
DSKE: Digital Signature with Key Extraction

Orestis Alpos∗1, Zhipeng Wang∗2, Alireza Kavousi3, Sze Yiu Chau4,
Duc V. Le1, and Christian Cachin1

1University of Bern, {orestis.alpos, duc.leviet,
christian.cachin}@unibe.ch

2Imperial College London, zhipeng.wang20@imperial.ac.uk
3University College London, alireza.kavousi.21@ucl.ac.uk

4The Chinese University of Hong Kong, sychau@ie.cuhk.edu.hk

Abstract

In general, digital signatures can be used to prove authenticity for
as long as the signature scheme is not broken and the signing key is
kept secret. While this “long-lived” authenticity might be useful in
some scenarios, it is inherently undesirable for certain types of sensi-
tive communication, for instance, whistleblowing. A particular concern
in this case is that the communication could be leaked in the future,
which might lead to potential retaliation and extortion. Therefore, a
natural question to ask is whether it is possible to design a signature
scheme that allows the signers to prove authenticity for a limited pe-
riod of time, and then afterwards be able to deny having signed any
messages in the first place. We argue that this could offer a desirable
degree of protection to the signers through deniability against future
leaks. This also reduces the incentives for criminals to obtain leaked
communications for the sole purpose of blackmailing.

This paper introduces the concept of digital signature with key ex-
traction (DSKE). In such schemes, signers can have plausible deniabil-
ity by demonstrating that a group of recipients can collectively extract
the signing key, while, within a certain threshold, the signature deter-
ministically proves message authenticity. We give a formal definition of
DSKE, as well as two provably secure constructions, one based on hash-
based digital signatures and the other based on polynomial commit-
ments. Later, we propose a forward-forgeable signature construction,
GroupForge, by combining DSKE constructions with Merkle trees and
timestamps to have a “short-lived” signature with extractable sets that
can act as deniable groups under a fixed public key. Finally, we demon-
strate that GroupForge can replace Keyforge in the non-attributable
email protocol of Specter, Park, and Green (USENIX Sec ’21), hence
eliminating the need to continuously disclose outdated private keys.

∗Both contributed equally and are considered to be co-first authors.

1

1 Introduction

Digital signature schemes [23] play an important role in protecting the in-
tegrity of data transmitted over the Internet. In some jurisdictions [7, 34,
30], a digital signature applied to data can serve as evidence of the sender’s
authorship of the data. Moreover, the signature of a message remains valid
until either the underlying signature scheme is broken or the private key is
compromised. However, as pointed out by Borisov, Goldberg, and Brewer in
their work on Off-The-Record (OTR) communication work [13], this “long-
lived” property is unsuitable for certain types of messages. For instance, if
Alice wishes to communicate privately with Bob, she can encrypt her mes-
sages using Bob’s public key (i.e., for confidentiality) and sign them with
her private key (i.e., for authenticity). However, if Eve compromises Bob’s
computer at some point in the future, Eve will be able to read all of Bob’s
previous messages from Alice, and use the signatures to prove to Judy that
the messages indeed originated from Alice.

To address this problem, OTR messaging requires an interactive key
agreement protocol between the sender and the recipient to agree on session
keys before exchanging messages. However, this pair-wise key agreement
required in OTR is not scalable for applications such as email protocols,
in which there is often no prior end-to-end interaction among the involved
parties.

Another way to achieve deniability is to simply require the sender to pe-
riodically rotate keys and publish their old private keys [24]. This method
enables any party to forge signatures using the published private keys and
thus offers deniability to old transcripts. In fact, this method is being sug-
gested to offer deniability in Domain Keys Identified Mail (DKIM) [2], where
SMTP servers sign outgoing emails on behalf of the whole domain using a
single key, as a way to safeguard against email spoofing.

In this paper, we focus on answering the following research question that
arises naturally from the limitations of existing attempts:

Is it possible to design a signature scheme that allows the recipients to
verify the validity of the signature, while enabling the sender to gain plausible
deniability, without requiring the constant publication of old private keys and
the rotation of new public keys?

It is worth noting that the question itself is, seemingly, a contradiction
due to the non-repudiation property of digital signature schemes. This work
circumvents the contradiction by showing that any one-time hash-based sig-
nature scheme (e.g., Lamport-Diffie OTS [32]) and our new signature scheme
based on polynomial commitments [31] can effectively convince the recip-
ients of the authenticity of the message for a fixed period of time, while
offering the signer plausible deniability. This is achieved by introducing the
notions of an extractable set, a set of signatures from which the secret key
can be extracted, and a deniable group, a group of recipients that can, using

2

Table 1: Comparison of signature schemes with deniability.

Scheme
Requiring Future Actions

(e.g., Publishing Key Material)
Requiring External Services

(e.g., Random Beacon)
Requiring VDF

KeyForge [42] Yes No No
TimeForge (version in [41]) No Yes Yes

Short-lived signature [3] No Yes Yes
GroupForgehash (based on DSKEhash) No No No
GroupForgepoly (based on DSKEpoly) No No No

an extractable set of signatures, collectively reconstruct the private key.

Contributions. Our contributions are summarized as follows:

• We formally define the concept of digital signature scheme with key
extraction (DSKE). In DSKE, the signer always has an extractable set,
a set of signatures that can be used to extract the secret key.

• We present a concrete construction of DSKE utilizing the Lamport-
Diffie Signature Scheme. We demonstrate that reusing a Lamport-
Diffie private key can result in an extractable set with an overwhelm-
ing probability. Moreover, our technique is applicable to other hash-
based signature schemes, such as the Winternitz One-time signature
scheme [35] and the Optimized Lamport signature scheme [35].

• We propose another digital signature construction based on a polyno-
mial commitment primitive, DSKEpoly, which might be of independent
interest. DSKEpoly eliminates the limitations of hash-based signatures
by providing short signatures and allowing signers to choose the size
of the extractable set.

• Finally, we propose GroupForge, a forward-forgeable signature scheme
that combines DSKE with a Merkle hash tree and timestamps to im-
prove the non-attributable email system proposed by Specter, Park,
and Green [42]. Specifically, GroupForge eliminates the need for email
servers to periodically post expired key material, as well as the reliance
on a trusted verifiable time-keeping service.

Related Work. Specter, Park, and Green formally defined the notion of
Forward-Forgeable Signature (FFS) [42] and showed how FFS can be used
to achieve deniability in the email protocol. The main idea of their scheme
is to make the signatures become forgeable after a fixed delay. They present
two concrete constructions: KeyForge and TimeForge. In the KeyForge con-
struction, the email server needs to periodically publish expired keys to claim
deniability over sent emails, and in the TimeForge construction, the signers
need to rely on a trusted publicly verifiable time-keeping service (PVTK).
GroupForge, proposed in this work, is modelled as a forward-forgeable sig-
nature scheme as well, and eliminates the shortcomings of both Keyforge
and Timeforge by having a deniable group for any given communication.

3

Arun, Bonneau, and Clark proposed Short-lived Zero-Knowledge Proofs
and Signatures [3]. The main idea of their construction is to leverage a
disjunctive statement to achieve deniability, which has already been studied
in several works, e.g., designated verifier proofs [28, 43], proofs-of-work-or-
knowledge (PoWorKs) [5], ring signatures [39], and one-out-of-many proofs [25].
In particular, the construction in Arun et al.’s work [3] relies on the exis-
tence of a trusted random beacon [37, 44] and verifiable delay functions
(VDFs) [8, 45]. They use a statement of the form: I know the witness, x
(e.g., private key) OR someone solved a VDF on a beacon value derived from
the trusted beacon before a time, t. Hence, their construction offers deniabil-
ity to the prover because anyone can produce a valid proof by evaluating the
VDF through sequential computation. This work, on the other hand, offers
a simpler approach without requiring costly VDF evaluations and a trusted
random beacon. We provide a comparison of our work and state-of-the-art
signature schemes with deniability in Table 1.

Paper Organization. The remainder of the paper is organized as follows.
Section 2 outlines the necessary background and building blocks for DSKE.
In Section 3, we present the formal definition of DSKE. Sections 4 and 5
provide concrete constructions of DSKE, namely DSKEhash, based on hash-
based signature schemes, and DSKEpoly, based on polynomial commitment
schemes, respectively. We show the construction of GroupForge from DSKE
schemes and demonstrate its application to non-attributable email protocols
in Section 6. We evaluate the performance of DSKE and GroupForge con-
structions, and we discuss DSKE’s limitations and potential improvements
in Section 7. Section 8 concludes our work.

2 Preliminaries

In this section, we give a background on the building blocks used for our
constructions, namely, properties of hash functions and polynomial commit-
ments.

Notation. We denote by 1λ the security parameter and by negl(λ) a neg-
ligible function of λ. We express by (pk, sk) a pair of public and private
keys. We let [n] denote the set {1, . . . , n}. Moreover, we require that pk can
always be efficiently derived from sk, and we denote extractPK(sk) = pk to
be the deterministic function for doing so. We denote as m||n the concate-
nation of two values m and n, and as Z≥a the set of integers that are greater
than or equal to a. For a field F, we denote F≤d(X) the set of polynomials
in F[X] with degree at most d. We denote by M the message space and S
the signature space.

4

2.1 Hash Functions

Our constructions employ the following standard properties of cryptographic
hash functions. We use H : K ×M → {0, 1}λ to denote a family of hash
functions that is parameterized by a key k ∈ K and message m ∈ M and
outputs a binary string of length λ. For this work, we consider two secu-
rity properties of hash functions from [40], namely, preimage resistance and
collision resistance.

Definition 1 (Preimage Resistance). A family H of hash functions is preimage-
resistant, if for any PPT adversary A, the adversary’s advantage in finding
the preimage of a given hash value is:

Pr

[
k

$←− K, x $←−M, y ← H(k, x)

x′ ← A(k, y)
: H(k, x′) = y

]
≤ negl(λ)

Definition 2 (Collision Resistance). A family H of hash functions is collision-
resistant, if for any PPT adversary A, the adversary’s advantage in finding
collisions is:

Pr

[
k

$←− K
(x, x′)← A(k)

: (x 6= x′) ∧ (H(k, x) = H(k, x′))

]
≤ negl(λ)

In practice, the key for standard hash functions is public; therefore, from
this point, we refer to the cryptographic hash function h sampled from a
family of hash functions as a fixed function h :M→ {0, 1}λ.

2.2 Polynomial Commitment Scheme

A polynomial commitment scheme (PCS) allows a prover to commit to a
polynomial f(X) ∈ F≤d(X) and later open f(X) at arbitrary points x, re-
vealing only the value f(x). We assume a succinct PCS, where the commit-
ment Cf to f(X) and the opening proofs π consist of single group elements,
for some group G. A PCS consists of the following algorithms.

• Setup(1λ, d)→ (ck, vk): The generation algorithm takes as input a se-
curity parameter λ and a maximum degree number d ∈ N and outputs
the public commitment key ck, which allows committing to polynomi-
als in F≤d(X), and the public verification key vk.

• Com(ck, f(X)) → Cf : The commitment algorithm takes as input the
commitment key ck and a polynomial f(X) ∈ F≤d(X) and outputs a
commitment Cf ∈ G to the polynomial f(X).

• Open(ck, Cf , x, f(X))→ (π, y): The opening algorithm takes as input
a commitment key ck, a commitment Cf , an evaluation point x, and
the polynomial f(X), and outputs y = f(x) ∈ F and a proof π ∈ G.

5

• Check(vk, Cf , x, y, π) → b ∈ {0, 1}: The checking algorithm takes as
input the verification key vk, the commitment Cf , a point x, the
claimed evaluation y, and the opening proof π, and outputs 1 iff y =
f(x).

Our schemes demand the following correctness, hiding, evaluation bind-
ing, and polynomial binding properties from the polynomial commitment
scheme.

Definition 3 (Correctness [31]). Let (ck, vk)← Setup(1λ, k), f(X) ∈ F≤d(X),
and Cf ← Com(ck, f(X)). Then for any (π, y) output by Open(ck, Cf , x, f(X)),
we have that Check(vk, Cf , x, y, π) → 1.

Definition 4 (Computational Hiding [31]). Given (ck, vk), the commitment
Cf , and up to d valid openings (yi, πi) for points xi, where i ∈ {1, . . . , d}, no
PPT adversary can determine the value f(x′), for x′ 6∈ {x1, . . . , xd}, except
with negligible probability.

Definition 5 (Evaluation Binding [31]). Given (ck, vk), no PPT adversary
can compute commitment Cf , point x, and two openings (π1, y1), (π2, y2)
for x, such that Check(vk, C, x, y1, π1) = 1, Check(vk, C, x, y2, π2) = 1, and
y1 6= y2.

Definition 6 (Polynomial Binding [31]). Given (ck, vk), no PPT adversary
can compute polynomials f(X) and f ′(X), such that f(X) 6= f ′(X) and
Com(ck, f(X)) = Com(ck, f ′(X)).

2.3 KZG Polynomial Commitment Scheme

We now present a concrete polynomial commitment construction, the KZG [31]
scheme. It works over a bilinear pairing group G = 〈e,G,Gt〉, where G is
a group of prime order p, e is a symmetric pairing e : G × G → Gt, g is a
generator of G, and h ∈ G.

• Setup (1λ, d) → (G, ck, vk): the algorithm outputs a representation

of the bilinear group G, commitment key ck = {g, gα, . . . , gαd}, and
verification key vk = hα, for an α ∈ Zp that is destroyed after setup.

• Com(ck, f(X)) → Cf : the algorithm computes Cf = gf(α) using ck
and outputs Cf .

• Open(ck, Cf , x, f(X))→ (π, y): the algorithm computes y = f(x) and

the quotient polynomial q(X) = f(X)−y
X−x , and outputs y and π = Cq =

Com(ck, q(X)).

• Check(vk, Cf , x, y, π) → b ∈ {0, 1}: the algorithm outputs 1 if e(Cf ·
g−y, h) = e(Cq, h

α · h−x), and 0 otherwise.

6

The KZG scheme satisfies the correctness, computational hiding, eval-
uation binding, and polynomial binding properties, provided the DL and
d-SDH assumptions hold in G [31].

3 Digital Signature with Key Extraction (DSKE)

In this section, we formally define the notion of Digital Signatures with Key
Extraction (DSKE). We adopt the standard digital signature definition and
introduce a new algorithm to capture the capability of extracting the private
key from a set of signatures.

Definition 7 ((k, δ)-Digital signature with Key Extraction). A signature
scheme, Σ, with key extraction consists of five algorithms:

• Setup(1λ) → par: The setup algorithm takes a security parameter
1λ and outputs a set of public parameters, par. This algorithm runs
once, and the public parameters are implicitly input to all subsequent
algorithms.

• KeyGen() → (pk, sk): The probabilistic generation algorithm outputs
a pair (pk, sk) of public key and private key.

• Sign(sk,m) → σ: The signing algorithm is a probabilistic algorithm
that takes a private key sk and a message m from the message space
M as input and outputs a signature σ in the signature space S.

• Verify(pk,m, σ)→ b ∈ {0, 1}: The verifying algorithm is a determinis-
tic algorithm that takes a public key pk, a message m, and a signature
σ, and outputs the validity of the signature, b ∈ {0, 1}.

• Extract({(mi, σi)}i∈[k], pk)→ sk: The extraction algorithm is a proba-
bilistic algorithm that takes as input a set of distinct message-signature
pairs {mi, σi}i∈[k], such that σi ← Sign(sk,mi), and the public key pk,
and outputs the underlying private key sk with probability δ and ⊥ with
probability 1− δ.

Apart from the straightforward correctness definition, we consider two
other properties of DSKE: unforgeability and the existence of an extractable
set. The security of digital signature is defined through the following exper-
iment.

The d-times signature experiment SignExpdA,Σ(λ).

1. Setup(1λ) and KeyGen() are run to obtain keys (pk, sk).

2. A is given pk and can ask up to d queries to the signing oracle

Sign(sk, ·). Let Q
Sign(sk,·)
A = {mi}i∈[d] be the set of all messages for

which A queries Sign(sk, ·), where the ith query is a message mi ∈M.
Eventually, A outputs a pair (m∗, σ∗) ∈M× S.

7

3. The output of the experiment is defined to be 1 if and only if m∗ /∈
Q

Sign(sk,·)
A and Verify(pk,m∗, σ∗) = 1.

Definition 8 (Existential Unforgeability). A digital signature scheme Σ is
existentially unforgeable under a d-times adaptive chosen-message attack,
or d-times-secure, if for all PPT adversaries A the success probability in
the previous experiment is negligible, that is,

Pr[SignExpdA,Σ(λ) = 1] ≤ negl(λ).

Definition 9 (Extractable Set). A digital signature scheme has a (k, δ)-
extractable set when the extraction algorithm Extract(·) on input k distinct
message-signature pairs {(mi, σi)}i∈[k] and the public key pk, such that each
σi is a valid signature on mi under pk, outputs the private key sk with
probability δ. That is,

Pr

mi

$←−M, for i ∈ [k]

(pk, sk)← KeyGen()

σi ← Sign(sk,mi)

Extract
(
{(mi, σi)}i∈[k], pk

)
→ sk′

: sk = sk′

 = δ.

4 DSKE from Hash-Based Signature Schemes

In this section, we provide DSKEhash, a DSKE construction based on the
Lamport-Diffie signature scheme.

4.1 Construction

In our construction of DSKEhash, the key generation, signing, and verifi-
cation algorithms remain unchanged as Lamport-Diffie Signature Scheme.
We provide an additional algorithm to extract the private key from a set of
signatures.

Lamport-Diffie Signature Scheme. The Lamport-Diffie Signature Scheme
is parameterized by a preimage-resistant hash function f and a collision-
resistant hash function, g. The private key SK contains 2λ binary strings
uniformly sampled from {0, 1}λ, where λ is the security parameter. The
public key PK consists of 2λ binary strings that are evaluations of f on
each element in the private key. To form a signature σ, on a message m, the
signer reveals components of the private key SK, according to the binary
representation of g(m) as the signature. Verification is carried out naturally:
the verifier uses the binary representation of the digest, g(m), to validate if
each element contained in the signature is the actual preimage of the public
key elements.

8

Extracting Private Key from Message-Signature Pairs. As shown
in Figure 1, the intuition behind the extracting function is that each sig-
nature σi is a subset of the private key SK. To extract the complete pri-
vate key, one needs to compute the union of k different signatures {σi}i∈[k].
Since the underlying hash function g is unpredictable, the probability of
successfully extracting the private key depends on the number of distinct
message-signature pairs (i.e., k).

Hash-Based DSKE. Based on the above intuitions, we propose our hash-
based DSKE, DSKEhash, which consists of:

• Setup(1λ): On input the security parameter λ, the algorithm outputs
a parameter, par, containing a hash function, f : {0, 1}λ → {0, 1}λ,
chosen from a family of collision-resistant hash functions, and a hash
function, g : M→ {0, 1}λ, chosen from a family of collision-resistant
hash function. The public parameters are implicitly input to all sub-
sequent algorithms.

• KeyGen(): For each i ∈ [λ], b ∈ {0, 1}, sample ski[b]
$←− {0, 1}λ; com-

pute pki[b] = f(ski[b]); and output the secret key, SK =(ski[b])i∈[λ],b∈{0,1},
and the public key, PK = (pki[b]))i∈[λ],b∈{0,1}.

• Sign(SK,m): Parse SK = (ski[b])i∈[λ],b∈{0,1}; compute d = g(m) =
(di)i∈[λ]; and output σ = (ski[di])i∈[λ].

• Verify(PK,m, σ) : Parse PK = (pki[b])i∈[λ],b∈{0,1}, σ = (σi)i∈[λ]; com-
pute d = g(m) = (di)i∈[λ]; for all i ∈ [λ], if f(σi) 6= pki[di], return 0.
Otherwise, return 1.

• Extract({mj , σj}j∈[k], PK): For each message-signature pair (mj , σj),
compute dj = g(mj) = (dji)i∈[λ], and parse σj = (σji)i∈[λ]. For each
j ∈ [k], i ∈ [λ], b ∈ {0, 1}, if ∃dji = b, then let ski[b] = σji. Set
SK = (ski[b])i∈[λ],b∈{0,1} and parse PK = (pki[b])i∈[λ],b∈{0,1}. If for all
i ∈ [λ] and b ∈ {0, 1}, pki[b] = f(ski[b]), then output SK. Otherwise,
the algorithm outputs ⊥.

4.2 Security Analysis

In this part, we prove that DSKEhash satisfies unforgeability and has an
extractable set depending on the number of distinct message-signature pairs.

Theorem 1 (Existential Unforgeability). DSKEhash is existentially unforge-
able under a 1-time adaptive chosen-message attack, that is,

Pr[SignExp1
A,DSKEhash

(λ) = 1] ≤ negl(λ)

Since the security proof of Lamport-Diffie Signature scheme is standard,
we defer the proof of Theorem 1 to Theorem 14.1 in [12].

9

Figure 1: Example of the algorithm Extract for DSKEhash. In this example,
the original private key can be collectively reconstructed from {(mi, σi)}i∈[2].

Theorem 2 (Extractable set). If f(·) and g(·) are modeled as a random
oracle, DSKEhash has a (k, δ)-extractable set, where:

δ ≥ 1− λ

2k−1
− negl(λ)

.

Proof. We define di = g(mi). All di for i ∈ {1, . . . , k} forms a k× λ matrix:g(m1)
. . .

g(mk)

 =

d1

. . .
dk

 =

d1,1 . . . d1,λ

. . .
.

dk,1 . . . dk,λ

where di,j ∈ {0, 1}.

As shown in Figure 1, for j ∈ [λ], b ∈ {0, 1}, to extract the value of skj [b],
there should be at least one dij that satisfies dij = b, i.e., for j ∈ [λ], dij
should not all be 1− b. Therefore, to be able to extract the private key SK,
we do not want any columns in the matrix that contain all 0s or all 1s.

Since g(·) is modeled as a random oracle, the probability that one single
column consists of all 0s or all 1s is:

Pr[x
$←− {0, 1}k : x = 0k ∨ x = 1k] =

1

2k−1

Let’s denote Bad0 to be the event that at least one of the columns is all
0s or all 1s. We have:

Pr[Bad0] = Pr[∨λj=1(xj
$←− {0, 1}k : xj 6= 0k ∧ xj 6= 1k)]

≤
λ∑
j=1

Pr[xj
$←− {0, 1}k : xj = 0k ∨ xj = 1k] ≤ λ

2k−1

10

Also, let’s denote Bad1 to be the event that there are two private key
elements that map to the same public key element. However, since f(·) is
modeled as a random oracle, this probability is negligible; hence, Pr[Bad1] =
negl(λ).

If g and f are modeled as a random oracle, the probability that the
extraction algorithm Extract(·) on input k distinct message-signature pairs
{(mi, σi)}i∈[k] and the public key PK, such that σi is a valid signature on
mi under PK, outputs the original private key SK that corresponds to PK
is δ ≥ 1− Pr[Bad0 ∨ Bad1] ≥ 1− λ

2k−1 − negl(λ).

Applications to Other Hash-Based Signature Schemes. In this sec-
tion, we only showed a concrete construction based on Lamport-Diffie sig-
nature. However, our constructions of DSKE can be generalized to all hash-
based OTS. The basic intuition behind DSKEhash is that each signature σj
discloses some partial information of the private key SK. Therefore, besides
Lamport-Diffie signature, other hash-based OTS such as optimized Lam-
port’s scheme, Winternitz [35], and BiBa [36, 38], which derive signatures
from the private key, can also be used to construct DSKE.

5 DSKE from Polynomial Commitment Schemes

Although the hash-based DSKE scheme DSKEhash proposed in Section 4
satisfies our definition of signature with key extraction, it has two inherent
weaknesses: (i) The key and signature sizes of DSKEhash are linear with the
security parameter λ, i.e., O(λ), making it inefficient in practice. (ii) The
algorithm Extract of DSKEhash is not deterministic and the probability δ of
extracting the private key depends on the size of the extractable set (i.e.,
k) 1. The smaller k is, the lower the success probability is when extracting
the private key. In this section, we propose a DSKE construction based
on a polynomial commitment scheme that overcomes all the drawbacks of
hash-based signature schemes.

5.1 Generic Transformation

In this section, we construct a DSKE scheme, DSKEpoly, from a polynomial
commitment scheme, Π, which can overcome the drawbacks of DSKEhash.
In the following, we assume a degree bound d ∈ Z and a polynomial degree
` ∈ Z that satisfy 1 ≤ ` ≤ d. The idea is to use the polynomial f(X)
of degree ` as the private key. Then the signature on a message m is the
evaluation of f(X) at point x = h(m), where h is a collision-resistant hash
function. For key extraction we employ polynomial interpolation: any set of

1This drawback can be circumvented by requiring signers to add an extra nonce to k
different messages so that the formed signatures guarantee the existence of an extractable
set.

11

`+1 valid message-signature pairs (mi, σi) can reconstruct f(X). DSKEpoly

works as follows.

• Setup(1λ, d): On input the security parameter λ and degree d ∈ N,
the algorithm runs Π.Setup(1λ, d) to obtain (ck, vk), which allows the
signer to commit to polynomials in F≤d(X), and it samples a collision-
resistant hash function h : M → F. The public parameters, par,
contain ck, vk, d, and the specification of h.

• KeyGen(`): On input 1 ≤ ` ≤ d, sample f(X)
$←− F`(X) as an `-degree

polynomial, compute Π.Com(ck, f(X)) → Cf , and set sk = f(X),
pk = Cf .

• Sign(sk,m): Parse sk = f(X), compute x = h(m), and run
Π.Open(ck, Cf , x, f(X))→ (π, y). Output the signature, σ = (π, y).

• Verify(pk,m, σ): Parse pk = Cf and σ = (π, y), compute x = h(m),
and output Π.Check(vk, Cf , x, y, π) ∈ {0, 1}.

• Extract({(mi, σi)}i∈[k], pk): If k ≤ `, or if mi are not all distinct, then
return ⊥. If Verify(pk,mi, σi) = 0 for some i ∈ [k], then return ⊥.
Otherwise, compute xi = h(mi) and parse σi = (πi, yi), for i ∈ [k].
The (at least ` + 1) pairs (xi, yi) interpolate the unique polynomial
φ(X) ∈ F`(X), where λi(X) are the Lagrange coefficients: φ(X) =∑
i∈[k]

yiλi(X) and λi(X) =
m 6=i∏
m∈[k]

X−xm
xi−xm .

Remarks on the degree of f(X). The extraction of the private key from
k ≥ `+ 1 points requires the signer to commit to a polynomial of degree at
most `. As the publicly available information in ck allows the signer to com-
mit to any polynomial in F≤d(X), stronger properties, such as strong cor-
rectness [31], bounded-polynomial extractability [33], and knowledge sound-
ness [9], have been formulated in the literature to enforce the claimed degree
on f(X). However, the signer in our scheme is allowed to choose any ` ∈ [1, d]
and has no incentive to commit to a polynomial of degree larger than `, as
that would cost them the deniability, as we discuss in the following sections.
Hence, we can assume that f(X) is indeed of degree ` and do not require Π
to satisfy any stronger property.

Theorem 3 (Existential Unforgeability). Assuming the underlying poly-
nomial commitment scheme Π satisfies the computational hiding, evalua-
tion binding, and polynomial binding properties, and that h is a collision-
resistant hash function, the DSKE scheme DSKEpoly is existentially un-
forgeable under an `-times adaptive chosen-message attack. That is,

Pr[SignExp`A,Σpoly
(λ) = 1] ≤ negl(λ).

12

Proof. Let A be a PPT adversary breaking the signature scheme DSKEpoly.
We construct a PPT algorithm B that runs A as a subroutine and attacks
the hiding property of the polynomial commitment scheme Π, given that
Π is evaluation and polynomial binding and that h is collision-resistant.
Specifically, B receives from its challenger up to ` openings

(
ij , f(ij), wij

)
,

for ij ∈ F and j ∈ [`], and for f(X) not known to B. It outputs (i∗, y∗) for
unqueried i∗ and wins if y∗ = f(i∗). Algorithm B also receives Cf and d as
input and is given access to ck, vk. Algorithm B works as follows:

• Initiate A with input pk = Cf , and create an empty set Squer.

• Whenever A requests a signature on message m, compute x = h(m)
and check whether x ∈ Squer. If this is the case, then B has already
asked his challenger for the opening of point x, so B does not have to
ask again. Otherwise, add x to Squer and obtain the opening (π, y) of
point x from the challenger of B. Return σ = (π, y) to A.

• If A fails to output a valid forgery on an unqueried message, then
abort. Otherwise A has output a message m∗ and a forgery σ∗ =
(π∗, y∗) on m∗. We assume wlog A has made ` signature queries (if
not, B queries these values itself) and hence B has openings (πi, yi)
for points xi, with i ∈ [`]. Calculate x∗ = h(m∗). If x∗ ∈ Squer, then
set bad1 ← 1 and abort. Otherwise interpolate f ′(X) ∈ F`(X) from
the ` + 1 points {(x1, y1), . . . , (x`, y`), (x

∗, y∗)} and compute Cf ′ =
Π.Com(ck, f ′(X)). B distinguishes two cases.

1. If Cf ′ 6= Cf , then set bad2 ← 1 and abort.

2. Otherwise, output (x∗, y∗). Observe that, even though Cf ′ = Cf ,
it could still be the case that f(X) 6= f ′(X).

Denote by Pr[HidExp`B,Π(λ) = 1] the probability that B wins the game
above, by Output the event that B outputs some (x∗, y∗), and by bad3 the
event that f(X) 6= f ′(X). Observe that B wins if and only if Output happens
and bad3 does not happen. Moreover, Output happens if A succeeds in
forging a valid signature and bad1 and bad2 do not happen. Therefore, we
have:

Pr[HidExp`B,Π(λ) = 1]

= Pr[Output ∧ bad3] ≥ Pr[Output]− Pr[bad3]

= Pr[SignExp`A,Σpoly
(λ) = 1 ∧ bad1 ∧ bad2]− Pr[bad3]

≥ Pr[SignExp`A,Σpoly
(λ) = 1]− Pr[bad1]− Pr[bad2]

− Pr[bad3].

For the bad events, we have the following.

1. The event bad1 implies that A breaks the collision resistance property
of A, which is assumed secure, hence Pr[bad1] = negl(λ).

13

2. Event bad2 implies f ′(X) 6= f(X), and hence it must be that (x∗, y∗) is
not a point of f(X), i.e., f(x∗) 6= y∗. Since A succeeded, point (x∗, y∗)
and proof π∗ satisfy Π.Check(vk, Cf , x

∗, y∗, π∗) = 1. But in this case, B
can break the evaluation binding of Π in the following way. It asks for
the opening of point x∗, hence obtaining (π, y), where y = f(x∗). This
destroys any hopes of B to break the hiding property, but can attack
evaluation binding, using the points (x∗, y∗) and (x∗, y), for which y 6=
y∗, Π.Check(vk, Cf , x

∗, y∗, π∗) = 1, and Π.Check(vk, Cf , x
∗, y, π) = 1.

Since by assumption Π satisfies the evaluation-binding property, we
get Pr[bad2] = negl(λ).

3. Event bad3 would violate the polynomial-binding property of Π, since
f(X) 6= f ′(X) and Com(ck, f(X)) = Com(ck, f ′(X)), thus Pr[bad3] =
negl(λ).

From the above, and from the assumption that Π is a hiding PCS (i.e.,
Pr[HidExp`B,Π(λ) = 1] ≤ negl(λ)), we get

Pr[SignExp`A,Σpoly
(λ) = 1] ≤Pr[HidExp`B,Π(λ) = 1] + Pr[Bad1]+

Pr[Bad2] + Pr[Bad3] ≤ negl(λ).

Theorem 4 (Extractable Set). Assuming the underlying polynomial com-
mitment scheme Π satisfies the evaluation binding property, the DSKE
scheme DSKEpoly has a (k, 1 − negl(λ))-extractable set for any k ≥ ` + 1.
That is,

δ = Pr

mi

$←−M, for i ∈ [k]

mi 6= mj , for i, j ∈ [k] and k ≥ `+ 1

σi ← Sign(sk,mi), for i ∈ [k]

Extract
(
{(mi, σi)}i∈[k], pk

)
→ sk′

: sk = sk′

 = 1− negl(λ)

Proof. The proof follows from two facts. First, by assuming that the signer
does not commit to polynomials of degree bigger than `. Second, from the
evaluation binding property, and since the points (xi, yi) correspond to valid
signatures, we know that yi = f(xi), for some polynomial f(X) ∈ F≤`(X)
and for all i ∈ [k], except with negligible probability. Due to the uniqueness
of polynomial interpolation, we know that any ` + 1 distinct points (xi, yi)
define a unique polynomial φ(X) of degree at most `, hence φ(X) must be
the same as f(X), hence sk = sk′ with probability 1− negl(λ).

5.2 KZG-Based DSKE Scheme

We now show DSKEkzg, a concrete construction of DSKEpoly from the Πkzg

polynomial commitment scheme [31] (cf. Section 2.3).

14

• Setup(1λ, d): Run Πkzg.Setup(1λ, d) to obtain ck = {gαi ∈ G}i∈[d] and
vk = hα ∈ G. Return ck, vk, d, and a collision-resistant hash function
h :M→ Zp.

• KeyGen(1λ, `): Sample f(X)
$←− F`(X) as an `-degree polynomial. Re-

turn pk = Cf = Πkzg.Com(ck, f(X)) = gf(α) ∈ G and sk = f(X).

• Sign(sk,m): Parse sk = f(X), compute x = h(m), and output the
signature σ = (π, y) = Πkzg.Open(ck, Cf , x, f(X)) ∈ G× Zp.

• Verify(pk,m, σ): Parse pk = Cf and σ = (π, y), compute x = h(m),
and output Πkzg.Check(vk, Cf , x, y, π) ∈ {0, 1}.

• Extract({(mi, σi)}i∈[k], pk): As in the general construction, check the
validity of σi, for i ∈ [k], interpolate φ(X) from points (xi, yi), and
output sk′ = φ(X) ∈ F`(X).

Theorem 5 (Unforgeability). The scheme DSKEkzg is existentially unforge-
able under an `-times adaptive chosen-message attack, under the same cryp-
tographic assumptions as the Πkzg polynomial commitment scheme.

Theorem 6 (Extractable set). The scheme DSKEkzg has an extractable set
of size k for any k ≥ `+ 1 with probability δ = 1− negl(λ), under the same
cryptographic assumptions as the Πkzg polynomial commitment scheme.

The proofs for Theorems 5 and 6 follow directly from Theorems 3 and 4,
because Πkzg satisfies the properties required from the polynomial commit-
ment scheme Π in the generic construction.

6 Application to Non-Attributable Email

6.1 Non-Attributable Email

Domain-Keys Identified Mail (DKIM) [2]. DKIM is a protocol that
has been developed to prevent fraud and spam in email communication. A
server sending an email cryptographically signs it, so that the recipient can
verify that it originates from the reported server. A side effect of this nec-
essary measurement is email attributability which stems from the fact that
the digital signature remains valid for a long time, potentially forever [24].
As a result, a malicious actor, who at any time gains access to these emails,
can provably link them to their sender, which in turn incentivizes extortion
and retaliation, among others.

Forward-Forgeable Signatures. Specter et al. define the notion of a
forward-forgeable signature (FFS) scheme. An FFS scheme consists of the
standard KeyGen(1λ), Sign(sk,m), and Verify(pk,m, σ) algorithms, and ad-
ditionally an Expire(sk, T) algorithm, that generates expiry information η for

15

a private key sk, possibly using additional information T , and a Forge(η,m)
algorithm, that, given the expiry information of a key, outputs a signature
on a message m. The scheme satisfies the standard correctness and unforge-
ability properties, and the forgeability on expiry property.

Definition 10 (Forgeability on Expiry [24]). A digital signature scheme
satisfies the forgeability on expiry property if no PPT adversary can distin-
guish a signature created with private key sk from a signature created with
the expiry information η of sk. Formally, for any m ∈ M and any PPT
distinguisher D, there is a negligible function negl(·), such that for all λ,

Pr

(pk, sk)← KeyGen(1λ)

σ0 ← Sign(sk,m)

η ← Expire(sk, T)

σ1 ← Forge(η,m)

b
$← {0, 1}, b′ ← D(σb, η)

: b = b′

≤ 1/2 + negl(λ).

Non-Attributable Emails and KeyForge. Specter, Park, and
Green [42] introduce the concept of non-attributable emails that addresses
the inherent drawbacks of DKIM. The core idea of non-attributable emails
is to replace the signature scheme in DKIM with an FFS scheme. They
provide two constructions, KeyForge and Timeforge. Both satisfy the FFS
properties by requiring signers either to publish old private keys (i.e., Key-
Forge) or to issue signed updates to a publicly verifiable timekeeping service
(i.e., TimeForge).

KeyForge, specifically, is an FFS scheme where signatures expire after a
predefined delay ∆. The expiry information is the private key itself, which
has to be published by the server every ∆ time. It is based on a hierar-
chical identity-based signature scheme (HIBS). In a HIBS every signer has
an identity, from which the private key can be derived. The identities are
organized in a tree structure, with the property that any node (encoding
an identity) can derive the private keys of its children (sub-identities). The
master private key (the root of the tree) can generate all the other private
keys. KeyForge uses a 4-level tree structure, and each level of the tree rep-
resents different timespans (i.e., years, months, days, and minutes). Each
tag (i.e., leaf in the tree) represents a unique 15-minute time chunk, and the
signer of HIBS can derive a private key for this time chunk from the master
private key. The underlying HIBS enables email servers to publish succinct
expiration information; instead of publishing all private keys for, say, one
day, it is enough to publish the private key that corresponds to the node
that encodes that day on the 3rd level.

Threat Models. In non-attributable email protocol, there are two types
of attack scenarios: Real-Time Attacks and After-the-fact Attacks. In the

16

first attack model, a real-time attacker can be the recipient of the message
that immediately discloses received messages to the third parties. In the
after-the-fact attack model, the recipient of the message is assumed to be
honest at the time of email receipt, but can be compromised afterwards
by an after-the-fact attacker; hence, the attacker can take a snapshot of all
emails received in the past. More importantly, Specter et al. emphasize that
it is impossible to defend against a real-time attacker without interaction.
Their KeyForge protocol, as well as our GroupForge protocol described in
the following paragraph, aim to address the after-the-fact attack scenario.
For the real-time attack scenario, since interaction is needed, we believe
that interactive protocols such as OTR [13] are more suitable for achieving
deniability.

6.2 GroupForge from DSKE

We now show how a Digital Signature with Key Extraction (DSKE) scheme,
such as DSKEhash or DSKEpoly, can be used in a non-attributable email
protocol [42]. More importantly, DSKE removes the requirement for
email servers to periodically publish expiration information. We introduce
GroupForge, an FFS scheme that builds on top of a DSKE scheme and
achieves the same properties as KeyForge, except it does not require the
email servers to publish any expiry information, i.e., algorithm Expire() re-
quires only information already published by the email servers.

GroupForge uses a signature scheme ΣDSKE with extractable sets of size
k, a collision-resistant hash function, g, and a local clock Time() that returns
the current time. GroupForge works as follows2:

• KeyGen(1λ,∆, h, t): It takes as input the security parameter λ, the
length of the time chunk ∆, the height of the Merkle tree h ∈ N, and
the starting time t. It calls ΣDSKE.Setup(), and generates 2h key pairs
{(pki, ski)}i∈[2h] using the algorithm ΣDSKE.KeyGen(). The algorithm
then uses g(·) to construct a Merkle tree from {pki}i∈[2h]. Let R be
the root of this Merkle tree. Then it sets PK = (R,∆, h, t) and
SK = (R,∆, h, t, {ski}i∈[2h]), and outputs (SK,PK).

• Sign(SK,m): It parses SK = (R,∆, h, t, {ski}i∈[2h]), obtains the
current time t′ ← Time(), and computes leafi = b(t′ − t)/∆c (the
leaf that corresponds to the current time chunk i). It computes
s = ΣDSKE.Sign(ski,m), the authenticity proof proofi for the path from
leafi to the root R, and outputs the signature σ = (s, pki, leafi, proofi).

• Verify(PK,m, σ): It parses PK = (R,∆, h, t), and σ = (s, pki,
leafi, proofi), obtains the current time t′ ← Time(), computes leaf ←

2For simplicity we do not show parameters specific to the Σpoly scheme, i.e., d and `.

17

Figure 2: An example of GroupForge for h = 2 and between the interval
[t, t + 2h · ∆]. In this example, {(mi, σi)}i∈[2] can potentially act as the
deniable group for the message-signature pair (m3, σ3), and {(mi, σi)}i∈{4,5}
can act as the deniable group for the message-signature pair (m6, σ6).

b(t′ − t)/∆c. If leafi 6= leaf, then returns 0. It validates proofi
starting from leafi; if invalid, it returns 0. Otherwise, returns
ΣDSKE.Verify(pki,m, s).

• Expire(PK, {(mj , σj)}j∈[k]) : The inputs are the public key PK and
k message-signature pairs {(mj , σj)}j∈[k]. The algorithm checks that
the messages are pairwise different, i.e., for all j1, j2 ∈ [k], mj1 6= mj2 ,
that all signatures are valid, i.e., for all j ∈ [k], Verify(PK,mj , σj) = 1
, and that all signatures are created in the same time chunk, i.e., there
exists i ∈ [2h] such that for all j ∈ [k], σj = (sj , pki, leafi, proofi).
If the conditions do not hold, it returns ⊥. Otherwise, it calls
ΣDSKE.Extract({(mj , σj)}j∈[k], pki). If this call returns ⊥, then Expire()
also returns ⊥. If it returns an extracted key ski, then Expire() returns
the expiry information h = (leafi, proofi, ski).

• Forge(PK,m, h) : The inputs are the public key PK, a message m,
and the expiry information h = (leafi, proofi, ski), for some i ∈ [2h].
It computes s = ΣDSKE.Sign(ski,m) and returns the signature σ =
(s, pki, leafi, proofi), where pki = extractPK(ski) is the public key of
leafi.

Figure 2 gives a pictorial example of how GroupForge works.

Security. GroupForge satisfies the correctness, unforgeability, and forge-
ability on expiry properties of an FFS scheme.

Correctness follows from the underlying ΣDSKE scheme and from cor-
rectness of the Merkle proofs: every signature σ = (s, pki, leafi, proofi) con-

18

structed with Sign() will be valid according to ΣDSKE.Verify(), and proofi
will be a valid Merkle proof that pki is the public key that corresponds to
leafi.

Unforgeability is also reduced to the unforgeability of ΣDSKE through
standard arguments on Merkle-based constructions [15]. Assume an ad-
versary A that is given PK and attacks GroupForge. For each time
chunk i ∈ [2h], A is allowed to make up to k signing queries. The chal-
lenger of A delegates these queries to ΣDSKE. Assume a successful forgery
σ∗ = (s∗, pk∗, leaf∗, proof∗), for some leaf leaf∗. Since ΣDSKE is unforgeable,
pk∗ must be a public key under which s∗ is a valid signature. In this case,
however, the hash of pk∗ and the Merkle proof proof∗ can be used by the
challenger to break the collision resistance of g.

Forgeability on expiry is proven in the following theorem.

Theorem 7. GroupForge satisfies the forgeability on expiry property.

Proof. Let D be an adversary that is given a signature σb, for b ∈ {0, 1},
and, as described in the definition of FFS, aims to distinguish the value
of b. Signature σ0 is created with the secret key ski of some time chunk
i, i.e., σ0 ← Sign(ski,m). Signature σ1 is created using the expiry infor-
mation η, which in turn is computed from the additional material T , i.e.,
η ← Expire(T) and σ1 ← Forge(η,m). Let us assume that T contains
k valid message-signature pairs, i.e., T = {(mj , σj)}j∈[k], that all mj are
pairwise different, and that all signatures are created in time chunk i, i.e.,
σj = (sj , pki, leafi, proofi), for each j ∈ [k]. In this case, since the un-
derlying DSKE scheme ΣDSKE has (k, δ)-extractable sets, Expire(T) returns
h 6= ⊥ with probability δ. For this h = (leafi, proofi, sk

′
i) we know from the

properties of ΣDSKE that ski = sk′i, and Forge() will compute σ1 by calling
s = ΣDSKE.Sign(ski,m), which is identical to how σ0 is created. Hence, D
can only guess the value of b with probability 1/2.

Overall, assuming that the signer has created enough message-signature
pairs T with the properties described above, with probability δ, D can only
at random guess the value of b, while with probability 1−δ (when Expire(T)
returns⊥), the challenger ofD cannot produce a valid σ1 andD can correctly
guess b. The overall success probability of D is P = 1 − δ/2. Observe that
for the polynomial-commitment-based DSKE scheme δ = 1− negl(λ), hence
P = 1/2+negl(λ), while for the hash-based DSKE scheme δ ≥ 1−λ/(2k−1)+
negl(λ), hence P asymptotically approaches 1/2 as k grows.

Setting the Deniable Group Size k and Delay ∆. GroupForge requires
that no recipients of k signatures collaborate within a time chunk ∆. This
requirement can be made plausible by adjusting two variables. First, the
size of the deniable group k can be set to a value large enough, for example,
dn/2e, where n is the number of recipient email servers. This would be
equivalent to the assumption that no more than half of the nodes may be

19

Table 2: Performance of DSKEhash and DSKEkzg. Since the probability of
extracting the key in DSKEhash is overwhelming in k, the actual size of the
extractable group can be smaller than k = 64.

Scheme Group Size Key Generation Signing Verification Extraction

DSKEhash (SHA256) k = 64 451.583µs 17.625µs 160.458µs 45.083µs

DSKEkzg (BLS12-377)

k = 16 2.795ms 2.425ms 4.949ms 1.785ms

k = 32 2.825ms 1.550ms 6.123ms 7.813ms

k = 64 2.852ms 2.756ms 7.202ms 35.341ms

k = 128 3.624ms 3.404ms 8.045ms 166.433ms

Byzantine, which is typical in distributed protocols. Second, time delay ∆
can be set to a low value. Similar to that of KeyForge, we can assume an
upper bound ∆̂ in the time required for email delivery and then set ∆ = ∆̂.
Hence, even if the signature recipients collaborate, the forged signature has
a high probability of reaching the recipient email server in the next time
chunk.

Moreover, the value of k and the choice of the underlying DSKE scheme
affect the probability of the algorithm Forge() outputting a signature and
not ⊥. For Σpoly we have δ = 1 for all k ≥ `+ 1, and the signer can choose
the size of the group by selecting the degree of the polynomial accordingly.
For Σhash the probability δ changes with k.

7 Evaluation and Discussion

In this section, we evaluate the performance of both hash-based and
polynomial-commitment-based DSKE constructions, as well as the perfor-
mance of GroupForge constructions. Finally, we discuss potential future
directions for DSKE.

7.1 Evaluation

In this part, we evaluate the performance of Lamport-Diffie signature-based
DSKE (DSKEhash) and KZG-based DSKE scheme (DSKEkzg) as well as the
performance of Groupforce constructions.

Testbed. We evaluate the performance of our schemes on a macOS Mon-
terey machine with an Apple M1 chip (8-core, 3.2 GHz), 8 GB of RAM.

DSKE Constructions. We have implemented prototypes of our proposed
constructions of DSKEhash and DSKEkzg in Rust. For our DSKEhash, we use
the SHA-256 implementation. For DSKEkzg, we adapt the KZG polynomial
commitment implementation using the curve BLS12-377 from arkworks li-
brary 3.

3https://github.com/arkworks-rs/poly-commit

20

https://github.com/arkworks-rs/poly-commit

Table 3: Performance of GroupForge Constructions with ∆ = 0.5h.

Scheme
Parameters:

Tree height (Duration)
Key Generation Signing Verification

GroupForgehash
(SHA256)

h = 14 (0.93 years) 7.407s 21.791µs 176.541µs

h = 15 (1.87 years) 14.815s 34.708µs 177.416µs

h = 16 (3.74 years) 29.631s 41.291µs 178.083µs

h = 17 (7.48 years) 59.262s 45.916µs 179.374µs

GroupForgekzg
(SHA256,BLS12-377, k = 32)

h = 14 (0.93 years) 46.294s 1.554ms 6.139ms

h = 15 (1.87 years) 92.588s 1.591ms 6.140ms

h = 16 (3.74 years) 185.175s 1.611ms 6.141ms

h = 17 (7.48 years) 370.350s 1.722ms 6.143ms

Table 2 shows the performance of DSKEhash and DSKEkzg. We observe
that the running time of the functions of DSKEhash is less than 1ms. The
extraction time of DSKEkzg appears as approximately a quadratic function
of the group size k.

GroupForge Constructions. We also implement two GroupForge con-
structions based on DSKEhash and DSKEkzg respectively. We leverage
the Merkle tree library using SHA-256 from arkworks 4 to construct
our GroupForge. We implement GroupForgehash with DSKEhash, and
GroupForgekzg with DSKEkzg using BLS12-377 curve and the group size
k = 32. Table 3 summarizes the performance of GroupForge constructions.
We evaluate our constructions with Merkle tree heights of 14, 15, 16, and
17, which correspond to a duration of 0.93, 1.87, 3.74 and 7.48 years re-
spectively (given a time chunk of ∆ = 0.5h). For both GroupForgehash and
GroupForgekzg, the most expensive computation is the key generation. This

is because 2h key pairs are generated, where h is the Merkle tree height.

7.2 Discussion

In this part, we discuss relevant properties and examine potential future
directions and improvements regarding the constructions presented in the
paper.

Improving GroupForge with Forward-Secure Signature Schemes.
Forward-secure signature schemes (FSS) 5 [6] allow signers to derive future
keys from past keys while preventing users from deriving past keys from
future keys. This property of FSS can be combined with GroupForge to
demonstrate that if there is a deniable group at some point, the same group
can be used as a deniable proof for all message-signature pairs before that
point. In particular, to achieve this property, the signer can produce several
FSS key pairs from a master private key, and use them in reverse order in
the leaves of the Merkle hash tree. For instance, a private key ski used in

4https://github.com/arkworks-rs/crypto-primitives
5FSS is not to be confused with forward-forgeable signatures

21

https://github.com/arkworks-rs/crypto-primitives

Figure 3: An example of GroupForge using FSS. The group {(mi, σi)}i∈{4,5}
can act as a deniable group for all message-signature pairs in the past,
{(mi, σi)}i∈[3].

the interval [ti, ti + ∆] can produce all previous private keys skj used before
ti. Hence, it is not difficult to see that, if a deniable group exists at some
time t′, the same group can derive all private keys before t′. Figure 3 gives a
high-level example of how FSS can help improve GroupForge. For concrete
instantiations of FSS, hash-based XMSS [14] can be a candidate for the
hash-based DSKE construction, and we leave the development of forward-
secure polynomial commitment-based construction as an interesting open
question for the future.

Trusted setup in PCS. The KZG scheme used in DSKEpoly requires a
trusted setup to generate the public parameters. Although the scheme can
leverage a trusted third party to run the setup, such a reliance on a cen-
tralized and trusted party is typically not welcome in various settings. To
remove this trusted assumption, practitioners and the academic commu-
nity have developed practical solutions to securely generate these param-
eters. Since PCS play an important role in recent developments of Non-
Interactive Zero-knowledge Proof (e.g., zkSnark), various works [17, 18, 33]
have also proposed improved zkSnarks with a universal setup, which can be
used for any bounded-degree polynomials. Participants can also leverage a
distributed key generation protocol [22, 26] to generate the KZG keys in a
distributed way. With new advances in the field [16], one can also deploy
PCS that does not require trusted setup.

Time-Agnostic Forgeability. Although not explicitly mentioned, mak-
ing a synchronous assumption on the communication is required to ensure
parties (i.e., group of size k) receive their signatures in the respective time
chuck. Moreover, the proper operation of the system relies on parties having
access to a local clock that advances at the same pace. The original work
of [41] requires the stronger assumption of a shared global clock. However,
we observe that the forgeability aspect of the DSKE is generally indepen-
dent of the notion of time as it comes from the availability of a sufficient
number of signatures for key extraction. This essentially opens up the door
to use DSKE for adding forgeability property in settings where reliance on
time is not desirable.

22

DSKE as a Unique Signature. Apart from the aspect of key extractabil-
ity, DSKEpoly also features uniqueness property, i.e., there is only one valid
signature for any combination of the message and public key. This property
is of importance in applications where we need to ensure the consistency
of the produced signature like for generating shared randomness [27]. For
instance, BLS [11] is a unique-signature scheme while ECDSA [29] is not.

Comparison with Adaptor Signatures. A related notion to DSKE is
that of adaptor signatures [4, 20] that bind the authorization of a message
and the extraction of a secret value. The extractability here, however, is
with respect to a hard relation representing a witness and not the under-
lying signing key. Observe that, setting the signing key as witness by the
signer enables the receiver to extract it using only two signatures, namely
the pre-signature and the full signature. Moreover, it turns out that adaptor
signatures cannot offer uniqueness [19] while DSKE can. Adaptor signature
is used in constructing secure payment channels and payment channel net-
works in blockchain protocol; hence, it can be interesting future work to use
DSKE as a building block in constructing payment channels.

Compacting the Keys and Signatures. We can also consider extending
DSKEpoly to multi-signature schemes where a group of individuals, each with
their own key pairs, collectively sign a message verified under the respective
set of public keys. In recent years, there has been a surge of interest in de-
veloping signature schemes that support aggregation property for the public
key and signature to reduce the size of the blockchain ledger [10]. Due to the
features provided by the underlying KZG polynomial commitment scheme
such as homomorphism, DSKEkzg also takes advantage of key and signature
aggregation, offering a high level of space efficiency.

One the Size of the Secret Keys. The secret key in DSKEpoly, i.e., the
polynomial f(X), contains ` elements of F, i.e., the coefficients f0, . . . , f`−1.
A possible optimization is to employ a pseudorandom function (PRF) F :
{0, 1}λ × Z → F and use a k ∈ {0, 1}λ as the secret key. The coefficients
are derived as fi = F (k, i), for i ∈ 0, . . . , ` − 1. In the security proof the
challenger now chooses k uniformly at random and uses the PRF to derive
f(X). From the security definition of PRF, f(X) still looks random to
the simulator B. Observe, however, that Extract() would still return all `
coefficients. Similarly, the KeyGen algorithm in GroupForge generates 2h

secret keys for the underlying ΣDSKE scheme, i.e., {ski}i∈[2h], which are then

stored in the secret key SK. Using again a PRF F ′ : {0, 1}λ × Z → Z
and a secret key k′ ∈ {0, 1}λ we can generate them as ski = F ′(k′, i), for
i ∈ 1, . . . , 2h, and store only k′ in SK. As long as 2h is polynomial in
λ the outputs of F ′ are pseudorandom and security holds. We leave the
formalization of these optimizations as future work.

Applications Beyond Non-Attributable Emails. DSKE can also facil-
itate other application scenarios where the need for authenticity is momen-

23

tary and long-term deniability could be desirable to signers, for example, in
electronic voting and monetary donations. It has been argued that, even if
future adversaries cannot go back to change the integrity and results of a fin-
ished election, the privacy requirements of voters in the face of retaliation are
everlasting [21]. Similarly, leaked donation records have reportedly caused
individuals to be targeted and threatened [1], and transaction deniability
might be desirable in such scenarios. Applying DSKE to such applications
requires careful consideration and redesigning of existing protocols, which
we leave for future work.

8 Conclusion

In this paper, we defined the concept of a signature scheme with key ex-
traction. We presented two concrete constructions based on the Lamport-
Diffie Signature scheme and polynomial commitment schemes. We formally
proved the security of our constructions and showed that signers can al-
ways achieve deniability by showing a set of signatures used to reconstruct
old private keys. More importantly, we proposed GroupForge by combining
DSKE with Merkle hash trees and timestamps to offer properties similar
to KeyForge [42], and GroupForge can be used in non-attributable email
protocols to remove the requirement for email servers to constantly publish
old key material. Finally, to the best of our knowledge, our work is the
first that introduces the notion of signature with extractable signing key,
and we conjecture that DSKE can be used in other protocols that require
short-term authenticity.

References

[1] Threats close stella luna gelato café after owner’s name appears in
givesendgo data leak. https://ottawacitizen.com/news/local

-news/threats-close-stella-luna-gelato-cafe-after-owners

-name-appears-in-givesendgo-data-leak.

[2] E Allman, Jon Callas, M Delany, Miles Libbey, J Fenton, and
M Thomas. Domainkeys identified mail (dkim) signatures. Technical
report, RFC 4871, May, 2007.

[3] Arasu Arun, Joseph Bonneau, and Jeremy Clark. Short-lived zero-
knowledge proofs and signatures. 2019. https://ia.cr/2019/390.

[4] Lukas Aumayr, Oguzhan Ersoy, Andreas Erwig, Sebastian Faust,
Kristina Hostáková, Matteo Maffei, Pedro Moreno-Sanchez, and
Siavash Riahi. Generalized channels from limited blockchain scripts
and adaptor signatures. In International Conference on the Theory

24

https://ottawacitizen.com/news/local-news/threats-close-stella-luna-gelato-cafe-after-owners-name-appears-in-givesendgo-data-leak
https://ottawacitizen.com/news/local-news/threats-close-stella-luna-gelato-cafe-after-owners-name-appears-in-givesendgo-data-leak
https://ottawacitizen.com/news/local-news/threats-close-stella-luna-gelato-cafe-after-owners-name-appears-in-givesendgo-data-leak
https://ia.cr/2019/390

and Application of Cryptology and Information Security, pages 635–
664. Springer, 2021.

[5] Foteini Baldimtsi, Aggelos Kiayias, Thomas Zacharias, and Bingsheng
Zhang. Indistinguishable proofs of work or knowledge. In International
Conference on the Theory and Application of Cryptology and Informa-
tion Security, pages 902–933. Springer, 2016.

[6] Mihir Bellare and Sara K Miner. A forward-secure digital signature
scheme. In Annual international cryptology conference, pages 431–448.
Springer, 1999.

[7] Stephen E Blythe. Digital signature law of the united nations, euro-
pean union, united kingdom and united states: Promotion of growth
in e-commerce with enhanced security. Richmond Journal of Law &
Technology, 11(2):6, 2005.

[8] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable
delay functions. In Annual international cryptology conference, pages
757–788. Springer, 2018.

[9] Dan Boneh, Justin Drake, Ben Fisch, and Ariel Gabizon. Halo infinite:
Proof-carrying data from additive polynomial commitments. In Annual
International Cryptology Conference, pages 649–680. Springer, 2021.

[10] Dan Boneh, Manu Drijvers, and Gregory Neven. Compact multi-
signatures for smaller blockchains. In International Conference on the
Theory and Application of Cryptology and Information Security, pages
435–464. Springer, 2018.

[11] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the
weil pairing. In International conference on the theory and application
of cryptology and information security, pages 514–532. Springer, 2001.

[12] Dan Boneh and Victor Shoup. A graduate course in applied cryptog-
raphy, 2020.

[13] Nikita Borisov, Ian Goldberg, and Eric Brewer. Off-the-record com-
munication, or, why not to use pgp. In Proceedings of the 2004 ACM
workshop on Privacy in the electronic society, pages 77–84, 2004.

[14] Johannes Buchmann, Erik Dahmen, and Andreas Hülsing. Xmss-a
practical forward secure signature scheme based on minimal security
assumptions. In International Workshop on Post-Quantum Cryptogra-
phy, pages 117–129. Springer, 2011.

[15] Johannes Buchmann, Erik Dahmen, and Andreas Hülsing. XMSS - A
Practical Forward Secure Signature Scheme Based on Minimal Security

25

Assumptions. In Bo-Yin Yang, editor, Post-Quantum Cryptography,
pages 117–129, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[16] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter
Wuille, and Greg Maxwell. Bulletproofs: Short proofs for confiden-
tial transactions and more. In 2018 IEEE symposium on security and
privacy (SP), pages 315–334. IEEE, 2018.

[17] Matteo Campanelli, Dario Fiore, and Anäıs Querol. Legosnark: Mod-
ular design and composition of succinct zero-knowledge proofs. In Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 2075–2092, 2019.

[18] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah
Vesely, and Nicholas Ward. Marlin: Preprocessing zksnarks with uni-
versal and updatable srs. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 738–768.
Springer, 2020.

[19] Andreas Erwig, Sebastian Faust, Kristina Hostáková, Monosij Maitra,
and Siavash Riahi. Two-party adaptor signatures from identification
schemes. In IACR International Conference on Public-Key Cryptogra-
phy, pages 451–480. Springer, 2021.

[20] Muhammed F Esgin, Oğuzhan Ersoy, and Zekeriya Erkin. Post-
quantum adaptor signatures and payment channel networks. In Eu-
ropean Symposium on Research in Computer Security, pages 378–397.
Springer, 2020.

[21] Huangyi Ge, Sze Yiu Chau, Victor E Gonsalves, Huian Li, Tianhao
Wang, Xukai Zou, and Ninghui Li. Koinonia: verifiable e-voting with
long-term privacy. In Proceedings of the 35th Annual Computer Security
Applications Conference, pages 270–285, 2019.

[22] Rosario Gennaro, Stanis law Jarecki, Hugo Krawczyk, and Tal Rabin.
Secure distributed key generation for discrete-log based cryptosystems.
In International Conference on the Theory and Applications of Cryp-
tographic Techniques, pages 295–310. Springer, 1999.

[23] Shafi Goldwasser, Silvio Micali, and Ronald L Rivest. A digital sig-
nature scheme secure against adaptive chosen-message attacks. SIAM
Journal on computing, 17(2):281–308, 1988.

[24] Matthew Green. Ok Google: please publish your DKIM secret keys.
https://blog.cryptographyengineering.com/2020/11/16/ok-goo

gle-please-publish-your-dkim-secret-keys/.

26

https://blog.cryptographyengineering.com/2020/11/16/ok-google-please-publish-your-dkim-secret-keys/
https://blog.cryptographyengineering.com/2020/11/16/ok-google-please-publish-your-dkim-secret-keys/

[25] Jens Groth and Markulf Kohlweiss. One-out-of-many proofs: Or how to
leak a secret and spend a coin. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques, pages 253–
280. Springer, 2015.

[26] Kobi Gurkan, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad
Stern, and Alin Tomescu. Aggregatable distributed key generation. In
Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 147–176. Springer, 2021.

[27] Timo Hanke, Mahnush Movahedi, and Dominic Williams. Dfin-
ity technology overview series, consensus system. arXiv preprint
arXiv:1805.04548, 2018.

[28] Markus Jakobsson, Kazue Sako, and Russell Impagliazzo. Designated
verifier proofs and their applications. In International Conference on
the Theory and Applications of Cryptographic Techniques, pages 143–
154. Springer, 1996.

[29] Don Johnson, Alfred Menezes, and Scott Vanstone. The elliptic curve
digital signature algorithm (ecdsa). International journal of informa-
tion security, 1(1):36–63, 2001.

[30] Nikolaos Karanikolas. Digital signature legality in different jurisdic-
tions: Legally binding issues. 2019.

[31] Aniket Kate, Gregory M Zaverucha, and Ian Goldberg. Constant-size
commitments to polynomials and their applications. In International
conference on the theory and application of cryptology and information
security, pages 177–194. Springer, 2010.

[32] Leslie Lamport. Constructing digital signatures from a one way func-
tion. 1979.

[33] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn.
Sonic: Zero-knowledge snarks from linear-size universal and updatable
structured reference strings. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, pages 2111–
2128, 2019.

[34] Stephen Mason. Electronic signatures in law. University of London
Press, 2016.

[35] Ralph C Merkle. A certified digital signature. In Conference on the
Theory and Application of Cryptology, pages 218–238. Springer, 1989.

[36] Adrian Perrig. The biba one-time signature and broadcast authentica-
tion protocol. In Proceedings of the 8th ACM Conference on Computer
and Communications Security, pages 28–37, 2001.

27

[37] Michael O Rabin. Transaction protection by beacons. Journal of Com-
puter and System Sciences, 27(2):256–267, 1983.

[38] Leonid Reyzin and Natan Reyzin. Better than biba: Short one-time
signatures with fast signing and verifying. In Australasian Conference
on Information Security and Privacy, pages 144–153. Springer, 2002.

[39] Ronald L Rivest, Adi Shamir, and Yael Tauman. How to leak a secret.
In International conference on the theory and application of cryptology
and information security, pages 552–565. Springer, 2001.

[40] Phillip Rogaway and Thomas Shrimpton. Cryptographic hash-function
basics: Definitions, implications, and separations for preimage resis-
tance, second-preimage resistance, and collision resistance. In Interna-
tional workshop on fast software encryption, pages 371–388. Springer,
2004.

[41] Michael Specter, Sunoo Park, and Matthew Green. Keyforge: Miti-
gating email breaches with forward-forgeable signatures, 2019. https:
//ia.cr/2019/390.

[42] Michael A Specter, Sunoo Park, and Matthew Green. KeyForge:non-
attributable email from Forward-Forgeable Signatures. In 30th USENIX
Security Symposium (USENIX Security 21), pages 1755–1773, 2021.

[43] Ron Steinfeld, Huaxiong Wang, and Josef Pieprzyk. Efficient extension
of standard schnorr/rsa signatures into universal designated-verifier sig-
natures. In International Workshop on Public Key Cryptography, pages
86–100. Springer, 2004.

[44] Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris Kogias, Nicolas
Gailly, Linus Gasser, Ismail Khoffi, Michael J Fischer, and Bryan Ford.
Scalable bias-resistant distributed randomness. In 2017 IEEE Sympo-
sium on Security and Privacy (SP), pages 444–460. Ieee, 2017.

[45] Benjamin Wesolowski. Efficient verifiable delay functions. In Annual
International Conference on the Theory and Applications of Crypto-
graphic Techniques, pages 379–407. Springer, 2019.

28

https://ia.cr/2019/390
https://ia.cr/2019/390

	Introduction
	Preliminaries
	Hash Functions
	Polynomial Commitment Scheme
	KZG Polynomial Commitment Scheme

	Digital Signature with Key Extraction (DSKE)
	DSKE from Hash-Based Signature Schemes
	Construction
	Security Analysis

	DSKE from Polynomial Commitment Schemes
	Generic Transformation
	KZG-Based DSKE Scheme

	Application to Non-Attributable Email
	Non-Attributable Email
	GroupForge from DSKE

	Evaluation and Discussion
	Evaluation
	Discussion

	Conclusion

