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Abstract. In [BS22], the authors proposed a lattice based hash func-
tion that is useful for building zero-knowledge proofs with superior per-
formance. In this short note we analysis the underlying lattice problem
with the classic shortest vector problem, and show that 2 out of 15 pro-
posed parameter sets for this hash function do not achieve the claimed
security.

1 Introduction

In [BS22], the authors proposed a lattice based hash function that is useful for
building zero-knowledge proofs with superior performance. Essentially, the hash
function relies on the ring short integer solution (Ring-SIS) problem.

Definition 1 (Ring-SISq,n,m,β). Let a1, . . . ,am ∈ R, where R = Zq[x]/(x
n +

1) for some prime q and a power-of-2 n. Find a set of short elements s1, . . . , sm
such that ∥si∥∞ ≤ β and

∑m
i=1 aisi = 0.

Table 1 lists the parameters that are abstracted from the Appendix A.6 of
[BS22]. All the parameter sets claim 128 bits of security.

Breaking the Ring-SIS problem with the above parameters implies that one
is able to find collisions of the hash function. This in return breaks the binding
property of vector commitment scheme build from this hash function. Those
reductions are orthogonal to the analysis in this note. Here we focus on the
underlying Ring-SIS problem.

Also note that, as pointed out in [DM08], the attacker is not obliged to take all
the input elements; finding a solution for a subset of {ai} is already sufficient.
The optimal subset has a size of m′ :=

√
n log q log δ if m′ < m. Here δ is a

constant factor that depends on the lattice reduction algorithm. Handwavingly
speaking, for BKZ 2.0 [CN11] it is possible to achieve 1.005 or smaller. The
approximation is due to the existence of various BKZ models in the literature
[APS15].

2 Our attack

2.1 Assumptions

We make the following assumptions reported in [BDGL16].



Param Set log(q) log(β) n m

A1 64 4 32 5,000,000

A2 64 6 64 33,554,432

A3 64 10 128 33,554,432

A4 64 15 256 33,554,432

A5 64 21 512 33,554,432

A6 64 31 1024 33,554,432

B1 254 2 2 33,554,432

B2 254 3 4 33,554,432

B3 254 4 8 33,554,432

B4 254 6 16 33,554,432

B5 254 10 32 33,554,432

B6 254 15 64 33,554,432

B7 254 23 128 33,554,432

B8 254 31 256 33,554,432

B9 254 50 512 33,554,432

Table 1. Proposed Ring-SIS parameters for the hash function in Vortex [BS22]. You
may notice some slight difference between this table and [BS22]. This is because the
ring-SIS solution has coefficients in [−β, β], while the actual inputs to the hash functions
are polynomials with coefficients between [0, 2β) [BS22].

Assumption 1 The runtime for a single call to SVP oracle is 20.292k+16.4,
where k is the dimension of the lattice.

This assumption has been used widely in the literature, including [BS22], for
estimating the cost of BKZ.

We also rely on the well-known Gaussian heuristic.

Assumption 2 For a random lattice L, the length of its shortest non-zero vec-
tor, a.k.a., first minima, is expect at

λ∞
1 (L) ≈ det

1
dim − 1

2

where dim and det are the dimension and determinant of the lattice.

Assumption 3 We assume the lattice L, defined in Equation 1, behaves as a
random lattice.

2.2 Intuition

Recall that to solve a ring-SIS, the attacker is not obliged to take all the input
elements. It can take a subset; solve the ring-SIS for the subset and pad the
rest with 0s. In a typical attack, the size of the subset is still large. Via BKZ
reduction, one is able to find an approximate shortest vector in the corresponding
lattice, and hope that this approximate shortest vector is short enough to solve
the problem.



Out attack follows the same intuition. We take an even smaller subset where
finding the exact shortest vector becomes feasible. In other words, we invoke
the more costly and more powerful SVP solver. Note that the best known SVP
algorithm runs in exponential time. Our strategy is only possible if the dimension
of the lattice is small. In our case, the degree of the polynomial ring, i.e., n is
super small (2, 4, 8, . . . ). Then, we just need to take a large enough subset such
that the shortest vector happens to be smaller than β. This solve the ring-SIS
problem. In the following, we will show how the lattice is build, give concrete
estimation of the length of its shortest vector and the cost to find such a vector.

2.3 The actual attack

For a ring element a(x) :=
∑n−1

i=0 aix
i, denote Rot(a) the nega-cyclic rotation

matrix of a, i.e.,

Rot(a) :=


a0 a1 . . . an−1

−an−1 a0 . . . an−2

−an−2 −an−1 . . . an−3

...
...

. . .
...

−a1 −a2 . . . a0


For ring elements, a, b and c := a · b where · is the ring multiplication, let
b and c be the vector form of b and c. Then we have b × Rot(a) = c mod q
where × is the vector-matrix multiplication. Also, denote In the identity matrix
of dimension n, and qIn the matrix obtained by scaling In with q.

Concretely our lattice that is spanned by the row vector of the following
matrix

L :=


qIn 0 0 . . . 0

Rot(a1) In 0 . . . 0
Rot(a2) 0 In . . . 0

...
...

...
. . .

...
Rot(am′) 0 0 . . . In

 (1)

The dimension of this lattice is (m′+1)n, and the determinant of the lattice
is qn. The vector ⟨0, s1, . . . , sm′⟩ is a vector is this lattice, where the l∞ norm is
bounded by β. If β is greater than the Gaussian expected length, there exists a
vector of such length with overwhelming probability, and an SVP solver will be
able to find this vector.

So concretely, our attack takes the following steps:

– For a given tuple of q, β and n, find the largest m′ s.t.,

β >
det

1
dim − 1

2
=

q
1

(m′+1) − 1

2
; (2)

– Plugin the run time formula of the SVP solver with 20.292(m
′+1)n+16.4

We summarize our evaluations in Table 2. Parameter sets B1 and B2 do not
meet 128 bits of security from our analysis.



Param Set log(q) log(β) n m′ dim log SVP cost

A1 64 4 32 12 46 138

A2 64 6 64 9 640 203

B1 254 2 2 80 162 64

B2 254 3 4 62 252 90

B3 254 4 8 50 408 136

B4 254 6 16 36 592 190

B5 254 10 32 23 768 241
Table 2. Concrete cost for the proposed attack
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Sage script

params = [\

["A1", 64, 5, 32],\

["A2", 64, 7, 64],\

["A3", 64, 11, 128],\

["A4", 64, 16, 256],\

["A5", 64, 22, 512],\

["A6", 64, 32, 1024],\

["B1", 254, 3, 2],\

["B2", 254, 4, 4],\

["B3", 254, 5, 8],\



["B4", 254, 7, 16],\

["B5", 254, 11, 32],\

["B6", 254, 16, 64],\

["B7", 254, 24, 128],\

["B8", 254, 32, 256],\

["B9", 254, 51, 512],\

]

def log_svp_cost(dim):

return 0.292 * dim + 16.4

def find_m_prime(n, beta, q):

for m in range(1,10000):

if 2*beta >= q^(1/(m+1)) - 1:

return m

for param in params:

m = find_m_prime(param[3], 2^(param[2]-1), 2^param[1])

dim = round((m + 1) * param[3])

print (param[0], m, dim, log_svp_cost(dim))


