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Abstract. The sampling of polynomials with fixed weight is a pro-
cedure required by all remaining round-4 Key Encapsulation Mecha-
nisms (KEMs) for Post-Quantum Cryptography (PQC) standardization
(BIKE, HQC, McEliece) as well as NTRU, Streamlined NTRU Prime, and
NTRU LPRrime. Recent attacks have shown that side-channel leakage of
sampling methods can be practically exploited for key recoveries. While
countermeasures regarding such timing attacks have already been pre-
sented, still, there is no comprehensive work covering solutions that are
also secure against power side-channels.
Aiming to close this important gap, the contribution of our work is three-
fold: First, we analyze requirements for the different use cases of fixed
weight sampling. Second, we demonstrate how all known sampling meth-
ods can be implemented securely against timing and power/EM side-
channels and propose performance enhancing modifications. Further-
more, we propose a new, comparison-based methodology that outper-
forms existing methods in the masked setting for the three round-4 KEMs
BIKE, HQC, andMcEliece. Third, we present bitsliced and arbitrary-order
masked software implementations and benchmarked them for all relevant
cryptographic schemes to be able to infer recommendations for each use
case. Additionally, we provide a hardware implementation of our new
method as a case study, and analyze the feasibility of implementing the
other approaches in hardware.

1 Introduction

With the potential advent of large-scale quantum computers, rendering “clas-
sic” asymmetric cryptosystems like Elliptic Curve Cryptography (ECC) insecure,
wide deployment of Post-Quantum Cryptography (PQC) has become inevitable.
After three rounds of thorough analysis and many broken cryptosystems, a first
set of algorithms has been selected for standardization. To enable further diver-
sification of security assumptions, a fourth round of standardization has been
launched, consisting of the three code-based schemes BIKE, HQC, and McEliece.



One building block for all round four candidates is fixed weight polynomial
sampling. Additionally, this is also required in the three lattice-based schemes
NTRU, which may replace Kyber if potential patent issues are not resolved,
Streamlined NTRU Prime, which is currently the default algorithm in OpenSSH 9,
and NTRU LPRrime. The output of this sampling is a uniform random binary or
ternary polynomial of a specific size with a fixed number of non-zero coefficients.
Multiple algorithmic approaches have been proposed [5, 9, 10,15,18] for this.

Karabulut et al. presented the first power side-channel attack on fixed weight
sampling [14], targeting NTRU, Streamlined NTRU Prime and Dilithium. Recently,
Guo et al. [12] introduced an attack on HQC and BIKE utilizing the fixed weight
polynomial sampling with variable timing depending on the seed. Sendrier [18]
seized their approach and presented suitable countermeasures for BIKE. While
this attack exploits timing differences, there is no reason to believe that a power
side-channel cannot be exploited analogously.

On the defense end, however, there is no comprehensive analysis of effective
countermeasures against this type of attack. In particular in view of these recent
attacks, it becomes urgent to develop also power side-channel secure methodolo-
gies for fixed weight polynomial sampling.

Hence, we present a holistic examination of the fixed weight polynomial sam-
pling problem with different attacker models, parameters, sampling methods,
and implementation variants. We show how power side-channel secure variants
of all suitable algorithms can be realized, propose performance enhancing mod-
ifications, and provide bitsliced masked software implementations for arbitrary
masking order which we make publicly available. Additionally, we develop a
new probabilistic sampling method accompanied with a hardware implementa-
tion and a new methodology for Boolean masked comparison which is a core
component for multiple of the algorithms. We benchmark and evaluate our im-
plementations for all relevant PQC schemes.

2 Preliminaries

The two most important parameters for the fixed weight polynomial sampling
problem are the length of the polynomial and the weight denoted by N and W
throughout the paper.

Binomial Distribution. For the Binomial probability distribution, we denote
the probability mass function as

B(k, n, p) =
(
n

k

)
pk(1− p)n−k (1)

where k is the number of successes in n independent Bernoulli trials, each with
probability p. We know that B(k, n, p)−1 is the expected number of repetitions
of the overall experiment until exactly k out of n successes are reached.
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2.1 Side-Channel Analysis

In this work, we consider timing behavior and power consumption of a target
implementation of a cryptographic algorithm as possible side channels that could
be exploited by an attacker. For timing attacks, we consider runtime differences
caused by memory or cache accesses, branching on sensitive data, or secret de-
pendent arithmetic operations.

For power side-channel attacks, we distinguish between single-trace and multi-
trace attacks. In the single-trace scenario, the attacker has given only one single
trace of the cryptographic operation, i.e., the attacker cannot invoke the system
multiple times with the same secret key. However, we additionally assume that
an attacker is able to mount template attacks. In this case, the attack profiles a
target device to create a power template which is used to match a single trace
to the correct key.

For multi-trace attacks, we assume that an attacker can collect as many
traces as possible. These traces are used for Differential Power Analysis (DPA)
including statistical analyses like Correlation Power Analysis (CPA).

2.2 Masking

Masking is a well established countermeasure against physical Side-Channel
Analysis (SCA) and based on the strong theoretic foundation of secret shar-
ing. A secret value x is split into d+ 1 shares xi with 0 ≤ i ≤ d so that x =
x0 ◦x1 ◦ · · · ◦xd. The group operator ◦ is usually addition, either in F2 (Boolean
masking) or a larger field (additive masking). The parameter d defines the secu-
rity order based on the d-probing model [13], where a higher value of d is more
secure, because it implies more shares making the attack more complicated.

Functions that can be applied sharewise such that f(x) = f(x0) ◦ f(x1) ◦
· · · ◦ f(xd) are easy and efficient to mask. One of these linear functions is for
example a XOR in the Boolean masking domain. Non-linear functions, for exam-
ple an AND, cannot be applied sharewise and need to be expressed differently.
The challenge in masking cryptographic implementations relies in avoiding or
efficiently implementing non-linear functions.

2.3 Bitsclicing

An important method for efficient Boolean masked software implementations is
bitslicing. Bitslicing changes the representation of values. Instead of storing n
values in n distinct n-bit registers (32-bit in our case), we aggregate the i-th
bit of each value in one register. This corresponds to a matrix transposition.
If the maximum bit-length of the values is below the register width, bitslicing
allows a condense representation and simultaneously fewer Boolean instructions.
Bitslicing is especially usefull for algorithms that operate on single bits at a
time, because it allows to do single bit operations on n values simultaneously
with one instruction, comparable to Single Instruction Multiple Data (SIMD)
instructions. For masked implementations, bitslicing helps to reduce the number
of costly non-linear operations.
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2.4 Random Integer Sampling from Range

Sampling a uniform random integer from a given range is not always as simple as
it seems. Both in software and hardware we can obtain uniform random bits from
e.g., a Pseudorandom Number Generator (PRNG). By concatenating l random
bits, we get a random value in the range of [0, 2l).

If we need a random value r in the range of [0, x) (which we denote with
rand(x) in the following), where x is not a power of two, we can sample r from
[0, 2l), with the smallest l such that x < 2l, and reject r if it is not smaller than
x. The closer x is to 2l, the less rejections occur, in the worst case however, the
chance for rejection is almost 50%.

Instead of rejecting values, one can alternatively use a function that maps the
values from [0, 2l) to [0, x). An obvious function for this is computing r mod x.
Given l random bits stored in r and a bit width of t for the target range x one
can alternatively compute a (l + t)-bit multiplication rx and take the upper t
bits of the result, which again will be a value between 0 and x− 1.

The drawback of both of these mapping methods is that they introduce a
bias. When x is not a power of two, 2l will not divide x, therefore some values
in the output range [0, x) will be more likely than others. With increasing 2l

compared to x, the bias becomes neglectable and the output becomes close to
uniform random.

If we want to sample an integer from a range [i, x) that is not starting at 0,
we can use the previous methods and compute i+ rand(x− i).

2.5 Applications

Fixed weight polynomial sampling is a part of many PQC schemes, many of them
can potentially become (or already are) a standard determined by the National
Institute of Standards and Technology (NIST).

BIKE. Bit Flipping Key Encapsulation (BIKE) has among three other KEMs ad-
vanced to the fourth round of NIST’s standardization process and is a code-based
scheme relying on Quasi-Cyclic Moderate-Density Parity-Check (QC-MDPC)
codes. Polynomials live the cyclic polynomial ring R := F2[X]/(Xr − 1), thus
coefficients are either 0 or 1 and the number of coefficients is determined by the
parameter r of the reduction polynomial. During key generation, two random
fixed weight polynomials are sampled: (h0, h1) with |h0| = |h1| = W/2. More-
over, during encapsulation and decapsulation, two fixed weight polynomials e0, e1
are sampled with |e0|+ |e1| = t where t is a publicly known and fixed parameter.

HQC. HQC also advanced to the fourth round of standardization. HQC also de-
ploys fixed-weight sampling in key generation, encapsulation and decapsulation.
Analogously, polynomials in HQC have the polynomial ringR := F2[X]/(Xr − 1).
Apart from parameters, the only difference then is that the polynomial e0, e1 are
sampled separately rather than with a joint fixed weight.
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McEliece. The third remaining fourth-round candidate also uses fixed-weight
sampling, but only in encapsulation to sample the “message”.McEliece is deemed
to be the most conservative candidate during the whole standardization, being
based on the more than 40 years old original McEliece cryptosystem.

NTRU. NTRU is a lattice-based Key Encapsulation Mechanism (KEM) and
may be standardized by NIST if patent restrictions are not resolved for Kyber.
It comes in two “flavors”: HRSS and HPS. For both, four polynomial rings are
deployed. Fixed-weight sampling is used only during key generation of the HPS
parameter sets. Furthermore, NTRU-HPS imposes the special requirement of
having exactly W/2 coefficients +1 and W/2 to be −1.

Streamlined NTRU Prime and NTRU LPRrime. Streamlined NTRU Prime is a
lattice-based KEM and is, together with X25519, currently the default algorithm
for OpenSSH 9. NTRU LPRrime is a merger with Streamlined NTRU Prime during
the second round of NIST standardization. Both require fixed-weight sampling
in their respective key generations, similar to NTRU with a ternary target space.
However, no requirement is set on the number of +1 and −1.

Dilithium. Dilithium is the designated PQC digital signature standard. It is
based on the Module-Learning With Errors problem and operates on polynomi-
als in the ring Zq[X]/(X256 + 1) with q = 8380 417. Security is scaled through
the matrix parameters. Being constructed with the help of the Fiat-Shamir with
aborts technique, it simulates the verifier by querying a random oracle to sample
a challenge during signature generation. This challenge has the specific form of
a fixed-weight polynomial with ternary coefficients and no special restrictions on
the number of coefficients with value −1. Based on several abort checks, a sig-
nature candidate may get rejected, starting over the whole signature generation
including computing a new challenge c. Thus, it is not directly clear that c from
rejected iterations is public information, even though the final c is part of the
signature.

Previous work on the GLP signature scheme, which is a predecessor of
Dilithium, has found that if the rejected challenges are viewed as public infor-
mation together with their respective commitment, either one has to live with
an additional heuristic security assumption, or to add a statistically hiding com-
mitment scheme, tolerating the additional communication cost [3]. This is also
stated regarding Dilithium in a recent preprint [1], where they state that rejected
challenges are public and the commitment as well, but based on the Learning
with Rounding assumption. To avoid this additional assumption, in our opinion
it would be also feasible to perform the rounding masked, hashing w1 in masked
domain, obtaining a masked bit-string c̃, which is already a representation of
the challenge. This can then be unmasked (since we know that also rejected
challenges are non-sensitive) and used to perform the fixed-weight sampling.
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3 Conceptual Considerations

Although the fixed weight polynomial sampling problem at is core is simple, its
application comes with multiple problem dimensions depending on the algorith-
mic scheme, and implementation target.

Attacker Model. The sampling can for example be used in different parts of a
KEM. If it is part of the key generation that is only executed once for one key,
only singe-trace side-channel attacks are applicable. In this case, profiled Simple
Power Analysis (SPA) is the strongest attacker model.

Since in encapsulation no secret key is used at all, usually no multi-trace
attacks are eligible. In the currently known applications, fixed weight sampling
in encapsulation is used to sample the message or an error, which is done once.
For the decapsulation, multi-trace attacks are possible if the KEM key is non-
ephemeral.

Target Space. Some use cases require binary polynomials while other sample
ternary polynomials. For the ternary polynomials it then can vary how the weight
must be split between the ones and minus ones.

Target Representation. The classic representation for a polynomial is an array of
length N with one element for each coefficient (coefficient representation). How-
ever, polynomials can also be expressed by a list of the non-zero indices (index
representation). The cryptographic scheme may require different representations
and the sampling methods output different representations. It is possible to con-
vert one representation into the other.

Determinism. If the sampling is used in the encapsulation and decapsulation,
it is usually required to provide the same output when given the same input
seed. This can be achieved for all algorithmic approaches by using a PRNG as
source of randomness that is initialized with the seed. Determinism is usually
not required in the key generation.

Secret Seed. In some use cases the input seed for the PRNG is a secret value,
thus the sampling algorithm must be constant-time not only with respect to the
sampled polynomial, but also with respect to the input seed. Concrete attacks
have been presented recently in [12,18].

Parameter N and W . The most important parameters that determine the per-
formance of the sampling methods are the number of coefficients N and the
number of non-zero coefficients W or the weight of the polynomial. In particu-
lar, N can vary distinctly from values between 256 up to 81 194.

Target Platform. Implementing in hardware or in software influences the per-
formance of an algorithm. Parallelism is important in either case, in software it
can sometimes be achieved with bitslicing as introduced in Section 2.3, while in
hardware, more fine-grained parallelism and trade-offs are possible.
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Table 1: Requirements for all potential applications

Scheme Param. Where? N W Target Space Det. Sec. Seed

BIKE L1 en/decaps 24646 134 binary yes yes
BIKE L1 keygen 12323 71 binary no no
BIKE L3 en/decaps 49318 199 binary yes yes
BIKE L3 keygen 24659 103 binary no no
BIKE L5 en/decaps 81194 264 binary yes yes
BIKE L5 keygen 40973 137 binary no no

HQC 128 en/decaps 17669 75 binary yes yes
HQC 128 keygen 17669 66 binary no no
HQC 192 en/decaps 35851 114 binary yes yes
HQC 192 keygen 35851 100 binary no no
HQC 256 en/decaps 57637 149 binary yes yes
HQC 256 keygen 57637 131 binary no no

McEliece 348864 encaps 3488 64 binary no no
McEliece 460896 encaps 4608 96 binary no no
McEliece 6688128 encaps 6688 128 binary no no
McEliece 6960119 encaps 6960 119 binary no no
McEliece 8192128 encaps 8192 128 binary no no

NTRU hps2048509 keygen 509 254 W/2 ternary no no
NTRU hps2048677 keygen 677 254 W/2 ternary no no
NTRU hps4096821 keygen 821 510 W/2 ternary no no

sNTRU Prime 653 keygen 653 288 uni. ternary no no
NTRU LPRrime 653 keygen 653 252 uni. ternary no no
sNTRU Prime 761 keygen 761 286 uni. ternary no no
NTRU LPRrime 761 keygen 761 250 uni. ternary no no
sNTRU Prime 857 keygen 857 322 uni. ternary no no
NTRU LPRrime 857 keygen 857 329 uni. ternary no no
sNTRU Prime 953 keygen 953 396 uni. ternary no no
NTRU LPRrime 953 keygen 953 345 uni. ternary no no
sNTRU Prime 1013 keygen 1013 448 uni. ternary no no
NTRU LPRrime 1013 keygen 1013 392 uni. ternary no no
sNTRU Prime 1277 keygen 1277 492 uni. ternary no no
NTRU LPRrime 1277 keygen 1277 429 uni. ternary no no

3.1 Requirement Analysis

In Table 1 we give an overview of the most important parameters and require-
ments of each relevant scheme for the fixed weight polynomial sampling.

The parameter sets of BIKE and HQC include relatively large N and small
to medium W , and therefore a small W/N ratio which are all important factors
for the sampling algorithms. Both schemes are also the only ones, that require
seed security and a deterministic sampling algorithm for their encapsulation and
decapsulation. Their polynomials have coefficients that are either 0 or 1, this is
also the case for McEliece. NTRU on the other hand has ternary coefficients that
are either 0, 1 or −1 and the fixed number of nonzero coefficients W must be
equally split between the 1s and −1s. For the ternary coefficients in Streamlined
NTRU Prime and NTRU LPRrime, this relation is uniformly random. The schemes
with ternary coefficients also have in common that the sampling is only used
during the key generation, security against singe-trace side-channel attacks is
therefore sufficient.
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4 Designing Masked Fixed Weight Sampling

In the following sections, we present multiple side-channel secure approaches for
fixed weight polynomial sampling. For each approach we start with explaining
the fundamental idea, then we clarify how to achieve a timing side-channel se-
cure (constant-time) variant that is a necessity for a power side-channel secure
implementation. Based on this, we explain how to realize a masked and efficient
variant. In Section 5, we provide more details about our implementations. We
present the algorithms only for the binary use case, in most of the cases they
can easily be adapted for the ternary use case. If this adoption is not obvious,
we explain how it can be achieved. Some of the algorithms have a small bias, so
their output is only close to uniform random. Bevor actually deploying a scheme
with one of the biased methods one needs to diligently proof that the bias does
not impair the security.

Masked Sampling by Coron et al. In the recent preprint [9], Coron et
al. present an approach of side-channel-secure fixed-weight sampling for NTRU,
which works as follows:

1. Initialize an empty polynomial with the first W/2 coefficients set to −1, the
subsequent W/2 coefficients to +1, and the remaining coefficients set to 0.

2. Generate a fresh arithmetic masking of this polynomial.

3. Shuffle each share with the same permutation.

4. Re-share the arithmetic sharing.

5. Repeat the last two steps a total of d + 1 times, everytime using a new
permutation.

This high-level procedure is proven to be secure in the d-probing model. For
their proof, however, the applied permutation is assumed to be a black-box.
Thus, we believe that it will be very hard, if not impossible, to instantiate se-
curely in practice. Moreover, Karabulut et al. show a single-trace attack that
targets the permutation itself [14] and there is no reason to believe that an
attacker is not able to attack multiple subsequent executions of different permu-
tations successfully. Hence, it is reasonable to assume that this countermeasure
does not protect against SPA attackers comprehensively.

4.1 Core Operations

The masked algorithmic approaches for fixed weight polynomial sampling that
we present in the following sections, share a small set of operations that are
repeatedly used and contribute distinctly to the overall performance. In this
section, we explain how to perform a masked conditional move and different
integer comparisons in the Boolean domain with little non-linear operations.
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Conditional Move in Boolean Domain. A very important building block for
our masked algorithms is the conditional move. The semantic of cmov(d, s, c) is
that d is overwritten by s, if the condition flag c is set and d remains unchanged,
if c is 0.

For non masked, but constant-time implementations, a conditional move is
most efficiently expressed in software with a dedicated instruction, but can gen-
erally be expressed with a short sequence of arithmetic or Boolean instructions to
avoid branching on the secret condition c and thus leak c via timing differences.
A straightforward sequence would be d = (d ∧ ¬c) ∨ (s ∧ c).

This solution is however costly to mask, because it includes three non-linear
operations, two ANDs and one OR. It is possible to reduce the number of non-
linear operations to one by using XOR operations: d = d⊕ ((d⊕ s)∧ c) evaluates
to d = d⊕ d⊕ s = s, if c is true and to d = d⊕ 0 = d, if c is false.

Integer Comparison in Boolean Domain. Let a[l− 1 : 0], b[l− 1 : 0] be bit
vector variables representing integers in range [0, 2l). To check whether a < b,
we can simply compute a − b and then check whether the result is negative, in
which case we know that a < b, and else, a ≥ b. Thus, in Boolean domain, we
can employ a Ripple-Carry subtractor which computes r[l : 0] = a[l − 1 : 0] −
b[l − 1 : 0]. Then, r[l] is the uppermost carry-out bit, which decides whether or
not the result is negative. The Ripple-Carry subtractor performs the following
computations:

r[0] = a[0]⊕ b[0] (2)

c[0] = a[0] ∧ b[0] (3)

r[i] = a[i]⊕ b[i]⊕ c[i− 1] ∀1 ≤ i < l (4)

c[i] = (c[i− 1] ∧ (a[i]⊕ b[i]))⊕ (a[i] ∧ b[i]) ∀1 ≤ i < l (5)

r[l] = c[l − 1] (6)

This is usually done in Central Processing Units (CPUs), where the sub-
traction instruction is also used for integer comparison, but without writing the
result back to the registers. In the masked case, however, we aim to achieve a
very low number of secure AND gates. Thus, as we only want to recover r[l]
rather than the full subtraction result, we propose an alternative approach.

t = a ⊕ b gives us the bits, where a and b differ. The highest set bit of t
determines the bit or rather the index g in a and b that determines which of the
two variables is greater. Because we know that a and b differ at this bit, it is
enough to look at one of them. E.g. if bg is set, b is greater than a. To perform
this concept in constant-time we iterate over all bits, starting from the lowest
bit and update our output with bi if ti is set, which ultimately results with bg
in our output. With our output initialized with 0, it will result in 0 if a ≥ b and
1 if a < b. Algorithm 1 describes this idea formally.

At first sight, Algorithm 1 does not need any expensive AND gadgets, but for
implementing the conditional move securely we require one AND, as explained in
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Algorithm 1 Optimized Integer Comparison in Boolean Domain

Require: a =
∑l

i=0 ai2
l, b =

∑l
i=0 bi2

l

Ensure: res← a < b ? 1 : 0
function cmpl(res, a, b)

t← a⊕ b
res← 0
for i← 0 to l do

cmov(res, bi, ti) ▷ res := res⊕ ((res⊕ bi) ∧ ti)
end for

end function

the previous subsection. Compared to the traditional approach via subtraction,
we can half the amount of expensive non-linear gadgets. The overall asymptotic
runtime is determined by the bit-length of the inputs. In the algorithms presented
in the following, we compare values bounded byN , so the cost for one comparison
is ⌈log2(N)⌉.

Comparison with Fixed Public Input. We can simplify this further when
we have one fixed and public input b rather than two variable ones. Then, to
compare whether or not a < b, we first employ the exact same procedure as in
Algorithm 1. However, for each ti, we now know publicly that it is either

– ai in the case that bi = 0, or
– ¬ai in the case that bi = 1.

Thus, we have

– for bi = 0, res := res⊕ ((res⊕ 0) ∧ ai) = res ∧ ¬ai, and
– for bi = 1, res := res⊕ ((res⊕ 1) ∧ ¬ai) = res ∨ ¬ai.

Obviously, this does not save non-linear gates, as we still need one per bit,
but it saves several XOR operations, which are cheap, but not free. Moreover,
we can completely omit all lower bits until the first bi = 1, since we start with
res = 0, which sets all subsequent intermediate res to zero.

Comparison on Equality. Evaluating whether two masked values are equal or
not is even cheaper to realize in the Boolean domain. c = a⊕ b is only zero, if a
is equal to b. Thus we can iterate over all bits in c and condense them to one bit
with masked OR operations. After flipping the resulting bit, res will be one, if c
is zero and thus a is equal to b and zero otherwise, denoted with cmpeq(res, a, b)
in the following. The asymptotic runtime cost is again O(log2(N)).

4.2 Fisher-Yates

The Fisher-Yates shuffle is an algorithm to get a uniform random permutation of
a fixed input sequence in O(N) time. Similar to the sorting approach explained
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in Section 4.3 it can be directly applied to a fixed polynomial with correct weight
to get a random polynomial with correct weight.

Alternatively one can apply Fisher-Yates to an array with length N with
distinct integers from 0 to N and treat the first W elements of the output as
the indices respectively the coefficients of the polynomials which are non-zero.
In this case the permutation of the elements beyond the first W elements are
irrelevant and the algorithm can be stopped after W iterations, because the first
W elements are not affected by the further shuffling.

In its original form Fisher-Yates is not timing side-channel secure, because
its memory accesses reveal the permutation and (only relative for a secret seed)
it requires uniform random numbers from a varying range, which requires a
rejection step.

Sendrier [18] tackled these problems with two modifications. First of all he
showed for BIKE that the security of the cryptographic scheme is not necessarily
impaired when the sampling is only close to uniform random, if the parameters
are correctly chosen. This eliminates the need of the rejection step by allowing
a slightly biased constant-time approach as explained in Section 2.4.

The secret dependent memory accesses can also be circumvented, but this
comes with quadratic runtime instead of the original linear runtime. The solution
for the index sampling method is depicted in Algorithm 2.

Algorithm 2 Constant-Time Fisher-Yates [18]

Require: N , W
Ensure: W distinct elements of 0, ..., N − 1

function fisher-yates(N,W )
for i← 0 to W − 1 do

p[i]← i+ rand(N − i)
end for
for i←W − 1 to 0 do

for j ← i+ 1 to W − 1 do
cmpeq(cond, p[j], p[i])
cmov(p[j], i, cond)

end for
end for

end function

For masking the constant-time Fisher-Yates algorithm there a two compo-
nents that need to be protected. The first component is sampling a random
integer in the range of [0, N − i). Sendrier [18] proposed to compute a random
value r mod N − i, but the implied division is a costly operation. Furthermore,
in most CPUs a division is an instruction with variable cycle-count depending
on the input and thus not constant-time. A modulo reduction with a constant
modulo might be translated by a compiler to a constant-time Barrett reduction,
but there is no guarantee for this.
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We propose to use the faster multiplication approach as explained in Sec-
tion 2.4 instead. Multiplication instructions are constant-time for most CPUs.
In the additive masking domain, the multiplication with the public range value
and the addition of the public index i can efficiently performed sharewise.

The second component is the comparison for equality and the following con-
ditional move, both can the done in Boolean domain, therefore a transformation
from arithmetic to Boolean domain between the two components is necessary.
The inner loop in Algorithm 2 containing the comparison and conditional move
can be computed in parallel for multiple j, because the iterations are independent
of each other.

A masked implementation of this Fisher-Yates algorithm results in an asymp-
totic runtime of O(W 2 log2(N)), for sampling a close to uniform polynomial in
the index representation without leaking a secret seed.

4.3 Sorting

An alternative approach to obtain a uniform random permutation of a set is to
attach distinct random values to each element and sort the pairs according to
the random value. Bernstein [5] suggested to apply this principle to sampling
fixed weight polynomials by starting with a polynomial with the desired weight
and then get a random permutation by sorting.

Algorithm 3 Sort based Sampling [5]

Require: N , W , l, p[N ]
Ensure: random bitpolynomial in p[N ] with weight W

function sortsampling(N,W )
for i← 0 to N − 1 do

if i < W then
t← 1

else
t← 0

end if
r ← rand(2l)
p[i]← (r << 1) + t

end for
sort(p)
for i← 0 to N − 1 do

p[i]← p[i] ∧ 1
end for

end function

To get distinct random values one can use rejection sampling, e.g., for each
new randomly sampled value one checks if it collides with one of the values
sampled before. If yes, the new value gets rejected and one continues until enough
distinct values are sampled. Bernstein showed that the rejection step can be
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skipped, if the size of the random value is big enough compared to the number
of elements such that the chance of a collision becomes neglectable.

With a constant-time sorting algorithm the entire procedure is constant-time
with respect to the sampled polynomial and the seed for the PRNG. The runtime
depends on the implementation of the sorting algorithm and the polynomial size
N as a parameter. This approach can be directly applied to sampling binary and
ternary polynomials.

Sorting algorithms can have at lowest linear asymptotic runtime, but then
usually no efficient constant-time implementation exists. A group of sorting al-
gorithms that can very efficiently implemented in constant-time are sorting net-
works, they consist only of a fixed number of comparisons and swaps. Comparison
based sorting algorithms have at best an asymptotic runtime of O(N log(N)). A
naive masked implementation of a sorting network mainly consists of a compar-
ison and a conditional move depending on the comparison, both can be masked
efficiently in software and in hardware.

The sorting approach is deployed in NTRU and Streamlined NTRU Prime [6]
with an implementation based on Batcher’s Odd-Even mergesort [4]. For our
implementation we opted for Batchers’s Bitonic mergesort [4], because it is easier
to parallelize in the bitsliced domain, which is critical for our efficient masked
software implementation. Both sorting algorithms have an asymptotic runtime
of O(N log2(N)). Although we use our improved comparison approach explained
in Section 4.1 instead of a costly subtraction, the masked comparison and the
conditional move are still the overwhelming driver in cycle costs.

A major drawback of this sampling method beside its high runtime costs
for large polynomial size N is the high amount of randomness required upfront
resulting also in high memory usage, compared to other methods. This can be
circumvented by using radixsort. Radixsort utilizes an arbitrary, stable sorting
algorithm to sort numbers e.g., bit by bit, starting from the lowest bit. The
stableness of the sorting algorithm ensures that the order according to the lower
bits is maintained when sorting according to the higher bits. (Stable sorting in
ascending manner according to the MSB of (10, 11, 01) results in (01, 10, 11) and
not (01, 11, 10)). As radixsort only works on one bit per sorting iteration, only
one random bit per element needs to be sampled and stored at a time because
we are not interested in the sorted random values, but only in the permutation
the sorting provides. Stable sorting networks exist, but they have a quadratic
asymptotic runtime, which makes this approach more costly. Radixsort combined
with an unstable sorting network does not result in correct sorting universally
and coherently also not in uniform random permutations, which we confirmed
for small parameters by exhaustive testing.

4.4 Rejection Sampling

Probably the most obvious solution for fixed weight polynomial sampling is the
rejection method. One samples a uniform random value r below N by rejecting
values from the range [0, 2l), with the smallest l such that x < 2l. Then one
iterates over the already sampled indices and checks for a collision, if a collision is
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Algorithm 4 Rejection Sampling - Index

Require: N , W , 2l > N , p[W ]
Ensure: W distinct elements of 0, ..., N − 1

function rejection-index(N,W )
i← 0
while i < W do

r ← rand(2l)
cmpl(t, r,N)
if ¬t then

continue
end if
collision← 0
for c← 0 to i− 1 do

cmpeq(t, p[c], r)
if t then

collision← 1 break
end if

end for
if collision = 1 then

continue
end if
p[i]← r
i← i+ 1

end while
end function

found, r gets rejected. The rejection sampling continues until W distinct indices
are sampled as presented in Algorithm 4.

The runtime of this probabilistic algorithm obviously varies and depends on
the randomness, therefore it is not suitable for cryptographic schemes, where
the seed for the PRNG is secret. This restriction in application allows to early
terminate loops, as soon as the rejection becomes evident. Although the result of
the comparisons for equality for the collision check is public, we cannot XOR both
arguments and then simply unmask the result and check if it is zero or not. In
this case, we would leak the bits in which r differs from p[c]. So the comparisons
itself must be side-channel secure to protect the non rejected values. This can
be done with the core operations presented in Section 4.1.

For this algorithm, N determines the probability for the first rejection step,
with a N only slightly greater than the closest power of two this probability
can be close to 50%. W/N determines the probability for the second rejection,
when checking for collisions. With a W/N close to 0.5, the chance for a collision
for a single value gets close to 50% for the last iterations when i reaches W , so
on average the probability for a rejection due to a collision for a single value
can be up to 25%. Drucker et al. [10] already pointed out that the fixed weight
polynomial sampling problem is symmetric such that for W/N > 0.5, one can
solve it for (N −W )/N and invert the result.
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4.5 Bounded Rejection Sampling

The idea of a bounded rejection sampling algorithm as presented by Drucker et
al. [15] for the BIKE use case, is to transform the rejection sampling method as
presented in Section 4.4 such that it is constant-time also with respect to the
PRNG seed. This idea has also been implemented in a similar way by Guo et
al. [12] for HQC.

For this, the rejections must not influence the path taken in the algorithm
and therefore branches in a software implementation and the memory access
pattern must be independent of the randomness. This is done by keeping track
of the number of valid samples with a secret counter that indicates where to
input the next valid index into the array and does not get incremented, if a
sample gets rejected so that the next sample can overwrite the rejected one.
Early termination of loops are obviously not possible anymore, so with every
sampled value one has to iterate over the entire array of indices and securely
check for a collision. These comparisons can however be performed in parallel.
Also, the comparison of the current index with the counter and the conditional
move can be parallelized, as the comparison only outputs 1 for a single index
for one complete iteration over the array. Thus the counter can be conditionally
incremented only once after iterating over the array and remains constant during
the loop.

The second challenge for any seed-independent timing are the number of
random values that need to be sampled which can not be determined exactly
upfront, but they can be estimated. Depending on the parameters N and W one
can compute a loose upper bound B of iterations or rather samples, within with
overwhelming probability at least W valid indices are found.

Most of the algorithm can be masked with Boolean components that we
already covered in other algorithms. The incrementation of the secret counter
is most efficient in the additive masking domain, however, the counter is also
required in the Boolean domain for the comparison. To avoid the costly transfor-
mations between the domains, we propose to perform the addition with a single
bit in the Boolean domain with half-adders implying ⌈log2(N)⌉ masked ANDs.

Algorithm 5 demonstrates this approach, since B is a multiple of W the
runtime is O(W 2 log2(N)). The asymptotic view indicates a similar perfor-
mance than the Fisher-Yates algorithm, but a closer inspection reveals that
first, bounded rejection takes more than W 2 iterations compared to 1

2W
2 for

Fisher-Yates and the rejection method requires two masked comparisons for
each iteration compared to one comparison for Fisher-Yates. When the sam-
pling rand(N − i) of W values in Fisher-Yates does not contribute significant
costs, the bounded rejection is probably less performant when masked.

The sampling of values less then N can alternatively be realized with the
biased multiplication method as we use it for Fisher-Yates. For some parameter
sets of HQC this might be faster, because N is close to the next lower power of
two, thus the chance of rejection when r ≥ N is high and the upper bound B
is higher. In this case however, the runtime comparison to Fisher-Yates is even
more clear and indicates that Fisher-Yates is the faster solution.
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Algorithm 5 Bounded Rejection Sampling - Index [15]

Require: N , W , B, 2l > N , p[W ]
Ensure: W distinct elements of 0, ..., N − 1

function bound-rejection-index(N,W,B)
cntr ← 0
for i← 0 to B − 1 do

r ← rand(2l)
dup← 0
for c← 0 to W − 1 do

cmpeq(t, p[c], r)
dup← dup ∨ t
cmpeq(f, c, cntr)
cmov(p[c], r, f)

end for
cmpl(t, r,N)
t←!dup ∧ t
cntr ← cntr + t

end for
end function

In Algorithm 6 we show how the bounded rejection method can be adapted
to output polynomials in the coefficient representation instead of the index rep-
resentation with asymptotic runtime O(WN log2 N).

The bounded rejection sampling is only relevant for cryptographic schemes,
where the PRNG input needs to be protected as the protection comes with a
performance overhead compared to the simple rejection method.

4.6 Comparison Sampling

The idea of this novel approach is to sample each coefficient of the polynomial
individually with an approximation of the probability W/N . This can be imple-
mented efficiently by comparing a uniform random bit string of length ℓ with a
fixed threshold t such that t/2ℓ ≈ W/N . If t is smaller than the random ℓ-bit
value, the coefficient is set to 1.

After performing this for each coefficient, a masked weight check of the poly-
nomial is carried out and the polynomial is accepted only if the correct weight
W is hit. Else, the whole procedure is repeated, which renders this approach
infeasible for use cases that require runtime independent of the input seed. This
method can be considered somewhat of a generalization of the RepeatedAND
method by Drucker and Gueron that we cover in Section 4.7.

For efficiency, the choice of ℓ, t is decisive and the expected number of repe-
titions of the overall procedure is determined by

B(W,N, t/2ℓ)−1 (7)

Therefore, these parameters must be chosen carefully for each potential use case.
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Algorithm 6 Bounded Rejection Sampling - Coefficient

Require: N , W , B, 2l > N , p[N ] initialized with zeros
Ensure: W random coefficients in p are set to 1

function bound-rejection-coeff(N,W,B)
cntr ← 0
for i← 0 to B − 1 do

t← 0
r ← rand(2l)
cmpeq(f0, cntr,W )
for c← 0 to N − 1 do

cmpeq(f1, c, r)
cmpeq(f2, p[c], 0)
f ← ¬f0 ∧ f1 ∧ f2
cmov(p[c], 1, f)
t← t ∨ f

end for
cntr ← cntr + t

end for
end function

Let p = W/N be the target probability. Then, for ℓ random bits, the best
comparison threshold t is ⌊p2ℓ⌉. Intuitively, the larger we choose ℓ, the better we
approximate p at cost of more randomness and more secure operations. Interest-
ingly, for all applications, there exists a threshold for ℓ, from which increasing
does not improve the success probability significantly.

Apart from minimizing the number of non-linear operations, we also want
to minimize the number of fresh random bits that are required. For a given
(N,W, ℓ, t), we know that

B(W,N, t/2ℓ)−1 ·Nℓ (8)

is the expected number of fresh random bits for this method, which will help
us choosing ℓ, t for each use case. On the lower layer, we can employ our effi-
cient comparison from Algorithm 1 and the optimizations for comparison with
one fixed operand, resulting in ℓ − 1 non-linear operations per coefficient and
B(W,N, t/2ℓ)−1 · N(ℓ − 1) expected non-linear operations overall for a given
(N,W, ℓ, t).

Note that these numbers refer to the unprotected instantiation. When mask-
ing this approach, we require d+ 1 times as much randomness and in addition,
fresh randomness for each non-linear operation.

In the following, we give details on each potential application.

BIKE and HQC Key Generation. For BIKE and HQC, we cannot deploy this
method for encapsulation and decapsulation, due to the attack by [12,18]. Still, it
is eligible for key generation in both cases. Table 2 and Table 3 give details on the
choice of ℓ, t for both algorithms. As can be seen there, for BIKE-L1 ℓ = 9, t = 3
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Table 2: BIKE Comparison sampling, for number of expected repetitions and expected
random bits, see Eqs. 7 and 8

ℓ
BIKE-L1 BIKE-L3 BIKE-L5

t rep. rnd. t rep. rnd. t rep. rnd.

8 1 2439.74 240 518 881 1 31.88 6 289 754 1 169.06 55 415 054
9 3 21.30 2 362 385 2 31.88 7 075 973 2 169.06 62 341 935
10 6 21.30 2 624 872 4 31.88 7 862 192 3 92.48 37 892 643
11 12 21.30 2 887 359 9 29.10 7 892 628 7 30.30 13 658 519
12 24 21.30 3 149 847 17 25.46 7 533 925 14 30.30 14 900 203
13 47 21.10 3 379 948 34 25.46 8 161 752 27 29.73 15 833 552
14 94 21.10 3 639 944 68 25.46 8 789 579 55 29.34 16 829 906

Table 3: HQC Comparison Sampling, for number of expected repetitions and expected
random bits, see Eqs. 7 and 8

ℓ
HQC-128 HQC-196 HQC-256

t rep. rnd. t rep. rnd. t rep. rnd.

8 1 21.77 3 076 984 1 1.5e4 4 270 634 825 1 3.7e11 1.7e17
9 2 21.77 3 461 607 1 7272.20 2 346 440 182 1 120.43 62 473 484
10 4 21.77 3 846 230 3 28.33 10 155 736 2 120.43 69 414 983
11 8 21.77 4 230 853 6 28.33 11 171 310 5 40.46 25 649 983
12 15 20.62 4 371 146 11 26.90 11 572 734 9 30.89 21 361 556
13 31 20.47 4 700 992 23 25.11 11 700 990 19 29.46 22 076 057
14 61 20.36 5 036 069 46 25.11 12 601 066 37 28.75 23 201 162

Table 4: McEliece Comparison Sampling, for number of expected repetitions and ex-
pected random bits, see Eqs. 7 and 8

ℓ
Parameter Set

348864 460896 6688128 6960119 8192128
t rep. rnd. t rep. rnd. t rep. rnd. t rep. rnd. t rep. rnd.

6 1 44.13 923655 1 965.40 26691249 1 344.42 13820908 1 43.68 1823905 1 28.16 1383882
7 2 44.13 1077597 3 49.42 1593954 2 344.42 16124392 2 43.68 2127889 2 28.16 1614530
8 5 22.66 632174 5 29.70 1094851 5 28.88 1544999 4 43.68 2431873 4 28.16 1845177
9 9 21.11 662545 11 25.49 1057213 10 28.88 1738124 9 28.43 1780973 8 28.16 2075824
10 19 19.98 696744 21 24.62 1134475 20 28.88 1931249 18 28.43 1978859 16 28.16 2306471

Table 5: NTRU HPS Comparison Sampling, for number of expected repetitions and
expected random bits, see Eqs. 7 and 8. Note that these are the numbers for generating a
masked binary polynomial. In Section 4.6 we explain the transformation into a ternary.

ℓ
Parameter Set

2048509 2048677 4096821
t rep. rnd. t rep. rnd. t rep. rnd.

1 1 28.32 14 414 1 5.73e+10 3.878e+13 1 1.32e+12 1.086e+15
2 2 28.32 28 827 2 5.73e+10 7.757e+13 2 1.32e+12 2.172e+15
3 4 28.32 43 241 3 31.59 64 164 5 35.75 88 043
4 8 28.32 57 655 6 31.59 85 551 10 35.75 117 391
5 16 28.32 72 069 12 31.59 106 939 20 35.75 146 739
6 32 28.32 86 482 24 31.59 128 327 40 35.75 176 087
7 64 28.32 100 896 48 31.59 149 715 80 35.75 205 435
8 128 28.32 115 310 96 31.59 171 103 159 34.85 228 911

is the obvious choice, as well as ℓ = 8, t = 1 for BIKE-L3 and ℓ = 11, t = 7 for
BIKE-L5.
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Table 6: Streamlined NTRU Prime Comparison Sampling, for number of expected
repetitions and expected random bits, see Eqs. 7 and 8

ℓ
Parameter Set

653 761 857 953 1013 1277
t rnd. t rnd. t rnd. t rnd. t rnd. t rnd.

1 1 1966846 1 5.1e+14 1 1.3e+16 1 3.1e+10 1 3.5e+07 1 3.0e+19
2 2 3933692 2 1.0e+15 2 2.5e+16 2 6.3e+10 2 7.0e+07 2 6.0e+19
3 4 5900538 3 76571 3 91488 3 2945795 4 1.1e+08 3 222512
4 7 84497 6 102095 6 121985 7 371651 7 168223 6 296683
5 14 105621 12 127618 12 152481 13 215382 14 210278 12 370853
6 28 126745 24 153142 24 182977 27 235987 28 252334 25 360750
7 56 147869 48 178666 48 213473 53 255543 57 286495 49 396206

Table 7: NTRU LPRrime Comparison Sampling, for number of expected repetitions
and expected random bits, see Eqs. 7 and 8

ℓ
Parameter Set

653 761 857 953 1013 1277
t rnd. t rnd. t rnd. t rnd. t rnd. t rnd.

1 1 5.7e+11 1 1.7e+24 1 4.1e+14 1 3.3e+20 1 8.6e+15 1 1.4e+35
2 2 1.1e+12 1 6.4e+09 2 8.2e+14 1 4.1e+17 2 1.7e+16 1 1.8e+15
3 3 72090 3 2643045 3 106026 3 150085 3 160778 3 11021700
4 6 96120 5 155129 6 141368 6 200113 6 214370 5 1083789
5 12 120150 11 183384 12 176711 12 250142 12 267963 11 321266
6 25 126010 21 148387 25 199178 23 215790 25 243060 22 385519
7 49 144495 42 173118 49 214613 46 251755 50 283570 43 378276
8 99 163109 84 197849 98 245272 93 284544 99 315026 86 432315

For HQC, ℓ = 8, t = 1 is the best choice for HQC-128, ℓ = 10, t = 3 for
HQC-196, and ℓ = 12, t = 9 for HQC-256. Moreover, the randomness numbers
indicate that BIKE performs better with this approach.

BIKE-L1 Optimization. We have ℓ = 9, t = 3 and thus want to have a = 29−4 in
Algorithm 1 in order to obtain a 1 output bit in 3/29 cases for a random input b.
Then, we apply the above described optimizations for a fixed input comparison:

r = ((0 ∨ b0) ∨ b1) ∧ b2 ∧ b3 ∧ b4 ∧ b5 ∧ b6 ∧ b7 ∧ b8

= (b0 ∨ b1) ∧
8∧

i=2

bi = ¬(¬b0 ∧ ¬b1) ∧
8∧

i=2

bi

Note that we convert the logical OR into a logical AND by De Morgan’s law,
since this is how it is implemented with masked gadgets. Inversion is O(1), while
SecAnd is O(d2), so this does not increase asymptotic complexity. Still, we can
save two inversions, since b0, b1 are random input bits, which we can assume to
be inverted already. It follows that for BIKE-L1, the following Boolean formula
can be used to obtain a random bit with approximate correct probability of
being one, using random input bits b0, . . . , b8.

r = ¬(b0 ∧ b1) ∧
8∧

i=2

bi (9)
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BIKE-L3 and HQC-128 Optimization. With ℓ = 8, t = 1, we fall back to the
repeated AND method and can just compute r =

∧7
i=0 bi for uniform random

bits b0, . . . , b7. Notably, we can use this approach both for BIKE-L3 and HQC-128.

BIKE-L5 Optimization. With ℓ = 11, t = 7, we have a = 211 − 8 in Algo-
rithm 1 with random bits b0, . . . , b10. Then, applying the analogue optimizations
as above, including not inverting random input bits:

r =

(
2∨

i=0

bi

)
∧

10∧
i=3

bi = ¬

(
2∧

i=0

¬bi

)
∧

10∧
i=3

bi

∼ ¬

(
2∧

i=0

bi

)
∧

10∧
i=3

bi (10)

HQC-196 Optimization. Using ℓ = 10, t = 3, we set a = 210 − 4 in Algorithm 1
with random bits b0, . . . , b9. Applying the aforementioned optimizations, we ob-
tain

r = (b0 ∨ b1) ∧
9∧

i=2

bi = ¬(¬b0 ∧ ¬b1) ∧
9∧

i=2

∼ ¬(b0 ∧ b1) ∧
9∧

i=2

bi (11)

HQC-256 Optimization. ℓ = 12, t = 9 implies setting a = 212−10 in Algorithm 1
with random bits b0, . . . , b11.

r =

((
2∧

i=0

bi

)
∨ b3

)
∧

11∧
i=4

bi = ¬

(
¬

(
2∧

i=0

bi

)
∧ ¬b3

)
∧

11∧
i=4

bi

∼ ¬

(
¬

(
2∧

i=0

bi

)
∧ b3

)
∧

11∧
i=4

bi (12)

McEliece Encapsulation. For this application, we have no special restrictions,
which renders the Comparison approach possible. As can be seen from Table 4,
there are feasible choices of ℓ, t for each parameter set. Notably, the highest
parameter set has both N and W set to a power of two, which implies that the
Comparison method falls back effectively to the RepeatedAND method.

NTRU, Streamlined NTRU Prime, and NTRU LPRrime Key Generation.
For NTRU, Streamlined NTRU Prime and NTRU LPRrime, we have an interesting
different case, since the target space is not binary, but ternary. Additionally,
NTRU imposes the condition that exactly W/2 coefficients need to be +1 and
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the remaining −1. In order to convert a binary polynomial to a ternary one, we
employ the following strategy, assuming that we already have sampled a Boolean
masked, weight-W polynomial:

1. Sample a uniform random, masked bit ri for each coefficient ai with 0 ≤ i <
N .

2. Compute securely the masked sign si := ri ∧ ai for each masked coefficient.
3. If there is a weight restriction on the number of −1 and +1, accumulate all

si securely, unmask the result and check whether the correct number of −1
is hit. If not so, start over from Step 1.

Note that for NTRU, the initially sampled binary weight-W polynomial is
not rejected, but only the vector of signs. This adds B(127, 254, 0.5)−1 ≈ 20
expected repetitions of the above procedure for NTRU-HPS2048{509,677}, and
for NTRU-HPS4096821 B(255, 510, 0.5)−1 ≈ 28.3.

The numbers for sampling binary polynomials with correct weight are pre-
sented in Table 5, Table 6, and Table 7. It stands out that compared to the
code-based schemes, a notably lower amount of randomness is required. This
is due to the smaller polynomial degrees and the more favorable ratio between
W and N . However, the very low numbers for NTRU are misleading, since they
do not include the additional randomness required for sampling the correct sign
weight.

4.7 RepeatedAND

In [10], Drucker and Gueron propose ANDing random bit strings repeatedly with
subsequent dedicated correction of the weight as a method for sampling fixed
weight vectors. Starting with a zero bit string A of length N , they compute a
random bit string A of the same length by repeatedly ANDing random strings so
that the expected weight of the string is halved with each AND, until the weight
is below or equal the target weight W . Then, A is set to A∨A, so that the new
weight of A is less or equal the sum off the individual weights of A and A. As
long as the weight of A is not W , a new A is computed with a target weight of
the difference of the weight of A and W and ORed with A to increase its weight
towards W .

Just as the simple rejection and our comparison sampling, this method is not
secure for the decapsulation in HQC and BIKE.

At first sight, this method can be masked in a straight-forward manner, with
checking the weight of secret intermediate vectors being the only non-trivial
component. However, it makes heavy use of computing the (secret) weight of
intermediate vectors, which is cheap in unmasked domain, but a big cost fac-
tor for masking. Experimentally, we found that for BIKE, HQC and McEliece,
the average number of required weight checks significantly exceeds the average
for our Comparison method presented in Section 4.6, with the smallest differ-
ence being McEliece-348864 (31.02 vs. 22.66), and the biggest difference being
BIKE-L5 (60.38 vs. 30.30). In software, this masked weight check would predom-
inantly determine the performance, rendering RepeatedAND obsolete for BIKE,
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HQC and McEliece. In hardware however, the weight check could be performed
in parallel with the ANDing. For NTRU, Streamlined NTRU Prime and NTRU
LPRrime the average number of comparisons are very similar, the RepeatedAND
method however, requires less randomness.

4.8 Conversions between Polynomial Representations

Some implementations of the cryptographic schemes use the index representa-
tion for fast multiplications that follow the sampling process, but one can also
transform this representation to the coefficient representation in a constant-time
and masked way. For each of the W non-zero indices one iterates over all coeffi-
cients N that are initialized with 0, and if the current indices is hit one replaces
the 0 with a 1. We therefore need NW iterations with a cmpeq and a cmov. A
conversion in the other direction from coefficient to index representation can be
done similarly with comparable costs.

5 Masked Implementation

5.1 Software

We implemented all methods presented in Section 4 in software generalized for
an arbitrary masking order and thus secure against multi-trace power side-
channel attacks. Except for the comparison method, our implementations are
parametrized for N and W . We based our software implementations on masked
gadgets presented in [7].

For Boolean masked software implementations, bitslicing is often a very ef-
ficient methodology to improve the performance. All of our implementations
are bitsliced as far as the algorithms allow, we also bitsliced all core operations
presented in Section 4.1.

Fisher-Yates. The first component of the Fisher-Yates algorithm is to sam-
ple a random value with varying range [0, N − i). We implemented this in the
additive masking domain with the biased multiplication method. To be compati-
ble with unmasked implementations we take 32-bit Boolean masked randomness
(for example from a masked Keccak) as input and transform it bitscliced to the
48-bit additive domain (modulo 248). We unbitslice the randomness and perform
the multiplication with the public value N − i by a simple sharewise unmasked
multiplication. The result is at most 48-bit wide, therefore the additive domain
modulo 248 and not e.g. 264 which saves us some costly non-linear operations in
the Boolean to arithmetic and arithmetic to Boolean conversions.

Taking the upper 16 bit from the results can be done in the Boolean domain,
which we need anyway for the second component of the algorithm. But before
transforming to the Boolean domain, we add i to the upper 16 bit, which is
cheaper in the additive domain. The additive to Boolean transformation is again
implemented bitsliced and we keep the data in the bitsliced domain for the
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comparisons and conditional moves of the second component. With W padded
to the next multiple of 32, we can perform the inner loop with the comparison
and condition move on 32 values at a time.

Sorting. To evaluate the sorting approach presented in Section 4.3 we imple-
mented a masked bitonic sort in software. Bitonic sort for n elements performs
n/2 comparisons operating on all n elements in each iteration and each pair of
elements that is compared has the same distance during one iteration. For the
cases where the distance is greater than our register width of 32, we thus can
directly compare and conditionally swap a group of 32 consecutive values with
their respective pairs in the bitsliced domain where 32 values share a register for
each bit.

Comparisons of elements with a distance of less than 32 are also possible in
the bitsliced domain but require a transformation. When the distance if halved
from one iteration to the next as it is the case for most iterations, we need to swap
half of the bits of one group of 32 elements in one register with the respective
other half of paired group. In the non-bitsliced domain this would correspond
to simple register swaps, in the bitsliced domain we need to swap bits by using
rotations and Boolean operators. By implementing this transformation in the
bitsliced domain, we are able to perform the entire sorting algorithm in the
bitsliced domain and save transformations between the domains.

For distances below 32, our method works on 64 consecutive elements at a
time, we therefore pad the polynomial width to the next multiple of 64 for a
clear and efficient implementation. The additional coefficients appended by the
padding get initialized with zero and not paired with random values, but with
the highest value possible so that the nonzero lower coefficients will not be sorted
to the additional indices and they can simply be cut off after sorting. Bitonic
sort originally only works on power of two input sizes, but can be adapted to
arbitrary sizes, as we did for our implementation.

Rejection. To be able to parallelize the comparison of r versus N we perform
the outer loop on batches of 32 values. We then iterate over the batch, if the
result of the comparison indicates that a value r is not less then N we directly
continue with the next value. If not, we compare the value to the already sampled
ones, again performing 32 bitsliced comparisons at a time. By performing 32
comparisons at a time we often perform comparisons with elements that are not
yet set by the algorithm, but are initialized with a value e.g. zero. The result
of these comparisons must not influence the rejection behaviour, otherwise the
initialization value can never be included in the output which would violate the
uniform randomness requirement. We solve this by simply masking out the bits
of these comparisons.

If no collision is found r is stored in the array, in contrast to the bounded
rejection method, this condition is not a secret value, thus we do not need the
masked cmov operation. But we implemented this move in the bitsliced domain,
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so that the array of indices can be kept in the bitsliced domain throughout the
entire algorithm and only converted to the non bitsliced domain at the end.

Bounded Rejection. Similar to the simple rejection method, the implemen-
tation of the bounded rejection method for the index representation has to deal
with false collisions with the initialization values. Tracking which values are set
and thus which comparisons are valid is cumbersome in this case, because the
amount of already correctly sampled values is secret. Instead we implemented
this by initializing the array with a value that is out of bound, e.g. N . This
induces only a small overhead for the collision comparison, which now has to
operate on ⌈log2(N)⌉+ 1 bits instead of ⌈log2(N)⌉.

Again we parallelized the inner loop with bitslicing to significantly improve
the performance.

We determined the bound according to the formulas provided by Drucker et
al. [15]. Drucker et al. suggest bounds for BIKE Level 1 (B = 327) and Level 3
(B = 488) which give a probability to fail of less than 2128. If a sampling failure
does not affect the security of the scheme, a lower bound can be chosen for better
performance. We selected a bound of 704 for BIKE Level 5 and 364, 460 and 267
for the three relevant parameter sets of HQC to reach the same probability.

Comparison. Generally, this approach can be parallelized very efficiently as
each coefficient is sampled individually. For software, this means that bitslicing
is eligible, and for hardware, an individual trade-off between area and latency
can be found.

In software, the weight check is the bottleneck of this method. Since it is hard
to accumulate single masked bits in Boolean sharing on software platforms, we
first deploy a bitsliced Boolean-to-additive masking conversion, which converts
32 masked bits to 32 arithmetically masked values modulo 2z for a sufficiently
large chosen z. Then, we un-bitslice these values and accumulate the additively
masked values share-wise. Finally, when we iterated over the whole polynomial
with this procedure, we can unmask the shared accumulation value to obtain
the weight of the masked polynomial.

Optimized Masked Weight Check. In order to check whether the masked poly-
nomial candidate has the correct weight or not, it is required to compute the
weight of the polynomial. For this operation, the intermediate weight is a sensi-
tive information as it could reveal the position of single coefficients. The masked
weight computation itself is a secure accumulation of all masked coefficients to
a value of size ⌈log2 N⌉ bits, e.g., by means of a secure ⌈log2 N⌉-plus-one-bit
adder. It is worth noting that for all three code-based applications, though, W
is much smaller than N . It follows that most of the upper bits of such a secure
adder are not required with overwhelming probability.

Since we know the expected weight of our polynomial candidate (under the
assumption that no biased randomness is used as input), we can decrease the
secure accumulator size and accept the possibility of an overflow happening. In
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fact, an overflow of the accumulator is not critical as long as it does not lead
to a false-positive result, i.e., approving a polynomial that actually has not the
correct weight.

Let z be the bit length of the secure accumulator output. Then, for a given
(N,W, ℓ, t) as explained in Section 4.6, we have probability pfp of a false positive:

pfp =

⌊N−W
2z ⌋∑

i=−⌊W
2z ⌋

i ̸=0

B
(
W + i · 2z, N,

t

2ℓ

)
(13)

Obviously, it is desirable to have a negligible pfp, but also a low z, since
this affects the efficiency of the weight check. We find that for all use cases
and parameter sets, choosing z = 8 (i.e., an 8-bit secure accumulator), yields
pfp < 2−200.

RepeatedAND. Using the same weight check module as above, we also im-
plemented the RepeatedAND method presented in [10]. This time, however, we
cannot use the optimization shown above, since we do not check for equality,
but rather whether a weight is bigger or smaller. Thus, we use 10-bit secure
accumulation, which is enough for nearly all parameter sets of NTRU, Stream-
lined NTRU Prime, and NTRU LPRrime. For Streamlined NTRU Prime- and NTRU
LPRrime-1277, the probability that an intermediate weight is greater or equal
than 210 is negligible. This approach is not efficient for McEliece, BIKE and HQC,
because compared to the Comparison approach, significantly more and bigger
weight checks are required.

5.2 Hardware

As a case study, we implement the comparison sampling approach for BIKE in
hardware. Additionally we give some remarks how hardware implementations of
the other algorithms could be realized.

For hardware implementations, we generally have similar restrictions com-
pared to embedded software platforms. Most importantly, only very limited
memory is available, rendering sorting-based methods for high polynomial de-
grees infeasible. As an example, the smallest BIKE parameter set already would
require 32 · 12323 · 2 = 788672 bit storage for a first-order masking assuming
that 31 bit randomness per coefficient would be sufficient. On the other hand,
comparison-based sorting networks can be implemented very efficiently for smaller
N as in NTRU and its variants and parallelized in a more fine grained manner
than for software platforms. This allows for precise trade-offs between latency
and area demand.

To reduce the latency of comparisons, a parallel-prefix subtractor could be
deployed by optimizing it to only obtain uppermost carry-out bit. In return,
this would require more secure non-linear gadgets compared to our comparison
method presented in Section 4.1.
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For Fisher-Yates, the boolean to arithmetic and vice versa transformations
could be implemented with secure Boolean adders, which is possible efficiently
and pipelined [2,17]. Then, the relatively big integer multiplications are a major
cost factor in hardware, as they involve many bit operations.

For the RepeatedAND method, we certainly expect a higher control overhead
due to the more complex algorithm compared to the comparison approach. Also,
an intermediate masked vector must be stored in addition to the output vector,
which results in a higher memory requirement. On the other hand, in contrast
to software implementations, where the weight check is the bottleneck, we can
execute the weight check in parallel to the secure AND operations. This could
make this method efficient for the BIKE and HQC key generations and McEliece
encapsulation.

Comparison Method. Since we aim for a masked implementation, we store
each share of the target sampled polynomial in a separate memory (for BIKE
level 1, we instantiate one 18KB memory for each share). Each of these memory
modules can be accessed via a 32-bit interface. As explained in Section 4.6, the
approach requires ℓ bits of randomness to sample one bit. Due to the 32-bit
interface of the memory modules, our hardware design samples 32 bit in parallel
which leads to ℓ · d · 32 bits of randomness required as input to the fixed input
comparison. Since our target is to implement a side-channel resistant design,
we replace all non-linear gates by secure gadgets (in our case study, we used
Domain-Oriented Masking (DOM) gadgets [11]). As shown in Section 4.6, the
comparison for BIKE level 1 consists of eight secure multiplication gadgets where

each gadget requires d·(d+1)
2 bit of fresh randomness.

In order to track the Hamming weight of the sampled masked polynomial,
we instantiate a masked Hamming weight computation unit. The design follows
the implementation concept of the unmasked Hamming weight unit from [16].
However, we realize each adder stage by masked Ripple-Carry Adder (RCA)
generated from HPC2 gadgets [8]. Eventually, we obtain a masked six bit result
for each 32-bit block which is feed into an accumulation stage. The accumulator
is implemented by a fully pipelined masked 8-bit Sklansky adder as proposed
in [2]. Since the adder consists of eight register stages, we obtain eight masked
intermediate results that need to be accumulated to a final result. For this, we
utilize the same adder and cleverly feed in the intermediate results from the
adder to its input to add up all intermediate results. The final result is not
secret and can be unmasked in order to compare it to the desired weight W .
The procedure need to be repeated in case the weight is not met.

6 Evaluation

6.1 Software

The target of our software implementations is the 32-bit Cortex-M4 microcon-
troller, we used the STM32F4 discovery board that includes 192-KB SRAM,
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Table 8: Performance on the Cortex-M4 in kilo cycles for first order masking. Entries
marked with – are irrelevant combinations that we did not implement/measure.

Scheme N W Sort Fisher-Y. Reject B. Reject RepAND Comp. I2C Trans.

BIKE 24646 134 – 7128 – 34077 – – 770708
BIKE 12323 71 – 2854 647 – – 45838 195945
BIKE 49318 199 – 13206 – 69140 – – 2394245
BIKE 24659 103 – 4901 1255 – – 129050 592411
BIKE 81194 264 – 21680 – 131135 – – 5497931
BIKE 40973 137 – 7514 2176 – – 234007 1372560

HQC 17669 75 – 3063 – 25803 – – 309894
HQC 17669 66 – 2852 620 – – 63242 272707
HQC 35851 114 – 5377 – 41500 – – 999526
HQC 35851 100 – 5034 1282 – – 183833 876778
HQC 57637 149 – 7808 – 28930 – – 2094589
HQC 57637 131 – 7367 2132 – – 348099 1841552

McEliece 3488 64 108596 1847 462 – – 12948 32246
McEliece 4608 96 160777 3326 972 – – 20392 68236
McEliece 6688 128 240949 5044 1555 – – 31652 131539
McEliece 6960 119 249618 4848 1386 – – 34571 127568
McEliece 8192 128 300713 4591 1527 – – 34609 161312

NTRU 509 254 9699 11532 4709 – 2141 1666 15342
NTRU 677 254 14958 12445 4833 – 3559 2935 22674
NTRU 821 510 18338 17737 7022 – 4140 3921 32655

sNTRU Prime 653 288 14958 15086 6345 – 3023 3033 24650
NTRU LPRrime 653 252 14958 12390 4806 – 3177 3299 21515
sNTRU Prime 761 286 16464 15063 6005 – 3699 3336 27828
NTRU LPRrime 761 250 16464 12350 4570 – 3457 3773 24264
sNTRU Prime 857 322 19848 20249 7461 – 4125 4012 34948
NTRU LPRrime 857 329 19848 20569 7805 – 4482 4650 35825
sNTRU Prime 953 396 21564 27494 11253 – 4403 6266 47664
NTRU LPRrime 953 345 21564 20867 8404 – 4496 6617 41385
sNTRU Prime 1013 448 23405 31680 14421 – 4836 5763 57395
NTRU LPRrime 1013 392 23405 27380 10843 – 5428 7015 50228
sNTRU Prime 1277 492 32361 42388 18445 – 6861 9612 85013
NTRU LPRrime 1277 429 32361 33673 13822 – 7285 9245 74318

1-MB flash memory and a maximum clock rate of 168MHz. To measure the cy-
cle counts we set the frequency to 24MHz to make the cycle counts independent
of the memory speed. We used the arm-none-eabigcc-10.3.1 compiler with
optimization-level O3 and report average cycle counts of 10 runs for algorithms
without data dependent branching and average counts of 1000 runs otherwise.

We excluded the generation of randomness required by calls to rand in our
measurements so that only the performance of the fixed weight polynomial sam-
pling algorithm is measured and not the performance of the PRNG. The gener-
ation of randomness required by masked operations is however included.

Tables 8 and 9 show our measurements in kilo cycle counts for first order
(resp. second order) masking on the Cortex-M4.

From our measurements we can first of all conclude that masked fixed weight
polynomial sampling is expensive in software. In Section 4.1 we identified a small
set of core operations that are used in all algorithms and determine most of the
cycle costs. For an unmasked implementation, these operations can often be
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realized by a single instruction, but a masked implementation requires multiple
non-linear gadgets (e.g. AND) that alone can already cost hundreds of cycles.

For masked sampling of fixed weight polynomials in the index representation,
the simple rejection method is the fastest and can always applied when there
is no need for seed security which is the case for all benchmarked sets. If seed
security is required, one could alternatively use the bounded method, which is
always slower compare to the simple rejection as explained in Section 4.5. We
thus only benchmarked the bounded rejection for the use cases in BIKE and HQC.
Fisher-Yates also provides seed security, outputs also in the index representation
and is faster than the bounded rejection for all parameter sets that we measured.

The sorting method required to much stack to fit into the 192-KB SRAM of
our board for the large N of BIKE and HQC, but the results of McEliece with
medium sized N already indicate that other methods are faster anyway. As the
runtime for sorting grows sub-quadratic in N , but Fisher-Yates performance is
mainly determined by its O(W 2) loop iterations, the sorting method is faster
for the higher parameter sets of Streamlined NTRU Prime and NTRU LPRrime
which have medium sized N and relatively high W .

However, sorting is always outperformed by the two other coefficient repre-
sentation methods, the RepeatedAND and our comparison method. As already
theoretically analysed, for BIKE, HQC and McEliece the comparison method is
superior to the RepeatedAND in runtime costs. For NTRU the performance of
both methods are very similar, for Streamlined NTRU Prime and NTRU LPRrime,
RepeatedAND is mostly faster.

In the last column of Table 8 we present the cycle counts for a masked
transformation from index to coefficient representation. In general it depends on
the implementation of the scheme which representation is required for further
operations, the index representation of sparse polynomials can for example be
used for efficient multiplications. The high costs for a masked transformation
indicate, that if only a single representation is required, the fastest method that
directly outputs the correct representation is the preferable choice.

Two schemes have a parameter set that lead to a special case for some al-
gorithms. When N is a power of two which is the case for one parameter set
of McEliece, then Fisher-Yates and rejection sampling become easier because
checking if r < N is not necessary. We adopted our code accordingly when
benchmarking this parameter set and the affect shows clearly in the cycle num-
bers of Fisher-Yates that are lower compared than next smaller parameter set of
McEliece. The second special case is the highest parameter set for NTRU where
W > N/2, in this case the symmetry of fixed weight sampling allows to sample
with W ′ = N −W instead.

6.2 Hardware

Table 10 shows the hardware implementation results for the comparison ap-
proach presented in Section 4.6 for BIKE level 1. Therefore, we implement our
design for a Xilinx Artix-7 xc7a200 Field-Programmable Gate Array (FPGA)
and report the required resources and performance numbers. As a baseline, we
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Table 9: Cortex-M4, in kilo cycles, second order masking

Scheme N W Sort Fisher-Y. Reject B. Reject Comp. I2C Trans.

BIKE 24646 134 - 11207 - 51304 1121610
BIKE 12323 71 - 4552 1030 - 283200
BIKE 49318 199 - 20988 - 104545 3503932
BIKE 24659 103 - 7725 2009 - 860229
BIKE 81194 264 - 34385 - 177824 8068646
BIKE 40973 137 - 11834 3499 - 2016180

HQC 17669 75 - 4876 - 35354 451090
HQC 17669 66 - 4566 986 - 396960
HQC 35851 114 - 8446 - 56733 1454307
HQC 35851 100 - 7937 2054 - 1275709
HQC 57637 149 - 12270 - 39524 3065744
HQC 57637 131 - 11616 3450 - 2695393

McEliece 3488 64 153289 2867 743 - 51444
McEliece 4608 96 226936 5194 1567 - 109064
McEliece 6688 128 340152 7886 2514 - 211037
McEliece 6960 119 352248 7590 2239 - 205572
McEliece 8192 128 424376 7077 2453 - 258268

NTRU 509 254 13723 18234 7620 - 24363
NTRU 677 254 21152 19518 7856 - 36109
NTRU 821 510 25930 27993 11384 - 52005

sNTRU Prime 653 288 21152 23708 10271 - 39047
NTRU LPRrime 653 252 21152 19516 7799 - 34259
sNTRU Prime 761 286 23282 23649 9725 - 44227
NTRU LPRrime 761 250 23282 19457 7408 - 38646
sNTRU Prime 857 322 28063 32204 12109 - 55622
NTRU LPRrime 857 329 28063 32483 12680 - 57058
sNTRU Prime 953 396 30488 43281 18278 - 75955
NTRU LPRrime 953 345 30488 32959 13661 - 66245
sNTRU Prime 1013 448 33091 50029 23395 - 91284
NTRU LPRrime 1013 392 33091 43162 17573 - 80173
sNTRU Prime 1277 492 45734 67456 29901 - 135680
NTRU LPRrime 1277 429 45734 53205 22458 - 118322
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Table 10: Implementation results for the comparison sampling approach for BIKE
level 1 on an Artix-7 FPGA.

Resources Performance

Logic Memory Area Cycles Frequency Latency

d LUT FF BRAM Slices Cycles MHz µs

0 194 115 0.5 100 8 350 250 33.400

1 1 957 2 721 1 627 9 756 250 39.024
2 5 075 5 815 1.5 1 548 9 756 250 39.024
3 9 038 10 085 2 2 584 9 756 250 39.024

first implement an unprotected design which consumes just 100 slices and fin-
ishes on average one sampling process in 33.4 µs. Note, the number of required
Block-RAMs (BRAMs) is reported in 36KB memory modules. Therefore, the
unprotected design requires only one 18KB memory to store the final polyno-
mial.

The next three lines in Table 10 show the implementation results for a first,
second, and third order protected design. The first-order protected implementa-
tion consumes 627 slices compared to 100 slices of the unprotected design. How-
ever, all protected implementations of the sampler can be executed with the
same frequency, but have a slightly higher latency due to additionally register
stages introduced by the masking approach.

7 Conclusion

In this work we demonstrated how all fixed weight polynomial sampling methods
in the literature can be masked at arbitrary order. Our implementations indicate
that despite bitslicing and optimized subcomponents, the existing algorithms are
costly for masked software. Drucker and Gueron [10] benchmarked a subset of
our algorithms and schemes without power side-channel countermeasures, their
numbers indicate that the relative performance of the sampling algorithms for a
given scheme is equal for masked and non masked software implementations.

The flexibility of hardware implementations allow faster solutions, further
implementations would be an interesting target for future work. Additionally we
think shuffling should be investigated for the sampling algorithms as a perfor-
mant countermeasure against single-trace attacks.
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