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Abstract. At Eurocrypt 2015, Duc et al. conjectured that the success
rate of a side-channel attack targeting an intermediate computation
encoded in a linear secret-sharing, a.k.a. masking with d+1 shares, could
be inferred by measuring the mutual information between the leakage and
each share separately. This way, security bounds can be derived without
having to mount the complete attack. So far, the best proven bounds for
masked encodings were nearly tight with the conjecture, up to a constant
factor overhead equal to the �eld size, which may still give loose security
guarantees compared to actual attacks. In this paper, we improve upon
the state-of-the-art bounds by removing the �eld size loss, in the cases
of Boolean masking and arithmetic masking modulo a power of two. As
an example, when masking in the AES �eld, our new bound outperforms
the former ones by a factor 256. Moreover, we provide theoretical hints
that similar results could hold for masking in other �elds as well.

1 Introduction

If Side-Chanel Analysis (SCA) may be considered as a critical threat against the
security of cryptography on embedded devices, it is no longer a fatality. Over
the past decades, the masking counter-measure [CJRR99,GP99] has gained more
and more success among designers and developers, both from an implementation
and from a theoretical point of view. Masking can be seen as a linear secret
sharing applied on each intermediate computation in the implementation of a
cryptographic primitive that depends on some secret. In a nutshell, masking
increases the attack complexity of any SCA adversary exponentially fast with
the number of shares � provided that the leakages are su�ciently noisy and
independent � while increasing the runtime and memory overhead at most
quadratically [ISW03]. This makes masking a theoretically sound counter-measure.

The Evaluation Challenge. Despite these achievements, the evaluation of
a protected implementation remains cluttered by various technical and even
conceptual di�culties. One way for evaluators to assess the security level of an
implementation is to mount some known end-to-end attacks and to infer some



security level based on the outcomes of these attacks. Nevertheless, this relies
on the assumption that the attacks mounted by the evaluators could depict
well the optimal attacks that any adversary could realize. As an example, if
for masking with two shares, end-to-end attacks using Deep Learning (DL)
depict well optimal attacks [MPP16,BPS+20], it is no longer true when masking
uses more shares [BS20,MCLS22]. This could result in a false sense of security,
and leaves the developers in an uncomfortable situation where implementations
become increasingly hard to evaluate as their security level increases.

The Paradigm of Worst-Case Attacks. One way to circumvent this issue is
to consider attacks in a so-called worst-case evaluation setting [ABB+20]. The
core idea is to apply Kerckho�'s principles to side-channel security, by granting
all the knowledge of the target to the adversary, e.g., the random nonces used
during the encryption, except the knowledge of the secret to guess. This way,
the evaluator can e�ciently pro�le the target implementation in order to (more)
easily mount online attacks that approach the optimal ones. She can also analyze
the leakage of the shares independently, in order to take advantage of masking
security proofs to bound the security level under some assumptions.

Indeed, a series of theoretical works on masking allow to bound the amount of
information leaked by a masked secret, depending on the amount of information
leaked by each share separately, under the assumption that the shares' leakages
are independent. Such bounds can be expressed, e.g., in terms of the Mutual
Information (MI), and then in turn be translated in terms of the Success Rate
(SR) of any attack, as shown by Duc et al. at Eurocrypt 2015 [DFS15a].
Nevertheless, most of the current masking security proofs provide conservative
bounds, possibly due to technical artifacts. In particular, they generally require
more noise and more shares than expected by the best known attacks in order
to reach a given security level [PR13,DDF14,DFS15b,PGMP19].

Duc et al.'s Conjecture. Confronting this observation with empirical evidences,
Duc et al. conjectured that the required number of queries to the target device
needed to recover the target secret of a SCA is inversely proportional to the
product of the MIs of each share [DFS15a]:

Na(SR) ≈
f(SR)∏d

i=0 MI(Yi;Li)
,

where d stands for the masking order,4 and f is a �small constant depending on
the target SR� [DFS19, p. 1279]. Later at Ches 2019, Chérisey et al. bounded
this constant based on the entropy of the target secret [dGRP19].

Due to its practical relevance, this conjecture recently gained attraction with
two independent and simultaneous works by Ito et al. [IUH22] at CCS 2022

4 i.e. the number of shares is d+ 1 if the independence assumption is met.



and by Masure et al. [MRS22] at CARDIS 2022. Using di�erent approaches,
both works prove a nearly-tight version of Duc et al.'s conjecture for masked
encodings, up to a constant factor equal to the �eld size M of the encoding.

This represents a signi�cant improvement with respect to the previous proved
bounds � e.g. O

(
Md
)
in Duc et al.'s proof [DFS15a], which additionally su�ers

from a reduced noise ampli�cation rate. But it remains loose compared to empirical
attacks performed against implementations of concrete ciphers like the Advanced
Encryption Standard (AES). At a high level, Ito et al. and Masure et al.'s
approaches used some back and forth between the MI and other metrics, such
as the Total Variation (TV) [MRS22] or the Euclidean Norm (EN) [IUH22], in
order to be able stating noise ampli�cation lemmata.5 If these conversions taken
separately are tight, their combination introduces an O(M) overhead, leading
to the question whether tighter bounds could be proved, on which we focus.

Our Contribution. In this paper, we positively address the latter question,
by removing this �eld size loss for masked encodings. At a high level, we do
that by working directly with noisy leakages, without relying on reductions to
more abstract (e.g., random probing) leakage models. Technically, our approach
consists in stating the ampli�cation lemma directly in terms of the MI, without
any lossy conversion to other statistical distances. This idea is implemented using
a result from Information Theory called Mrs. Gerber's Lemma (MGL) [Che14,JA14].
The MGL allows us to bound the MI between the secret and the whole leakage
by a function of the MIs between each share and their corresponding leakage.
Moreover, the bound given by the MGL is proved to be tight, in the sense that
there exists some leakage distributions for which the inequality from the MGL
is actually an equality. The only limitation compared to the previous works
is that our bound only works for �elds whose size is a power of 2. Hopefully,
this limitation is not prohibitive, since our result covers, e.g., Boolean masking
or arithmetic masking modulo 2n. Nevertheless, we argue at the end of this
paper that similar results could also be obtained in di�erent �elds, whose size is
not necessarily a power of 2. More generally, and since our results are for now
specialized to masked encodings, it remains a natural question whether they
generalize to computation, as also conjectured by Duc. et al. [DFS15a].

2 Statement of the Problem

We start the paper by stating the problem under consideration, before providing
the solution in section 3, and discussing some perspectives in section 4.

2.1 Notations and Background

Side-Channel Attack. Let (Y,⊕) be a group of �nite order, denoted by
M . Let K ∈ Y be the secret key chunk to guess. To this end, we consider

5 e.g., Young-Minkowski's convolution inequality for the TV [MRS22] or Plancherel's
formula combined with the convolution theorem for the EN [IUH22].



that the adversary knows a sequence of Na plaintexts {P}Na
, and can observe

the sequence of leakages {L}Na
associated to the corresponding intermediate

computations {Y = C(K,P)}Na
. Based on this side-channel information, the

adversary returns a key guess K̂. We de�ne the Success Rate (SR) as SR =

Pr
(
K = K̂

)
. Since the SR increases when the number of observed traces Na

increases as well, we next de�ne the quantity Na(SR,Y) as the minimal number
of leakage traces required for any adversary to reach a success rate at least SR.

Masking. In order to protect cryptographic secrets against side-channel leakage,
we consider the intermediate computationY�assumed to be uniformly distributed
� to be masked. Let Y0, . . . ,Yd be d + 1 random variables out of which d are
uniformly drawn from Y, that we call the shares, and denote byY = Y0⊕. . .⊕Yd

the random variable to protect, that we call the secret. Concretely, for each
trace L = (L0, . . . ,Ld), the adversary observes a leakage Li, whose distribution
conditionally to Yi is independent of all the other random variables. In our
setting, we assume that an evaluator has been able to characterize the amount
of uncertainty about Yi that has been removed by observing Li, measured in
terms of the MI, whose de�nition is recalled hereafter.

De�nition 1 (Mutual Information). Let p,m be two Probability Mass Function
(p.m.f.) over the �nite set Y.6 We denote by DKL(p ∥ m) the Kullback - Leibler
(KL) divergence between p and m:

DKL(p ∥ m) =
∑
y∈Y

p(y) log2

(
p(y)

m(y)

)
. (1)

Then, we de�ne the Mutual Information (MI) between a discrete random variable
Y and a continuous random vector L as follows:

MI(Y;L) = E
L

[
DKL

(
p
Y | L

∥∥∥ p
Y

)]
, (2)

where p
Y
and p

Y | L respectively denote the p.m.f. of Y and the p.m.f. of Y given
a realization l of the random vector L, with the expectation taken over L.

In the remaining of this paper, we will assume that for each share Yi and its
corresponding sub-leakage Li, we have a bound MI(Yi;Li) ≤ δi. Intuitively, the
lower the δi, the less informative the leakages, and the lower the SR.

2.2 Problem and Conjecture

The problem that we consider here is to obtain upper bounds of the shape:

Na(SR,Y) ≥ f(SR,Y)∏d
i=0(δi/τ)

r
, (3)

6 We assume without loss of generality that m has full support over Y.



where f(SR,Y) is a constant, τ is the so-called noise threshold, i.e., the maximum
amount of leakage that can leak such that the masking counter-measure remains
sound and r is the ampli�cation rate. Duc et al. [DFS15a] conjectured that Na

satis�es an upper bound of the shape of Equation 3, where τ ≈ 1 and r = 1.

A Reduction to Mutual Information Maximization. At Ches 2019,
Chérisey et al. have shown that Na can be linked to the MI as follows:

Na(SR,Y) ≥ f(SR,Y)

MI(Y;L)
, (4)

where f is a known, computable function of SR that can be bounded based
on the entropy of Y so that f(SR,Y) = O(log(M)) [dGRP19]. In other words,
it is possible to reduce the problem of bounding the security level of masked
implementation to the the problem of bounding the MI:

max
Pr(Li | Yi),i∈J0,dK

MI(Y;L)

s.t. MI(Yi;Li) ≤ δi
. (5)

Following the previous conjecture, we expect that MI(Y;L) ≈
∏d

i=0(δi/τ)
r is a

valid upper bound for this problem, where τ ≈ 1, and r = 1, whereas it could so
far only be proven that MI(Y;L) ≈ M

∏d
i=0(δi/τ).

We note that the optimization de�ned in Equation 5 is convex, with convex
constraints, as stated hereafter.7

Proposition 1. The optimization problem de�ned in Equation 5 is convex.

Proof. Let l be �xed. The mapping

Pr(Y0 | L0 = l0) , . . . ,Pr(Yd | Ld = ld) 7→ Pr(Y | L = l)

is a convolution product [MCLS22, Prop. 1] so it is (d + 1)-linear, and thereby
convex. Hence, since the mapping Pr(Y | L = l) 7→ −H(Y | L = l) is also
convex, the composition of both mappings remains convex. Since Pr(Y | L) 7→
−H(Y | L) is the expectation of the latter composed mappings, it remains
convex. Adding H(Y) = log2(M) keeps the convexity property unchanged.

As a result of this convexity, the optimal solution to the optimization of Equation 5
is necessarily such that for each i ∈ J0, dK, we have MI(Yi;Li) = δi.

3 A Proof without Field Size Loss

We now provide our main result, namely we give a solution to the optimization
problem stated in Equation 5. Compared to previous works, we introduce a mild
additional assumption on the group Y, namely that its order is a power of two.
Nevertheless, this assumption covers Boolean masking and arithmetic masking
modulo 2n. To this end, we need to introduce some de�nitions.

7 The interested reader may �nd a similar convexity result, stated in terms of statistical
distance, in the works of Dziembowski et al. [DFS16, Cor. 2].



3.1 Introducing Mrs. Gerber's Lemma

We �rst recall the de�nition of the entropy for a binary random variable.

De�nition 2 (Binary Entropy). Let

Hb : [0, 1] −→ [0, 1]
p 7−→ −p log2(p)− (1− p) log2(1− p)

be the binary entropy function.Let H−1
b : [0, 1] 7→

[
0, 1

2

]
be the inverse of Hb

restricted to
[
0, 1

2

]
.

Likewise, we introduce the convolution for a binary random variable.

De�nition 3 (Binary Convolution ⋆). Let

⋆ : [0, 1]2 −→ [0, 1]
x, y 7−→ (1− x)y + x(1− y).

Note that when ⋆ is iterated, it can be replaced by a product, as stated next.

Proposition 2 (Iterated Star for Bias). For x0, . . . , xd ∈ [0, 1], the ⋆ operations
can be mapped into a product for operands in the form of a bias as follows

d
⋆

i=0

(
1

2
− xi

)
=

1

2
− 2d

d∏
i=0

xi.

Proof. This is proved by induction on d.

De�nition 4 (Mrs. Gerber's functions). For any positive integers n, p, let
fH,2n : [0, 1]p+1 → [0, 1] be the function de�ned by

fH,2n(x0, . . . , xp) = Hb

(
p
⋆

i=0
H−1

b (xi)
)

.

Moreover, we also de�ne the function fMI,2n : [0, 1]p+1 → [0, 1] as

fMI,2n(δ0, . . . , δp) = 1− fH,2n(1− δ0, . . . , 1− δp) .

Remark 1. The function fMI is decreasing with respect to each of its inputs, and
is equal to 0 when every δi = 0.

We are now equipped to introduce the technical lemma that will set the
ground for our result, namely the so-called MGL. MGL has been �rst established
by Wyner and Ziv for a group Y of two values, but it has been extended to any
Abelian group whose order is a power of two by Jog and Anantharam [JA14].



Theorem 1 (Mrs. Gerber's Lemma [JA14, Thm. 5.1, Claim 6.1]). Let
(Y,⊕) be any Abelian group of order M = 2n. Let Y0, . . . ,Yd be d+1 independent
Y-valued random variables with side information L0, . . . ,Ld. We assume that
conditionally to Yi, Li is independent of any other random variable. De�ne
xi = H(Yi | Li), and without loss of generality assume that x0 ≥ . . . ≥ xd. Let
k =

⌊
x0

⌋
and p = max {i|⌊xi⌋ ≥ k}, then

k + fH,2n(x0 − k, . . . , xp − k) ≤ H(Y0 ⊕ . . .⊕Yd | L0, . . . ,Ld) . (6)

Remark 2. In this paper, for better readability, all the logarithms are taken in
base 2, but all the results we rely on have been established with logarithms in
natural base. Hopefully, the proof of the MGL forM = 2 can be straightforwardly
extended to logarithms in any base [Che14, Thm. 1]. Likewise, all the technical
results used in Jog and Anantharam's proof remain insensitive to the base, as
they essentially involve computing ratios of logarithms [JA14, Sec. 2].

3.2 Application of Mrs. Gerber's Lemma to Masking

Using the MGL, we prove the following upper bound on the side-channel information
leaked by a masked encoding.

Corollary 1 (Security of Masking). Let M = 2n and d be a positive integer.
Let Y0, . . . ,Yd be a (d + 1)-sharing of Y and L = (L0, . . . ,Ld) be such that,
conditionally to Yi, the variable Li is independent of the others. For all i ∈ J0, dK,
de�ne MI(Yi;Li) = δi, and assume without loss of generality that there is a
positive integer p such that for all i ≤ p, δi ≤ 1 and for all i > p, δi ≥ 1. Then

MI(Y;L) ≤ fMI,2n(δ0, . . . , δp) . (7)

Proof. We upper-bound MI(Y;L) = H(Y) − H(Y | L) = n − H(Y | L) by
lower-bounding H(Y | L), using Theorem 1.

H(Y | L) = H(Y0 ⊕ . . .⊕Yd | L)
≥ n− 1 + fH,2n(H(Y0 | L0)− (n− 1), . . . ,H(Yp | Lp)− (n− 1))

= n− 1 + fH,2n(1−MI(Y0;L0) , . . . , 1−MI(Yp;Lp))

= n− fMI,2n(MI(Y0;L0) , . . . ,MI(Yp;Lp))

3.3 Comparison with Former Upper Bounds

The removal of the �eld size loss in Theorem 1 is illustrated by Figure 1. The
graph depicts the upper bounds on MI(Y;L) (in bits) with respect to the noise
parameter δ � assuming that the δi are all equal. The dotted curves correspond
to the bounds given by Ito et al. [IUH22] and Masure et al. [MRS22] for di�erent



masking orders, whereas the dashed curves are obtained with our new bound.
It can for example be noticed that for d = 1 and δi = 2−7, the bound from Ito
et al. and Masure et al. [IUH22,MRS22] is roughly equal to 2−4, whereas our
upper bound is less than 2−12, meaning that the gain is roughly 212−4 which
corresponds to the �eld size. A similar factor is observed for larger d values.

d = 1 d = 2 d = 3 [IUH22,MRS22]

2−10 2−7 2−4 2−1 22
2−20

2−12

2−4

24

δi

B
o
u
n
d
M
I(
Y
;L

)

Fig. 1: Illustration of Equation 1 for M = 256 (e.g., the AES S-box).

We also add the following proposition (proven in Appendix) that gives a more
intuitive view of our results and makes the removal of the �eld size loss explicit.

Proposition 3 (Approximation in 0). The Taylor expansion of the MGL
function is the following:

fMI,2n(δ0, . . . , δd) = η

d∏
i=0

δi
η
+ o

(
d∏

i=0

δi

)
, (8)

where η = (2 ln 2)−1 ≈ 0.72.

We note that the η parameter does not exactly correspond to the noise rate τ
of subsection 2.2, since it depends on the noise level. But for high noise levels,
where the �rst-order Taylor expansion is accurate, its value of 0.72 corresponds
to the noise threshold in the CCS 2022 and the CARDIS 2022 papers.8

3.4 The MGL: Tighter or Tight?

We have shown in subsection 3.3 that our upper bound obtained from the MGL
is tighter than the one achieved by Ito et al. [IUH22] and Masure et al. [MRS22].

8 For low noise levels, it gets gradually closer to one, but this gain has limited practical
relevance since masking only provides high security with su�cient noise.



We may therefore wonder to what extent the new MI upper bound is tight. In
other words, are there some leakage models such that the MI between the secret
and the leakage of all shares equals the MGL function. In this respect, Jog and
Anantharam's results could be interpreted as the fact that the bound given by
the MGL is at least locally tight, as stated hereafter.

Proposition 4 ([JA14, Thm. 5.1]). For all (x0, . . . , xd) ∈ [0, n]
d+1

, there
exists a leakage distribution (L | Y) such that:

1. For all i ∈ J0, dK, we have H(Yi | Li = li) = δi and

2. H(Y | L = (l0, . . . , ld)) = k + fH,2n(x0 − k, . . . , xp − k) ,

where k and p are the parameters de�ned in Theorem 1.

In other words, without further assumption on the leakage model, the bound
given by the MGL is the best possible. We next investigate whether it is actually
tight for practically-relevant leakage functions by confronting the bounds from
the MGL to the direct computation of the MI for a shared secret. For this
purpose, we assume that each share leaks a deterministic function of its value
with an additive Gaussian noise, similarly to the experiments conducted by Ito
et al. [IUH22, Sec. 7.1] and Masure et al. [MRS22, Sec. 3.1]. In particular, we
consider two deterministic leakages, namely the Least Signi�cant Bit (l.s.b.)
of the share, or its Hamming weight. The MI is estimated with Monte-Carlo
methods by sampling Nv = 10, 000 leakages. Then, for each simulated leakage,
the conditional Probability Mass Function (p.m.f.) can be exactly computed
using a Soft-Analytical SCA (SASCA) [VGS14].9

The results are depicted in Figure 2, for Boolean sharings with 2 shares and
3 shares, and for l.s.b. (Figs. 2a, 2b) and Hamming weight leakages (Figs. 2c,
2d). Each plot depicts the MI of the secret, depending on the variance σ2 of
the additive Gaussian noise. As one can observe on Figure 2a and Figure 2b,
the bounds obtained by the MGL, depicted in dashed curves, are tight with the
plain curves computed from the SASCA for the l.s.b. leakage model. However, for
the Hamming weight leakage model, we observe a gap between our upper bound
and the ground truth. Moreover, the gap between the dashed curve and the plain
curve in Figure 2d seems wider than the one in Figure 2c. This shows that the
Hamming weight leakage model does not verify Proposition 4. The combination
of these observations con�rms that no signi�cant improvements of the bound can
be obtained without making additional assumptions on the leakage function.

3.5 Linking the MI with the Success Rate

Having upper bounded the MI between the secret and one side-channel trace,
we may then lower bound the required number of queries for any SCA adversary,
by leveraging Chérisey et al.'s f(SR,Y) function, as stated hereafter.

9 https://scalib.readthedocs.io/en/latest/index.html.

https://scalib.readthedocs.io/en/latest/index.html
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Fig. 2: MI in function of the Gaussian noise variance σ2, for n = 8 bits.

Corollary 2. In the same setting as in Corollary 1,

Na(SR) ≥
f(SR,Y)

fMI,2n(δ0, . . . , δp)
· (9)

Proof. Combining Corollary 1 with Equation 4.

We compare this approach with a simulated SASCA attack on Figure 3, for
the two leakage models investigated in subsection 3.4. The plain curves denote
the attack complexity obtained from a key recovery. There, the success rate
is estimated with re-sampling from a validation set of Nv = 10, 000 traces.
More precisely, the Nv validations traces are re-shu�ed between 100 and 1, 000
times to emulate di�erent attack sets. While this method is prone to be biased
when Na is close to Nv, the method remains sound if the success rate converged
towards 1 within Nv traces, as it cancels the bias.10 The dotted green curves
correspond to Equation 4 where the direct estimation of the MI between the
shared secret and the leakage of the shares (from Figure 2) is used. The dashed
red curves correspond to the bound given by Equation 9. One can notice that the
plain curves and the dotted curves are always close to each other, meaning that
Chérisey et al.'s function is reasonably tight in our context. Moreover, similarly

10 This condition is veri�ed retrospectively on Figure 3.
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Fig. 3: Extending MI bounds to concrete security bounds.



to what was noticed in subsection 3.4, the bound provided by Equation 9 is tight
for the l.s.b. leakage model, but remains non-tight for the HW leakage model.

4 On the Dependence of the Group Structure

In our previous derivations, we assume that the �eld in which masking is applied
is a power of two. Since this is the only limitation compared to the results of Ito et
al. [IUH22] and Masure et al. [MRS22], we �nally discuss whether this additional
assumption is crucial. To this end, we show that Masure et al.'s approach using
Pinsker [CT06, Lemma 11.6.1] and reverse Pinsker [SV15, Thm. 1] inequalities
can be improved using the theory of majorization [MOA80].

In a nutshell, majorization can be seen as a partial order relationship on
p.m.f.'s quantifying �how spread out� a p.m.f. is, compared to another. The most
spread out p.m.f. is the uniform distribution, so it can be used to assess how
close to uniform a given p.m.f. is. Hereupon, Rioul recently characterized optimal
Pinsker-like and reversed Pinsker-like inequalities [Rio22]. While the optimal
Pinsker inequality does not improve upon Pinsker's inequality, the optimal reverse
Pinsker does improve it. Leveraging this improvement, the results of Masure et
al. [MRS22] are re�ned for arbitrary �eld size, as stated hereafter.

Theorem 2 (Informal). Let Y be a group of order M , and Y,L denote the
joint distribution of a d + 1-shared secret and its corresponding leakage. Let
τ = (2 log(2))

−1 ≈ 0.72, and let P = 1
4

∏d
i=0 MI(Yi;Li) τ

−1. Then, for any
α ∈ [0, 1], there exists a constant Cα ∈ [log2(M), 2M ] such that

MI(Y;L) ≤ CαP
α . (10)

In particular, for α = 1
2 , we have

MI(Y;L) ≤ log(M)

(
1 +

1

M

)
P 1/2 . (11)

The bounds in Theorem 2 � whose formal statement is given and proven in
Appendix � are not as tight as the ones from Corollary 1 but hold for any �eld
size M , which makes them interesting when M is not a power of two.

Figure 4 depicts the range of Cα depending on α. It illustrates that there is
a trade-o� between the constant factor overhead Cα and the e�ective number
of shares α · (d+ 1). Overall, this provides good hints towards the conjectured
absence of constant factor overhead in non-binary �elds, and opens some perspectives
towards a formal proof of the masked encoding bound in this context.

5 Conclusion and Perspectives

From a practical perspective, our work contributes to formalizing the soundness
of so-called shortcut evaluations, where the security level of an implementation
protected with higher-order masking is assessed based on the security of its
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Fig. 4: Cα for M = 16, 32. The two black dashed horizontal lines are at

Cα = logM and Cα = 2M . The dashed vertical line is at α = log(M logM)
2 log(M−1)

and distinguishes two regimes for Cα, a logarithmic one and a polynomial one.

individual shares. By performing our proofs directly with noisy leakages, we
show that such shortcuts are actually tight for masked encodings.

As mentioned in introduction, a natural extension of this work is to explore
the tightness of bounds for masked computations (e.g., multiplications) and not
only encodings. Besides, our results of subsection 3.4 show that while the bound
we provide is locally tight (i.e., tight for some leakage functions), it is not tight for
other practically-relevant leakage functions like the Hamming weight one (and,
in general, for leakage functions having preimages of di�erent sizes). It could
therefore be interesting to study whether a mild characterization of the leakages
could be used to improve the shortcut evaluation of masking for these functions.
Another possible track of research is to study whether improved connections
between the mutual information and the success rate can be obtained: despite
the bounds of subsection 3.5 already give good evaluations, there remains a small
gap that could possibly be removed (e.g., taking advantage of other information
theoretic metrics like the Alpha-Information [LCGR21]). Eventually, yet another
question is whether these bounds, for now studied in a known (random) plaintext
context cover adaptive chosen-plaintext side-channel attacks [VS10]?



A Proof of Proposition 3
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That it under normalized form

MI(Y ;L) ≤ log(e)
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d∏
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MI(Li;Yi)
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log e
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( d∏
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MI(Li;Yi)

)
(15)
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MI(Li;Yi)

)
. (16)

B Technical Statements and Proofs from section 4

Proposition 5 (Optimal Reversed Pinsker). Let fopt be the optimal reverse
Pinsker inequality, i.e.,

fopt :
[
0, 1

M

]
−→ R+

∆ 7−→ 1
M ((1 +M∆) log(1 +M∆)

+((1−∆)M − L) log((1−∆)M − L)) (17)

where L = ⌊M(1−∆)⌋. For all p.m.f. P we have DKL(P ∥ U) ≤ fopt(∆(P,U)).

Proof. By applying the entropy which is Schur-concave to Eqn. 51 in [Rio22].
We factor − logM in each term of the inequality to obtain Prop. 5.

Theorem 3 (Formal version of Theorem 2). Let H be the class of function
that is lower bounded by fopt, concave when composed with a square root and

increasing. Let P = 1
4

∏d
i=0 CMI(Yi;Li), we have

MI(Y ;L) ≤ inf
f∈H

(f ◦ √ )(P ). (18)



Let Cα = sup∆∈]0,1− 1
M ] f

∗(∆)∆−2α = max∆=k/M,k∈{1,...M−1} f
∗(∆)∆−2α.

We have

MI(Y ;L) ≤ min

(
log(1 +M2(4

1
M − 1)P ), (

1

M
+
√
P ) log(1 +M

√
P )

)
(19)

≤ inf
α∈[0,1]

Cα · Pα (20)

≤ log(M)(1 +
1

M
) · P 1

2 . (21)

Remark 3. The in�num in Eqn. 18 can be computed with the Legendre-Fenchel
transform f 7→ f∗ (i.e. f∗(p) = supx{px − f(x)}). Indeed, it is given by ∆ 7→
−(−fopt ◦

√
·)∗∗(∆2) by applying Thm. 10 in [Tou05].

The di�erent inequalities are shown in Fig. 5. f1 is the best for ∆ ≤ 1/M
and else f2 is the best. Eqn. 21 shows that if we reduce the security exponent to
1
2 we can obtain a mild (logarithmic) dependency in the �eld size.
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Fig. 5: Illustration of the inequalities for M = 16. Pinsker is the dashed blue line.
The classical reverse Pinsker is the orange line. The optimal reverse Pinsker fopt
is the green curve. The dotted curve is f2 and the red curve f1.



Proof. All derivations of [MRS22] holds for f ∈ H which shows Eqn. 18. Indeed,

KL(Y |L||U) ≤ fopt(∆) Prop. 5 (22)

≤ f(∆) fopt ≤ f (23)

≤ f(
1

2

d∏
i=0

2∆((Yi|Li);U)) XOR Lemma (24)

= (f ◦
√
·)(1

4

d∏
i=0

4∆((Yi|Li);U))2 (25)

≤ (f ◦
√
·)(1

4

d∏
i=0

C KL(Yi|Li||U)) Pinsker (26)

Since (f ◦
√
·) is concave, we apply Jensen inequality and take the expectation

to obtain the desired inequality. The expectation of the product is simpli�ed to
the product of the expectations by independence of the terms. Let f1 : ∆ 7→
log(1 + M2(4

1
M − 1)∆2) ≈ MC∆2 and f2 : ∆ 7→ (∆ + 1

M ) log(1 + M∆). We
show that f1 and f2 are in H. For f2 it is clear since f2 is f

∗ where we removed
the negative 1/M periodic term. f1 is clearly concave in ∆2 and increasing.
To ensure that f1 ≥ fopt we consider the case of equality in 1

M . This impose

log(1 + βMM−2) = 2
M where βM = M2(4

1
M − 1). For ∆ ≤ 1

M , Mfopt(∆) =
(1+M∆) log(1+M∆)+(1−M∆) log(1−M∆) ≤ 2

M log(1+M2∆2) by Jensen.
This upper bound of fopt is a lower bound of f1. Since log is increasing the

inequality holds if and only if 1 + βM∆2 ≥ (1 +M2∆2)
2
M . Equality holds in 0

and 1/M and we show that the derivative of the di�erence is increasing then

decreasing. The derivative is given by 2∆(βM − 2M(1 + M2∆2)
2
M −1) and its

sign is given by βM − 2M(1 + M2∆2)
2
M −1. This quantity is positive in 0 and

monotonically decreasing hence the result. It remains to prove the inequality for
∆ ≥ 1

M . To do so, we show that f1(∆) ≥ log(1 +M∆) ≥ 1+M∆
M log(1 +M∆).

Since log is increasing it is enough to have 1 + βM∆2 ≥ 1 + M ∆ that is
∆ ≥ M/βM i.e. 4

1
M − 1 ≥ 1

M . This holds since ex − 1 ≥ x by convexity of the
exponential. This shows that f1 ∈ H and Eqn. 19 is proved. Let Hpoly = {fα :
∆ 7→ Cα∆

2α|α ∈ [0, 1]}, we show that Hpoly ⊂ H. Functions Hpoly are concave
when composed with a square root since α ≤ 1, increasing since α ≥ 0 and lower
bounded by fopt by de�nition of Cα. This proves Eqn. 20. To prove Eqn. 21
we observe that C0 = log(M), Cα is continuous and increasing in α. Consider
the values of ∆ for which the sup in the de�nition of Cα is reached. Since fopt
is square-root convex in the intervals [k/M, (k + 1)/M ] and ∆ 7→ Cα∆

2α is
square-root concave we can only have equality in k+1

M . This shows that Cα =
max∆=k/M,k∈{1,...M−1} f

∗(∆)∆−2α. We verify that the maximum is reached in

1− 1/M when α = 1
2 . The ratio of the sequence f∗(k/M)( k

M )−2α is larger than
1 which proves Eqn. 21.
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