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Abstract—The security of proof-of-work blockchain protocols
critically relies on incentives. Their operators, called miners,
receive rewards for creating blocks containing user-generated
transactions. Each block rewards its creator with newly minted
tokens and with transaction fees paid by the users. The protocol
stability is violated if any of the miners surpasses a threshold ratio
of the computational power; she is then motivated to deviate with
selfish mining and increase her rewards.

Previous analyses of selfish mining strategies assumed constant
rewards. But with statistics from operational systems, we show
that there are occasional whales – blocks with exceptional
rewards. Modeling this behavior implies a state-space that grows
exponentially with the parameters, becoming prohibitively large
for existing analysis tools.

We present the WeRLman1 framework to analyze such models.
WeRLman uses deep Reinforcement Learning (RL), inspired by
the state-of-the-art AlphaGo Zero algorithm. Directly extending
AlphaGo Zero to a stochastic model leads to high sampling
noise, which is detrimental to the learning process. Therefore,
WeRLman employs novel variance reduction techniques by
exploiting the recurrent nature of the system and prior knowledge
of transition probabilities. Evaluating WeRLman against models
we can accurately solve demonstrates it achieves unprecedented
accuracy in deep RL for blockchain.

We use WeRLman to analyze the incentives of a rational miner
in various settings and upper-bound the security threshold of
Bitcoin-like blockchains. We show, for the first time, a negative
relationship between fee variability and the security threshold.
The previously known bound, with constant rewards, stands
at 0.25 [2]. We show that considering whale transactions reduces
this threshold considerably. In particular, with Bitcoin historical
fees and its future minting policy, its threshold for deviation will
drop to 0.2 in 10 years, 0.17 in 20 years, and to 0.12 in 30 years.
With recent fees from the Ethereum smart-contract platform, the
threshold drops to 0.17. These are below the common sizes of
large miners [3].

Index Terms—Blockchain, Selfish Mining, Bitcoin, Ethereum,
Transaction Fees, Whale Transactions, Miner Extractable Value,
Deep Reinforcement Learning, Monte Carlo Tree Search, Deep
Q Networks

I. INTRODUCTION

Proof of Work cryptocurrencies like Bitcoin [4],
Ethereum [5] and Zcash [6], implement digital currencies
and secure hundreds of billions of dollars [7]. Such
cryptocurrencies are based on decentralized blockchain
protocols, relying on incentives for their security. Blockchains
are maintained by miners who use computational power to
create new blocks. In return, the protocols distribute rewards
to their miners in the form of virtual tokens. Ideally, every
miner should get her fair share of the reward, based on how
much computational power she controls [4], [8], [9].

1Pronounced werl-man. The Wellermen were employees of the 19th century
whale-trading company Weller [1].

However, many protocols are vulnerable to selfish min-
ing [2], [8], [10], [11], where a miner deviates from the desired
behavior to obtain more than her fair share. Such deviations
destabilize the protocol, harming its safety and liveness guar-
antees [12]. The security threshold of a blockchain protocol
is the minimum relative computational power required to
perform selfish mining. The threshold should be high enough
such that no miner is motivated to deviate.

Like previous work, we analyze the system as a Markov
Decision Process (MDP) [2], [10], [13], a mathematical model
for a single-player stochastic decision-making process that
is played in stages [14]. The MDP can be used to find the
optimal strategy of a rational miner. If the optimal strategy is
not the desired one, then a rational miner should deviate. We
can find the security threshold by considering different miner
sizes. Thus, finding the security threshold amounts to solving
a sequence of MDPs.

To our knowledge, previous work on mining incentives
assumed that block rewards are constant [2], [8]–[10], [13],
[15]–[17] or that the available rewards are constant [18],
[19]. However, in practice, variability is significant (Fig. 1).
Contention for block space results in an active market, where
users vary the fees they offer for placing their transactions.
Miners can then increase their rewards by including specific
transactions in their block. These rewards are called Miner
Extractable Value (MEV) [20].

In this work, we introduce a model of blockchain incentives
that considers MEV. We focus on infrequent opportunities for
rewards much higher than the average, as apparent in Fig. 1.
Our model applies to Nakamoto Blockchains: Bitcoin and
blockchains based on Bitcoin, e.g., Zcash, Litecoin and Bitcoin
Cash. We model a single rational miner trying to optimize her
revenue while all other miners behave honestly. To the best of
our knowledge, this is the first analysis of honest mining as
a Nash equilibrium when both the constant block reward and
MEV opportunities are present.

Our model extends the selfish mining model of Sapirshtein
et al. [2] to include transaction fees. We make the assumptions
that all transaction fees are equal and that each block can
contain a single transaction. Thus, high-reward blocks and
low-reward blocks are captured as blocks with or without
a transaction, respectively. Despite these easing assumptions,
integrating MEV into the model poses new challenges. The
model must synchronize the arrival of transactions with the
creation of blocks, without allowing the miner to manipulate
the transaction arrival rate. In addition, the extension yields
a significantly larger model. In our configuration, the model
contains over 108 states, prohibiting direct dynamic program-
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Fig. 1: Bitcoin block rewards, Sep. 1–2, 2021.
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Fig. 2: Projected upper bound of Bitcoin’s security threshold.

ming based solutions.
To analyze security in the presence of varying rewards, we

use deep reinforcement learning (RL) – a popular method for
approximately solving large MDPs [21]. However, we found
that previous work on deep RL for blockchain [10] yields
approximations that are not precise enough for our problem.
Therefore, we present WeRLman2 – a novel RL algorithm that
is tailored for blockchain MDPs. WeRLman combines deep
Q networks [22], a popular RL method, with Monte Carlo
Tree Search (MCTS) [23], [24] and a novel variance reduction
technique that exploits the structure of the blockchain problem.
We show that WeRLman yields superior accuracy compared
to the state-of-the-art, and compute security thresholds for our
problem.

In addition to WeRLman, we present a simplified model of
a Nakamoto blockchain with MEV by limiting the available
actions of the miner. The simplified model requires a state
space 2 orders of magnitude smaller compared to the full
model, and thus can be solved using dynamic programming.
Although the limitations of the model result in a lower bound
for the revenue, this approach yields an accurate result. We
thus use the simplified model to further improve the accuracy
of the threshold: if the revenue found by WeRLman is lower
than that of the simplified bound (due to approximation errors),
we use the value given by the simplified model. We observe
that for many cases this does not happen. However, we find
it particularly useful for miner sizes close to threshold, since
the security threshold is sensitive to any deviation from the
honest strategy, even if it yields only a very minor advantage.

Our analysis of the Nakamoto blockchain shows it is more
vulnerable to selfish mining than when assuming constant
rewards, as in state-of-the-art [2]. Higher reward variability
leads to a higher incentive to deviate when large fees are
available, lowering the security threshold. The security guar-
antees of blockchains rely on rational miners following the
prescribed protocol. Even temporary deviations, when rare
MEV opportunities are present, revoke the assumptions their
security relies on.

2Available on GitHub at: https://github.com/roibarzur/pto-selfish-mining

To estimate the effect on real systems, we choose model
parameters based on publicly available data on operational
systems rewards. A year of Bitcoin data reveals a significant
fee variance. However, most of its rewards come from sub-
sidy – newly minted tokens. Therefore, taking today’s values,
the threshold does not change significantly.

But, by design, Bitcoin’s minting rate is halved every 4
years. Thus, fee variability will become more significant for
the total reward in the future. Using historical fee data and
simulating future halving events, we show the security thresh-
old significantly decreases, as opposed to the state-of-the-art
analysis of the constant rewards model (Fig. 2). For example,
when simulating 3 halving events, corresponding to about 10
years, the threshold reduces from 0.25 today to 0.2. After
another halving, from 0.2 to 0.18 and after another halving
to 0.17. This trend continues until the threshold finally reduces
to below 0.12. In this scenario, considering the common sizes
of miners [3], several miners are incentivized to deviate from
the prescribed protocol.

The MEV variability is even higher in smart-contract plat-
forms (e.g., [5], [25]), possibly due to a lively DeFi mar-
ket [26]. Although their protocols are outside the scope of this
work, as they require a more complicated model, with current
Ethereum rewards [27] WeRLman shows that the threshold in
a Nakamoto blockchain drops to 0.17, also a common size for
large miners.

In summary, our main contributions are:
1) A model of blockchains that includes occasional reward

spikes and a simplified model that can be solved using
traditional dynamic programming methods (§II),

2) WeRLman – a novel deep RL method for finding near-
optimal selfish mining strategies in blockchain models
with large state spaces (§III),

3) An empirical evaluation of WeRLman showing it
achieves near-optimal results (§IV),

4) Finding that fee variability hurts blockchain security by
evaluating the security threshold for both models and its
sensitivity to their parameters (§V), and

5) An evaluation of model parameters based on realistic
distributions of rewards and the resultant security thresh-
olds, well below the known bound (§V-C).

We review previous work on selfish mining, deep RL and other
forms of blockchain attacks (§VI) and then conclude (§VII)
with a discussion of further open questions.

II. MODEL

We present our model of the mining process of a Nakamoto-
based blockchain with varying fees. We first provide back-
ground on the general mathematical model, a Markov decision
process (§II-A) and on selfish mining in general (§II-B). Then,
we describe our varying model of the mining process with
varying rewards as an MDP and compare it to the state-of-
the-art constant model by Sapirshtein et al. [2] (§II-C).
Afterwards, we present a simplified version of the varying
model, which can be solved using exact methods (§II-D).
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A. Preliminaries: Markov Decision Processes

A Markov Decision Process (MDP) is a mathematical model
for a step based single-player game [14], [28]. It consists
of an environment and an agent. Let S be the state space
and A be the action space. At every step t, the agent
observes the state st ∈ S of the environment and chooses an
action at ∈ A. The environment then transitions stochastically
to a new state st+1 based only on the previous state and action,
and receives a reward. Afterward, the process continues to
the next step, and so on. An MDP is defined by transition
matrices P (s′|s, a) (one matrix for each action) which specify
the probability distributions of moving from each state s to
each state s′ under action a, and a reward matrix R(s, a)
which defines the reward of performing action a in state s.

The agent strives to maximize some objective function of
the per-step rewards by choosing an optimal policy. A Markov
policy π : S → A defines which action to take in each state,
independent of previous states or actions. Standard objective
functions include the λ-discounted reward E [

∑∞
t=1 λ

tRt], and
the stochastic shortest path E

[∑T
t=1 Rt

]
, where T is a random

variable denoting the step in which the process terminates [14].

B. Preliminaries: Selfish Mining

We focus on blockchains based on the original design
of Bitcoin [4], which we refer to as Nakamoto blockchains
(after their pseudonymous creator). The main goal of a
blockchain [29] is to achieve consensus among untrusting
parties using only peer to peer communication. Specifically,
a blockchain protocol maintains a ledger, which keeps track
of all the transactions that took place. A transaction is typically
a cryptographically-signed statement ordering a state change,
commonly a token transfer between parties. This ensures that
participants can only spend tokens they have and cannot spend
them more than once.

Principals called miners maintain this ledger. Miners gather
transactions from the network and organize them into blocks.
Each block points to the block that came before it by including
its hash, thus forming a block chain. This creates a timeline of
all the transactions. The miners are required to all extend the
same chain to ensure there is a consensus. Therefore, miners
are expected to extend the longest chain they know of.

To incentivize miners to mine blocks in the longest chain,
each block rewards its miner with newly-minted tokens called
subsidy. In addition, to incentivize miners to include user
transactions, they receive fees from all the transactions they
include in a block. Users, who publish transactions to be added
to the blockchain, specify the fee to pay to the miner. The
higher the fee is, the earlier the transaction will appear in the
next few blocks as the block size is limited, so miners will
be incentivized to include transactions with higher fees when
available.

Mining is made artificially hard by requiring a solution for
a cryptographic puzzle, which must be solved to make a block
valid. This ensures there will be time for a block to propagate
through the network before a new block is created, and that

p1 m2

(a) Miner mines m2.
p1 m2 m3

(b) Miner mines m3.

p1 p2

m2 m3

(c) Someone else mines p2.
p1 m2 m3

(d) Miner publishes p2 and p3.

Fig. 3: Selfish Mining illustration. Secret blocks are marked
by a dashed outline.

an attacker cannot easily create a long chain to undermine the
consensus on the current longest chain. To solve the puzzle,
a miner has to guess a number, which when hashed with the
block, returns a number lower by some parameter. Thus, the
time until a solution is found is distributed exponentially [8],
[12], [30] with a rate dependent on how many guesses the
miner makes per unit of time.

Nakamoto blockchains also have a mechanism to adjust the
difficulty of the puzzles to the amount of total computational
power invested in the network by raising or lowering the
threshold parameter of the puzzle. This is called a difficulty
adjustment mechanism. It ensures that even when miners leave
or join the network, or as computational power becomes
cheaper and more abundant, the expected time between the
creation of blocks remains constant. Without this mechanism,
blocks would be created more frequently as more computa-
tional power joins the network over time. This would leave
less time for a block to be propagated before another block
is created and would lead to more disputes over the longest
chain when two blocks point to the same block, creating a
fork in the network.

The difficulty adjustment mechanism enables selfish min-
ing [2], [8]. The mechanism ensures a constant average amount
of blocks per unit of time, and a rational miner wants to
maximize her reward per unit of time. Therefore, a rational
miner would want to maximize her fraction of blocks in the
main chain rather than the total number of blocks created. An
example for a simple case of selfish mining is illustrated in
Fig. 3. A miner may want to keep her newly mined block m2

secret (Fig. 3a) in order to have a chance to find another
block, m3 (Fig. 3b) which points to it and then publish both
blocks together. By doing so, other miners waste resources by
trying to create block p2 (Fig. 3c), which will not be part of
the longest chain if the miner succeeds in creating m3 and then
publishing m2 and m3 together (Fig. 3d). The miner might not
always succeed and might lose block m2, but by sometimes
wasting others’ work, the miner can increase her fraction of
blocks in the longest chain. More generally, we name any
form of deviation from the prescribed protocol of following
the longest chain and publishing blocks immediately, selfish
mining. The main idea behind selfish mining is to risk some
rewards but waste more resources for others, and thus increase
the miner’s share of rewards.

C. Varying Fees Model

We now present our varying model of a Nakamoto-based
blockchain with varying fees. We model the process of mining
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from the perspective of a rational miner as an MDP [2], [13].
The rational miner mines on a single secret chain, and all
other miners mine honestly on a single public chain. Let α be
the fraction of the miner from the total computational power
of the system. Let γ be the rushing factor [2], [8] of the
miner: if a miner publishes a block b, the rational miner sees
this block and can publish her own block b′ that she kept
in secret. The rushing factor γ denotes the fraction of mining
power (controlled by other miners) that will receive b′ before b.

We normalize the baseline block reward to be 1. The base-
line includes the subsidy and the fees commonly available in
the mempool, the set of all available transactions that were not
included yet. Occasionally, there appear whale transactions,
which offer an additional fee of F . We assume each block
can hold a single whale transaction, therefore a block can give
a reward of either 1 or 1 + F . In practice, F would be the
aggregation of multiple fees.

To represent the available whale transactions in the network,
we introduce the transaction memory pool (represented as
an integer value pool) into the state space. All new whale
transactions arrive into the pool (by incrementing the value
of pool), and can then be included in a block. Honest miners
always include a transaction when available. However, the
rational miner can choose whether to include a transaction
or not when there is one available.

We now present the objective function of the MDP, the state
space, the action space and the transitions. Then, we present
how we confine the state space to be finite.

1) Objective Function: In general, the MDP can be mod-
eled such that at step t the miner gains a reward of Rt and
the difficulty adjustment mechanism advances by Dt [13]. The
rational miner’s incentive is to maximize average revenue per
unit of time. The difficulty adjustment mechanism ensures
that

∑n
t=1 Dt grows at a constant rate. Thus, dividing the

accumulated reward by the sum yields the miner’s reward per
unit of time.

Let the revenue for a policy π be Eπ
[
lim
n→∞

∑n
t=1 Rt∑n
t=1 Dt

]
, and

define the optimal revenue as the maximum of this value.
In previous work on Bitcoin with constant block rewards [2],

[10], [13], Rt denoted the number of blocks that the miner
added to the longest chain (assuming the block reward is
normalized to 1), and Dt denoted the total number of blocks
added to the longest chain. The objective then becomes the
fraction of blocks in the longest chain mined by the miner.

In the varying rewards model, however, the reward Rt

includes the transaction fees as well as the subsidy reward.
The difficulty advancement Dt remains the same as above, as
transactions do not affect the difficulty adjustment mechanism.

2) State Space: The state is a tuple of 4 ele-
ments (⃗a, h⃗, fork, pool). The vector a⃗ is a list of blocks of
the rational miner since the last fork. Each item in the
list denotes whether the block holds a whale transaction.
Similarly, the list h⃗ keeps the blocks mined in the public chain.
The element fork ∈ {RELEVANT, IRRELEVANT, ACTIVE} is a
ternary value denoting whether the last blocked was mined
by the rational miner, another miner or whether a race is

p1 p2 p3

m2 m3

a⃗

h⃗

(a) IRRELEVANT

p1 p2 p3 p4

m2 m3

a⃗

h⃗

(b) RELEVANT

p1 p2 p3

m2 m3

a⃗

h⃗

(c) ACTIVE.

Fig. 4: The different cases of the fork parameter.

taking place, respectively. The element pool is the number
of available transactions since the last fork.

Note the differences between varying model and the
constant model of Sapirshtein et al. [2]. While fork is the
same in both models, the element pool is new in the varying
model. In addition, the vectors a⃗ and h⃗ are more informative
in the varying model, and keep track of all blocks with
whale transactions, instead of just the length of the chains.
Representing the element a⃗ requires at least 2|⃗a| bits. This is
an exponential cost with respect to the allowed length of the
miner’s chain. The same applies for h⃗. This very fact is the
reason that the size of the state space in the varying model
is significantly larger compared to the constant model.

Fig. 4 illustrates the different cases of fork. The last mined
block is in bold. Blocks with a dashed outline are secret.
First, in Fig. 4a, m3 was the last mined block, so fork =

IRRELEVANT. In addition, in this case, |⃗a| =
∣∣∣⃗h∣∣∣ = 2. Second,

in Fig. 4b, |⃗a| = 2,
∣∣∣⃗h∣∣∣ = 3 and since p4 was the last mined

block then fork = RELEVANT. Lastly, in Fig. 4c, the miner
published her private chain after block p3 was mined. In this
case, |⃗a| =

∣∣∣⃗h∣∣∣ = 2 and fork = ACTIVE.
3) Actions and Main Transitions: The action space in the

varying model cannot be trimmed as in the constant
model, and we must consider more possible actions. The
available miner actions and the resultant transitions in the
varying model are as follows. For clarity, the following
explanation of the transitions is divided into 3 parts. The
transitions of a⃗ and h⃗ are described with the actions, as these
are the main changes in the state. Then, the transitions of fork
are described separately, as they do not depend on a⃗ and h⃗.
For a similar reason, the transitions of pool are described
afterwards.

a) Adopt ℓ: The miner discards her private chain, adopts
the first ℓ blocks of the public chain and continues mining
privately on the last adopted block. Formally, (1) a⃗ ← [ ],
(2) h⃗ << ℓ (shifted by ℓ, discarding the first ℓ blocks), and
(3) Dt ← ℓ as the difficulty adjustment mechanism advances
by ℓ blocks.

In the constant model, allowing the miner to adopt
exactly

∣∣∣⃗h∣∣∣ blocks suffices. However, in the varying model,
since some block might hold an extraordinary reward, the
miner might be incentivized to discard all her previous work
and deliberately compete for a specific block.

b) Reveal ℓ: This action is legal only when the miner’s
private chain is at least as long as ℓ. The miner reveals the
first ℓ blocks of her private chain, either causing an active fork
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when
∣∣∣⃗h∣∣∣ = ℓ and fork = RELEVANT or overriding the public

chain when ℓ >
∣∣∣⃗h∣∣∣. In the latter case, the alternative public

chain is discarded by all other miners, and they start mining on
the end of the miner’s revealed chain. The miner is rewarded
by ℓ plus the number of fees in the first ℓ blocks. In addition,
(1) a⃗ << ℓ, (2) h⃗← [ ], and (3) Dt ← ℓ.

In the constant model, the miner is only allowed to re-
veal either

∣∣∣⃗h∣∣∣ blocks to cause an active fork or exactly
∣∣∣⃗h∣∣∣+1

blocks. However, in the varying model, the miner might
want to also secure a block with a whale fee by preemptively
revealing it in addition to

∣∣∣⃗h∣∣∣ + 1 blocks. The possibility to
adopt or reveal an arbitrary number of blocks is the reason that
the state must save a⃗ and h⃗ as vectors rather than only keep
track of the number of transactions. Otherwise, after adopting
or revealing some blocks, there is no way of knowing how
many transactions are included in a⃗ and h⃗ in the next state.

c) Wait f : Keep mining. After this action is performed,
a new block is mined and added to either the secret chain of
the rational miner or to the public chain, depending on who
mined this block. The binary parameter f specifies whether
the rational miner attempts to include a whale transaction to
the block she is trying to mine. So, it indicates that if she is
the one to find a block next, that block will hold a transaction
if there is one available.

When there is no active fork in the network, i.e., fork ̸=
ACTIVE, the block is mined by the rational miner w.p. α
or is mined by someone else w.p. 1 − α. When there is an
active fork in the network, namely when fork = ACTIVE, for
example, the case in Fig. 4c, a fraction γ of the honest miners
received the rational miner’s last published block (block m3

in the example) first, so they try to extend it. The rest of the
miners did not receive it first, but instead received a block
mined by an honest miner first (block p3 in the example). So,
a fraction of 1−γ of the honest miners try to extend the honest
chain.

Thus, there are 3 possible outcomes of an active fork. The
first is that w.p. α the rational miner is the one to mine the
next block. In that case, the active fork in the network remains,
as the rational miner only extended her secret chain. Another
possibility is that w.p. γ(1 − α) one of the honest miners
manages to mine a block extending the rational miner’s chain
and publishes the block immediately. In this case, The miner
keeps mining on his private chain and the rest mine on the
newly created block, discarding the public chain and accepting
the published part of the rational miner’s chain (those would
be blocks m2 and m3 in Fig. 4c). In this case, (1) a⃗ <<

∣∣∣⃗h∣∣∣,
and (2) h⃗ ← [ ]. The last option is that w.p. (1− γ)(1− α)
one of the honest miners mines a block which extends the
honest chain and publishes it. In this case, the rational miner
keeps mining on his private chain while everybody else keeps
mining on the newly created block.

Besides the option to add a fee to the miner’s block or
not, the Wait action and transitions are identical in both the
constant and the varying model.

4) Transitions of the Fork State: The transitions of fork are
the same as in the constant model. If there is no active fork
and the last block was mined by the rational miner, then fork
is IRRELEVANT, meaning that the miner cannot match as all
other miners already received the last honest block. If the last
block was mined by an honest miner, then fork is RELEVANT
as the miner already has a block ready and can immediately
publish it, so it will reach a fraction of γ of the miners before
the other block. If there is an active fork and then an honest
miner finds the next block, then fork becomes RELEVANT.
Otherwise, if the rational miner finds the next block, then fork
does not change since the miner doesn’t publish her new block.

5) Transitions of the Pool: The pool element is not present
in the constant model, and thus its transitions are novel in
the varying model. We assume the block creation process
is a Poisson process with rate δ, independent of the block
creation process. However, our model is event-based, i.e.
the miner makes decisions immediately after block creation
events. Thus, in the model we assume that transactions can
only arrive after each block creation event, with some prob-
ability. But, since the rate of block creation depends on the
rational miner behavior, it is not trivial to synchronize the
transaction creation in our model.

Our insight is that the difficulty adjustment mechanism
ensures that the rate of block creation in the main chain is
constant. Thus, if we define the height as the distance of
the block from the first block in the blockchain, the height
of the longest chain increases at a constant rate. Therefore,
we sample a new transaction after a new block of a new
height is created. For example, we would sample the process
after the first block out of blocks m3 and p3 in Fig. 4a is
created. Thanks to the difficulty adjustment mechanism, the
time between samples is distributed exponentially with a mean
of 1 unit of time. Sampling the Poisson process at a time of
block creation is the same as sampling a geometric variable
with mean δ (See Appendix A). In practice, however, since
we only consider small δ values, we simulate this as only a
Bernoulli experiment with a transaction arrival chance of δ
and neglect terms of order δ2 in the probability.

6) Bounding the State Space: In practice, it is easier to
work with finite state space MDPs. Therefore, following
previous work [2], [10], [13], we bound the state space of
our model.

Similarly to the constant model, we bound the maximum
fork length by enforcing that max{|⃗a|, |⃗h|} < max fork.
Practically, all actions that would lead to either a⃗ or h⃗ to be
longer than the maximum value cannot be used, and instead
the miner would have to reveal or adopt some blocks to reduce
the length of the chains. This also discourages undesired
behaviors of the miner, for example the ability to keep waiting
forever and only extending her secret chain. Previous empirical
results [13] show that increasing the maximum fork beyond
a certain point gives a small and diminishing improvement of
the revenue.

In addition, we bound the maximum possible pool size.
Whenever a whale transaction arrives and causes the number

5



of available transactions to exceed the limit, the new transac-
tion is simply discarded and pool is left unchanged. We choose
the maximum pool size to be the same as the maximum fork
size. Note that in the constant model, there is no need to
limit the pool size, as there is no pool. Increasing the maximum
pool size also has a negligible effect, since whale transactions
are rare and provide a strong incentive for the miner to include
them, making it unlikely that many available transactions will
be left unused and overflow the pool.

The elements a⃗ and h⃗ are binary vectors up to size max fork.
The fork value is ternary, and pool is an integer between 0 and
the maximum allowed size. We get that the number of states
in the varying model is:

|S| =
(
20 + 21 + ...+ 2max fork)2 · 3 · (max pool + 1) ≈

≈ 12 · max pool · 4max fork . (1)

D. Simplified Varying Model

We introduce a simplified model, which is based on the
varying model, but allows the rational miner only a subset
of the possible actions. Instead of allowing the miner to reveal
or adopt an arbitrary amount of blocks, the simplified
model allows the miner to reveal only h or h + 1 blocks or
adopt exactly h blocks. Thanks to this constraint, the positions
of transaction in the chain can be ignored and instead, only
the number of included transactions needs to be known.

Thus, this model can be represented more efficiently and
decreases the size of the state space to about 500, 000. We
can then use PTO [13] to find the optimal solution in this
model. Because the simplified model only reduces the
freedom of the rational miner, optimal policies found in the
simplified model provide a lower bound on the optimal
policy possible in the full model. The full details of this model
are described in Appendix B.

III. METHOD

To analyze whether selfish mining is beneficial, we must
first find the miner’s optimal strategy, and then check whether
it achieves more than her fair share. To find the optimal
policy, all the blockchain models described in the paper can
be transformed into a standard MDP form with a linear
objective function. The constant rewards model and the
simplified model can then be solved using conventional
dynamic programming methods, as in previous work [2], [10],
[13]. The varying model, however, cannot be solved using
standard techniques due to its large state space.

In this section, we present WeRLman, an algorithmic frame-
work based on deep RL for solving the varying model for
Nakamoto based blockchains. We begin the section by explain-
ing the transformation we use to linearize the objective func-
tion (§III-A). We proceed to describe Q-learning (§III-B) and
Monte Carlo Tree Search (MCTS) (§III-C), popular algorithms
that WeRLman builds upon. We conclude by describing our
RL algorithm that is specialized for transformed MDPs, and
exploits domain knowledge for improved accuracy (§III-D).

The full details of our implementation of WeRLman and the
configuration used to obtain our results is in Appendix. C.

A. Transformation to Linear MDP

As described in Section II, the objective function of a
rational miner is an expected ratio of two sums. This objective
is different from standard MDP objectives that are based on a
linear combination of the step rewards [28]. To overcome this
difficulty, we transform our MDP to a linear objective MDP
using Probabilistic Termination Optimization (PTO) [13]. In
a nutshell, PTO replaces the denominator in the objective
function with a constant, and in addition, modifies the MDP
transitions with a chance to terminate the process at each
step. The termination probability for each transition is given
by p = (1− 1

H )D, where D depends on each transition, and H
is a controlled parameter that is constant for all transitions
and is termed the expected horizon. The expected horizon
becomes the new denominator in the objective function, and
the transformed MDP is a conventional stochastic shortest path
problem [14]. The intuition behind this approach is that, on
one hand, the process stops after the denominator reaches H in
expectation. On the other hand, the memory-less termination
probability guarantees that a Markov policy, (action depends
on the current state only) is optimal, thus the state space
does not need to be expanded to calculate an optimal policy.
The stochastic shortest path can be further represented as a
discounted MDP with a state-dependent discount factor [14],
and we use this representation in our algorithms. This means
that instead of giving the process a chance of p to terminate,
we multiply all future rewards by λ = 1 − p. Thus, the
expectation of the rewards stays the same and the terminal
state is no longer necessary. In the remainder of this section,
we describe RL algorithms for discounted MDPs, with the
understanding that using the transformation above, they can
be applied to our problem setting.

B. Q-Learning

Q-learning is an RL algorithm for solving MDPs that is
based on learning state-action values, a.k.a. Q values [14].
The Q values Q∗(s, a) are defined as the expected discounted
reward when starting from state s, taking action a, and then
proceeding optimally. The Q values are known to satisfy the
Bellman Equation:

Q∗(s, a) = R(s, a) + Es′∼P (·|s,a)

[
λmax

a′∈A
Q∗(s′, a′)

]
=

= R(s, a) +
∑
s′∈S

λP (s′|s, a)max
a′∈A

Q∗(s′, a′) , (2)

where 0 ≤ λ < 1 is the discount factor. Given the Q values,
an optimal policy π∗ can be easily obtained using:

π∗(s, a) = argmax
a∈A

{Q∗(s, a)} . (3)

The Q-learning algorithm is based on this property. It
requires a simulator of the MDP which is used to sample pairs
of states and actions (sn, an). It starts at an initial guess of
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the Q values Q0 and iteratively updates the values using step
sizes βn. Formally, for n = 1, 2, ..., it performs:

Qn(sn, an)← Qn−1(sn, an) + βn

(
R(sn, an)+

+ Es′∼P (·|sn,an)

[
λmax

a′∈A
Qn−1(s

′, a′)

]
−Qn−1(sn, an)

)
.

(4)

When a stopping condition is satisfied, the algorithm stops
and the policy can be extracted by Eq. 3. For finite state and
action spaces, and as long as all state action pairs are sampled
infinitely often, the algorithm is guaranteed to converge under
a suitably diminishing sequence of step sizes βn [14].

For large or infinite state spaces, RL algorithms approximate
the Q values, as in the popular Deep Q Networks algorithm
(DQN [22]), which employs deep neural networks as the func-
tion approximation. To train the network, a simulator of the
MDP is again used to sample state-action pairs {(sn, an)}Nn=1.
Then, target values for the network are calculated using the
current network Qθ, where θ denotes the parameters (weights
and biases) of the neural network:

tn = R(sn, an) + Es′∼P (·|sn,an)

[
λmax

a′∈A
Qθ(s

′, a′)

]
. (5)

The target values are then used to train the neural network
by minimizing the mean squared error loss, using stochastic
gradient descent, typically in batches [31]. The loss function
is then calculated for each batch B ∈ {1, 2, ..., n}: L(θ) =
1

|B|
∑
n∈B

(tn −Qθ(sn, an))
2, and used to update θ iteratively.

After the neural network is trained, the algorithm repeats by
collecting more data and retraining the network.

In the typical RL scenario, the transition model of the
MDP is not known to the agent, and the expectations in
Equations 4 and 5 are replaced with a sample from the
simulator s′ ∼ P (·|sn, an), giving an unbiased estimate of
the update rule [14], [22]. For example, Eq. 5 would be
rewritten using the observed reward rn and next state s′n as
tn = rn + λmax

a′∈A
Qθ(s

′
n, a

′).

C. Multi-step Look-Ahead using MCTS

WeRLman exploits the full knowledge of the transition
model by replacing the 1-step look-ahead in the Q-learning
update rule with an h-step look ahead [32]. Specifically, the
Q-learning targets in Eq. 5 are replaced by:

tn = max
π0,...πh

Eπ0,...πh

|·

[
h−1∑
t=1

λt−1R(s(t)n , πt(s
(t)
n ))+

+ λhQ(s(h)n , πh(s
(h)
n ))

]
(6)

where s
(0)
n ..., s

(t)
n denote a possible trajectory of states and

the notation Eπ0,...πh

|· , indicates an expectation conditioned on

the starting state sn = s
(0)
n , the action an = π0(s

(0)
n ), and

the choice of actions π1(s
(1)
n ), ..., πh(s

(h)
n ). This modification

significantly improves the accuracy, as approximation errors

in Qθ have less impact as h is increased due to the discounting.
However, the complexity of solving Eq. 6 quickly increases
with the horizon (it is O

(
|A|h

)
[33]). In order to handle a

relatively large h, which we found is critical for the accuracy
required for the blockchain domain, we propose a sampling
scheme to approximate the optimization in (6), building on
Monte Carlo Tree Search (MCTS).

MCTS is a sampling-based planning method that has seen
wide success in solving large decision-making problems [23],
[24], [34], [35]. The main idea is to plan ahead by randomly
simulating many possible trajectories that start from the cur-
rent state of the system, and use these simulated outcomes
to select the best action to take. MCTS can be thought of as
a sparse sampling method to calculate the h-step look ahead.
Each trajectory can provide a sample for the value of an h step
trajectory (the term inside the expectation in Eq. 6). Thus, the
values of all trajectories starting from a specific action a can
be averaged to obtain an estimate of the value of action a in
the current state.

There are many flavors of MCTS [35]; here, we focus on the
AlphaGo Zero implementation [23]. An optimistic exploration
mechanism (described in the following paragraphs) steers
the samples towards high-reward trajectories, approximating
the max operation in (6). In addition, AlphaGo Zero uses
samples more efficiently by maintaining a graph of all visited
states. Each node represents a state s and stores, for each
action a, the number of times the action was selected N(s, a),
the prior probability P (s, a), the Q value of the neural
network Qθ(s, a), and the MCTS estimated Q value W (s, a).
When creating a node for a state s for the first time, W (s, a)
is initialized to be Qθ(s, a). After a trajectory s(0), . . . , s(h)

with actions a(0), . . . , a(h−1) and rewards r(0), . . . , r(h−1) is
simulated, the algorithm performs a backup to update the
values W (s, a):

W (s(t), a(t))←W (s(t), a(t))+

+ β(r(t) +W (s(t+1), a(t+1))−W (s(t), a(t))) . (7)

Thus, the MCTS estimates from every simulation are pre-
served, and used later to update other estimates more accu-
rately.

AlphaGo Zero requires the neural network to generate
two types of output. The first is an estimate for the Q
values Q(s, a), which are the initial values for W (s, a), and
the second is the prior probability P (s, a) of an action a in
state s, which guides the action sampling during the trajectory
simulation. In each of the simulated trajectory steps, an action
that maximizes W (s, a) + U(s, a) is chosen, where U is an
exploration factor given by:

U(s, a) = P (s, a) ·
√
N(s)

1 +N(s, a)
, (8)

where N(s) is the accumulated number of visits to the state
s, and N(s, a) the number of times action a was chosen in
state s. Intuitively, the exploration factor starts at a high value
and decreases for state action pairs that have been chosen more
often.
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Similarly to DQN, the neural network is trained by stochas-
tic gradient descent. Unlike DQN, the AlphaGo Zero loss
function has an additional term to train the prior probabilities,
represented by another neural network with parameters ϕ.
The prior probabilities are trained to minimize their cross
entropy with respect to the actual action selection distribution
in state sn determined by N(s, ·). The loss function is given
by:

L(θ, ϕ) =
1

|B|
∑
n∈B

[
(tn −Qθ(sn, an))

2
+

+
∑
a∈A

N(sn, a)

N(sn)
logPϕ(sn, a)

]
. (9)

The target value tn should approximate the value of a state. In
the original AlphaGo Zero algorithm, which was developed for
turn-based games, tn is given by the result (win/lose) of a full
game simulation. In WeRLman, since the problem horizon is
infinite (when treating the termination chance as a discounting
factor), we instead use bootstrapping, and choose tn to be
W (sn, an), the approximate value function estimated during
MCTS.

Additionally, we utilize our knowledge of rewards and tran-
sition probabilities in the WeRLman MCTS backup update,
and replace Eq. 7 with:

W (st, at)←W (st, at) + β
(
R(st, at)+

+ Es′∼P (·|st,at)

[
max
a′

W (s′, a′)
]
−W (st, at)

)
. (10)

D. Neural Network Scaling

The quality of the RL solution depends on the accuracy of
the value function approximation Qθ. Most deep RL studies
focused on domains where the differences in value between
optimal and suboptimal choices are stark, such as in games,
where a single move can be the difference between winning or
losing the game. In such domains, it appears that the accuracy
of the neural network approximation is not critical, and most
of the algorithmic difficulty lies in exploring the state space
effectively. In the blockchain domain, however, the difference
in value between a selfish miner and an honest one can be
very small. We found that the neural network approximations
in conventional deep RL algorithms are not accurate enough
for this task. In this section, we propose two scaling tricks that
we found are critical to obtain high-accuracy results in deep
RL for blockchain.

1) Q Value Scaling: We use special domain knowledge
about the transformed MDP to manually set the scale of the
Q values. The following proposition provides the reasoning
behind this approach.

Proposition 1. Let Q∗(s, a) be the optimal action values in
an MDP obtained by a PTO transformation with expected
horizon H . Let π∗ be the optimal policy and sinit be the initial
state of the MDP. Then, it holds that for any state s ∈ S:

|Q∗(s, π∗(s))−Q∗(sinit, π
∗(sinit))| = O

(
1

H

)
. (11)

The proof is deferred to Appendix D.
Based on Proposition 1, we can expect the optimal Q values

for all states and actions to be centered around the Q value of
the initial state. Therefore, the first improvement we introduce
is the base value: instead of using the neural network output as
the values of state actions pairs, we interpret it as the difference
from a base value ρ. In addition, Prop. 1 also implies that
the standard deviation of the values is of similar magnitude
to 1

H . So, we divide the neural network output by the expected
horizon. In practice, we change the initialization of W to be:

W (s, a) = ρ+
Q(s, a)

H
, (12)

instead of simply Q(s, a).
We calculate the base value as the average revenue in separate
Monte-Carlo simulations utilizing MCTS according to the
current neural network. To train the neural network appro-
priately, we first subtract the base value from all calculated
target values, and then multiply them by the expected horizon.
Formally, instead of taking W (s, a) as the target value, we
calculate the target value tn by:

tn = H ·W (s, a)− ρ . (13)

This improvement accelerates the training by jump-starting
the perceived values closer to the true values. Otherwise,
many steps of bootstrapping would be necessary for the values
to reach the same magnitude. In addition, this improvement
focuses the neural network on learning the relative differences
between state values, which are much more sensitive than the
magnitude of the values.

At this point, the careful reader should ask whether the
base value formulation of Q-learning impacts the convergence
of the method. In Appendix E, we show that for finite state
and action MDPs, our base value modification still converges
to the optimal solution. In our experiments with deep neural
networks, we did not encounter any convergence problems
when using the base value method.

2) Target value normalization: Our second improvement
is target value normalization. During training, we track the
average of the target values. When sampling a batch for SGD,
namely a set of states, actions and previously calculated target
values {(sn, an, tn)}n∈B , we subtract the average target value
from all values in the batch and only then proceed to train the
neural network. Formally, we calculate:

t′n = tn −
1

|B|
∑
n∈B

tn . (14)

Then, we use t′n instead of tn in the loss function (Eq. 9).
This ensures the network learns values with an average of 0,
so the magnitude of the action values is controlled solely by
the base value. This is inspired by Pop-Art normalization,
an adaptive normalization technique specialized for learning
values in a scale invariant manner [36]. The main differences
of WeRLman from Pop-Art normalization are that (1) in
Pop-Art normalization the values are also divided by their
standard deviation, and (2) the average and standard deviation
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Fig. 5: The revenue of WeRLman in the constant model
versus state-of-the-art results for different miner sizes.
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Fig. 6: Learning curves of WeRLman and SquirRL in the
constant model averaged over 20 runs. The shaded areas
represent 97.5% confidence intervals. Up to a 2.5% statistical
error, WeRLman is consistently optimal, while SquirRL is
suboptimal.

are learned from the sampled values rather than the previous
blockchain specific scaling method we described.

IV. EVALUATING WERLMAN’S ACCURACY

To motivate the use of WeRLman for our blockchain se-
curity calculations, in this section, we show that WeRLman
obtains near-optimal results in simpler problems where optimal
values can be calculated exactly. We begin by demonstrating
that WeRLman can be used on the constant model to
recreate known optimal results and surpass state-of-the-art
deep RL results (§IV-A). We then perform an ablation study
of the techniques we presented, namely the manual neural
network scaling and target normalization, and show these are
crucial to our framework (§IV-B). Finally, we test WeRLman
in the varying model and show it manages to obtain near-
optimal results in a toy setting (§IV-C).

A. Constant-Rewards Model

To demonstrate the accuracy of WeRLman, we first use
it in the constant reward model. For this model, the
optimal revenues were calculated by Sapirshtein et al. [2]. We
compare WeRLman with SquirRL, state-of-the-art deep RL for
blockchain [10], for various miner sizes using γ = 0.5 and a
maximum fork of 10 (Fig. 5). We use Monte Carlo simulations
to evaluate the revenues of the policies obtained by both
WeRLman and SquirRL. WeRLman outperforms SquirRL in
the constant model. We do not draw the confidence inter-
vals in Fig. 5, as they are too small at the plotted resolution.

In addition, we simulate the revenues of policies obtained
by both WeRLman and SquirRL during their training pro-
cesses (Fig. 6). The simulated revenues are averaged over 20
runs, all using α = 0.35, γ = 0.5 and a maximum fork of
10. The shaded areas represent 97.5% confidence intervals.
In this comparison only, to reduce the effect of computing
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Fig. 7: The revenue of WeRLman compared to simple MCTS
using the constant model.

power differences as much as possible, we use a weakened
version of WeRLman with minimal multiprocessing – only 1
of each process type (see Appendix C). It is apparent that
SquirRL usually plateaus at a close yet suboptimal policy. On
the other hand, WeRLman consistently outperforms SquirRL
and obtains revenues much closer to the optimal revenue3.
This shows that WeRLman’s consistently superior accuracy
does not stem from additional running time or computing
power, but rather from the inherent differences between the 2
methods, namely, the use of MCTS and the variance reduction
techniques we introduce (§III-D). In addition to WeRLman’s
superior performance, when comparing SquirRL to WeRLman,
another more delicate point should be kept in mind: WeRLman
builds on PTO, and as such does not require any prior
knowledge of the optimal revenue. SquirRL, on the other hand,
builds on the iterative MDP solution of Sapirstein et al. [2],
where the reward in each MDP is based on the previously
computed optimal revenue. In practice, SquirRL replaces the
iterative computation by plugging in an approximately optimal
revenue from [8]. While this approach works relatively well
for the constant model, it is not clear how to extend it to
blockchains for which an approximate solution is not available.

B. Ablation Study

To test the effect of our novel scaling techniques on the per-
formance of the algorithm, we compare the revenues obtained
by WeRLman to the revenue obtained by simple MCTS. More
precisely, we compare 2 runs of the algorithm, both starting
from the same random seed and running for 500 epochs. The
first run employs MCTS only. The second run utilizes MCTS
and the novel manual scaling and normalization we introduce.
Both runs use the constant model with α = 0.35, γ = 0.5
and a maximum fork of 10.

The results are plotted in Fig. 7. The manual scaling of
values, together with the target normalization, immediately
transforms the Q values to the desired magnitude. Notably,
an immediate improvement of the policies is attained overall,
and WeRLman greatly surpasses simple MCTS.

C. Toy Setting of Varying Model

In the varying model, we first test WeRLman in a
toy configuration. In this configuration only, we reduce the
maximum fork size and pool size to be 3. This constraint
limits the state space to approximately 2,000 states (Eq. 1)

3WeRLman cannot achieve more than the optimal revenue. But, it does get
close enough to the optimal policy to sometimes appear as if it outperforms
the optimum due to simulation noise.
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Fig. 8: The revenue as a function of the miner size α in a toy
setting with a maximum fork of 3. We compare the varying
and the simplified models with F = 10 and δ = 0.1.

and thus allows us to find the optimal policy of the varying
model precisely with PTO [13].

We compare the revenues obtained using WeRLman to
the optimal revenue for different miner sizes (Fig. 8). In
addition, we compare WeRLman to the results obtained in the
constant model, scaled appropriately using the following
proposition.

Proposition 2. Let π be policy in the constant model and
let π′ be its fee-oblivious extension to the varying model, in
which the miner always includes a transaction when available.
If ρπ , and ρπ′ are the revenues of π and π′ in the respective
models, then ρπ′ = (1 + δF )ρπ .

The proof is deferred to Appendix F.
WeRLman achieves the optimal results under this model

as well, consistently surpassing the results from the
simplified and constant models. This suggests that
WeRLman is capable of accurately obtaining optimal results in
the more complex varying model with a larger maximum
fork. WeRLman’s accuracy in the two distinct models also
suggests it may generalize well to other blockchain protocols.

V. SECURITY THRESHOLD ANALYSIS

After establishing WeRLman as a reliable tool for approx-
imately solving blockchain MDPs, we now turn to analyze
the security of a Nakamoto blockchain. We begin by using
WeRLman for the varying model in a variety of configura-
tions to test how model parameters affect the optimal miner
revenue (§V-A). Next, we bound the security threshold of
a Nakamoto blockchain in the varying model combining
WeRLman and the simplified model (§V-B). Finally, we
consider specific parameter values based on statistics from
operational networks and find the resultant security thresh-
olds (§V-C).

A. Revenue Optimization

We evaluate the policies obtained using WeRLman in the
varying model with a maximum fork of 10. Increasing
the maximum further yields only a negligible improvement,
especially for miner sizes close to the security threshold [13].

We run WeRLman with a variety of configurations, testing
its sensitivity to the miner size α (Fig. 9a and 9b), the whale
fee amount F (Fig. 9c) and the whale fee frequency δ (Fig. 9d).
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of transaction arrival chance δ
with α = 0.25 and F = 10.

Fig. 9: Revenue in the full model with γ = 0.5 and a maximum
fork of 10.

For each configuration, we ran WeRLman on 64 CPU cores
between 6 and 12 hours using our parallel python implemen-
tation (see Appendix C). The honest revenue was obtained
based on Prop. 2. In contrast to the toy setting, the optimal
revenue in the full model cannot be calculated precisely due
to its large MDP with about 108 states (Eq. 1). However,
like in the toy setting, WeRLman still surpasses the optimal
revenues of the constant model (scaled using Prop. 2)
and the simplified model. We observed several instances
where the optimal policy utilized the richer action space in the
varying model compared to the simplified model. The
learned policy sometimes adopted all blocks but the last one
or two blocks to try to overtake the public chain and steal a
transaction fee (see Appendix G).

Figures 9a and 9b indicate the advantage of WeRLman
is more notable when increasing the miner size. Further-
more, increasing the fee size also results in a significantly
higher revenue for the results of WeRLman compared to the
constant model (Fig. 9c). In addition, increasing δ to 0.1
results in a more significant incentive of a miner to mine
selfishly in the varying model and the simplified model
compared to the constant model. This is apparent directly
from Fig. 9d or by observing the differences in Fig. 9b are
more substantial than those in Fig. 9a. This can be explained
by the increased frequency of whale fees, allowing more
opportunities to deviate and obtain extra reward.

Fig. 9b also clearly shows a significant change in the se-
curity threshold. Under the constant method, the threshold
is 0.25 [2]. This can be seen as the point in which the optimal
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Fig. 10: Security thresholds in the varying model compared
to the constant model with a maximum fork of 10.

revenue in the constant model surpasses the line for honest
mining. In contrast, this deviation occurs at around 0.1 for
the results of WeRLman and the simplified model. This
significant threshold difference is due to the large F value.

B. Security Threshold

To obtain the security threshold of a blockchain protocol,
we perform a binary search over the miner size, looking for the
minimal size where the optimal strategy is not the prescribed
one. With the constant and simplified models, we can
compare policies directly.

However, in the varying model, directly comparing poli-
cies is intractable: WeRLman does not output an explicit
policy, as this would be infeasible due to the size of the
state space. Thus, we estimate the revenue of the policy via
Monte Carlo simulations and compare revenues. The outputs
of the simulations are noisy, and the deep RL training is not
guaranteed to find the optimal strategy, introducing another
source of uncertainty. Therefore, we can only strive to obtain
an upper bound on the security threshold. We address these
issues in two ways. First, we consider a policy to be better
than honest mining only if its revenue advantage is statistically
significant based on a Z-test with a confidence of 99%.

Second, instead of performing a binary search, we perform
an iterative search where in each stage we sample 4 different
sizes of the miner. We check the results in each stage are
consistent, meaning that lower miner sizes provide honest
policies and higher miner sizes provide selfish policies. If
the stage results are consistent, we focus on a smaller region,
similarly to a binary search. However, if the stage results are
inconsistent, meaning we found α1 < α2, such that the Z-
test for α1 is positive (selfish mining is possible) but the Z-
test for α2 is negative (selfish mining is not possible), we
checked an additional value α1 < α′ < α2 based on the
current resultion. If the Z-test for α′ is positive, we deem the
Z-test for α1 to be a true positive and the test for α2 to be
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Fig. 11: Security thresholds in the varying model for γ =
0.5, F = 2.5 for various values of δ when considering different
gaps. Points marked in red were obtained using WeRLman.

a false negative. Otherwise, if the test for α′ is negative, we
consider the tests to be a false positive and a true negative
respectively. Then we proceed to focus on a smaller region
in a similar manner. In practice, we only rarely encounter
inconsistencies. We stop the search once we reach 3 digits
of precision. A more accurate calculation of the threshold is
only a matter of using more computational power.

Thresholds obtained according to the simplified model
also provide only an upper bound on the true security thresh-
old because the simplified model constrains the rational
miner. We utilize both upper bounds to yield a single upper
bound of the varying model by taking the minimum of
both. We compare the security thresholds of the constant
model and the varying model and test their sensitivity with
respect to the fee size F (Fig. 10a), the transaction arrival
chance δ (Fig. 10b), and the rushing factor (Fig. 10c).

Fig. 10a shows that increasing the fee size rapidly decreases
the threshold in the varying model. In contrast, increasing
the transaction arrival chance (Fig. 10b) has almost no effect
on the threshold of the varying model. This could be
because the main difference of the optimal revenue between
the constant and varying models depends primarily on
the miner’s behavior when there is a single fee available. When
no fees are available, the behavior of the miner is similar to
the constant model. However, when there is a single fee
available, the miner might try to obtain it by mining selfishly
(depending on the miner size) and when the miner has a good
chance to succeed, it can increase its revenue regardless of
the value of δ. The case when there is more than a single fee
available is rare (happens with probability of less than δ2) and
thus has a low impact on the miner’s revenue.

In many configurations, WeRLman’s optimal strategies are
significantly better than simplified (Fig. 9). However, the
threshold obtained with simplified is often lower. The
reason is that when using WeRLman, the search requires a
revenue of a policy to be higher than the fair share by more
than the confidence interval in order for us to determine that
the optimal policy is selfish. However, close to the threshold,
selfish mining nets a negligible gain in revenue, resulting in a
false negative.

But aiming for the threshold point ignores the cost of using a
nonstandard protocol. We therefore define the ε-gap security
threshold to be the minimum miner size for which mining
optimally nets at least ε more than the fair share. The 0-
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Fig. 13: Example of a window with radius d = 10 around a
Bitcoin block (i = 655790) with an exceptional reward. The
ratio between the spike reward minus the second-highest value
in the window and the spike reward minus the mean reward
is at least g.

gap threshold is identical to the original security threshold.
Note that this definition is not just a technical aid for our
evaluation method, but a necessary modification to make the
threshold meaningful in the varying model. As Fig. 10b shows,
increasing δ from 0 by an infinitesimal change, which leads to
an infinitesimal increase in average revenue, can completely
determine the threshold even for negligible ε. In such a case,
the threshold loses any physical meaning. The ε-gap security
threshold guarantees that we only consider material gains.

When using WeRLman, we make sure the confidence
interval is smaller than ε. We calculate the ε-gap security
thresholds by taking the minimum threshold of WeRLman
and the simplified model for different gap sizes (Fig. 11).
Thresholds obtained using WeRLman are circled in red. When
the gap size is bigger, WeRLman finds a lower threshold than
the simplified model more often because when consider-
ing larger gaps, WeRLman encounters less false negatives.

C. Real-World Parameters

To understand the implications of our results, we choose
parameters based on an established operational system, namely
Bitcoin. We first extract the total block rewards obtained
between October 1, 2020, and September 30, 2021 [27]. We
then calculate suitable values of the whale fee F and the
transaction chance δ.

Scenario
Chance δ = 10−4 Chance δ = 10−3

Threshold Threshold
Fee F Upper Bound Fee F Upper Bound

Current 0.29 0.230 0.14 0.250
1 Halving 0.52 0.212 0.26 0.230
2 Halvings 0.89 0.195 0.45 0.230
3 Halvings 1.37 0.168 0.74 0.195
4 Halvings 1.87 0.168 1.14 0.181
5 Halvings 2.59 0.122 1.58 0.168
8 Halvings 4.91 0.078 3.20 0.122

Ethereum Stats 3.93 0.122 1.34 0.168

Table 1: Possible instantiations of the model and the resultant
bounds for the ε-gap security thresholds (ε = 10−6).

Since fees gradually vary (Fig.1), we consider whale trans-
actions to be local spikes rather than global maxima. We search
for local spikes in block rewards and take the ratio of the spike
reward and the mean reward of its neighborhood. Thus, we
iterate over all blocks and check two conditions for each block.
The first condition asserts that the current block is a local
maximum, and the second condition asserts that the block is
a spike – larger than all nearby blocks by at least some factor.
An example of such a block is illustrated in Fig. 13. The block
in position i is the maximum, and the difference of its reward
and the second-highest reward is large enough.

Formally, let the total block reward in each block
be r1, ...rn. Define a window radius, d and a margin thresh-
old, g. Then, consider all windows wi of size 2d + 1 such
that wi is centered around ri, i.e. wi = {rj}i+d

j=i−d. Let
w′

i be wi \ {ri}. We then go over all windows and check
whether the block reward ri is the maximum in wi and
if ri−max(w′

i) > (ri−mean(w′
i))·g. We extract the suitable

fee parameter Fi = ri/mean(w′
i) − 1 from all applicable

windows. Then, we go over all values of Fi and calculate δi
to be the number of spikes j for which F is at least as big,
i.e. Fj >= Fi, divided by n.

For Bitcoin, we perform the above process multiple times
for different values of the subsidy. To simulate the subsidy
after k halving events, we subtract (1 − 2−k) · 6.25 (6.25
is the subsidy at the time of writing [27]) from all ri. We
use d = 10 and g = 0.25 to plot all possible combinations
of F and δ in Fig. 12. Each line in Fig. 12a represents the
possible combinations of parameters given a certain number
of halving events have occurred.

We consider possible choices of model parameters after var-
ious numbers of halving events and bound the ε-gap security
threshold in each scenario (Table 1). Since the total rewards
obtained by miners in the data we gathered was over 13 billion
USD, we choose ε to be 10−6.

For each scenario, we first take the appropriate F for δ =
10−3 and δ = 10−4 based on our previous analysis. Because
of the large computational power required to run WeRLman,
we compute the security threshold only for a set of values
for F and using δ = 0.1. Since the thresholds are decreasing
in F (Fig. 10a), for each scenario, we take the threshold
obtained in the run using the largest F smaller than the F
in the scenario. Although the appropriate δ for the scenario is
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significantly smaller than 0.1, our previous analysis (Fig. 10b)
shows it has almost no effect on the security threshold.

Based on the more conservative bound of δ = 10−3, we see
that in 10 years (3 halving events from today), the threshold
will reduce to 0.195. In about 20 years (5 halvings), it will
reduce to 0.168 and in 30 years (8 halvings), to 0.122 (Fig. 2).
These lower thresholds are dangerously close to the common
sizes of the largest mining pools [3].

Bitcoin transactions only transfer tokens among accounts.
In contrast, Ethereum transactions can perform more complex
actions defined in smart contracts [5]. This enables a rich
and diverse DeFi ecosystem [26], possibly explaining the
higher variation of rewards in Ethereum. We perform a similar
process based on data from Ethereum in September 2021,
using the same parameters. When considering statistics based
on Ethereum, we get that the model parameters matching
Ethereum reward values are F = 1.34 and δ = 10−3. Notice
that F is 10 times larger than the parameters based on Bitcoin
today. Using these parameters, the resultant threshold is 0.168.

VI. RELATED WORK

Selfish behavior in blockchains was discovered by Eyal and
Sirer [8], followed by a stronger attack by Nayak et al. [15]
and the optimal one by Sapirshtein et al. [2] that used iterative
MDP optimization. Bar-Zur et al. [13] replaced the iterative
approach with a single solution of a so-called probabilistic
termination MDP, allowing to find the optimal selfish mining
behavior in Ethereum. WeRLman addresses models with much
larger state spaces, out of the reach of previous accurate
solutions. Wang et al. [37], utilized a novel tabular version
of Q-learning suitable for the non-linear objective function to
recreate the optimal results of the constant model. This
method still suffers from the drawbacks of the exact methods
and cannot be used when the state space is too big.

Carlsten et al. [18] analyze a model where there is no
subsidy and rewards are from gradually arriving transactions –
a state that they expect Bitcoin to exhibit once its minting rate
drops to zero. In their model, each block has enough capacity
to include all pending transactions; then the available rewards
gradually increase with the arrival of other transactions. They
foresee a mining gap forming, as miners would not mine until
the available rewards are sufficient. Tsabary and Eyal [19]
quantify the formation of this graph even with a constantly
available baseline reward. In contrast, we base our model on
the current reward distribution (§V-C) where a baseline level of
rewards is always available (due to many pending transactions)
and sufficient to motivate mining, and where MEV spikes
occur infrequently.

The analysis of Carlsten et al. also assumes miners may
slightly deviate from the protocol, whereas we focus on the
bound where the prescribed strategy is a Nash Equilibrium.
Additionally, they evaluate a specific strategy that outperforms
selfish mining, whereas WeRLman searches the entire strategy
space for an optimal strategy.

Fruitchains [9] provides an algorithm that is resilient to
selfish mining up to a threshold of 50%. However, it assumes
constant block rewards by spreading fees over multiple blocks.

Other incentive-based attacks consider extended models
taking into account network attacks [15], [38], additional
network and blockchain parameters [39], and mining coali-
tions (pools) [16], [40], as well as exogenous attacker incen-
tives [17], [41], [42] leading it to bribe miners to deviate.
Those are outside the scope of this work.

The use of RL to approximately solve the MDPs that
occur in selfish mining analysis was pioneered in the SquirRL
algorithm [10], which is based on the framework of [2].
Using the PTO framework, and the techniques of Section III,
WeRLman is significantly more accurate and can tackle more
complex protocols, with significantly more actions and states
such as the varying model.

Deep RL has been applied to various decision-making
domains, including resource management [43] and games [22],
[24]. By exploiting several characteristics special to
blockchains, our method is able to provide results that are,
to the best of our knowledge, the most accurate to date.

VII. CONCLUSION

We analyze the incentive-based security of Nakamoto-based
blockchains when considering, for the first time, varying
rewards. Our key discovery is that variance in rewards hurts
security; The security threshold in the varying model is
lower than the 0.25 threshold [2] of the constant model.
With parameters taken from Bitcoin, the security threshold
drops to 0.2 in a decade, to 0.17 in two and to 0.12 in 3
decades. If Ethereum’s recent fees were manifested in a
Nakamoto chain, the security threshold would be only 0.17.

We face two major challenges in this work. First, naively
integrating the external arrival process of transactions into
the model means that miner behavior affects the transaction
arrival rate. We avoid this by sampling arrivals at the creation
of blocks extending the longest chain, ensuring a constant
sampling rate due to the difficulty adjustment mechanism. And
second, extending deep RL to solve blockchain problems with
high accuracy. Our novel method significantly outperforms
state-of-the-art accuracy in simple problems and allows an-
alyzing a complex model with significantly more states and
actions.

The utilization of deep RL in WeRLman provides a foun-
dation for analyzing other systems like Ethereum as well
as novel architectures, enabling the design of more secure
blockchains. In addition, the high-accuracy solutions that
WeRLman demonstrates may inspire its use in other large,
stochastic decision-making problems.
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“Squirrl: Automating attack analysis on blockchain incentive mecha-
nisms with deep reinforcement learning.”

[11] M. Davidson, T. Diamond et al., “On the profitability of selfish mining
against multiple difficulty adjustment algorithms.” IACR Cryptol. ePrint
Arch., vol. 2020, p. 94, 2020.

[12] J. Garay, A. Kiayias, and N. Leonardos, “The bitcoin backbone protocol:
Analysis and applications,” in Annual international conference on the
theory and applications of cryptographic techniques. Springer, 2015,
pp. 281–310.

[13] R. Bar-Zur, I. Eyal, and A. Tamar, “Efficient mdp analysis for selfish-
mining in blockchains,” in Proceedings of the 2nd ACM Conference on
Advances in Financial Technologies, 2020, pp. 113–131.

[14] D. P. Bertsekas, Dynamic programming and optimal control. Athena
scientific Belmont, MA, 1995, vol. 1, no. 2.

[15] K. Nayak, S. Kumar, A. Miller, and E. Shi, “Stubborn mining: Gener-
alizing selfish mining and combining with an eclipse attack,” in 2016
IEEE European Symposium on Security and Privacy (EuroS&P). IEEE,
2016, pp. 305–320.

[16] Y. Kwon, D. Kim, Y. Son, E. Vasserman, and Y. Kim, “Be selfish and
avoid dilemmas: Fork after withholding (faw) attacks on bitcoin,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017, pp. 195–209.

[17] M. Mirkin, Y. Ji, J. Pang, A. Klages-Mundt, I. Eyal, and A. Juels, “Bdos:
Blockchain denial-of-service,” in Proceedings of the 2020 ACM SIGSAC
conference on Computer and Communications Security, 2020, pp. 601–
619.

[18] M. Carlsten, H. Kalodner, S. M. Weinberg, and A. Narayanan, “On
the instability of bitcoin without the block reward,” in Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security, 2016, pp. 154–167.

[19] I. Tsabary and I. Eyal, “The gap game,” in Proceedings of the 2018
ACM SIGSAC conference on Computer and Communications Security,
2018, pp. 713–728.

[20] P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov, L. Breidenbach,
and A. Juels, “Flash boys 2.0: Frontrunning, transaction reordering,
and consensus instability in decentralized exchanges,” arXiv preprint
arXiv:1904.05234, 2019.

[21] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“Deep reinforcement learning: A brief survey,” IEEE Signal Processing
Magazine, vol. 34, no. 6, pp. 26–38, 2017.

[22] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 2013.

[23] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” nature, vol. 529, no. 7587, pp. 484–489, 2016.

[24] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel et al., “Mastering chess
and shogi by self-play with a general reinforcement learning algorithm,”
arXiv preprint arXiv:1712.01815, 2017.

[25] T. Rocket, “Snowflake to avalanche: A novel metastable consensus
protocol family for cryptocurrencies,” Available [online].[Accessed: 4-
12-2018], 2018.

[26] Y. Chen and C. Bellavitis, “Blockchain disruption and decentralized
finance: The rise of decentralized business models,” Journal of Business
Venturing Insights, vol. 13, p. e00151, 2020.

[27] blockchair.com. (2021) Historical blockchain data. [Online]. Available:
https://blockchair.com/

[28] M. L. Puterman, Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons, 2014.

[29] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W.
Felten, “Sok: Research perspectives and challenges for bitcoin and
cryptocurrencies,” in 2015 IEEE symposium on security and privacy.
IEEE, 2015, pp. 104–121.

[30] R. Pass, L. Seeman, and A. Shelat, “Analysis of the blockchain protocol
in asynchronous networks,” in Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Springer, 2017,
pp. 643–673.

[31] L. Bottou, “Online algorithms and stochastic approxima-p tions,” Online
learning and neural networks, 1998.

[32] Y. Efroni, G. Dalal, B. Scherrer, and S. Mannor, “Beyond the one-
step greedy approach in reinforcement learning,” in Proceedings of the
35th International Conference on Machine Learning, ser. Proceedings
of Machine Learning Research, J. Dy and A. Krause, Eds., vol. 80.
PMLR, 10–15 Jul 2018, pp. 1387–1396.

[33] M. Kearns, Y. Mansour, and A. Y. Ng, “A sparse sampling algorithm
for near-optimal planning in large markov decision processes,” Machine
learning, vol. 49, no. 2, pp. 193–208, 2002.
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APPENDIX

A. Transaction Arrival Process
Lemma 3. Let N be a Poisson process with rate δ and X be
an independent random variable distributed exponentially with
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Fig. 14: An example of a state space in the simplified
model. Blocks denoted with an underscore hold a whale fee.

rate µ. Then, N(X) is a random variable with a geometric
distribution with mean δ

µ .

Proof. By definition, X is distributed by the pdf:

pX(x) =

{
µe−µx x ≥ 0

0 x < 0
.

For any time t, N(t) is distributed by:

Pr (N(t) = n) =
(δt)n

n!
e−δt, n = 0, 1, ... ≥ 0 .

Since N and X are independent, for any n = 0, 1, ...:

Pr (N(X) = n) =

∞∫
−∞

Pr (N(x) = n) pX(x)dx .

By plugging the first two equations we get for any n = 0, 1, ...:

Pr (N(X) = n) =

∞∫
0

(δx)n

n!
e−δx · µe−µxdx =

=
δnµ

n!

∞∫
0

xne−(δ+µ)xdx =
δnµ

n!
· n!

(δ + µ)n+1
=

=
µ

δ + µ
·
(

δ

δ + µ

)n

.

And this is exactly the probability function of a geometric
distribution with mean δ

µ .

B. Simplified Varying Model

Another approach to overcome the intractable state space
of the varying model is to simply reduce it. We introduce
a simplified model based on the varying model which
allows the rational miner a subset of the possible actions. This
allows the constricted model to be represented more efficiently
and greatly decreases the size of the state space. We can
then use PTO [13] to solve this model exactly. Because the
constricted model only reduces the freedom of the rational
miner, optimal policies found in the constricted model give a
lower bound to the optimal policy possible in the full model.

The state space of the simplified model is represented
as a 7-tuple of the form (a, h, La, Ta, Th, fork, pool). The
elements a and h represent the length of the miner chain and
the public chain as in the constant model. The elements
fork and pool are the same as in the varying model. The
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Fig. 15: The major parts of the framework and their data flow.

transactions in the rational miner’s chain are represented in the
elements La and Ta. The element Ta is the number of whale
fees in the first h blocks in the miner’s chain. The element La

is a list of flags, representing whether each of the rest of the
blocks in the miner’s chain holds a whale fee. Similarly, Th is
the number of whale fees in the public chain. Fig. 14 illustrates
a simple example of a state in the simplified model.

We calculate the number of states in our configuration by
counting the number of appropriate combinations of elements
and find it to be about 500,000.

We restrict the possible of actions of the miner to be the
same as the constant model, adopt, reveal h, reveal h+ 1
and wait. The transitions of a, h are the same as defined in
the constant model. The transitions of fork and pool are
as defined in the varying model. When the miner adopts
the public chain, La ← [ ], Ta ← 0 and Th ← 0. When the
miner overrides the public chain by submitting h+ 1 blocks,
those block become accepted by all so similarly, Ta ← 0
and Th ← 0. However, in this case La is preserved except
for the first block which is removed from it. When an active
fork is resolved, that is when there is an active fork in the
network and an honest miner extends the rational miner’s
chain, the first h blocks in the miner’s chain are accepted
by all. Therefore, Th ← 0, Ta is reset and the first element
of La is moved to Ta (if such an element exists). Whenever
the rational miner finds a new block, a flag indicating whether
it holds a whale transaction gets added to the end of La.
Whenever another miner finds a new block, the first element
of La is removed from the list and is added to Ta instead
(if such an element exists). In all other cases, La, Ta and Th

remain the same. The rewards are as defined in the varying
model. They can still be easily calculated from the state, even
though the full lists a⃗ and h⃗ are unavailable.

C. Implementation

We implemented the algorithm as a python application
(about 7k LoC) designed to run on 64 CPU cores in parallel
using PyTorch. Fig. 15 highlights the main elements of the
application and their interactions. The application consists
of 63 agents: 50 agents explore the model to gather state-
transition data, and 13 agents simulate the current policy to
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approximate its revenue. The agents operate in a continuous
loop of episodes. Once an episode ends, the gathered data are
sent to the trainer and the neural network and base value are
updated. The trainer also runs in a continuous loop, where
in each iteration, we run an epoch of 50 batches of SGD.
Before each epoch, the trainer gathers all the transitions and
the simulated revenues, and then the neural network and the
base value are updated.

The first epoch relies on the output of the first episodes.
Thus, in order to allow the trainer to run in parallel with the
agents, the first epoch has to run while the second episodes
are running. Therefore, there is no need to update the neural
network and base value after the first episode. Afterwards, the
epochs and episodes are synchronized, meaning that in order
to continue to the next epoch and episodes, the current epoch
and all current episodes must end first. Except for the first
episode, the neural network and base value are updated at the
end of each episode to be the output of the epoch which was
synchronized with the previous episode. For example, after
the third episode, the agent is updated to the neural network
reached after the first epoch.

1) Model: The algorithm uses the transformed model ob-
tained by PTO with an expected horizon of 10,000. We chose
a maximum fork and maximum pool size of 10 and γ = 0.5,
respectively, except where it is specified otherwise.

2) Neural Network: The actual form of the state that is fed
into the neural network has to be of a fixed size. Furthermore,
a sparse representation with distinct differences between types
of data is usually preferred as input for neural networks. To
achieve this, we represent the lists a⃗ and h⃗ as two vectors with
a length of the maximum possible fork and each element as
two binary flags. The first flag indicates whether a block exists
or not, and the second flag expresses whether a transaction is
included in the respective block (if the block exists, otherwise
this is meaningless). For example, to indicate that the public
chain has two blocks and the second block holds a transaction,
h⃗ would be [(1, 0), (1, 1), (0, 0), (0, 0), ...]. In addition, the
state representation also includes the number of blocks and
number of transactions in both chains, which can be extracted
from a⃗ and h⃗,

The neural network is structured with two hidden layers,
each with 256 neurons and a ReLU activation function. The
dimension of the input is determined by the length of the state
tuple. In our case, it is 46: both a⃗ and h⃗ are represented as a
tuple of length 20 (twice the maximum fork), and there are 6
additional elements: fork, pool, the number of blocks and the
number of transactions both in a⃗ and h⃗. The dimension of the
output is twice the number of available actions. The first half
of the output is interpreted as the values of all actions, and
the second as the prior probability of the actions.

3) Agents: Each agent simulates an episode of 100 steps.
In each step, the agents performs a Monte Carlo tree search
to choose its next action. The agent simulates 25 potential
trajectories separately. Each trajectory is of 5 steps ahead. To
encourage the search to try all possible actions, in the first

step of every trajectory, 0.5(P (s, a) + |A|−1
) is used instead

of P (s, a) in the term for the exploration factor (Eq. 8).
Similarly to AlphaGo Zero [23] we create a graph to save

all the paths of all simulated trajectories. We initialize W (s, a)
using the appropriately scaled value of the neural network
(Eq. 12). We update these values according to Eq. 10 with
β = 1/N(s, a). The graph is saved across the trajectories and
steps and is only reset between episodes.

There are two types of agents, the training agents and the
evaluation agents. After running the MCTS, a training agent
chooses the action to take according to an ε-greedy policy
(with ε = 0.05): it chooses the action with the maximum
value estimate w.p. 1 − ε and w.p. ε chooses some valid
action uniformly at random. Then, it saves a record of the
state, the chosen action, the target value, and the empirical
distribution of the actions selected in the state. The target value
is calculated by Eq. 13. The evaluation agent always chooses
the action greedily, and only at the end of an episode checks
the revenue obtained and sends it to the trainer.

4) Trainer: In every epoch, the trainer gathers the transition
records and target values from all the training agents into a
replay buffer of 5000 transitions. The replay buffer is then
shuffled, and the trainer samples 50 batches of 100 transitions
each to train the neural network. The target values are first
normalized by Eq. 14. The target values mean t̄ is updated
using an exponential moving average t̄new = 0.9t̄old + 0.1 ·
1

|B|
∑

n∈B tn , and is used instead of the calculated mean in
Eq. 14.

The neural network is trained according to the loss function
in Eq. 9, using the Adam Optimizer [44] with default param-
eters (in PyTorch), and a learning rate that starts at 0.0002,
and is divided by 10 after every 1000 epochs.

In addition, the trainer gathers all revenue simulations from
the evaluation agents. The base value is calculated by a sliding
window average of the last 750 episodes. For the first epochs,
the window is first initialized to be some predetermined initial
parameter, repeated 750 times for reducing the dependence of
the base value on the first few simulations. We chose the initial
value to be the optimal revenue of the constant model
scaled by (1 + δF ) as the default value.

5) After Training: Every 100 epochs, the state of the neural
network and the base value are saved, and all 63 agents
perform a revenue simulation (like the evaluation agents) in an
episode of 1000 steps. To avoid high memory consumption,
we prune the MCTS graph in the agents every 250 steps by
removing all nodes which were not used more than once.
The final policy of the algorithm is determined by the neural
network and base value of the epoch with the best average
revenue from the longer simulations. Then, to more accurately
approximate the final policy’s revenue, all agents run another
simulation with the chosen neural network and base value in
episodes of 100,000 steps. The final output is the average
revenue across all agents and a confidence interval of 99%
confidence.

To obtain reproducible results, we initialized the seed of all
sources of all the sources of randomness in the algorithm to be
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0 in all runs. All parallel results which were aggregated were
sorted by their agent index before using them, to maintain
reproducibility. Because of hardware dependent optimizations
built into the linear algebra libraries used in NumPy and
PyTorch, the results may vary slightly in different CPUs. We
ran all of our tests using an AMD EPYC 7742 256-core
processor.

D. Proof of Prop. 1

We restate and prove Prop. 1.

Proposition 4. Let Q∗(s, a) be the optimal action values in
an MDP obtained by a PTO transformation with expected
horizon H . Let π∗ be the optimal policy and sinit be the initial
state of the MDP. Then, it holds that for any state s ∈ S:

|Q∗(s, π∗(s))−Q∗(sinit, π
∗(sinit))| = O

(
1

H

)
. (15)

Proof. Let π be a policy and let ρπ be the revenue of π starting
from state s and let ρ′π be the revenue of π in the transformed
MDP with an expected horizon of H starting from the same
state. As a result of Theorem 2 of Bar-Zur et al. [13], we
get that |ρπ − ρ′π(H)| = O (1/H). Note that since ρ′π(H) =
Q∗(s, π∗(s)), we get that |ρπ −Q∗(s, π∗(s))| = O (1/H).
Furthermore, the revenue ρπ is invariant to the initial state
chosen (Lemma 8 in [13]). Therefore, when using s = sinit,
we get that |ρπ −Q∗(sinit, π

∗(sinit))| = O (1/H). Thus, we
have that |Q∗(s, π∗(s))−Q∗(sinit, π

∗(sinit))| = O (1/H), by
using the triangle inequality.

E. Value Iteration with Base Value

The effects of target normalization are clearly understood
from Proposition 1. The average of the true values should
be the base value (up to O

(
1
H

)
) and thus normalizing the

target values such that their new average is the base value
makes sense. However, the effects of adding the base value
and changing it from time to time are less clear.

We design a simplified algorithm which utilizes the base
value feature in value iteration and assumes access to an oracle
which given a policy outputs its exact revenue (Algorithm 1).
The algorithm is based on value iteration, the synchronous
version of Q-learning, and it can be extended to Q-learning as
well. To avoid oscillations where the base value may go up or
down, we enforce the base values to be increasing by taking
the maximum between the old value and the new candidate
base value returned by the oracle. We show that the algorithm
is guaranteed to converge, just like value iteration.

Theorem 5. The values calculated in Algorithm 1 converge
to the optimal values and for a large enough N , the algorithm
returns the optimal policy.

lim
N→∞

VN = V ∗ − ρN , lim
N→∞

πN = π∗

Proof. The base value is bounded from above by the base
value of the optimal policy, since it achieves the highest
revenue. Because the base values ρn are a monotonically
increasing sequence and bounded from above, we get that they

Algorithm 1: Value Iteration With Base Value
Input : Transition matrices P (s′|s, a)

Reward matrix R(s, a)
Initial base value ρ0 ∈ R
Terminal state sterm
Initial value function V0

Base value oracle O : AS → R
Number of iterations N

Output: Policy πN

1 for n← 1 to N do
2 For each s ∈ S \ {sterm}, set:

πn(s)← argmax
a∈A

{r(s, a)+

+
∑

j∈S\{sterm}

p(s′|s, a)(Vn−1(s
′) + ρn−1)} .

3 For each s ∈ S \ {sterm}, set:

Vn(s)← max
a∈A
{r(s, a)− ρn−1+

+
∑

j∈S\{sterm}

p(s′|s, a)(Vn−1(s
′) + ρn−1)} .

4 ρn ← max {O(πn), ρn−1}
5 end

converge to some ρ. Since, the number of possible candidates
is limited by the number of policies, and the number of policies
is finite (thanks to the practical considerations which ensure a
finite state space size), there must be a step M ∈ N such that
for all n ≥M , ρn = ρ. Then, for all n > M :

Vn(s)← max
a∈A
{r(s, a)− ρ+

+
∑

j∈S\{sterm}

p(s′|s, a)(Vn−1(s
′) + ρ)} .

Since after every iteration, we subtract all values by ρ but add
ρ before using the values again, in the subsequent iteration, the
sequence behaves similarly to value iteration and converges.
The only difference is that all values in the limit are shifted by
−ρ which is equal to ρN for a large enough N . This proves
the first half of the theorem.

For n ≥M , the values are combined with ρ before choosing
a policy, thus the choice of policy is similar to the policy
induced from regular value iteration. Therefore, the chosen
policy for a large enough N is the optimal policy π∗.

F. Relating Revenues between Models

Since the fees in the varying model introduce a new
source of rewards, the total reward amount in the model
increases. But, to be able to better interpret the revenue of
a miner in the varying model, we need to relate it to the
revenue of a policy in the constant model. First, given a
policy in the constant model, we would want to know what
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revenue it will achieve in the model with fees when extended
appropriately. We will assume that under the policy, the miner
would behave the same and will be oblivious to fees. The
only difference is that whenever a transaction is available, the
rational miner will include it in the next block created. The
following proposition is a restatement of Prop. 2.

Proposition 6. Let π be policy in the constant model and
let π′ be its fee-oblivious extension to the varying model, in
which the miner always includes a transaction when available.
If ρπ , and ρπ′ are the revenues of π and π′ in the respective
models, then ρπ′ = (1 + δF )ρπ .

Proof. Since π′ is oblivious to fees and just adds a transaction
when possible, the choice of which block transactions appear
in is independent of which block belongs to the rational
miner. This means that on average, the chance that a block
of the rational miner includes a transaction is the same as the
chance any block includes a transaction and that is precisely δ.
Therefore, blocks of the rational miner are worth 1 + δF in
expectation, and thus the miner’s revenue is the ratio of blocks
which belong to her times the value of each block. Thus,
ρπ′ = (1 + δF )ρπ .

We can then immediately deduce the following corollary.

Corollary 7. The fair share of an honest miner of size α in
the varying model is (1 + δF )α

Proof. Follows immediately from Prop. 6 and the fact that the
revenue of an honest miner in the constant model is simply
α.

G. Optimal Strategy Case Study

The rational miner can take advantage of the full varying
model to obtain more revenue than in the constant and
simplified model. To show this, we illustrate two cases
where the learned strategy utilizes an action available only in
the richer varying model. Both cases arose in our simulation
of the final learned strategy with α = 0.35, F = 10, δ = 0.1
. In the two cases, the miner adopts all blocks but the last
one or two blocks in the public chain and tries to steal a
transaction fee. Blocks are named according to the order they
were mined. Blocks holding a transaction are marked in bold.
The first case (happens around step 45507 in test agent 4)
shows an unsuccessful attempt (Fig. 16) and the second case
(happens around step 72010 in test agent 3) shows a successful
one (Fig. 17).

b1 b4

b2 b3pool = 0

a⃗

h⃗

(a) The miner works on a secret
chain.

b1 b4 b6 b7

b2 b3 b5pool = 1

a⃗

h⃗

(b) A transaction appears. The
rational miner keeps trying.

b1 b4 b6 b7 b8 b9 b10

b2 b3 b5pool = 2

a⃗

h⃗

(c) A second transaction appears. After the creation of block b10,
the miner adopts all public blocks before b9 and tries to overtake
the remaining blocks.

b8 b9 b10 b11

pool = 1 a⃗ = [ ]

h⃗

(d) The miner adopts the public chain after the creation of
block b11.

Fig. 16: An unsuccessful attempt of a partial adoption to steal
a transaction fee.

b1 b2 b3 b6 b7 b9 b12 b14

b4 b5 b8 b10 b11 b13 b15pool = 1

a⃗

h⃗

(a) The miner works on a secret chain.

b1 b2 b3 b6 b7 b9 b12 b14 b16 b17

b4 b5 b8 b10 b11 b13 b15pool = 2

a⃗

h⃗

(b) A second transaction appears. The miner adopts all blocks
except b17 and tries to overtake it.

b16 b17 b19 b21 b22

b18 b20 b23 b24 b25pool = 1

a⃗

h⃗

(c) The miner keeps working on the secret chain.

b16 b17 b19 b21 b22

b18 b20 b23 b24 b25

(d) The miner overtakes the chain and the state resets.

Fig. 17: A successful attempt of a partial adoption to steal a
transaction fee.
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