪−−−→ B. Else, execute the procedure

ForceCloseU (id) and stop.
20) If received (UPDATE–OK)

τ2+6←↩ FL(∆,Σ,V)
BC :
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• For the case U is the payer, then parse ΓU (id) as
(γ, TXFU, (TXCM, rU , RB , Y B , σ̂

U

c ), TX
[3]
SP , TXTO).

• for the case U is the payer, parse ΓU (id)

as (γ, TXFU, (TXCM, rU , RB , Y B , σ̂
U

c ), TX
[3]
SP ,

([TXAED], {σUa , σ̂
B

a })), s.t. (RB , rB) ∈ R,
(REVOKE− REQ, id)

τ2+6
↪→ E .

Else execute the procedure ForceCloseU (id) and
stop.

21) If (REVOKE, id)
τ2+6←−−−↩ E , send (REVOKE, id)

τ2+6
↪→

FL(∆,Σ,V)
BC and set ΘU (id) := ΘU (id) ∪

([TXCM], rB , Y B , σ̂
U

c ). Else, execute the procedure
ForceCloseU (id) and stop. Set TXCM := ([TXCM],
{SignskU ([TXCM]),Adapt(σ̂

B
c , yU )}), Sign σUs :=

SignpkU ([TX
[2]
SP ]), compute σBs = UnBlindSig(σ∗B

s ,

decoms), set TX
[2]
SP := ([TX

[2]
SP ], {σUs , σBs }), set

ΓU (id) := (γ, TXFU, (TXCM, rU , RB , YB , σ̂
U
c ), TXSP,

⊥).
22) Once received (UPDATED, id)

τ2+6←↩ FL(∆,Σ,V)
BC ,

sends (revokeU, id, rU )
τ2+6
↪−−−→ B,

(UPDATED)
τ2+6
↪−−−→ E and stop.

Simulator for Closure

Let T1 = 1.

Case B is honest and U is corrupted

Upon B receiving (CLOSE, id)
τ0←−↩ E , sends (CLOSE,

id)
τ0
↪→ FL(∆,Σ,V)

BC , and sends (CLOSE, id)
τ
↪→ FL(∆,Σ,V)

BC
on behalf of U , if U does not send, where τ0−τ ≤ T1,
proceed as follow:

1) Extract TXFU and TXCM from ΓB(id). If
(closeReq, TXSP, [TXSP], σUs )

τ0+1←−−−↩ U s.t.
VfpkU ([TXSP];σ

U
s ) = 1, [TXSP].Output =

TXSP.Output, TXSP.Input = TXCM.txid∥1 and
[TXSP].Input = TXFU.txid∥1, continue. Else,
execute the procedure ForceCloseB(id) and
stop.

2) Parse TXSP as ([TXSP], {σUs , σB , s}). If
VfpkB ([TXSP], σ

B
s ), then Sign σBs :=

SignskB ([TXSP]) set TXSP := ([TXSP], {σUs ,
σBs }), send (closeRes, σBs )

τ0+1
↪−−−→ B and post

(post, TXSP)
τ0+2
↪−−−→ L. Else, execute the procedure

ForceCloseB(id) and stop.
3) If in round τ1 ≤ τ0 + 2 +∆, the transaction TXSP

is accepted by L, set ΓB(id) :=⊥, ΘB(id) :=⊥
and send (CLOSED, id)

τ1
↪−→ E .

Case U us honest and B is corrupted

Upon U receiving (CLOSE, id)
t0←−↩ E , then sends

(CLOSE, id)
τ0
↪→ FL(∆,Σ,V)

BC , and sends (CLOSE, id)
τ0
↪→

FL(∆,Σ,V)
BC on behalf of B, if B does not send, where

τ0 − τ ≤ T1, proceed as follows:

1) If (closeRes, σBs )
t0+2←−−−↩ B s.t.

VfpkB ([TXSP];σ
B
s ) = 1, then set TXSP := ([TXSP],

{σUs , σBs }) and post (post, TXSP)
t0+2
↪−−−→ L. Else,

execute the procedure ForceCloseU (id) and
stop.

2) If in round t1 ≤ t0 + 2 +∆, the transaction TXSP
is accepted by L, set ΓU (id) :=⊥, ΘU (id) :=⊥
and send (CLOSED, id)

τ1
↪−→ E .

Simulator for Close

Case U is honest and B is corrupted

Party U upon received (CLOSE)
τ0←−↩ E .

For each id ∈ {0, 1}∗, s.t. ΓP (id) ̸=⊥, extract
ΓP (id) as (γ, TXFU, (TXCM, rU , RB , YB , σ̂

U
c ), TXSP, x). If

TXFU is spent by a transaction TX s.t. [TX] = [TXCM], then

• Post (post, TXSP)
τ0+T
↪−−−→ L.

• Let TXSP be accepted by L in round t1 ≤ τ0+T +
∆. If x =⊥, then set ΘP (id) :=⊥, ΓP (id) :=⊥
and output (CLOSED, id)

τ1
↪−→ E and stop.

• If U is the payer, set TXTO := x and post
(post, TXTO)

τtimeout
↪−−−−−→ L. Else, parse x as

([TXAED], {σUa , σ̂Ba }), possibly adapt σ̂Ba to σBa ,
set TXAED := ([TXAED], {σUa , σBa }) and post (post,
TXAED)

τ1<τtimeout−∆
↪−−−−−−−−−−→ L.

• Let TXSP.Output[2] (the HTLC output) be spent in
round τ2 ≤ τtimeout +∆.

• If received (CLOSED, id)
τ1←↩ FL(∆,Σ,V)

BC , Output
(CLOSED, id)

τ2
↪−→ E and stop.

Case B is honest and U is corrupted

Party B upon received (CLOSE)
τ0←−↩ E .

For each id ∈ {0, 1}∗, s.t. ΓP (id) ̸=⊥, extract
ΓP (id) as (γ, TXFU, (TXCM, rB , RU , YU , σ̂Bc ), Y

′
U , σ̂

∗B
s , e,

σ). If TXFU is spent by a transaction TX s.t. [TX] =
[TXCM], then

• If TX.Output is spent in round τ1 ≤ τ0 +2T by a
transaction TX′, then if e ̸=⊥:
– Parse witness of TX′ as (σUs , σ

B
s ) :=

TX′.Witness and set y′U := Ext(σBs , σ̂
B
s , Y

′
U ). If

B is the payee ([TXAED]) := Decy′U(e), set σ̂Ua :=

σ and possibly adapt σ̂Ua to σUa , sign σBa :=
SignskB ([TXAED]), create TXAED := ([TXAED], {σUa ,
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σBa }), and post (post, TXAED)
τ2<τtimeout−∆
↪−−−−−−−−−−→ L.

If B is the payer, ([TXTO]) := Decy′U(e), set
σUt := σ, sign σBt := SignskB ([TXTO]), create
TXTO := ([TXTO], {σUt , σBt }), and post (post,
TXTO)

τtimeout
↪−−−−−→ L.

– Let TXSP.Output[2] (the HTLC output) be spent
in round τ2 ≤ τtimeout + ∆. If received
(CLOSED, id)

τ1←↩ FL(∆,Σ,V)
BC , output (CLOSED,

id)
τ2
↪−→ E and stop.

Else, if received (CLOSED, id)
τ1←↩ FL(∆,Σ,V)

BC , out-
put (CLOSED, id)

τ1
↪−→ E and stop.

Simulator for Punish

Case P is honest and Q is corrupted

Party P upon received (PUNISH)
τ0←−↩ E . For each

id ∈ {0, 1}∗, s.t. ΓP (id) ̸=⊥, extract ΓP (id) as (γ,
TXFU, (TXCM, rU , RB , YB , σ̂

U
c ), TXSP, x) if P = U or (γ,

TXFU, (TXCM, rB , RU , YU , σ̂
B
c ), Y

′
U , σ̂

∗B
s , e, σ) otherwise.

Check if TXFU is spent by any transaction TX s.t.
[TX] ̸= [TXCM]. If yes:

• Parse ΘP (id) := {([TX(i)CM ], r
(i)
Q , Y

(i)
Q , σ̂

P (i)
c )}i∈m

and find i s.t. [TX
(i)
CM ] = [TX]. Then, parse the

witness as (σPc , σ
Q
c ) := TX.Witness and set y(i)Q :=

Ext(σPc , σ̂
P (i)
c , Y

(i)
Q ).

• Define the body of the punishment transaction
[TXPU] as:

TXPU.Input : = TX.txid∥1
TXPU.Output : = {(γ.cash, pkP )}

• Compute σyp ← Sign
y
(i)
Q

([TXPU]), σrp ←
Sign

r
(i)
Q

([TXPU]), σPp ← SignskP ([TXPU]), set

TXPU := {[TXPU], {σyp , σrp, σPp }} and (post,
TXPU)

τ0
↪−→ L.

• Let TXPU be accepted by L in round τ1 ≤ τ0 +
∆. Set ΘP (id) :=⊥, ΓP (id) :=⊥ and output
(PUNISHED, id)

τ1
↪−→ E .

For the case that P is B, if TX.Output is still
unspent in round τ1 = τ0 + 2T , then

• Define the body of the punishment transaction
[TXPU] as:

TXPU.Input : = TX.txid∥1
TXPU.Output : = {(γ.cash, pkB)}

Compute σBp ← SignskB ([TXPU]), set TXPU :=

{[TXPU], σBp } and (post, TXPU)
τ0+2T
↪−−−−→ L.

• Let TXPU be accepted by L in round τ1 ≤ τ0 +
2T +∆. Set ΘB(id) :=⊥.

• If received (PUNISHED, id)
τ1←↩ FL(∆,Σ,V)

BC , then set
ΓB(id) :=⊥ and output (PUNISHED, id)

τ1
↪−→ E .

Simulator for ForceClose(id)

1) Extract TXCM and TXSP from Γ(id).
2) Send (post, TXCM)

τ0
↪→ L.

3) Let τ1 ≤ τ0 + ∆ be the round in which TXCM is
accepted by the blockchain. Wait for ∆ rounds to
(post, TXSP)

τ2+∆
↪→ L.

4) Once TXSP is accepted by the blockchain in round
τ3 ≤ τ2 + 2∆, set ΘP (id) =⊥ and ΓP (id) =⊥.

Appendix K.
ECDSA-based Instantiation of BlindHub

Here we present a concrete instantiation of our protocol
that is compatible with Bitcoin. The procedures are roughly
the same as described in Section 6, here we mainly focus on
explaining the intritions behind some technical details and
concrete instantiations of the underlying primitives.

Let G be an elliptic curve group of prime order q

with a generator g. Let (p, Ḡ, ḡ, h̄1, h̄2, ˆ̄G, ˆ̄g,GT , e) be an
(asymmetric) bilinear group, consisting of groups (Ḡ,+)

and ( ˆ̄G,+) generated by ḡ/h̄ and ˆ̄g, resp., and (GT , ·),
and a bilinear map e : Ḡ × ˆ̄G → GT such that e(Ḡ, ˆ̄G)
generates GT . Let H : {0, 1}∗ → Zq be a collision resistant
hash function. We instantiate the underlying cryptographic
primitives that are specific to our protocol as follows. For
the commitment scheme ΠCOM, we instantiate it as Pedersen
commitment. For the basic signing algorithm Σ used to
sign the transaction, we instantiate it as ECDSA-based 2-
of-2 threshold signatures, as described in [12], [35]. For
the randomizable puzzle scheme, we set it to Castagnos-
Laguillaumie (CL) encryption scheme [13] on the group
(B,n, t, s, g, f,G, F ) with the message space Zt, where t
is a prime number larger than p2q. For the RSoRC scheme
ΠRSoRC, we use the generalized version of scheme described
in [3](page 14), where n = 2.

For the ease of presentation, we assume that before
running the protocol, parties have already generated a joint
public key for the threshold signatures. That is, they will
share pkΣtr in the puzzle promise protocol and pkΣts in the
puzzle solver protocol. Besides, we assume that they have
already agreed on a committed transaction h = H(tx).
The reason why this assumption is reasonable is that, as
mentioned in the section of BlindChannel, the unblind party
will prove the pre-image of h is indeed a valid transaction.
For the sake of simplicity, we omit this detail in our concrete
instantiation and just assume the correctness of h. The
concrete instantiation of registration, puzzle promise and
puzzle solver protocols are shown in Fig. 30, Fig. 31 and
Fig.32 respectively. To ease the understanding of Fig. 30,
Fig. 31 and Fig.32, we provide figures Fig.25, Fig.26 and
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1 : S(pkχ, amt) T(skχ, pkχ)
2 : Sample a token tkid and randomness rtkid, ramt

3 : Ctkid = com(tkid, rtkid)

4 : Camt = com(amt, ramt)

5 : πtkid ← {tkid, rtkid|Ctkid = com(tkid, rtkid)}
6 : πamt ← {amt, ramt|Camt = com(amt, ramt)}

7 : Ctkid,Camt, πtkid, πamt Abort if:

8 : NIZKVerify(πtkid) ̸= 1∨
9 : NIZKVerify(πamt) ̸= 1

10 : σtkid σtkid ← RCSign(skχ,Ctkid,Camt)

11 : if RCVerify(pkχ, σtkid) ̸= 1 then abort
12 : C′

tkid,C
′
amt, σ

′
tkid ← RCRand(Ctkid,C, σtkid)

13 : Send (tkid,C′
tkid,C

′
amt, r

′
tkid, r

′
amt, σ

′
tkid) to R

14 : return (C′
tkid,C

′
amt, tkid, r

′
tkid, r

′
amt, σ

′
tkid) return ⊤

Figure 25. Registration Protocol.

Fig.27 for the general construction of BlindHub described
in Section 6 as comparisons.

Registration Protocol: At the beginning, S generates
two commitments: commitment of the token Ctkid and com-
mitment of the amount Camt. Since later they will be signed
by T using RSoRC, which is a signing protocol based on
bilinear group, we instantiate Ctkid and Camt as Pedersen
commitments on group Ḡ with the generator ḡ, h̄(line 6-9).
To fix in the structure of RSoRC, we additionally generate
R0 as a placeholder(line 7). Besides, S generates two NIZK
proof to prove the knowledge of Ctkid and Camt(line 10, 11).
Then S sends R0,Ctkid,Camt, πtkid, πamt to T. On receiving
R0,Ctkid,Camt, πtkid, πamt, T firstly checks the validity of
πtkid, πamt. If both of them are valid, T performs RSoRC on
Ctkid and Camt and sends the signature to R, who aborts if
it is invalid(line 15). Finally, S randomizes R0,Ctkid,Camt,
σtkid to obtain R′

0,C
′
tkid,C

′
amt, σ

′
tkid and sends R′

0,C
′
tkid,

C′
amt, r

′
tkid, r

′
amt, σ

′
tkid to R, where r′tkid, r

′
amt are the openings

of C′
tkid C′

amt respectively(line 12-13).
Puzzle Promise Protocol: On receiving R′

0,C
′
tkid,C

′
amt,

r′tkid, r
′
amt, σ

′
tkid, R generates a NIZK proof π′

amt to prove
knowledge of C′

amt(line 6), and then a token-uniqueness
proof πtup(line 7). The idea of the token-uniqueness proof
is follows. Since the commitment of the token C′

tkid =
ḡtkidh̄r

′
tkid is randomizable(it is a Pedersen commitment, and

we can easily randomize it by multiplying it by a hr
′

for
some random r′), it cannot be used to prove the uniqueness
of the token. Then we generate another commitment of tkid
D = gtkid, and perform an equality proof to prove that C′

tkid
and D share the same committed message. Since gtkid is
perfectly binding to tkid, tumbler can just store gtkid as a
tag to the token tkid. In this manner, the tumbler can detect
if the receiver has reused the token by observing if there are
two identical tags.

After generating the token-uniqueness proof, R sends
R′

0,C
′
tkid,C

′
amt, σ

′
tkid, π

′
amt to T, who will abort if one of

the followings is not valid: σ′
tkid, πtup, π

′
amt(line 8-12). If

they are all valid, the tumbler samples the adaptor witness
and statement (Y, y), generates the randomizable puzzle
cy. Meanwhile, T starts running the two-party ECDSA
protocol and randomizable signatures on randomizable
commitments(RSoRC) with R. For the two-party ECDSA
protocol, they firstly execute the coin-tossing protocol on the
randomness r = kt ·kr ·y, where y is unknown to R(line 14-
25). Once the randomness is computed, T performs its side
of two-party ECDSA scheme using cskΣr , which is the en-
cryption of the skΣr and the additive homomorphic properties
of the encryption scheme. It is noted that tumbler does not
embed the adaptor witness(i.e., y−1) into the signature(line
23-25). Then the receiver is able to to compute the pre-
signature by decrypting the ciphertext received from the T
and performing his part of the signature(line 28-34).

Besides running two-party ECDSA protocol, T gen-
erates randomizale signatures on adaptor statement Ȳ , a
group element R1 as a placeholder and commitment of the
amount C′

amt. Here the adaptor statement can also be seen
as a randomizable commitment: the committed message
is zero and the adaptor witness is the randomness, and ḡ
is the generator for the randomness. However, there is a
technical challenge to overcome for running the RSoRC
protocol. Since the scheme in [3] is based on bilinear
group

(
p,G, ḡ, h̄, Ĝ, ˆ̄g,GT , e

)
, which is different from the

group(G, g, q)(on the elliptic curve secp256k1) used in the
ECDSA protocol, we cannot directly perform RSoRC on the
adaptor statement, which is a group element on (G, g, q).
We overcome this challenge by using an equality proof to
bridge these two different groups. Specifically, we generate
Ȳ ← ḡy on group Ḡ, and then we perform an equality proof
to prove that Y and Ȳ share the same discrete logarithm. In
this way, T can perform RSoRC on (Ȳ ,C′

amt) rather than (Y,
C′
amt)(line 18) and get σ̃, and sends it to R, who will check
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1 : T(skΣt , skχ, dkt, pkΣr , h = H(tx)) R(skΣr , pkΣt , pk
χ, h = H(tx))

2 : π′
amt ←

3 : NIZK{(amt, r′amt)|C′
amt = com(amt, r′amt)}

4 : C′
tkid,C

′
amt, σ

′
tkid, πtup, π

′
amt πtup ← NIZKtup(C

′
tkid, tkid)

5 : Abort if :

6 : RCVerify(C′
tkid,C

′
amt, σ

′
tkid) ̸= 1∨

7 : NIZKVerify(π′
amt) ̸= 1

8 : NIZKVerify(πtup) ̸= 1

9 : Else add πtup into T
10 : GenR→ (Y, y);Enc(dkt, y)→ cy

11 : πy ← PNIZK{∃y|(Y, y) ∈ LR ∧ cy = Enc(y)}
12 : πdkt ←
13 : PNIZK{dkt|(ekt, dkt) ∈ Supp(ΠEnc.KGen(1

λ))}
14 : πskχ ←
15 : PNIZK{skχ|(skχ, pkχ) ∈ Supp(ΠRSoRC.KGen(1

λ))}
16 : σ̃ ← RCSign(Y,C′

amt)

17 : σ̂′
t ← BAS.Sign1(sk

Σ
t , h, Y ) cy, πy, πdkt , πskχ , σ̂

′
t, σ̃

18 : Abort if:
19 : NIZKVerify(πy, (cy, Y )) ̸= 1∨
20 : NIZKVerify(πdkt) ̸= 1∨
21 : NIZKVerify(πskχ) ̸= 1∨
22 : PreVf(pkΣt , Y, σ̂

′
t) ̸= 1∨

23 : RCVerify(pkχ, σ̃) ̸= 1

24 :
(
Y ′,C′

amt, σ̃
′, β

)
← RCRand(Y,Camt, σ̃)

25 : c′y ← PRand(cy, β)

26 : Let C′
amt = com(amt, r′)

27 : Send c′y, Y
′,C′

amt, r
′, σ̃′ to Sender

28 : Π1 :=
(
β,

(
pkΣt , pk

Σ
r

)
, tx(amt),

(
σ̂′
t, σ

′
r

))
29 : Π2 :=

(
cy, Y,Camt, σ̃, c

′
y, Y

′,C′
amt, σ̃

′)
30 : return ⊤ return (Π1,Π2)

Figure 26. The Puzzle Promise Phase

the validity of σ̃ and abort if it is invalid. Recall that in our
general protocol, we also require the tumbler to prove that y
is a valid solution to puzzle cy. This is also important, since
otherwise the tumbler can launch the following attack to
break the unlinkability, which is also mentioned in A2L [51]:
firstly T picks a receiver R∗ to attack. Then T generates (Y ∗,
y∗) and c∗y, where the solution to the puzzle c∗y is different
from y∗ and sends them to R, and performs the following
protocol. Later in the puzzle solver phase when the sender
S∗ gives out the randomization of Y ∗ and c∗y, T will find that
they are unmatched. Since tumbler only behaves maliciously
to R∗, he can easily link S∗ and R∗.

From the above we know that the tumbler needs to prove
that there is an integer y ∈ Zmin{q,p,t}, where q is the order
of G, p is the order of Ḡ and t > p2q is the size of the
message space of CL encryption, such that Ȳ = ḡy ∧ Y =

gy ∧ cy = Enc(y) (line 17 in Fig. 31). Assume cy = (f̃yh̃v,
g̃v) for some v, where h̃ = g̃dk , and H is a random oracle,
and q < p, such a proof can be provided as follows:

1) sample r ∈ [q2, t], t ∈ B and compute h1 = gr, h2 =
ḡr, h3 = g̃rh̃t, where B is the security parameter of
CL encryption.

2) compute the challenge e← H(h1, h2, h3) ∈ Zq
3) z1 ← r + ey, z2 ← t + ev(z1, z2 are integers without

modulo any order)

Besides, the prover performs a range proof πrange to prove
that the solution in cy is smaller than q. The verifier aborts
if the following does not hold: gz1 = h1Y

e ∧ ḡz1 =
h2Ȳ

e ∧ g̃z1 h̃z2 = h3c
e
y ∧ NIZKVerify(πrange) = 1. The

security analysis for the above proof is follows. The com-
pleteness is straightforward. For the soundness, we perform
the classic rewinding technique to obtain two challenges
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1 : S(skΣs , Y ′, c′y, σ̃
′,C′

amt, pk
Σ
t ) T(skΣt , pkΣs , h

′ = H(tx′))
2 :

(
Y ′′,C′′

amt, σ̃
′′, α

)
← RCRand(pp, Y ′,C′

amt, σ̃
′)

3 : c′′y ← PRand(c′y, α), Y
′′ ← Y ′α

4 : π′′
amt ← PNIZK{(amt, r′′amt)|C′′

amt = com(amt, r′′amt)}
5 : πskΣs

← PNIZK{skΣs |(skΣs , pkΣs ) ∈ Supp(ΠAS.KGen(1
λ))}

6 : σ̂s ← PreSign(skΣs , tx
′, Y ′′) c′′y , Y

′′,C′′
amt, σ̃

′′, π′′
amt, πskΣs

, σ̂s Abort if:

7 : PreVf(σ̂s, h
′, Y ′′) ̸= 1∨

8 : NIZKVerify(πskΣs
) ̸= 1∨

9 : NIZKVerify(π′′
amt) ̸= 1∨

10 : RCVerify(σ̃′′, Y ′′,C′′
amt) ̸= 1

11 : y′′ := Dec(skΣt , c
′′
y )

12 : σs σs ← Adapt(σ̂s, y
′′)

13 : Abort if: Vf(pkΣs , σs) ̸= 1

14 : y′′ := Ext(σ̂s, σs, Y
′′) and abort if y′′ = ⊥

15 : y′ := y′′α−1 and send y′ to R
16 : return y′ return ⊤

Figure 27. The Puzzle Solver Phase

e, e′, such that z1 = r + ey, z′1 = r + e′y, z2 = t + ev,
z′2 = t + e′v, gz1 = h1Y

e ∧ ḡz1 = h2Ȳ
e ∧ g̃z1 h̃z2 = h3c

e
y

and gz
′
1 = h1Y

e′ ∧ ḡz′1 = h2Ȳ
e′ ∧ g̃z′1 h̃z′2 = h3c

e′

y ,

and thus we have g
z1−z′1
e−e′ mod q = Y, ḡ

z1−z′1
e−e′ mod p = Ȳ ,

g̃
z1−z′1
e−e′ h̃

z2−z′2
e−e′ = cy and the witness extraction follows. For

zero knowledge, since r ≥ q2 is larger than ey < q2, z1, z2
would not leak information about the witness y. Finally, the
range proof πrange guarantees that y ∈ Zq. This concludes
the proof.

Puzzle Solver Protocol: At the beginning, T starts
the coin tossing protocol similar to the one performed
in the puzzle promise protocol(line 4-11). Besides, when
S performs its coin tossing, he randomizes c′′y , Y

′′, Ȳ ′′,
C′′
amt, σ̃

′′ and sends the randomized ones together with R′
s,

πk′s to T(line 10-11). T checks the validity of them and
aborts if the signature σ̃ or the proof πk′s is invalid. After-
wards, T solves the puzzle c′′y to obtain y′′, and aborts if
Y ′′ ̸= gy

′′ ∨ Ȳ ′′ ̸= ḡy
′′

. Essentially, this checks whether
the amount and the adaptor witness are still linked to each
other. Recall that in our BlindHub protocol, we are using
RSoRC to link the commitment of the amount Camt and the
adaptor statement Y so that we can link the amount and the
adaptor witness. But here in order to be compatible with
Bitcoin, we generate Y on the curve Secp256k1, which is
different from the one required by RSoRC scheme (RSoRC
requires bilinear group). As a result, RSoRC can only link
Ȳ ′′ to C′′

amt, rather than link Y ′′ to C′′
amt. But the tumbler

can still checks whether Ȳ ′′ is linked to Y ′′ by checking
whether the puzzle solution y′′ is the witness of both Ȳ ′′

and Y ′′. Since if Ȳ ′′ does not link to Y ′′, there will be a
solution that can fit Ȳ ′′ and Y ′′ simultaneously. The rest

R(Π, y′)

Parse Π as
(
β,

(
pkΣt , pk

Σ
r

)
, tx,

(
σ̂′
t, σ

′
r

))
y ← y′ · β−1

σ′
t := Adapt

(
σ̂′
t, y

)
return (σ′

t, σ
′
r)

Figure 28. The Open Phase

1 : Open(Π, α′)

2 : Parse Π as
(
β, pkΣtr, tx, σ̂

)
3 : Set α← α′ · β−1

4 : Set s← s′ · α−1

5 : return (r′, s)

6 : Verify(Π, σ)

7 : Parse Π as
(
β, pkΣtr, tx, σ̂

)
8 : return VfECDSA(pk

Σ
tr, tx, σ)

Figure 29. Open and Verify of ECDSA-based Construction

of the protocol is similar to that in the puzzle promise
protocol, where they compute a common randomness and
perform two-party ECDSA signature. Finally, T completes
the adaptor signature σ̂s and share it with S, who extracts
the witness from it and sends it to R.
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1 : Public parameters: (G, g, q), (p, Ḡ, ḡ, h̄1, h̄2,
ˆ̄G, ˆ̄g,GT , e)

2 : Common Input: pkχt = (Ŷi = ˆ̄gxi , i = 0, 1, 2)
3 : Tumbler’s private Input: skχt = (x0, x1, x2).
4 : Sender’s private Input:amt
5 : S T
6 : tkid, r0, rtkid, ramt ←$ Zp

7 : R0 = ḡr0

8 : Ctkid = ḡtkidh̄
rtkid
1

9 : Camt = ḡamth̄ramt
2

10 : πtkid ← {tkid, rtkid|Ctkid = ḡtkidh̄
rtkid
1 }

11 : πamt ← {amt, ramt|Camt = ḡamth̄ramt
2 }

12 :
R0,Ctkid,Camt, πtkid, πamt
−−−−−−−−−−−−−−−−−−−→ Abort if:

13 : NIZKVerify(πtkid) ̸= 1∨
14 : NIZKVerify(πamt) ̸= 1

15 :

RCVerify:
Abort if the following does not hold:
e(A, Û) = e(ḡ, ˆ̄g)e(R0, Ŷ0)e(Ctkid, Ŷ1)e(Camt, Ŷ2)
∧e(U, ˆ̄g) = e(ḡ, Û)∧
e(T, Û) = e(ḡ, Ŷ0)e(h̄1, Ŷ1)e(h̄2, Ŷ2)

σtkid
←−−−−−−−−−−−−−−−−−−−

RSoRC:
u←$ Zp, A = (ḡRx0

0 Cx1
tkidC

x2
amt)

1
u , T = (ḡx0 h̄x1

1 h̄x2
2 )

1
u

σtkid ← (A,U = ḡu, Û = ˆ̄gu, T )

16 :

RCRand:
µ, δ ← Zp, r

′
amt ← ramt + µ, r′tkid ← rtkid + µ

C′
amt ← ḡamth̄

r′amt
2 ,C′

tkid ← ḡtkidh̄
r′tkid
1

A′ ← (ATµ)
1
δ , T ′ ← T

1
δ , U ′ ← Uδ, Û ′ ← Ûδ

σ′
tkid ← (A′, U ′, Û ′, T ′)

17 : Send (R0,C
′
tkid,C

′
amt, tkid, r

′
tkid, r

′
amt, σ

′
tkid) to R

18 : return (R0,C
′
tkid,C

′
amt, tkid, r

′
tkid, r

′
amt, σ

′
tkid) return ⊤

Figure 30. Registration Protocol of ECDSA-based Construction
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1 : Public parameters: (G, g, q), (p, Ḡ, ḡ, h̄1, h̄2,
ˆ̄G, ˆ̄g,GT , e)

2 : Common Input: pkΣt , pk
χ
t , pk

Σ
tr, pk

Ψ
r , cskΣr , h := H(tx)

3 : Tumbler’s private Input: skΣt , sk
χ
t = (x0, x1, x2), td.

4 : Receiver’s private Input:(skΣr , sk
Ψ
r )

5 : T R

6 : π′
amt ← NIZK{(amt, r′amt)|C′

amt = ḡamth̄
r′amt
2 )}

7 :
(R′

0,C
′
tkid,C

′
amt, σ

′
tkid, π

′
amt, πtup)

←−−−−−−−−−−−−−−−−−−−−−−−−−

token uniqueness proof:
D = ḡtkid.
req, r

′
eq ← Zp, E = ḡreq , F = ḡreq h̄

r′eq
1 .

ceq = H(G,D,C′
tkid, E, F ).

zeq = req + ceq · tkid, z′eq = r′eq + ceq · r′tkid.
πtup ← (D,E, F, ceq, zeq, z

′
eq).

8 : Abort if :
9 : NIZKVerify(πtup) ̸= 1

10 : ∨ NIZKVerify(π′
amt) ̸= 1

11 : ∨D ∈ T
12 : ∨ RCVerify(R′

0,C
′
tkid,C

′
amt, σ

′
tkid) ̸= 1

13 : Else add D into T
14 : y, kt ←$ Zq, Y ← gy, Rt ← gkt

15 : cy ← PGen(pp, y)

16 : πkt ← PNIZK({∃kt|Rt = gkt}, kt)
17 : (cmt, decomt)← Pcom(Rt, πkt)

18 : πdkt ← PNIZK{dkt|(ekt, dkt) ∈ Supp(ΠEnc.KGen(1
λ))}

19 : πskχ ← PNIZK{skχ|(skχ, pkχ) ∈ Supp(ΠRSoRC.KGen(1
λ))}

20 :

RSoRC:
Ȳ ← ḡy, r1 ← Zp, R1 ← h̄r1

1

v ←$ Zp, B = (ḡȲ x0Rx1
1 C′x2

amt)
1
v ,W = (ḡx0 h̄x1

1 h̄x2
2 )

1
v

σ̃,← (B, V = ḡv, V̂ = ˆ̄gv,W )
πY,Ȳ ,cy ←
PNIZK({y|Ȳ = ḡy ∧ Y = gy ∧ cy = Enc(y)})
SRSoRC := (Ȳ , R1,C

′
amt, σ̃)

cmt, Y, πY,Ȳ ,cy , cy, πy, πskχ , πskΣt
, SRSoRC

−−−−−−−−−−−−−−−−−−−−−−−−−→ If NIZKVerify(πY,Ȳ ,cy , (Y, Ȳ , cy)) ̸= 1∨

21 : NIZKVerify(πskχ) ̸= 1∨
22 : NIZKVerify(πskΣt

) ̸= 1∨
23 : RCVerify(σ̃, Ȳ , R1,C

′
amt) ̸= 1 then abort

24 : kr ← Zq;Rr ← gkr

25 : If NIZKVerify(Rr, πkr ) ̸= 1 then abort
Rr, πkr←−−−−−−−−−−−−−−−−−−−−−−−−− πkr ← PNIZK({∃kr|Rr = gkr}, kr)

26 : Rc ← Ry
t

27 : πy,c ← PNIZK({∃y|Y = gy ∧Rc = Ry
t }, y)

28 : R← Rkt·y
r , R := (rx, ry); r

′ ← rx mod q

29 : c1 ← Enc(pkΨr , k
−1
t · h)

30 : c2 ← (cskΣr )
(kt)

−1·r′·skΣt , c← c1 · c2
(decomt, Rt, πkt), c, Rc, πy,c

−−−−−−−−−−−−−−−−−−−−−−−−−→ Abort if:

31 : Vfcom(cmt, decomt, (Rt, πkt)) ̸= 1∨
32 : NIZKVerify(πy,c, (Rc, Y )) ̸= 1∨
33 : NIZKVerify(π′

kt
, Rt) ̸= 1

34 : R′ ← (Rc)
kr ;R′ := (rx, ry); r

′ ← rx mod q

35 : s̃← Dec(skΨr , c)

36 : Abort if: Rs̃ mod q
t ̸= (pkΣtr)

r′ · gh

37 : σ̂ ← s̃ · k−1
r

38 :
(
Ȳ ′, R′

1,C
′′
amt, σ̃

′, β
)
← RCRand(pp, Ȳ , R1,C

′
amt, σ̃)

39 : c′y ← PRand(cy, β), Y
′ ← Y β

40 : Send Ȳ ′, Y ′, R′
1, c

′
y,C

′′
amt, σ̃

′ to Sender

41 : Set Π :=
(
β,

(
pkΣtr

)
, tx, σ̂

)
42 : return ⊤ return

(
Π,

(
Ȳ , Y, cy,Camt, σ̃, Ȳ

′, Y ′, c′y,C
′
amt, σ̃

′))
Figure 31. Puzzle Promise Protocol of ECDSA-based Construction
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1 : Public parameters: group description(G, g, q)
2 : Common Input: eks, cskΣs , h

′ = H(tx′)

3 : S((skΣs , dks), pp, Y ′, Ȳ ′, c′y, σ̃
′) T(skΣt )

4 : k′
t ←$ Zq, R

′
t ← gk

′
t

5 : πk′
t
← PNIZK({∃k′

t|Rt = gk
′
t}, k′

t)

6 : (cm′
t, decom

′
t)← Pcom(R

′
t, πk′

t
)

7 : cm′
t

8 : k′
s ←$ Zq, R

′
s ← gk

′
s

9 : πk′
s
← PNIZK({∃k′

s|R′
s = gk

′
s)

10 :
(
Ȳ ′′, R′′

1 ,C
′′
amt, σ̃

′′, α
)
← RCRand(pp, Ȳ ′, R′

1,C
′
amt, σ̃

′)

11 : c′′y ← PRand(c′y, α), Y
′′ ← Y ′α

12 : π′′
amt ← PNIZK{(amt, r′′amt)|C′′

amt = com(amt, r′′amt)}

13 : πskΣs
← PNIZK{skΣs |(skΣs , pkΣs ) ∈ Supp(ΠAS.KGen(1

λ))} R′
s, πk′

s
, c′′y , Y

′′, Ȳ ′′,C′′
amt, σ̃

′′, π′′
amt, πskΣs Abort if:

14 : NIZKVerify(πk′
s
, R′

s) ̸= 1∨
15 : NIZKVerify(π′′

amt) ̸= 1∨
16 : NIZKVerify(πskΣs

) ̸= 1∨
17 : RCVerify(σ̃′′, Ȳ ′′, R′′

1 ,C
′′
amt) ̸= 1

18 : y′′ := Dec(skΣt , c
′′
y ), R

′
c ← Ry′′

t

19 : Abort if: Y ′′ ̸= gy
′′
∨ Ȳ ′′ ̸= ḡy

′′

20 : π′
y′′ ← PNIZK({∃y′′|Y = gy

′′
∧R′

c = Ry′′

t }, y
′′)

21 : R′ ← (R′
s)

k′
t·y

′′
, R′ := (rx, ry); r

′ ← rx mod q

22 : c′1 ← Enc(eks, (k
′
t)

−1 · h′)

23 : c′2 ← (cskΣs )
(k′

t)
−1·r′·skΣt

24 : c′ = c′1 · c′2

25 : (decom′
t, R

′
t, πk′

t
), c′, R′

c, π
′
y′′

26 : Abort if:
27 : Vfcom(cm

′
t, decom

′
t, (R

′
t, πk′

t
)) ̸= 1∨

28 : NIZKVerify(π′′
y , (R

′
c, Y

′)) ̸= 1∨
29 : NIZKVerify(πk′

t
, R′

t) ̸= 1∨

30 : R′ ← (R′
c)

k′
s ;R′ := (rx, ry); r

′ ← rx mod q

31 : s′ ← Dec(dks, c
′)

32 : Abort if: Rs′ mod q
t ̸= (pkΣts)

r′ · gh
′

33 : ŝ← s′ · (k′
s)

−1 mod q ŝ s← ŝ · (y′′)−1

34 : gk ← (gh
′
(pkΣts)

r′)
1
s , gk := (r′′, ·)

35 : If r′′ ̸= r′ then abort
36 : Else publish signature (r′, s)

37 : y′′ := (s · (ŝ)−1)−1

38 : y′ := y′′α−1 and send y′ to R
39 : return y′ return ⊤

Figure 32. Puzzle Solver Protocol of ECDSA-based Construction
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