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Abstract. The Permuted Kernel Problem (PKP) asks to find a permutation which makes
an input matrix an element of the kernel of some given vector space. The literature exhibits
several works studying its hardness in the case of the input matrix being mono-dimensional
(i.e., a vector), while the multi-dimensional case has received much less attention and, de
facto, only the case of a binary ambient finite field has been studied. The Subcode Equivalence
Problem (SEP), instead, asks to find a permutation so that a given linear code becomes a
subcode of another given code. At the best of our knowledge, no algorithm to solve the SEP
has ever been proposed. In this paper we study the computational hardness of solving these
problems. We first show that, despite going by different names, PKP and SEP are exactly the
same problem. Then we consider the state-of-the-art solver for the mono-dimensional PKP
(namely, the KMP algorithm), generalize it to the multi-dimensional case and analyze both
the finite and the asymptotic regimes. We further propose a new algorithm, which can be
thought of as a refinement of KMP. In the asymptotic regime our algorithm becomes slower
than existing solutions but, in the finite regime (and for parameters of practical interest), it
achieves competitive performances. As an evidence, we show that it is the fastest algorithm to
attack several recommended instances of cryptosystems based on PKP. As a side-effect, given
the already mentioned equivalence between PKP and SEP, all the algorithms we analyze in
this paper can be used to solve instances of this latter problem.

1 Introduction

The Permuted Kernel Problem (PKP) is an NP-complete problem [12] which, in its more general
formulation, asks to find a permutation of a given ℓ ˆ n matrix V which belongs to the right
kernel of another, given, mˆ n matrix A. The most studied case for the PKP is the one in which
the input matrix V has only one row (i.e., ℓ “ 1), hence it is a vector; we will refer to this case
as the mono-dimensional PKP. The use of the mono-dimensional PKP in cryptography has been
introduced by Shamir in 1989 [26], and recently the problem has been employed to build post-
quantum signature schemes [6, 7, 11]. The security of the mono-dimensional variant of PKP has
been extensively studied over time [3,13,16,17,20,22,23]. Prior to [23], the solver with the lowest
time complexity was the Koussa-Macario-Rat-Patarin (KMP) algorithm [17], which consists in a
brute-force search plus standard optimizations, such as reducing to a small instance and employing
a meet-in-the-middle approach. In the recent work [23], we have proposed an improvement of
the KMP algorithm, describing an approach based on kernel subspaces with small support, i.e.,
containing vectors that have always zero entries in several positions1. These subspaces correspond
to kernel equations involving an abnormally small number of coordinates and, consequently, are
somewhat easier to solve. Such equations can be used to implement an initial filtering stage, after
which the KMP algorithm is executed: this allows excluding some of the candidates which the
KMP algorithm would consider and, in several cases, leads to a slight but nontrivial speed-up.

Perhaps surprisingly, the multi-dimensional PKP (i.e., the case in which the input V has ℓ ą
1 rows) has received much less attention; formally introduced in [18], it has been employed to
generalize schemes based on the mono-dimensional version. Note that, in this work, the only
recommended instances are for the the binary case (i.e., the ambient finite field is binary). These
instances have been cryptanalyzed in [19], using a coding theory approach: roughly, the attack

‹ Part of the material in this paper has been presented at the 2022 IEEE International Symposium on
Information Theory (ISIT), Espoo, Finland [23].

1 Note that a similar idea was already briefly mentioned in [17], but the authors concluded that finding
kernel equations with the desired properties was not feasible.
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first searches for low-weight codewords and then uses them to efficiently reconstruct the target
permutation. Note that the algorithm in [19] is specific for the binary case.

Another interesting and quite recent problem is the Subcode Equivalence Problem (SEP). On
input two linear codes, the SEP asks to find a permutation mapping one into a subcode of the
other, and has been proven NP-complete in [4]. There already exist some cryptographic proposals
based on SEP: for instance, [14] and the quasi-dyadic specialization in [8]. At the best of our
knowledge, currently there is no proposed algorithm to solve SEP; hence, the practical hardness
of this problem is currently unknown.

Our contribution As we have already highlighted, there exist some connections between the PKP
and problems from coding theory. Indeed, both [19] and [23] solve PKP employing coding concepts
and algorithms. In this paper, we provide some further contributions along this line of research.
We first show that PKP and SEP are actually the very same problem: this somehow justifies the
fact that, to solve the PKP, one can borrow concepts from coding theory. As a consequence, all
the PKP solvers we discuss in this paper can also be employed to solve SEP.

Then, we delve into the study of techniques for solving the PKP. We first consider the KMP
algorithm and study its performance in the asymptotic regime. Namely, we show that, for growing
n, the time complexity of KMP is a super exponential function of n and is constant in ℓ. This result
is motivated by the fact that the finite field size q decays exponentially with ℓ, while the number
of equations we dispose of increases with ℓ. Given the operating principle of the KMP algorithm,
these two phenomena compensate one each other. However, the asymptotic regime predominates
only for very large values of n, so that, for parameters of practical interest, the time complexity
can vary significantly with ℓ.

We then improve the analysis of the solver in [23] and generalize it to the multi-dimensional
case. We show that such an algorithm is not better than KMP in the asymptotic regime but, in
the finite regime, it can achieve non trivial speed-ups with respect to KMP. As concrete examples,
we show that for some recommended PKP instances this algorithm has a time complexity which
is lower than that of KMP and [19]. Namely, for the mono-dimensional, 128-bits and 192-bits
instances of PKP-DSS [6], we show that our algorithm is slightly faster than KMP. For the multi-
dimensional instances recommended in [18], we show that our algorithm is faster than both KMP
and [19]. Furthermore, our approach is more general since it works regardless of the finite field size.

We also provide an open source proof-of-concept implementation of our algorithm2, which
can be used to validate the theoretical analysis (and some of the employed heuristics) for small
parameters, along with an open source software implementation of all the expressions we have used
for deriving numerical results.

Paper organization In Section 2 we establish the notation and recall some background notions
about linear codes. In Section 3 we state useful facts about subcodes, recalling and enriching some
notions from [23]. The equivalence between PKP and SEP is presented and discussed in Section 4.
The KMP algorithm and its asymptotic behaviour are analyzed in Section 5. The generalization of
the algorithm in [23] is presented and discussed in Section 6, which also provides a comparison of
the considered PKP solvers. Finally, in Section 7, we briefly comment about PKP and SEP behave
in terms of input sizes, and compare them with other well known problems (say, the Syndrome
Decoding Problem (SDP)). Section 8 concludes the paper.

2 Notation and background

In this section we settle the notation we use in the paper and recall some background concepts
about linear codes.

2.1 Notation

As usual, Fq denotes the finite field with q elements, with q P N being a prime power. Bold
lowercase (resp., uppercase) letters indicate vectors (resp., matrices). Given a (resp., A), ai (resp.,

2 Source code available at https://github.com/secomms/pkpattack/

https://github.com/secomms/pkpattack/
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aiw,j) denotes the entry in position i (resp., the entry in the i-th row and j-th column). With some
abuse of notation, we use GLm,n to indicate the set of mˆn matrices over Fq, with m ď n, having
full rank m. The identity matrix of size n is indicated as In, while 0 denotes the all-zero matrix
(the sizes will always be clear from the context). Given a set A, |A| denotes its cardinality (i.e.,
the number of elements). If a is a random variable (or a quantity that depends on some random
variables), we write a

.
“ x if it has average value x. Given a matrix A and a set J , AJ is the matrix

formed by the columns of A that are indexed by J ; analogous notation is used for vectors. We
denote by RREFpA, Jq the algorithm that outputsA´1

J A ifAJ is square and non singular, otherwise
returns a failure. We use Sn to denote the group of length-n permutations. Given a “ pa1, ¨ ¨ ¨ , anq
and π P Sn, we write πpaq “

`

aπp1q, ¨ ¨ ¨ , aπpnq
˘

. Analogous notation is employed for matrices, so
that πpAq is the matrix obtained by permuting the columns of A according to π. Given a, b, with
some abuse of notations, we define a X b as the set of entries which appear in both a and b. We
extend the notation to matrices, i.e., AXB is the set of columns which are in both A and B. For
a matrix A P Fn

q with no repeated column, we defineS ℓpAq as the set of length-ℓ matrices with

columns picked from those of A. Notice that |S ℓpAq| “
n!

pn´ℓq! .

2.2 Linear codes

A linear code C Ď Fn
q with dimension k, redundancy r “ n ´ k and rate R “ k{n is a linear k-

dimensional subspace of Fn
q . Any code admits two equivalent representations: a generator matrix,

that is, any G P GLk,n such that C “ tuG | u P Fk
qu, or a parity-check matrix, that is, any

H P GLr,n such that C “ tc P Fn
q | cH

J “ 0u (where J denotes transposition). If G generates C,
then any SG, with S P GLk,k, is a generator for the same code C; the same holds for parity-check
matrices, i.e., H and SH, with S P GLr,r, are parity-check matrices for the same code. Given
a vector x P Fn

q , its syndrome is s “ xHJ. The dual of C, which we denote by CK, is the space

generated by any parity-check matrixH. For any codeword c P C and any b P CK, we have cbJ “ 0.
The support of C, which we indicate as SupppCq, is the set of indexes i such that there is at least
one codeword c P C with ci ‰ 0. A subcode B Ď C with dimension k1 is a k1-dimensional linear

subspace of C. The number of such subcodes is counted by
“

k
k1

‰

q
“

śk1
´1

i“0
1´qk´i

1´qi`1 . Any subspace

with dimension 1 is the orbit of a codeword, under scalar multiplications by the elements in Fq:

the number of such subcodes is given by r k1 sq “
qk´1
q´1 .

2.3 Useful approximations and asymptotics

In this section we recall some well known asymptotics and approximations for quantities that will
arise naturally in our treatment (for more details about these estimates see, for instance, [15]).

For two functions fpnq and gpnq, we write fpnq „ gpnq if limnÑ8
fpnq
gpnq “ 1. From Stirling’s

approximation for factorials, we have

n! „
1

?
2πn

´n

e

¯n

“ 2

´

n
`

log2pnq´log2peq
˘

` 1
2 log2pnq

¯

`

1`op1q
˘

. (1)

For any integer q ě 2 and constant x P r0; 1s, the q-ary entropy function is defined as

hqpxq “ x logqpq ´ 1q ´ x logqpxq ´ p1´ xq logqp1´ xq.

Let ω P r0; 1s be a constant; then

ˆ

n

ωn

˙

“ 2

`

h2pωqn´
1
2 log2pnq

˘`

1`op1q
˘

, (2)

n!

pn´ ωnq!
“ 2n

`

h2pωq`ω log2pωn{eq
˘`

1`op1q
˘

. (3)

The number of vectors with length n, values over Fq and Hamming weight ωn is then

ˆ

n

ωn

˙

pq ´ 1qωn “ 2

`

hqpωq log2pqqn´
1
2 log2pnq

˘`

1`op1q
˘

. (4)
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Finally, for a constant d P N, we have

r
ωn
d sq

r
n
d sq

„ q´dp1´ωqn. (5)

3 Subcodes with small support

In this section we discuss properties of small support subcodes, which will be fundamental to
analyze the attacks we describe in this paper.

3.1 Number of subcodes with small support

For a random code, the average number of subcodes with dimension d and support size w can be
bounded thanks to the following theorem [23].

Theorem 1 For a code C Ď Fn
q , we define Aw,dpC q as the set of subcodes of C with dimension d

and support size w. Let Nkpw, dq be the average value of |Aw,dpC q|, when C is picked at random

among all codes with dimension k. Then N
Ž

kpw, dq ď Nkpw, dq ď N
Ź

kpw, dq, with

N
Ź

kpw, dq “

ˆ

n

w

˙

pqd ´ 1qw
śd´1

i“0 pq
d ´ qiq

“

k
d

‰

q

r
n
d sq

,

N
Ž

kpw, dq “

ˆ

n

w

˙

pqd ´ 1qw´d

“

k
d

‰

q

r
n
d sq

.

Proof. See [23].

Remark 1. The bounds in the above theorem are tight, up to a factor which tends asymptotically
to 1 as q grows. Indeed, consider that

N
Ź

kpw, dq

N
Ž

kpw, dq
“

pqd ´ 1qd
śd´1

i“0 qd ´ qi
“

pqd ´ 1qd

qd2
śd

i“1p1´ q´iq
.

Since e´
1
x « 1´ 1

x if x is sufficiently large, we approximate 1´ q´i « e
´ 1

qi and get

N
Ź

kpw, dq

N
Ž

kpw, dq
«

pqd ´ 1qd

qd2
śd

i“1 e
´ 1

qi

“ pqd ´ 1qdq´d2

e
řd

i“1
1

qi

ď e
řd

i“1
1

qi “ e

´

1´q´d´1

1´q´1 ´1
¯

“ e
qd´1

pq´1qqd ď e
1

q´1 .

The above quantity is constant in both the code length and desired support size and tends to 1 as
q increases.

As a consequence of the remark, using the lower bound N
Ž

kpw, dq instead of Nkpw, dq we obtain a
rather tight estimate on the actual number of subcodes. To make an example: for q “ 2 (i.e., when
the error term in the estimate is maximum), we have that Nkpw, dq is less than e1 « 2.7183 times

greater then the lower bound N
Ž

kpw, dq.
Starting from the above theorem, one can derive the minimum support size we expect to have

for d-dimensional subcodes, when dealing with random codes. To this end, we consider the following
proposition, whose proof is reported in Appendix A.

Proposition 1 Let C Ď Fn
q be a random code with rate R. Let d P N be constant, and ω˚ P r0; 1s

such that ω˚ “ min tω P r0; 1s | Nkpωn, dq ě 1u. Then

ω˚ « h´1
qd

ˆ

1´R`
d

n

˙

.
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3.2 Finding subcodes with small support

In [23], the authors consider an adaptation of Prange’s ISD to find subcodes with small support. In
principles, the algorithm may be improved by considering techniques which are normally employed
for standard ISD algorithms (e.g., partial gaussian elimination and a meet-in-the-middle search).
Yet, for the sake of simplicity, we stick to the algorithm in [23] and, in the next Proposition,
recall its time complexity. Note that similar results can be found also in [2,5]. Yet, for the sake of
completeness, the algorithmic procedure of ISD, as well as the proof of the proposition, are shown
in Appendix B.

Proposition 2 Time complexity of ISD
We consider ISD as an algorithm that, on input C P Fn

q with dimension k and integers w, d P N
such that w ď n` d´ k, returns a random element from Aw,dpCq with average running time

T
pdq
ISDpn, k, wq “ O

˜

k3 `
`

k
d

˘

ppdqpn, k, wq

¸

,

with ppdqpn, k, wq “ min

"

pwdqp
n´w
k´dq

pnkq
N
Ž

kpw, dq ; 1

*

.

4 The equivalence between PKP and SEP

In this section we introduce SEP and see its connections with another code-based problem, namely,
the Permutation Equivalence Problem (PEP). We proceed by describing a reduction from SEP to
PEP, which gives us a first way to solve SEP. This reduction is interesting since it bridges two
different code-based problems but, in practice, is not efficient since it runs in exponential time.
Finally, we show that PKP and SEP are equivalent, namely, they are different formulations of the
very same problem. This unlocks the possibility of solving SEP with more powerful solvers.

4.1 PKP, SEP and PEP

We start by introducing the PKP in its most general formulation.

Problem 1 Permuted Kernel Problem (PKP)
Given A P Fmˆn

q and V P Fℓˆn
q , with m, ℓ ď n, find π P Sn such that πpVqAJ “ 0.

When ℓ “ 1 (which, arguably, is the most considered PKP formulation), the above problem corre-
sponds to the one employed, for instance, in [6,26]; we will refer to this case as mono-dimensional.
In [18], instead, the authors consider the case ℓ ą 1; we will refer to this case as multi-dimensional.

The subcode equivalence problem is another NP-complete problem introduced in [4] which
reads as follows.

Problem 2 Subcode Equivalence Problem (SEP)
Given C Ď Fn

q with dimension k and C1 Ď Fn
q with dimension k1 ă k, find π P Sn such that

πpC1q Ď C. Equivalently, given G P Fkˆn
q and G1 P Fk1

ˆn
q , find S P GLk1,k and π P Sn such that

G1 “ SπpGq.

Considering the above formulation but requiring that k1 “ k would correspond to the PEP.

Problem 3 Permutation Equivalence Problem (PEP)
Given C,C1 Ď Fn

q , both with dimension k, find π P Sn such that πpC1q “ C. Equivalently, given

G,G1 P Fkˆn
q , find S P GLk,k and π P Sn such that G1 “ SπpGq.

We remember that SEP is NP-complete [4], while a well-known result establishes that the NP-
completeness of PEP would imply collapse of the polynomial hierarchy [21]. Also, for codes with
small hull (that is, the intersection between a code and its dual), polynomial time algorithms ex-
ist [1,25]. These algorithms essentially require some linear algebra computations (e.g., intersecting
vector spaces) plus auxiliary operations, such as hull enumeration [25] or reducing to graph isomor-
phism [1]. The cost of such auxiliary operations can be safely neglected, unless the hull dimension
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gets too large: in such a case, the currently known best solvers are different algorithms [2,5] which,
however, require to find low weight codewords and consequently take exponential time. Notice
that, for random codes, the hull dimension is a small constant with high probability [24]. Hence,
for random codes, with overwhelming probability applying the algorithms in [1, 25] results in a
polynomial time solver for PEP: for this reason, PEP is considered an easy problem, on average.

4.2 Reducing SEP to PEP

We describe a trivial way to solve SEP, which highlights its connection with PEP. Consider the
procedure in Algorithm 1 which, basically, does a brute force search over all subcodes of C and,
for each candidate, tries to solve the associated PEP.

Algorithm 1: Reduction of SEP to PEP

Input: G P Fkˆn
q , G1

P Fk1ˆn
q

Output: permutation π P Sn and matrix S P GLk1,k such that G1
“ SGP

1 Choose uniformly at random S P GLk1,k;

2 Set rG “ SG;

3 Try to solve PEP on input t rG,G1
u;

4 If a solution π P Sn is found, return tS;πu, else restart from step 1.

The running time of the algorithm is analyzed next.

Proposition 3 Algorithm 1 takes average time which is upper bounded from O
´

qk
1
pk´k1

qTPEPpq, n, kq
¯

,

where TPEPpq, n, kq is the running time of an algorithm that solves PEP on codes with length n and
dimension k, define over a finite field with q elements.

Proof. The probability that a choice for S is valid is given by the reciprocal of
“

k
k1

‰

q
. Hence,

“

k
k1

‰

q

corresponds to the number of times, on average, we call the PEP solver. To conclude the proof, we

show that
“

k
k1

‰

q
ď qk

1
pk´k1

q for any k1. Let us write r kx sq “
śx´1

i“0
qk´i

´1
qi`1´1 “

śx´1
i“0 apiq. Considering

that z´1
y´1 ď

z
y whenever z ě y, we can bound apiq ď qk´i

qi`1 only if qk´i

qi`1 ě 1 for any index i P r0;x´1s.

This holds whenever k ě 2i` 1 hence, given that i ď x´ 1, it must be x ď k`1
2 . Consequently, we

have

r kx sq ď

x´1
ź

i“0

qk´2i´1 “ qxpk´1q

˜

x´1
ź

i“0

q´i

¸2

“ qxpk´1q
´

q´
px´1qx

2

¯2

“ qxpk´xq.

If x ą k`1
2 , consider that r kx sq “

“

k
k´x

‰

q
“

“

k
x1

‰

q
and x1 “ k ´ x ă k´1

2 ă k`1
2 . Hence

“

k
x1

‰

q
ď

qx
1
pk´x1

q “ qpk´xqx. [\

The above reduction is rather simple and, not surprisingly, requires exponential time (regardless
of the cost to solve PEP). Yet, it is interesting from a theoretical point of view, since it creates
a relation between SEP and PEP. In the next section, we see that SEP and PKP are exactly the
same problem: this allows to solve SEP through any known algorithm for PKP.

4.3 Equivalence between PKP and SEP

In the following proposition, we show that PKP and SEP are equivalent.

Proposition 4 If ℓ ‰ n´m, PKP is equivalent to SEP; if ℓ “ n´m, PKP is equivalent to PEP.
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Proof. In the following, we will denote by tA P Fmˆn
q ,V P Fℓˆn

q u an instance of PKP, and by

tG P Fkˆn
q ,G1 P Fk1

ˆn
q u an instance of SEP. Also, we denote by C and C1 the codes generated,

respectively, by G and G1. To avoid burdening the notation and the treatment, we carry out the
proof considering that matrices have full rank; in case this is not true, the proof still holds, with
the only precaution that one first needs to remove the redundant rows. We start by considering
that any SEP instance can be transformed into a PKP instance with some simple linear algebra.
Indeed, to solve SEP, we want to find a permutation π and a non singular S P GLk1,k such that

G1 “ SπpGq. Equivalently, it must be π´1pG1q “ SG. Let H P Fpn´kqˆn
q be a parity-check matrix

for C: then, π solves SEP if and only if

π´1pG1qHJ “ 0.

The above corresponds exactly to the requirement for a PKP instance with m “ n´ k and ℓ “ k1.
The same procedure works in the other way, i.e., in showing how PKP can be seen either as

SEP or PEP. We start by considering the case of ℓ ă n ´m, and interpret A as a parity-check
matrix for C and V as a generator for C1. Repeating the above reasoning, it is immediately seen
that the problem corresponds to a SEP instance. If instead ℓ “ n´m, we have that C and C1 have
the same dimension k “ k1 “ ℓ “ n ´m, so we end up with a PEP instance. Finally, we notice
that if ℓ ą n ´m, the code C1 has dimension which is larger then that of C. So, the initial PKP
still corresponds to a SEP instance, but the role of the codes are exchanged: C is the permutation
of a subcode of C1. [\

A summary of the relations between PKP, SEP and PEP in shown in Table 1. As we have already
said, the PEP has already been extensively studied and is considered easy when the input codes
are random. Consequently, PKP can be considered easy, on average, if ℓ “ n´m; for this reason,
in this paper we will not study this case. Also, from now we set 1 ď ℓ ă n ´m: indeed, the case
of ℓ ą n ´m can be tackled identically, apart from a mere swap in the roles of the parameters ℓ
and n´m.

Table 1: Relations between PKP, SEP and PEP, and corresponding parameters
PKP Equivalent problem Parameters

ℓ ă n ´ m SEP k “ n ´ m, k1
“ ℓ

ℓ “ n ´ m PEP k “ k1
“ n ´ m

ℓ ą n ´ m SEP k “ ℓ, k1
“ n ´ m

5 General considerations on PKP and asymptotics for the KMP
algorithm

In this section we recall general properties about hard instances of PKP. Also, we recall the
algorithm in [17], which we refer to as KMP (from the authors initials). We generalize all our
considerations, as well as the KMP algorithm, to the multi-dimensional version of PKP. Finally,
we derive its running time in the asymptotic regime.

5.1 Hardest instances

As in all works regarding PKP, we study the constrains under which hardest to solve instances
are obtained; in doing this, we generalize the considerations that one normally has, for the mono-
dimensional PKP, to the multi-dimensional case. We generalize the known conditions to the multi-
dimensional case. Namely, we want A P Fmˆn

q and V P Fℓˆn
q both with full rank, and no repeated

columns, and also set the parameters so that, on average, only one solution exists. Formally, these
conditions correspond to the following criteria:

i) RankpAq “ m, RankpVq “ ℓ;
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ii) qℓ ě n, qm ě n;
iii) A and V have no repeated columns;

iv) n!

”

n´m
ℓ

ı

q

r
n
ℓ sq

ă 1.

Remark 2. We observe that, whenever qk´ℓ ! 1, we can approximate

”

n´m
ℓ

ı

q

r
n
ℓ sq

« q´ℓm, so that

condition iv becomes n!q´ℓm ă 1.

Notice that condition ii is simply obtained considering that, if qℓ ă n, then for sure V contains
at least two identical columns; the same holds for the condition qm ă n. Finally, condition iv is
about the uniqueness of the solution. Consider that any permutation π of V yields a vector space
with dimension ℓ. The number of ℓ-dimensional spaces that are orthogonal to the space generated

by A is counted by
“

n´m
ℓ

‰

q
. Then, we observe that

”

n´m
ℓ

ı

q

r
n
ℓ sq

is the probability that a random

ℓ-dimensional subspace of Fn
q is orthogonal to A. Assuming that each πpVq behaves as a random

subspace of Fn
q , then we can use n!

”

n´m
ℓ

ı

q

r
n
ℓ sq

ă 1 as an estimate on the average number of solutions:

setting this number to be smaller than 1, we guarantee that, on average, we expect to have no
more than one solution. Another common criterion consists in studying instances which are not
vacuously hard, i.e., such that at least one solution exists. To do this, we first choose rV as a random
kernel element with full rank and no repeated column, then we select a random permutation π and
set V “ πprVq.

5.2 The PKP as a decoding problem

We consider thatA can be enriched with an additional linear equation. Indeed, letH “

ˆ

A
1, 1, ¨ ¨ ¨ , 1

˙

P

Frˆn
q , with r “ m` 1, and write

E “ rVHJ “

´

rVAJ, rV ¨ p1, 1, ¨ ¨ ¨ , 1qJ
¯

“

˜

0ℓˆm,
n

ÿ

i“1

rvi

¸

“

˜

0ℓˆm,
n

ÿ

i“1

vi

¸

“ p0ℓˆm, eq P Fℓˆr
q , (6)

where rvi is the i-th column of rV and vi that of V. Notice that e is a length-ℓ column vector.
Finally, let

SH “ RREFpH, tn´ r ` 1, n´ r ` 2, ¨ ¨ ¨ , nuq “ pU, Irq, (7)

with S P GLr,r and U P Frˆpn´rq
q . Let rE “ EYJ and write V “ pV1,V2q, and consider that

rE “ V1U
J `V2,

from which
V2 “ rE´V1U

J. (8)

Hence, we simply need to correctly guess the action of the permutation for n´r coordinates. Notice
that, if H does not admit a change of basis as in (7), it is enough to row reduce with respect to a
different set of r indices. In other words, let J Ă t1, 2, ¨ ¨ ¨ , nu of size n´r and ␣J “ t1, 2, ¨ ¨ ¨ , nuzJ .
Also, let J be such that H␣J is non singular. Then, it holds that

V␣J “
`

E´VJHJ

˘

H´J
␣J , (9)

where the ´J operator denotes the inverse transposal.
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A coding theory perspective We now reformulate the PKP as a code-based problem. Notice
that this is, already, somehow implicit since we have already shown that PKP and SEP are exactly
the same problem. Yet, rephrasing everything in terms of codes will be helpful in analyzing the
attack we present in the next section.

Problem 4 PKP as a Decoding Problem
Given H P Frˆn

q , the parity-check matrix of C Ď Frˆn
q with code rate R “ 1 ´ r

n , V P Fℓˆn
q and

E P Fℓˆr
q , find π P Sn such that E “ πpVqHJ.

This formulation, which is sometimes referred to as non-homogeneous PKP, highlights the fact
that the PKP is, in the end, a decoding problem. Namely, we are given a set of ℓ syndromes ei,
where ei is the i-th row of E, and a set of ℓ vectors vi, where vi is the i-th row of V. We want to
find a permutation π so that

ei “ πpviqH
J, @i P t1, ¨ ¨ ¨ , ℓu.

To decode a syndrome into a vector, it is enough to guess the values of the vector in an information
set, that is, a set J Ă t1, 2, ¨ ¨ ¨ , nu of size k and such that

tcJ ‰ c1J | c, c
1 P C, c ‰ c1u.

It is easy to see that, if J is an information set for C, then H‰J is non singular, hence, can be
used in (9). In other words, to solve the problem, it is enough to determine the values of V in the
information set J : the values outside of the information set can be computed using (9).

5.3 KMP algorithm

We here recall the KMP algorithm [17], originally proposed for the mono-dimensional PKP, and
generalize it for the multi-dimensional case. The algorithm works with three parameters u, u1, u2 P

N, such that 1 ď u ď r, u1, u2 ě 1 and u1`u2 “ n´r`u. The procedure is initialized by choosing
a rank-u matrix S P Fuˆr such that rH “ SH has support size n ´ r ` u. To do this, we first
compute H1 “ RREFpH, tn´r`1, ¨ ¨ ¨ , nuq and then set rH as the sub-matrix formed by the entries
of H1 in the first u rows and the columns in positions t1, ¨ ¨ ¨ , n´ r`uu. The same transformation

is applied to E, obtaining rE “ ESJ P Fℓˆu
q . Then, we partition rH as p rH1, rH2q, where rH1 P Fuˆu1

q

and rH2 P Fuˆu2
q , and construct two lists

L1 “

!

pX,X rHJ
1 q

ˇ

ˇ

ˇ
X PS u1

pVq
)

,

L2 “

!

pX, rE´X rHJ
2 q

ˇ

ˇ

ˇ
X PS u2pVq

)

.

Let L “ L1 ’ L2, where ’ is computed as follows:

1. use an efficient search algorithm (e.g., permutation plus binary search) to find collisions, i.e.,
pairs pX,Yq P L1 and pX1,Y1q P L2 such that Y “ Y1;

2. keep only the collisions for which X and X1 have no common columns.

By construction, it holds that

L “
!

pX,X1q PS u1`u2pVq | pX,X1q rHJ “ rE
)

.

Then, we find J of size n´r so that J Ď t1, ¨ ¨ ¨ , n´r`uu and Ht1,¨¨¨ ,nuzJ is non singular, compute
rH “ RREFpH, t1, ¨ ¨ ¨ , nuzJq and use (8) to test each element in L. Namely, for each X P L, we

use the entries of XJ as rVJ and see if the resulting rV belongs toS npVq.
Coherently with all the PKP literature, we measure the running time of the KMP algorithm

as the number of matrix-matrix multiplications and list operations.

Proposition 5 Running time of the KMP algorithm
Let u1, u2 P N such that k ` 1 ď u1 ` u2 ď n. Then, the KMP algorithm runs in time

TKMPpu1, u2q “ |L1| ` |L2| `NL1’L2
` |L|,

where |Li| “
n!

pn´uiq!
, NL1’L2

.
“
pn!q2qℓpn´r´u1´u2q

pn´u1q!pn´u2q!
and |L|

.
“ n!
pn´u1´u2q!

qℓpn´r´u1´u2q.
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Proof. First, we consider that it must be u1 ` u2 ą k since, putting H in row reduced echelon
form, we obtain parity-check equations with maximum Hamming weight n´ r ` 1 “ k ` 1. Then,
we have that each list Li has size |S ui

pVq|: given that V does not have repeated columns, the
number of considered elements in Li is

n!
pn´uiq!

. For the number of collisions NL1’L2
, we consider

that each collision is due to two equal matrices with sizes ℓˆ u. Since we are dealing with random
PKP instances, we can consider that any pair of elements pX,Yq P L1 and pX1,Y1q P L2 collides
with probability

q´ℓu “ q´ℓu1`u2`r´n “ qℓpn´r´u1´u2q.

Then, the average value of NL1’L2 can be set as

|L1| ¨ |L2| ¨ q
ℓpn´r´u1´u2q.

Finally, we consider that L contains all the matrices inS u1`u2pVq such that their product by rH

returns rE, having size ℓˆ u. Hence, the average size of L can be estimated as

|S u1`u2
pVq| ¨ qℓpn´r´u1´u2q “

n!qℓpn´r´u1´u2q

pn´ u1 ´ u2q!
.

[\

5.4 Asymptotic analysis of KMP

We now derive the asymptotic running time of the KMP algorithm. Let us first consider the
following proposition.

Proposition 6 Asymptotic running time for KMP
Let µ P R` such that R

2 ă µ ď 1
2 and

h2pµq ` µ log2

´µn

e

¯

` ℓ log2pqq
`

R´ 2µ
˘

“ 0.

Then, asymptotically, the running time of the KMP algorithm is minimized with u1 “ u2 “ µn

and is given by 2ncKMPpµq
`

1`op1q
˘

, where

cKMPpµq “ h2pµq ` µ log2

´µn

e

¯

.

Proof. See Appendix C.

Notice that the KMP algorithm runs in time which is super exponential in the code length n, since
the dominant term grows exponentially with n log2pnq. However, to give a rigorous proof of this
fact, we need some further considerations.

First, we express q as a function of the code length. Indeed, we notice that the condition of

having no more than one solution can be expressed as n!

”

n´r
ℓ

ı

q

r
n
ℓ sq

« 1. Then, taking (1) and (5) into

account, we find

q „
´n

e

¯
1

ℓp1´Rq

ˆ

1`
1

2nℓp1´Rq
log2pπnq

˙

“

´n

e

¯
1

ℓp1´Rq `

1` op1q
˘

. (10)

In this regime, we can find an easy, closed-form formula for the running time of KMP. To this end,
let us consider the following proposition.

Proposition 7 Running time of KMP in the asymptotic regime: closed form formula

Let q „
`

n
e

˘
1

ℓp1´Rq . Let µ P pR{2; 1{2s be the value that optimizes the KMP algorithm, as in

Proposition 6. Then, limnÑ8 µ “ µ˚ “ R
1`R and the KMP asymptotically runs in time 2n¨c

˚
KMP ,

where

c˚KMP “ lim
nÑ8

cKMPpµq “ cKMP

ˆ

R

1`R

˙

“
1

1`R

´

log2 p1`Rq `R log2

´n

e

¯¯

.
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Proof. See Appendix C.
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Fig. 1: Values of µ that optimize the KMP algorithm, for ℓ “ 1. The continuous line has been
obtained by selecting, among all possible choices for pu1, u2q, the ones yielding the smallest value for
TKMPpu1, u2q. Dashed lines report the optimal values of µ which we have found solving, numerically,
the equation in Proposition 6. Dotted lines correspond to µ˚ “ R

1`R .
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Fig. 2: Complexity exponents for the KMP algorithm, as a function of n, for the case of ℓ “ 1.
Continuous lines report the values of cKMP arising from Proposition 6, while dotted lines report
the values of c˚KMP.

The above propositions leads to the following three interesting observations, which hold in the
asymptotic regime:

- the optimal value for µ is independent of ℓ;
- the optimal time complexity is independent of ℓ;
- the KMP algorithm runs in time which is super exponential in the code length.

We now give more insight about about these facts, with the help of some numerical experiments.
We have considered several triplets pℓ, R, nq and, for each one, have found the smallest prime
q for which the average number of solutions to PKP is ă 1. Using these parameters, we have
studied the performances of KMP. In Figure 1 we report an example of how the optimal value of
µ behaves, for the case of ℓ “ 1; as we can see from the figure, the optimal value for µ is already



12 Paolo Santini, Marco Baldi, and Franco Chiaraluce

0 2000 4000 6000 8000 10000
2

2.5

3

3.5

4

4.5

Code length (value of n)

C
o
m
p
le
x
it
y
ex
p
o
n
en
t
(v
a
lu
e
o
f
c K

M
P
)

ℓ “ 1

ℓ “ 4

ℓ “ 8

ℓ “ 16

Fig. 3: Complexity exponents for the KMP algorithm, as a function of n, for the case of ℓ “ 1.
Continuous lines report the values of cKMP arising from Proposition 6, while dotted lines report
the values of c˚KMP.

well approximated by µ˚ for n ď 1, 000. Figure 2 reports the optimal values of the complexity
exponent cKMP, for growing n, and a comparison with c˚KMP. We notice that there is a small, but
non negligible, difference between the values of cKMP and c˚KMP. This is due to the fact that cKMP

tends to c˚KMP very slowly. In any case, as predicted by Proposition 7, the values of cKMP exhibit a
logarithmic dependence in n. In Figure 3 we show how the complexity exponent behaves, for the
case of R “ 0.5 and several (constant) values of ℓ. The fluctuations in the curves are due to the
fact that we require q to be a prime, hence, we may need to change the value resulting from (10).

6 Improving KMP in the finite regime

In [23] a novel algorithm for the mono-dimensional case of PKP has been proposed. As we have
already said, it comes as a refinement of KMP and it has been shown that, in several cases and
in the finite regime, it exhibits a (slightly) better running time. In this section we improve the
analysis of this algorithm: we first extend it to the multi-dimensional case, provide a more rigorous
analysis and finally compare it with other PKP solvers.

6.1 The novel attack

The approach we consider is reported in Algorithm 2, while a graphical description is depicted in
Figure 4.

In the next Proposition we show that the algorithm is correct, i.e., that in each call it always
halts and returns a solution for the PKP instance tH,V,Eu. The proof of the proposition helps in
understanding the operating principle.

Proposition 8 Algorithm 2 is correct, i.e., it always returns a solution for the input PKP instance.

Proof. In the following, we will indicate by π the solution to PKP and rV “ πpVq. We observe
that, since π is a solution for the PKP instance tH,V,Eu, that is πpVqHJ “ E, then

ESJ “ σ
`

πpVq
˘`

SσpHq
˘J

, @S P Fr1
ˆr

q , @σ P Sn. (11)

In line 1 of the algorithm, a subcode of the dual CK is found. We denote by H˚ P Fdˆn
q a generator

matrix for such a subcode. Observe that H˚ “ SH for some S P GLd,r. The permutation σ we
compute in line 3 is only considered to simplify the description, since its action on H˚ is such that
H
Ź

“ σpH˚q has the only non null columns in positions tn´ r ` u´ w, ¨ ¨ ¨ , n´ r ` uu. Thanks to
the equality in (11), we have

E
Ź

“ ESJ “ σ
`

πpVq
˘

σpSHqJ “ V
Ź

H
ŹJ

.
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Algorithm 2: Combinatorial algorithm to solve PKP

Data: w,w1, w2, d, u P N, such that w ď n, w “ w1 ` w2, d ď r, u ď n ´ r
Input: H P Frˆn

q , E P Fℓˆr
q , V P Fℓˆn

q

Output: π P Sn such that πpVqHJ
“ E

/* Find subcode with support size w */

1 Use ISD to find H˚, generator matrix of B Ď CK, with dimension d and support size w;

/* Construct the PKP instance tH
Ź

,V,E
Ź

u, and find solutions */

2 Compute S P GLd,r such that H˚
“ SH;

3 Compute σ P Sn such that Supp
`

σpH˚
q
˘

“ tn ´ r ` u ´ w ` 1, ¨ ¨ ¨ , n ´ r ` uu;

4 Set E
Ź

“ ESJ, H
Ź

“ σpH˚
q;

5 Set K1 “ tn ´ r ` u ´ w ` 1, ¨ ¨ ¨ , n ´ r ` u ´ w2u, K2 “ tn ´ r ` u ´ w2, ¨ ¨ ¨ , n ´ r ` uu;

6 Prepare K1 “

!

`

Y1,Y1H
ŹJ

K1

˘

ˇ

ˇ

ˇ
Y1 PS w1pVq

)

, K2 “

!

`

Y2,E
Ź

´ Y2H
ŹJ

K2

˘

ˇ

ˇ

ˇ
Y2 PS w2pVq

)

;

7 Compute K “ K1 ’ K2;

/* Construct the PKP instance tH
Ž

,V,E
Ž

u, and find solutions */

8 Compute M P GLr,r such that MσpHq “ pU, Irq;

9 Set H
Ž

as the matrix formed by the rows of pU, Irq at positions td ` 1, ¨ ¨ ¨ , uu and
t1, ¨ ¨ ¨ , n ´ r ` uu;

10 Set E
Ž

as the matrix formed by the columns of EMJ in positions td ` 1, ¨ ¨ ¨ , uu;
11 Set L1 “ t1, ¨ ¨ ¨ , n ´ r ` u ´ wu and L2 “ tn ´ r ` u ´ w ` 1, ¨ ¨ ¨ , n ´ r ` uu;

12 Prepare L1 “

!

`

X1,X1H
ŽJ

L1

˘

ˇ

ˇ

ˇ
X1 PS n´r`u´wpVq

)

, L2 “

!

`

X2,V
Ž

´ X2H
ŽJ

L2

˘

ˇ

ˇ

ˇ
X2 P K

)

;

13 L Ð L1 ’ L2;

/* Test each produced candidate */

14 Set U
Ž

as the matrix formed by the last r ´ u rows of U;
15 for X P L do

16 Set X1
“ E

Ž

´ Xt1,¨¨¨ ,n´ruU
ŽJ

;

17 if pX,X1
q PS npVq then

18 Compute π such that σ
`

πpX,X1
q
˘

“ V;
19 Return π;

Given that H
Ź

has only w non null columns, tH
Ź

,V
Ź

,E
Ź

u is an easier to solve PKP instance. All the
solutions for this PKP instance are found with a meet-in-the-middle approach and are contained in
K. Notice that σprVqK1YK2

is guaranteed to be in K. Indeed, given that the only non null columns

of H
Ź

are in positions K1 YK2 “ tn´ r ` u´ w ` 1, ¨ ¨ ¨ , n´ r ` uu, we can write

p0dˆpn´r`u´wq, σprVqK1YK2
,0dˆpr´uqqH

ŹJ

“ E
Ź

.

The list K contains all matrices pY1,Y2q PS wpV
Ź

q such that

p0dˆpn´r`u´wq,Y1,Y2,0dˆpr´uqqH
ŹJ

“ E
Ź

,

hence it contains also σprVqK1YK2
.

For the matrices H
Ž

and E
Ž

which are computed in lines 9 and 10 of the algorithm, it holds

that M
Ž

σpHq and E “ EM
ŽJ

, where M
Ž

P GLr´d,r is obtained by replacing the first d columns

of M
Ž

with zeros. Hence, (11) continues to hold and, consequently, we have that rVL1YL2
must

be among the solutions of the PKP instance represented by tH
Ž

,V
Ž

,E
Ž

u. Notice that L1 Y L2 “

t1, ¨ ¨ ¨ , n ´ pr ´ uqu and that, to solve the PKP instance, we use again a meet-in-the-middle. In
particular, we consider all elements ofS n´r`u´wpVq to build the list L1 (which is associated to
the positions t1, ¨ ¨ ¨ , n ´ r ` u ´ wu), while to build L2 we use the elements in K. Indeed, we
observe that L2 “ tn´ r` u´w` 1, ¨ ¨ ¨ , n´ pr´ uqu “ K1 YK2, hence, L2 contains candidates

for σprVqK1YK2
. Given that the actual rVK1YK2

is guaranteed to be in K, we can construct L2 from
K, which avoids to enumerate all elements inS wpVq.



14 Paolo Santini, Marco Baldi, and Franco Chiaraluce

n ´ r ` u ´ w w

u ´ d

d

H
Ž

L1
H
Ž

L2“MσpHq Solving PKP on tH
Ž

,V,E
Ž

u

Output: list L “ L1 ’ L2

“MσpHq

n ´ r r ´ u

r ´ u U
Ž

Ir´u

Checking candidates in L

Output: permutation π

H
Ź

“ σpH˚q “ Solving PKP on tH
Ź

,V,E
Ź

u

Output: list K “ K1 ’ K2

H
Ź

K1
H
Ź

K2
d

n ´ r ` u
n ´ r ` u ´ w uw1u uw2u

K1 K2
Instructions 1–7

Instructions 8–13

Instructions 14–19

’

L1 L2

Fig. 4: Representation of the combinatorial attack described in Algorithm 4. Different colors high-
light the parity-check equations which are used in each stage.

The list produced in line 13 is guaranteed to contain rVL1YL2 . Notice that each X P L contains
is a matrix with n´ pr´ uq columns; to compute the remaining r´ u columns, which are denoted
as X1 in the algorithm, we we exploit the systematic form pU, Irq. Notice that, if pX,X1q PS npVq,

then this implies that σprVq “ pX,X1q “ σ
`

πpVq
˘

. From this relation, π can be easily found. [\

In the following Proposition we derive the time complexity of Algorithm 2. Notice that, as for
KMP, we express the cost in terms of linear algebra and lists operations.

Proposition 9 Let d,w1, w2 such that N
Ž

w1`w2,d ą 1. Then, Algorithm 2 runs in average time

T
pdq
ISDpn, r, wq ` TK ` TL ` |L|,

where w “ w1 ` w2, |K|
.
“ max

!

n!
pn´wq!q

´dℓ , 1
)

and

TK
.
“

n!

pn´ w1q!
`

n!

pn´ w2q!
`

pn!q2q´dℓ

pn´ w1q!pn´ w2q!
,

TL
.
“

n!

pr ` w ´ uq!
` |K| `

n!

pr ` w ´ uq!
¨ |K| ¨ q´ℓpu´dq,

|L|
.
“
pn´ wq!q´pu´dqℓ

pr ´ uq!
¨ |K|

Proof. Since N
Ž

kpw, dq ą 1, we expect CK to contain at least a subcode with dimension d and

support size w. To find such a subcode, we have a cost given by T
pdq
ISDpn, r, wq.

Steps 2–4 are obtained with some basic linear algebra, so we omit their cost. The cost of building
the lists K1 and K2 is given by

|K1| ` |K2| “
n!

pn´ w1q!
`

n!

pn´ w2q!
.
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Using an efficient strategy to find collisions (e.g., permutation plus binary search), searching for
collisions would take time |K1| ` |K2|. Notice that every time we find a collision between two
elements pY1,Y2q, we need to check if there are not repeated columns. The basic schoolbook
algorithm would take time Opℓw2q. Given that the cost is already polynomial and that it can
be significantly reduced with more clever approaches, we will omit it. Assuming that each term

Y1H
ŽJ

K1
and E

Ž

´Y2H
ŽJ

K2
is a random ℓ ˆ d matrix over Fq, we can estimate the average number

of collisions as
|K1| ¨ |K2|

qdℓ
“

pn!q2q´dℓ

pn´ w1q!pn´ w2q!

Consequently, we estimate the cost of instructions 2–7 as

TK
.
“

n!

pn´ w1q!
`

n!

pn´ w2q!
`

pn!q2q´dℓ

pn´ w1q!pn´ w2q!
.

After collisions are filtered, K contains, on average, max
!

n!
pn´wq!q

´dℓ , 1
)

elements. Notice that

we need to use the max operator since, knowing that the algorithm is correct, existence of at least

one solution is guaranteed. Hence, we set |K| “ max
!

n!
pn´wq!q

´dℓ , 1
)

.

Steps 8–11 involve only linear algebra, hence their cost will be neglected. The cost to build
L1 and L2 is, again, estimated with the number of elements. Notice that |L1| “

n!
n´pn´r`u´wq! “

n!
pr`w´uq! while L2 has average number of elements given by |K|. Given thatX1H

ŽJ

L1
andV

Ž

´X2H
ŽJ

L2

are ℓˆpu´dq matrices, we assume that each pair of list elements collides with probability q´ℓpu´dq.
Hence, the average number of collisions is

|L1| ¨ |L2|

qℓpu´dq
“

n!

pr ` w ´ uq!
¨ |K| ¨ q´ℓpu´dq

“ max

"

pn!q2q´uℓ

pr ` w ´ uq!pn´ wq!
,

n!q´ℓpu´dq

pr ` w ´ uq!

*

.

Consequently, the cost of executing steps 12–13 is

TL
.
“

n!

pr ` w ´ uq!
` |K| `

n!

pr ` w ´ uq!
¨ |K| ¨ q´ℓpu´dq.

To conclude the proof, we need to estimate the cost of going through instructions 14-19, i.e., to
test each element of L. Each test requires basic matrix operations, hence we can use |L| as an
estimate for the running time. We consider that for each matrix X2 in L2, the number of matrices
X1 that i) do not have columns identical to those of X2, and ii) provide a collision can be obtained

as pn´wq!q´pu´dqℓ

`

n´w´pn´r`u´wq
˘

!
“
pn´wq!q´pu´dqℓ

pr´uq! . Multiplying this quantity by the number of elements in L2,

we obtain that the average size of L is pn´wq!q´pu´dqℓ

pr´uq! ¨ |K|. [\

6.2 Comparison with KMP

In this section we compare the performances of our algorithm with those of KMP. For both algo-
rithms, we have considered the finite regime, that is: for KMP, we have employed the estimate of
TKMP resulting from Proposition 5, while for our algorithm we have referred to Proposition 9. In
Figures 5a, 5b, 5c we report the running times of the two attacks for different code rates R, several
(but not asymptotically large) code lengths n and the cases of ℓ “ 1, 2 and 4. The figures report
the complexity exponent, that is: for a running time equal to T , we have displayed 1

n log2
`

T
˘

. As it
can be seen, our algorithm can indeed be faster than KMP in several occasions. Indeed, regardless
of ℓ and unless n gets too large, our algorithm performs better than KMP, since the associated
complexity exponents are lower. We also notice that, for larger value of ℓ, the improvement be-
comes more significant. When approaching the asymptotic regime (i.e., when n gets larger), our
algorithm becomes slower.
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(a) ℓ “ 1
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(b) ℓ “ 2
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(c) ℓ “ 4

R “ 0.2 R “ 0.3 R “ 0.4 R “ 0.5

Fig. 5: Complexity exponents for our algorithm and KMP, for ℓ “ 1. Continuous lines are referred
to our algorithm, dotted lines are referred to the KMP algorithm.

To have more insight on how our algorithm compares with KMP, in Table 2 we have considered
some other examples. To analyze parameters with practical interest, we have focused on the PKP-
DSS instances recommended in [6]; the rows associated to these parameters are highlighted in
grey. For each instance, we have frozen the values of n and r, increased the values of ℓ and
have, consequently, recomputed q. For our algorithm, the table also contains the parameters which
optimize the attack. We can see that, in several cases, our algorithm can be significantly faster
than KMP.

In particular, the speed-up gets more relevant for large values of ℓ. This is due to the fact that,
when ℓ increases, the required value of q gets lower. Recalling Proposition 1, this implies that we
can run our algorithm with more aggressive parameters, that is, larger values of d. This makes the
initial filtering stage more powerful, since when d gets larger, the elements in K1 and K2 must
collide on a larger number of equations. Notice that our algorithm makes sense when w and d
are such that w ă n ´ r ` d. Indeed, d-dimensional subcodes with support size n ´ r ` d can be
found with a basic Gaussian elimination. Such subcodes are already, implicitly, employed in the
KMP algorithm. To do better than KMP, we need to use subcodes with the same dimension but
a lower support size: this happens only if w ă n´ r ` d. However, the existence of d-dimensional
subcodes with support size lower than n´ r ` d is not guaranteed. If such subcodes do not exist,
then our algorithm should not outperform KMP. For example, consider the first two instances with
pn, rq “ p106, 48q. Our algorithm is optimized by choosing d “ 21 and w “ 79, but n´ r` d “ 79:
as we can see from the table, our algorithm has essentially the very same running time of KMP.

Finally, we observe that the relevant term in the complexity of our algorithm is never T
pdq
ISDpn, r, wq.

In other words, this implies that the cost of ISD is always much smaller than the cost of creating
and merging the lists.

6.3 Comparison with the attack in [19]

To make another practical example, we consider the PKP instances recommended in [18], for which
pn, r, q, ℓq correspond to p38, 16, 2, 10q and p42, 16, 2, 11q. Notice that we are already referring to
the non homogeneous version, i.e., we are considering r “ m ` 1. In Table 3 we consider the
performances of Algorithm 2, and compare them with those of the attack in [19] and with KMP.
There instances have originally been proposed for security levels of 79 and 89 bits, but [19] shows
how they can be attacked with costs approximately given by 263 and 277, respectively. Coherently
with the literature on PKP (and with the analysis we performed in this paper), the estimates
in [19] count the number of matrix by matrix multiplications. Notice that, interestingly, the attack
in [19] has some similarities with our approach: for instance, it starts by repeatedly calling ISD to
find low weight codewords.

As we can see from the table, the running time of our algorithm is lower than that of [19].
Namely, the gain is approximately 5 bits for the first instance, and 8 bits for the second one. Also,
our algorithm works regardless of the considered finite field, while the one in [19] is specific to the
binary case.
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Table 2: Comparison between the running times (in log2 units) of KMP and Algorithm 2
pn, r, q, ℓq KMP pd,w,w1, uq Algorithm 2

p69, 42, 251, 1q 127.37 p1, 22, 2, 16q 125.47
p69, 42, 17, 2q 125.26 p14, 40, 20, 27q 121.34
p69, 42, 7, 3q 124.32 p3, 24, 5, 16q 118.45
p69, 42, 5, 4q 118.85 p11, 36, 18, 22q 110.87
p69, 42, 3, 5q 128.00 p8, 30, 12, 22q 115.16
p69, 42, 3, 6q 118.10 p10, 33, 16, 20q 101.72
p69, 42, 3, 7q 112.20 p8, 30, 15, 16q 91.04
p69, 42, 2, 8q 127.00 p12, 34, 17, 24q 105.77
p69, 42, 2, 9q 119.64 p10, 31, 15, 20q 96.52

p94, 55, 509, 1q 190.82 p1, 31, 2, 22q 189.77
p94, 55, 23, 2q 190.48 p2, 32, 3, 22q 186.43
p94, 55, 11, 3q 178.89 p2, 30, 4, 18q 173.75
p94, 55, 5, 4q 189.36 p4, 34, 6, 23q 179.85
p94, 55, 5, 5q 172.07 p3, 31, 6, 17q 163.40
p94, 55, 3, 6q 185.98 p18, 54, 27, 34q 172.52
p94, 55, 3, 7q 175.68 p14, 49, 24, 27q 159.03
p94, 55, 3, 8q 166.51 p11, 45, 22, 22q 148.03
p94, 55, 2, 9q 190.76 p11, 42, 16, 29q 169.04

p106, 48, 4093, 1q 257.40 p21, 79, 39, 23q 257.40
p106, 48, 67, 2q 256.97 p21, 79, 39, 23q 256.97
p106, 48, 17, 3q 256.41 p1, 40, 2, 21q 251.56

p106, 48, 11, 18q 245.74 p1, 39, 3, 18q 241.13
p106, 48, 7, 5q 245.71 p1, 39, 3, 18q 239.95
p106, 48, 5, 6q 245.72 p2, 41, 5, 19q 238.33
p106, 48, 5, 7q 237.49 p2, 40, 6, 16q 227.60
p106, 48, 3, 8q 251.90 p3, 43, 6, 22q 241.35
p106, 48, 3, 9q 244.82 p3, 42, 7, 19q 230.59

For a completely fair comparison, we observe that our algorithm requires an exponential amount
of memory, while the one in [19] has a much lower space complexity. In principles, an algorithm
running in time T and using a large memory M should be somehow penalized, in the sense that
its overall cost should be larger than T . This additional cost is normally neglected and only the
running time is considered. Yet, for the sake of completeness, we briefly comment about this fact.
Establishing how a large memory usage affects the performances of an algorithm is a rather involved
task. We will stick to the analysis in [10], in which the authors conclude that the logarithmic cost
seems to be the most appropriate one, for the case of ISD algorithms. Given that the large space
complexity of advanced ISD algorithms is essentially due to operations with lists, it makes sense
to extrapolate this result and apply it to also to our case. Hence, we consider an overall cost of
T ¨ log2pMq. Given that, for Algorithm 2, we have M « T , we can use T log2pT q as an estimate of
its cost.

Even if we assume no penalty for the attack in [19], our algorithm remains competitive. Indeed,
the costs would become approximately 63 and 75, which are in the same ballpark of [19]. Under

other models (for instance, the cubic root model which would lead to a cost of T 3
?
T “ T

4
3 ), the

cost of our algorithm would become much larger.

Table 3: Comparison between the running times (in log2 units) of KMP, the attack in [19] and
algorithm 2, for the instances recommended in [18]

pn, r, q, ℓq KMP [19] pd,w,w1, uq Algorithm 2

p38, 16, 2, 10q 74.9 63 p5, 21, 10, 10q 57.7
p42, 16, 2, 11q 87.4 77 p6, 26, 13, 11q 69.2
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7 Further considerations

Arguably, the interest in PKP and SEP is mainly due to their cryptographic applications. At the
best of our knowledge, the problems have been used only in the design of signature schemes in the
Fiat-Shamir paradigm. Yet, we cannot exclude that, in the future, other applications appear, e.g.,
signatures in the hash&sign paradigm or encryption schemes. Analogously, most of the attention
has been dedicated to the mono-dimensional PKP. The use of multi-dimensional PKP has only
been considered in [18], but [19] and this paper show that the recommended instances have a
security level which is significantly below the claimed one. Yet, this is not enough to conclude that
multi-dimensional PKP is less useful, with respect to mono-dimensional PKP. Following this line
of reasoning, some questions arise naturally; for instance:

Can a PKP-based encryption scheme, or a hash&sign signature scheme, be competitive?

Can multi-dimensional PKP be preferable than mono-dimensional PKP, in some cases?

In the remainder of this section, we argue why these questions may admit, in principles, a positive
answer. Namely, we show that to achieve a running time of at least 2128 operations (corresponding
to a security level of 128 bits) the required input size for PKP (equivalently, SEP) can be rather
small, when compared to other problems. This implies that, potentially, PKP and SEP may be
employed to design cryptographic schemes with competitive performances. Notice that we adopt
a purely speculative point of view, that is, we do not propose any specific construction but only
consider the performances that hypothetical such schemes may achieve. Yet, these results hint at
the fact that these problems are worth looking into.

7.1 Relevant quantities and scenarios

As it is common when studying hard problems, we first focus on the input size. For PKP, the input
is constituted by H, of size r ˆ n, and V, of size ℓ ˆ n; both matrices take values in Fq. Notice
that, for both matrices and without loss of generality, we can employ a convenient representation
and consider the RREF form. Indeed, this allows to save some space, since the identity matrices
can be excluded from the input. Consequently, to represent such matrices, the number of bits we
need is

SizepHq “ rpn´ rq log2pqq,

SizepVq “ ℓpn´ ℓq log2pqq.

For the overall input size, we can consequently consider SizepHq ` SizepVq. Notice that, under a
cryptographic point of view, the input size can be interpreted as the public key plus ciphertext
size of an hypotethical encryption scheme in which H constitutes the public key and V is the
ciphertext.

Notice that, when considering signature schemes in the Fiat-Shamir paradigm, H can be fixed
or generated at random starting from some seed. Instead, the size of (some) exchanged messages
is, more or less, equal to that of V. Consequently, in this scenario, it makes sense to neglect the
size of H and consider only that of V.

7.2 The case study of 128 bits of security

As in several other works, we focus on the case of 128 bits of classical security, which is the
minimum security level which is required, nowadays, for cryptographic schemes. We first consider
the minimum input size we need, for PKP, to have that all known attacks have a running time not
lower than 2128. In other words, we consider several code rates and, for each value of R, find the
values of n, q and ℓ such that all known attacks run in timeě 2128 and the value of SizepHq`SizepVq
is minimized. We first focus on the mono-dimensional case. For the corresponding parameters, see
Table 4, where we additionally compare with the results in [9], in which the authors derive the
minimum input size for the Syndrome Decoding Problem (SDP) with the low Hamming weight
and high Hamming weight requirements. As we can see from the Table, the PKP can achieve the
same complexity with a much smaller input. We have also considered how the problem behaves,
when switching to the multi-dimensional version. Interestingly, we found that the input size can
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be reduced significantly. Indeed, when ℓ gets larger, we can use smaller values for q, and this has
a positive impact on SizepVq. For instance, considering the same rate R « 0.51, we can choose
n “ 70, r “ 32, q “ 2 and ℓ “ 10, yielding to an input size of approximately 0.23 kB. Notice
that this reduction is mostly due to the fact that representing H becomes significantly less costly:
instead of the 1.12 kB required for the mono-dimensional case, we here need only 0.15 kB.

We now focus on minimizing just the size of V. For ℓ “ 1, we found that the optimal choice
is n “ 69, q “ 239 and r “ 41 (the code rate is approximately 0.4), yielding to SizepVq « 67 B.
When switching to the multi-dimensional case, we can obtain approximately the same sizes with
essentially the same n but a much smaller q. For instance, choosing n “ 68, q “ 17 and ℓ “ 2, we
obtain, in practice, the same value for SizepVq. We observe that, using the same n, the solution to
PKP has the same size; however, we can use a much smaller value for q, and this should make the
arithmetic faster.

Table 4: Minimum input size, in kB, and corresponding parameters, for different problems and 128
bits of complexity

Problem Parameters Min. Input Size

SDP, Low Weight q “ 2, R “ 0.326 46.75
SDP, High Weight q “ 3, R “ 0.369 12.38

PKP, ℓ “ 1 n “ 62, q “ 653, r “ 30 1.19

8 Conclusions

We have studied the hardness to solve the PKP and the SEP. First, we have shown that the two
problems are actually equivalent, hence, all solvers for the former can also be used to solve the
latter. Despite this result is based on a very simple reduction, to the best of our knowledge, this is
the first time it is made explicit. Then, we have deeply studied the performance of state-of-the-art
solvers. For what concerns the KMP algorithm, we have generalized it to the multi-dimensional
case (i.e., when ℓ ą 1) and have derived its complexity in the asymptotic regime. Our analysis
shows that, perhaps surprisingly, the running time does not depend on the value of ℓ. Also, the
algorithm runs in time which is super-exponential in the code length. We have then thoroughly
analyzed the algorithm we introduced in [23], extended it to the multi-dimensional case (regardless
of the finite field size) and compared it with KMP and the attack in [19], which is specific to
the binary field. Our analysis shows that, in the finite regime, our algorithm is in several cases
faster than other approaches; instead, in the asymptotic regime, KMP has better performance.
Finally, we have considered how PKP and SEP behave in terms of input size. We have shown that
they can achieve practical security levels with rather compact inputs, when compared to other
problems (say, SDP). Also, switching to the multi-dimensional version has no practical impact on
the security, while it can lead to a significantly reduced input size. This analysis hints at the fact
that, potentially, PKP and SEP can be used to design very promising quantum-safe cryptographic
primitives.
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Appendix A - Proof of Proposition 1

We have already observed that the bounds N
Ž

kpw, dq and N
Ź

kpw, dq are tight, up to a factor which

is not greater than e1 « 2.7183: so, we can safely use N
Ž

kpw, dq in place of Nkpw, dq. Let k “ Rn,
for a constant R P r0; 1s; since d is constant, from (5) we have

“

k
d

‰

q

r
n
d sq

„ 2dpk´nq log2pqq “ 2dnpR´1q log2pqq.

https://ia.cr/2019/412
https://doi.org/10.1109/ISIT50566.2022.9834867
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From (4), and neglecting the op1q (since they vanish for growing n), we have that

ˆ

n

w

˙

pqd ´ 1qw´d “

ˆ

n

w

˙

pqd ´ 1qwpqd ´ 1q´d

“ 2nhqd
pωq log2pq

d
q´d log2pq

d
´1q

“ 2d
`

nh
qd
pωq log2pqq´d log2pq

d
´1q

˘

.

Then, we can write

N
Ž

kpw, dq “ 2nd log2pqqhqd
pωq´d log2pq

d
´1q´dnp1´Rq log2pqq.

Let ω˚ be the minimum ω P r0; 1s so that N
Ž

kpωn, dq ě 1. From the above equation, we obtain

ω˚ “ h´1
qd

ˆ

1´R`
log2pq

d ´ 1q

n log2pqq

˙

.

We further notice that, whenever qd " 1, we can further simplify log2pq
d ´ 1q « d log2pqq, from

which

ω˚ « h´1
qd

ˆ

1´R`
d

n

˙

.

Appendix B - Proof of Proposition 2

ISD is a randomized, iterative procedure in which the steps in Algorithm 3 are continuously exe-
cuted until the algorithm successes.

Algorithm 3: One iteration of ISD for d ą 1

Input: Code C generated by G P GLk,n, w, d P N such that w ď n ´ k ` d
Output: failure, or generator matrix for B Ď C with dimension d and support size w

1 Choose uniformly at random σ P Sn;
2 if RREF

`

σpGq, t1, ¨ ¨ ¨ , ku
˘

fails then
3 Report failure;
4 else
5 pId,Mq Ð RREF

`

σpGq, t1, ¨ ¨ ¨ , ku
˘

6 for U Ď t1, ¨ ¨ ¨ , ku with size d do
7 B Ð matrix formed by rows of M indexed by U ;
8 if B has support size w ´ d then
9 Return σ´1

`

pId,Bq
˘

10 Report failure;

Consider the running time in Proposition 2. Notice that the enumerator of the formula cor-
responds to the cost of each iteration, while the denominator is the success probability of each
iteration. For this probability, we consider that the code contains Nkpw, dq subcodes with dimen-
sion d and support size w. The probability that a chosen permutation is valid for one of them

is given by
pwdqp

n´w
k´dq

pnkq
and, if we multiply it by the expected number of subcodes, we obtain the

average number of subcodes each ISD iteration is able to find. Now: if this product is smaller than
1, then we can deem it as the success probability. Instead, if it is close to (or greater) than 1,
then we can assume that every ISD iteration returns a subcode, so that the success probability
of every iteration is basically 1. This reasoning explains why we can set the success probability

of each iteration as ppdqpn, k, wq “ min

"

pwdqp
n´w
k´dq

pnkq
Nkpw, dq ; 1

*

. Finally, we replace Nkpw, dq with

the (tight) lower bound N
Ź

kpw, dq.
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Appendix C - Asymptotics of KMP algorithm

Proof of Proposition 6

We first notice that the number of elements in L is always not larger than the number of collisions
between L1 and L2, that is, NL1’L2 . Hence, asymptotically, the cost of the algorithm can be
assumed as maxt|L1| , |L2| , NL1’L2

u, and the algorithm is optimized when the three quantities
are identical. To achieve this, we choose u1 “ u2 “ µn, where µ P r0; 1s. This guarantees that
|L1| “ |L2| and, recalling the asymptotics in Section 2.3, we have3

L “ |L1| “ |L2| “ 2n
`

h2pµq`µ log2p
µn
e q

˘

.

Furthermore, it holds that

NL1’L2
“

L2

qℓpn´r´2µnq

“ 2n
`

2h2pµq`2µ log2p
µn
e q´ℓ log2pqqpR´2muq

˘

.

Then, it is easy to see that L “ NL1’L2
happens when µ is such that

h2pµq ` µ log2

´µn

e

¯

` ℓ log2pqqpR´ 2µq “ 0. (12)

This proves the proposition.

Proof of Proposition 7

In the asymptotic regime we have q „
`

n
e

˘
1

ℓp1´Rq . Consequently, we rewrite (12) as

h2pµq ` µ log2

´µn

e

¯

`
1

1´R
log2

´n

e

¯

pR´ 2µq “ 0. (13)

It is easy to see that, for any sufficiently large n, the above equation always admits a root µ in the
range µ˚ P pR{2; 1{2s. Indeed, the function on the left side of the equation is continuous, is positive
for µ “ R{2 and negative for µ “ 1{2: consequently, it must have a root in the range pR{2; 1{2s.
Let ω˚ be the limit of the root of (13), for n going at infinity, and consider that

lim
nÑ8

h2pµ
˚q ` µ˚ log2

ˆ

µ˚n

e

˙

`
1

1´R
log2

´n

e

¯

pR´ 2µ˚q

“ µ˚ log2

´n

e

¯

`
1

1´R
log2

´n

e

¯

pR´ 2µ˚q .

Requiring the above limit to be equal to 0, we find

µ˚ “
R

1`R
.

Then, we consider that

cKMPpµ
˚q “ h2pµ

˚q ` µ˚ log2

ˆ

µ˚n

e

˙

“ ´p1´ µ˚q log2p1´ µ˚q ` µ˚ log2

´n

e

¯

“ ´
1

1`R
log2

ˆ

1

1`R

˙

`
R

1`R
log2

´n

e

¯

“
1

1`R
log2 p1`Rq `

R

1`R
log2

´n

e

¯

.

3 To ease notation, we here neglect the op1q terms.
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