
Towards Secure Evaluation of Online Functionalities
(Corrected and Extended Version)

Andreas Klinger

RWTH Aachen University

Aachen, Germany

klinger@itsec.rwth-aachen.de

Ulrike Meyer

RWTH Aachen University

Aachen, Germany

meyer@itsec.rwth-aachen.de

ABSTRACT
To date, ideal functionalities securely realized with secure multi-

party computation (SMPC) mainly considers functions of the pri-

vate inputs of a fixed number of a priori known parties. In this

paper, we generalize these definitions such that protocols imple-

menting online algorithms in a distributed fashion can be proven to

be privacy-preserving. Online algorithms compute online function-

alities that allow parties to arrive and leave over time, to provide

multiple inputs and to obtain multiple outputs. In particular, the set

of parties participating changes over time, i. e., at different points in

time different sets of parties evaluate a function over their private

inputs. To this end, we propose the notion of an online trusted third

party that allows to prove the security of SMPC protocols imple-

menting online functionalities or online algorithms, respectively.

We show that any online functionality can be implemented per-

fectly secure in the presence of a semi-honest adversary, if strictly

less than 1/2 of the parties participating are corrupted. We show

that the same result holds in the presence of a malicious adversary

if it corrupts strictly less than 1/3 of the parties and always allows

the corrupted parties to arrive and provide input.

Note, this is the corrected and extended version of the work

presented in [24].

CCS CONCEPTS
• Security and privacy → Formal methods and theory of
security; Privacy-preserving protocols.

KEYWORDS
SMPC, dynamic, online algorithm, trusted third party, privacy

© 2022 Andreas Klinger and Ulrike Meyer. This is the author’s corrected and extended version of the work presented in [24]. It is posted

here for your personal use. Not for redistribution. The original version was published in the 16th International Conference on Availability,

Reliability and Security (ARES 2021), August 17–20, 2021, Vienna, Austria, https://doi.org/10.1145/3465481.3469203.

1 INTRODUCTION
Secure multi-party computation (SMPC) allows parties to evaluate

a function over their private inputs in a distributed fashion such

that each party only learns its prescribed output and anything it can

deduce from combining its prescribed output with its own private

input. An SMPC protocol describes the individual communication

and computation steps each party follows during the distributed

evaluation of the function it implements. Informally speaking, such

a protocol is said to securely evaluate the function if it correctly

computes the prescribed output of the function and if during the

evaluation, the parties do not learn anything that goes beyond what

they would learn if the function was evaluated centrally by a trusted

third party (TTP) - even in the presence of an adversary.

Secure function evaluation (SFE), a special case of SMPC, con-

siders functions that could - if they were evaluated by a TTP - be

evaluated by a single run of an (offline) algorithm that takes the

inputs of a fixed number of parties and computes the desired out-

put for each party. SFE can also be extended to reactive SMPC to

cover reactive algorithms [19] which allow an a priori known fixed

number of parties to provide input over multiple rounds and obtain

output in each round. In addition, the output can depend on a state,

which itself depends on all previous inputs and outputs.

However, the prominent set of functions or problems that can

be solved with the help of online algorithms [17] have not yet

been considered in SMPC: Online algorithms receive events one

after another and for each event they have to decide immediately

how to deal with it. An example is the online matching problem

with general arrival, where in each event a party with their pref-

erences arrives. The online algorithm then has to decide how to

match the party, e. g., match the party now or save it for later. The

overall goal is typically to maximize the reward while minimizing

the cost, e. g., achieve a high matching quality with short waiting

times. The online algorithm has no knowledge regarding future

events, i. e., the parties arriving are not known in advance, and

previous decisions can affect future decisions. Therefore, the online

algorithm has to store information in a state, e. g., all unmatched

parties already revealed. The main difference between reactive and

online algorithms is that whereas the participating parties are fixed

for reactive algorithms, parties can dynamically arrive and leave

in online algorithms. In addition, reactive algorithms assume that

in each round all participating parties provide input and obtain

output. However, online algorithms also allow that only subsets

of currently participating parties provide input and obtain output,

i. e., only a subset of the parties is aware that an event happened.

SMPC protocols for offline matching is an important research

area [1, 6, 21, 25, 28]. However, online matching algorithms have

the advantage of not requiring to restart the complete computation

as soon as a new party arrives and thus the benefit of reducing

waiting times. Such online matching problems arise for example

when open job positions are to be filled by applicants, or students

apply for internship offers and need to be told immediately whether

or not they are accepted, or for providing possible dating recom-

mendations, or finding other people for ride-sharing on the fly.

All these examples require private information, which should be

protected.

If parties want to securely compute an onlinematching algorithm

over their private inputs, then they have to securely evaluate the

online algorithm: When a new party arrives and provides their

input, the online algorithm checks immediately whether the new

party can be matched with any previously unmatched party. If

there is no match, then the party and their input is stored in the

state. If the party is matched, then the matched parties leave the

https://doi.org/10.1145/3465481.3469203

computation and are removed from the state. We want to stress

that the participating parties are not known in advance and can

change over time. In addition, parties may provide input multiple

times.

If we want to model the online matching example with standard

techniques, then we have two main possibilities: The first is to use

reactive SMPC and assume that all parties participate at all times,

and some just don’t provide input. The second is to use a special set

of compute parties [2] separated from the parties that want to be

matched. The compute parties will receive the inputs of the parties

that want to be matched, perform the computation and distribute

the output, all done in a privacy preservingmanner. Both techniques

allow to securely evaluate the desired functionality, and allow to

store a state containing the parties and their inputs in a distributed

fashion, either between all parties in the first case or only between

the compute parties in the second case. However, the first technique

is impractical as all parties are always participating and need to be

present. The second technique requires an unsatisfying assumption,

namely that there are a few compute parties and all parties have

to trust at least a subset of them. This strong assumption seems

hard to achieve in the online settings, as the set of trusted compute

parties needs to be determined a priori for an a priori unknown

set of participating parties. The more parties participate, the more

likely it is that at least some do not trust the compute parties.

So in this paper, we want to answer the question: Can we do

better, i. e., let only those participate in the computation that are

actually relevant in the current evaluation, but yet hide as much

information as possible? Ideally evaluating an online functionality

such as online matching in a privacy-preserving way does not only

entail protecting the inputs and outputs of all parties involved,

and securely keeping a state over a changing set of parties, but

also hiding the arrival and departure of parties from the other

participating parties. This includes hiding the point in time when a

party provides input and whether a party participates at all.

We therefore propose a new model for online TTPs (OTTPs) that

can evaluate online functionalities, i. e., the mapping of inputs and

outputs of online algorithms. In particular, we first introduce an

ideal OTTP where even the arrival of the parties is private. Then,

we relax the requirement, and broadcast the party that arrives

and provides input (referred to as OTTP with broadcast of input

parties (OTTPI)). We restrict the OTTP and OTTPI model to parties

providing their input one after another.
1

A protocol’s security is expressed in terms of its ability to sim-

ulate the evaluation by one of the OTTPs. We show that for any

online functionality there exists a perfectly secure protocol in the

OTTPI setting if there are always at least three parties present and

assuming an honest majority of parties present. The result holds

even in the presence of an arrival respecting malicious adversary, if

there are always at least four parties present and assuming strictly

less than 1/3 of the parties present are corrupted.2 We also show

that the OTTPI setting is imperfect in the sense that public arrival

can leak partial inputs which shows that the ideal OTTP setting is

1
In Appendix C we will remove this restriction to allow the evaluation of any online

algorithm modeled as OTTP with event broadcast (OTTPE) and OTTP with public

participation (OTTPP).

2
We show the same feasibility results for the OTTPE andOTTPP setting in Appendix C.

stronger than the OTTPI setting.
3
In Appendix B we discuss why

the arrival can in general not easily be hidden in online settings, i. e.,

why a secure protocol in the ideal OTTP model is hard to achieve.

The rest of the paper is organized as follows: We discuss previous

results w. r. t. offline and reactive TTPs in Section 2. We cover the

notations used throughout the paper and preliminary definitions in

Section 3. In Section 4 we model the OTTP and OTTPI, and define

security. Our feasibility results are presented in Section 5. We then

show in Section 6 that the ideal OTTP is more powerful than the

OTTPI. The paper concludes with a summary and an overview

of potential future work. We discuss the setting with a dishonest

majority, and why the arrival time can in general not easily be hid-

den in Appendices A and B. Finally, we extend the setting to allow

the evaluation of more general online functionalities, introduce

the OTTPE and OTTPP, and shortly present the corresponding

feasibility results in Appendix C.

Note, this is the corrected and extended version of the work

presented in [24]. Major corrections and extensions are marked and

explained throughout the paper with footnotes.
4

2 RELATEDWORK
SFE and SMPC in general has first been studied by Yao in [29]

in the two party setting, and by Goldreich et al. in [20] for the

multi-party setting. They showed how to securely evaluate any

function based on garbled circuits and one-way functions, respec-

tively. Shortly afterwards, other constructions have been proposed,

e. g., Chaum et al. [11] simulated boolean operations and used

zero-knowledge proofs for error correction, Ben-Or et al. [5] used

Shamir’s secret sharing scheme [27] to simulate arithmetic cir-

cuits, or Rabin et al. [26] used a verifiable secret sharing scheme

and broadcast channels. Loosely speaking, the security of these

approaches is based on showing that a party cannot learn anything

new from participating in the protocol, compared to what it could

learn from its input and output only. Beaver [4] was the first to use

an explicit trusted third party to define security, i. e., he defined a

protocol to be secure if it doesn’t reveal more than what is revealed

by an incorruptible party that receives all inputs, computes the

function and then distributes the outputs. In addition, he showed

that protocols can be combined sequentially. This was generalized

by Canetti [8, 9] in his universal composability (UC) framework,

which allows composing complex functionalities essentially arbi-

trarily from sub-protocols. If the sub-protocols are secure in the UC

framework, then so is the composed protocol. General SMPC based

on threshold homomorphic encryption was introduced by Cramer

et al. in [13]. Universal composability for SMPC based on threshold

homomorphic encryption was proven by Damgard et al. in [14]. Re-

active SMPC [19] allows parties to execute a protocol over multiple

rounds, i. e., in each round all parties provide input and obtain a

3
The OTTPI setting is a special case of the OTTPE and OTTPP setting, and thus the

OTTPE and OTTPP setting are similar imperfect .

4
In the original version [24] we modeled the arrival of parties too abstract, and thus

with this corrected version we provide clarification, and model the arrival (and input

providing) of parties more explicitly. The main change is that “receiving events” (which

consists of a party with its input) is now split into an “arrival” and a separate “input

providing” phase. We also corrected some other minor oversights, e. g., definition of

broadcast, definition of perfect emulation, use of empty output ⊥, definition of privacy

with public arrival, and incorrect examples. Furthermore, we included additional

explanations and details throughout this version.

corresponding output (possibly depending on a state). All of these

results rely on the fact that the protocols are executed by a fixed

and a priori known set of parties. However, online functionalities

require that the set of parties can change over time, i. e., over time

different sets of parties execute the protocol with different inputs.

This includes that there is no fixed set of parties, nor are the parties

participating known in advance. Such an “online” behavior cannot

be modeled in the previous definitions. In contrast to its previous

versions, the most recent version of Canetti’s UC framework [10]

allows adding parties or protocols dynamically, e. g., as required in

distributed peer-to-peer system. The UC framework [10] could be

used to model and prove the security of (certain) protocols imple-

menting online functionalities. However, it does not allow to model

our ideal OTTP that hides even the participation of any party.

Another model used to implement SMPC protocols, especially

w. r. t. databases, is to use three sets of parties (not necessarily dis-

joint) [2]: One set of parties provide inputs and one set of parties

obtain outputs, e. g., based on queries. The third set of parties is

a fixed and always present set of compute parties that receives

the query, performs the actual computation and distributes the

output. A state is stored in a database in a secure fashion. E. g.,

Sharemind [7] uses three compute parties that perform the com-

putations and additively share the database entries. Even though

defined with a fixed set of parties providing input and obtaining

outputs, it is rather straightforward to implement a TTP in such a

model, including one for online algorithms. However, these models

require that the compute parties are trusted, e. g., for Sharemind

two of the three compute parties need to be trusted. This shifts

the trust from a single TTP to a set of trusted peers. W. r. t. online

functionalities, finding such a set of parties that will be trusted by

an a prior unknown set of parties seems hard to achieve in general,

as the more parties participate, the more likely it is that at least

some do not trust the compute parties. Thus, we want to avoid that

assumption. In addition, it does not allow to model our ideal OTTP.

Baron et al. [3] proposed a dynamic proactive secret sharing

scheme, i. e., it is secure against mobile adversaries and parties can

join and leave. They also mention that their scheme could be used to

construct an SMPCprotocol with a changing set of parties. However,

they did not provide an actual construction, and it is limited to

providing input only once at the beginning. Choudhuri et al. [12]

recently introduced the notion of fluid SMPC, where parties can

dynamically join and leave the computation. Their model consists

of input, output and compute parties. However, only the compute

parties can dynamically change during the computation, and no

additional inputs can be provided during the computation. Thus,

both schemes are effectively a realization of SFE as input and output

is provided only once. Eldefrawy et al. [16] introduced basic building

blocks for proactive secure SMPC protocls based on proactive secret

sharing, i. e., share and reconstruct a secret, refresh it (create new

shares for the same secret), recover it (re-generate a lost/deleted

share), and add and multiply shares. Additionally, they show how

to redistribute a share to a new set of parties, i. e., parties can join

and leave. However, they assume the new set of parties is specified

by a TTP (as they consider a cloud server setting). In addition, they

do not provide a construction or model how to actually implement

an online functionality, nor do they allow to model our ideal OTTP.

It is interesting to note that to the best of our knowledge all

implementations of secure protocols for offline or reactive func-

tionalities assume that the participating parties know which other

parties participate, even though an ideal TTP could easily hide this

information.
5
As parties arrive and leave over time in the online

setting, it is also desirable to hide the arrival and departure of par-

ties from the other participating parties. This seems generally hard

to achieve as we will discuss in Appendix B.

3 PRELIMINARIES
We first introduce some basic notations and preliminary definitions.

3.1 Notation
We define the set of natural numbers with and without zero as

N0 := {0, 1, 2, . . .} and N := {1, 2, . . .}, respectively. The cardinality
of a set 𝐵 is denoted by |𝐵 |, and the power set of 𝐵 is denoted as

2
𝐵
. We will use ⌈·⌉ to denote the ceiling function. We will use ⊥

as special symbol to indicate no input or no output, and therefore

assume for every input space X and every output space Y that ⊥
is not included, i. e., ⊥ ∉ X and ⊥ ∉ Y.

6

3.2 Perfect Indistinguishability
Let 𝑋 = {𝑋 (𝑧, 𝑘)}𝑧∈{0,1}∗,𝑘∈N be a probability ensemble, i. e., an

infinite sequence of probability distributions indexed by 𝑧 ∈ {0, 1}∗
and 𝑘 ∈ N [10].

Definition 1 (Perfect Indistinguishability, based on [10]).

Two probability ensembles 𝑋 and 𝑌 are perfectly indistinguishable,

denoted 𝑋
𝑝
≡ 𝑌 , if for all 𝑧 ∈ {0, 1}∗ and 𝑘 ∈ N the probability

distributions 𝑋 (𝑧, 𝑘) and 𝑌 (𝑧, 𝑘) are identical.

3.3 Shamir’s Secret Sharing Scheme
Shamir’s secret sharing scheme [27] is a (𝑡, 𝑛) threshold secret

sharing scheme that shares a secret 𝑠 among 𝑛 parties such that any

𝑡 parties can reconstruct the secret. A secret 𝑠 is shared among 𝑛

parties 𝑝1, . . . , 𝑝𝑛 with threshold 𝑡 as follows: Let 𝑞 be a prime such

that 𝑠 < 𝑞. Select coefficients 𝑎1, . . . , 𝑎𝑡−1 ∈ {1, . . . , 𝑞} uniformly at

random, and construct the polynomial 𝑔(𝑥) := 𝑠 +∑𝑡−1
𝑖=1 𝑎𝑖𝑥

𝑖
mod 𝑞.

Party 𝑝𝑖 obtains as share 𝑔(𝑖) for 𝑖 ∈ {1, . . . , 𝑛}. Reconstruction can

easily be done with any 𝑡 shares, e. g., with Lagrange interpolation.

3.4 Online Algorithms
Online algorithms try to solve online problems where events occur

one after another [17]. The decision how to deal with an event has

to be made immediately on occurrence, and typically without any

knowledge about future events. The goal is to minimize costs or

5
Hiding the number of parties can increase privacy, e. g., assume the functionality

defines as output the sum of all inputs. If only two parties participate, the input of the

other party is immediately learned. However, if the number of parties is unknown, the

input is not learned.

6
Correction: In the original version [24] we defined ⊥ to be part of every input and

output space. However, this led to some confusion, as we used ⊥ implicitly in two

different meanings. We resolve this here by excluding ⊥ from the input and output

space, and use it only as a special symbol to indicate no input or no output. If a

functionality requires “empty input/output” as actual input or output, then this can

be encoded as special strings in the input and output space itself, e. g., “empty input”

or “empty output”. Note, this change is only relevant for the extensions discussed in

Appendix C where parties can provide input multiple times.

maximize the reward for a given sequence of events. In addition,

online algorithms require to support that the set of participating

parties can change over time, and that it is unknown in advance.

In contrast, offline algorithms are executed only once, i. e., all the

information required is present from the very beginning, and only

one final decision has to be made. Reactive algorithms are some-

where between offline and online algorithms, as they allowmultiple

inputs, but assume that the participating parties do not change.

An example for an online problem is online matching with general

arrival [18], which we will use as a running example throughout

the paper. Parties arrive one after another, and each party has a

private input. Whenever a party arrives, the online algorithm has

to decide which parties to match, e. g., based on some function over

the inputs. Unmatched parties are saved in a state together with

their inputs. If a party is matched, it is removed from the state or if

it just newly arrived, never added to the state. Typically, the goal

is to maximize the overall matching quality, while minimizing the

costs, e. g., the waiting time of all parties.

Note, the set of parties that actually participate or the order in

which they arrive is assumed to be unknown in advance. There is

also no prior knowledge w. r. t. their inputs.

4 MODEL
Next, we will introduce online functionalities, and define the cor-

responding ideal OTTP and OTTPI. Then, we present our security

definition and adversary model.

4.1 Online Functionalities
Assume a number of parties want to evaluate a function over their

private inputs in a secure fashion. Informally speaking, secure

means that each party shall only learn its prescribed output and

anything it can deduce from combining its prescribed output with

its own private input, and that the output they receive is correct [19].

This has to hold even in the presence of an adversary controlling a

subset of the parties which we will refer to as corrupted parties. An

adversary tries to deduce more information, e. g., private inputs of

other parties, or alter the outputs [19].

In an ideal world, a function can be securely evaluated with a

trusted third party (TTP) [19], i. e., a special entity that cannot be

corrupted. The TTP will receive the private inputs of the parties,

evaluate the function correctly and distribute the prescribed outputs.

A TTP hides as much information as possible from the participating

parties, e. g., inputs and participation. However, in the real world

such a TTP may not exist. Therefore, the parties execute an SMPC

protocol that simulates the TTP [19]. Such a protocol evaluates

the desired functionality in a distributed fashion, i. e., the parties

themselves perform the computation and exchange messages.

In secure function evaluation (SFE) [19], a fixed and a priori known

set of parties P := {𝑝1, . . . , 𝑝𝑛} want to evaluate an offline func-

tionality 𝑓 : X𝑛 → Y𝑛
where X is an input space and Y an

output space. Given the inputs 𝑥1, . . . , 𝑥𝑛 of the corresponding par-

ties, the offline functionality 𝑓 is evaluated, i. e., (𝑦1, . . . , 𝑦𝑛) :=

𝑓 (𝑥1, . . . , 𝑥𝑛), and party 𝑝ℓ obtains output 𝑦ℓ for ℓ ∈ {1, . . . , 𝑛}. An-
other set of functions considered are reactive functionalities [19],

which iteratively compute a reactive function 𝑓 : Φ×X𝑛 → Φ×Y𝑛
,

i. e., (𝜙𝑖 , 𝑦𝑖,1, . . . , 𝑦𝑖,𝑛) := 𝑓
(
𝜙𝑖−1, 𝑥𝑖,1, . . . , 𝑥𝑖,𝑛

)
for 𝑖 ∈ N where

𝜙0 ∈ Φ is the initial state andΦ is a state space. The reactive function

𝑓 is evaluated in multiple rounds by a fixed and a priori known set

of parties P := {𝑝1, . . . , 𝑝𝑛}. In each round all parties provide input

and obtain output. The output may depend on a state that itself

depends on all previous inputs and outputs. Complete definitions

of offline and reactive functionalities are given in Appendices D.1

and D.2.

Here, we newly introduce online functionalities that define the

output of an online algorithm given a sequence of events: The core

component is the decision functionality which computes a decision

and updates the state, based on an event and the current state. An

event will consist of a party and their input. A decision will consist

of a set of parties and their corresponding outputs.

Definition 2 (Online Functionality). Let E be an event space,

let D be a decision space, and let Φ be a state space. An online func-

tionality maps an ordered sequence of events 𝜎1, 𝜎2, . . . ∈ E to an

ordered sequence of decisions 𝛾1, 𝛾2, . . . ∈ D by iteratively computing

a decision function

∞
𝑓 : Φ × E → Φ × D with initial state 𝜙0 ∈ Φ.

The decision function

∞
𝑓 is defined as (𝜙𝑖 , 𝛾𝑖) :=

∞
𝑓 (𝜙𝑖−1, 𝜎𝑖).

The online functionality is an abstract representation of an online

algorithm, i. e., the logic without any implementation choices that

do not influence the outcome. An example is to greedily match two

parties with the same input based on the order they arrived, i. e., it

is specified that one has to “greedily” match the parties, and parties

are matched based on the order in which they arrive.
7

Note, that the fact that an online functionality is an abstract

representation of an online algorithm implies the following im-

portant difference between offline and online functionalities: For

offline problems typically an optimal solution exists, but for on-

line problems typically not. E. g., consider maximum matching, i. e.,

maximize the number of matches. If all parties are already present

(offline setting), then one can compute all optimal (maximal) so-

lutions and select one uniformly at random. Hence, the offline

functionality can be defined as something like “select uniformly

at random one of the optimal solutions”. It is not important how

the optimal solutions are obtained. However, in the online setting,

an optimal solution for the underlying online problem is typically

not achievable.
8
Therefore, in general it is not useful to define an

online functionality as “selecting the optimal solution”, as one could

never specify a protocol computing that solution at all. Defining an

online functionality as only “selecting an approximate solution” is

not useful either. Any online algorithm has to decide immediately

for each party how to match it, i. e., it has to follow a certain (match-

ing) strategy, e. g., match greedily. Consider maximum matching

with a matching strategy where newly arriving parties are just

greedily matched if possible, and otherwise they are kept for later.

The problem is that there are multiple strategies to match a party

newly arriving with one of the parties which are already present,

e. g., by selecting a match based on the order they arrived, or al-

ternatively in reverse order. No matter which strategy is used, in

the end it is just one strategy, which can be different from what is

7
Correction: In the original version [24] the provided example was wrong, as it actually

influenced the outcome.

8
In general, an optimal solution can only be computed after all parties have arrived.

However, then it is no longer an online problem.

defined in the online functionality. Hence, the online functionality

cannot be realized if it is not defined precisely enough. Therefore,

any online functionality solving an online problem has to specify

such a strategy, too, i. e., it has to define the online algorithm that

computes a certain solution.
9

Another main difference between online and offline functionali-

ties is that offline functionalities represent computations where a

fixed set of parties meet once, provide input once and receive output

once. Online functionalities are similar to reactive functionalities

in that they allow providing multiple inputs and receiving multiple

outputs dependent on some state that can be updated. However,

parties do not have to participate from the very beginning, but can

arrive at a later point in time. A party can also leave, e. g., when

it is matched, while other parties will continue the evaluation of

the online functionality. Thus, the set of parties participating can

change over time. In addition, in each round a reactive functionality

requires input of each party and delivers output to each party. This

implies that all parties know exactly when a new round starts. In

contrast, online functionalities also allow that only a subset of the

participating parties provide input and a possibly different subset

of participating parties obtains output, i. e., it is not necessarily

known when and if an event happens.

If parties want to evaluate an online functionality, then they

provide their inputs one after another. After each input they com-

pute the decision, distribute the outputs and update the state. An

event 𝜎𝑖 represents a party 𝑝
IN

𝑖
and their corresponding input 𝑥𝑖 . A

decision 𝛾𝑖 represent the set of parties that receive outputs POUT

𝑖
and their corresponding outputs. An ordered sequence of parties

arriving and providing inputs defines an ordered sequence of events

𝜎1, 𝜎2, . . . ∈ E. As parties arrive one after another, they do not par-

ticipate in the evaluation from the very beginning. A party can

also leave and thus discontinue the evaluation.
10

After a party has

left, it will no longer receive any output. How and when a party

leaves is defined by the online functionality, e. g., after the party is

matched or based on some special input. A party that has arrived

and not left after a decision is present and needs to be stored in

the state. Any party that arrives or is already present participates

in future computations until it leaves. If a party leaves, then it is

no longer present, nor will it participate in future computations.

Note, we restrict the parties here to provide input exactly once. We

will extend that later in Appendix C. As the decision depends only

on the event and the current state, but any participating party can

receive output, the state has to store the set of parties present.

Definition 3 (Arrival of Parties). Let P be a countable set of

parties, let E be an event space and let Φ be a state space. We define

P𝑖 ⊆ P as the set of parties present in 𝜙𝑖 ∈ Φ for 𝑖 ∈ N0, i. e., the
set of all parties stored in state 𝜙𝑖 after a decision is computed. A

party 𝑝 IN

𝑖
∈ P arrives in event 𝜎𝑖 ∈ E if party 𝑝 IN

𝑖
occurs in 𝜎𝑖 and

party 𝑝 IN

𝑖
is not already present in 𝜙𝑖−1 (𝑝 IN

𝑖
∉ P𝑖−1). A party 𝑝 ∈ P

participates during event 𝜎𝑖 ∈ E if party 𝑝 arrives in 𝜎𝑖 or party 𝑝

is already present in 𝜙𝑖−1 (𝑝 ∈ P𝑖−1). A party 𝑝 ∈ P leaves in event

9
Extension: We added this paragraph to describe why an online functionality needs to

be an abstract representation of an online algorithm.

10
Note that in reactive evaluations the parties are always present and always participate

in the evaluation. If a set of computation parties is assumed, then at least this set is

always present.

𝜎𝑖 ∈ E if party 𝑝 participates in 𝜎𝑖 and party 𝑝 is not present in 𝜙𝑖
(𝑝 ∉ P𝑖).

Note that we use 𝑝1, 𝑝2, . . . as symbols for parties, and a party is

identified by 𝑝 𝑗 (e. g., an ID or IP address) and not its index 𝑗 . The

index 𝑗 will be used to indicate relations between parties and their

inputs/outputs. In addition, the index 𝑗 does not have to correlate

to the time when a party provides input. For an event 𝜎𝑖 and a

decision 𝛾𝑖 we use 𝑝 IN

𝑖
and 𝑝OUT

𝑖,ℓ
as symbols for parties. The first

index 𝑖 indicates the event, and the second index ℓ is used for

enumeration. As a party can provide input and obtain output at

different times it may, e. g., hold that 𝑝 IN

3
= 𝑝OUT

5,2
= 𝑝7.

The evaluation of an online functionality with the private inputs

of parties is defined as follows:

Definition 4 (Evaluation of an Online Functionality
11
).

Let X be an input space and let Y be an output space. Let P :=

{𝑝1, 𝑝2, . . .} be a countable set of parties. Let E := P ×X be an event

space. Let the decision space be D := {{(𝑝OUT

𝑗1
, 𝑦 𝑗1), . . . , (𝑝OUT

𝑗ℓ
, 𝑦 𝑗ℓ)} ∈

2
P×Y | ℓ ∈ N0 and all 𝑝OUT

𝑗1
, . . . , 𝑝OUT

𝑗ℓ
are pairwise different }. We

definePOUT

𝑖
:= {𝑝OUT

𝑖,1
, . . . , 𝑝OUT

𝑖,𝑚𝑖
} as the set of parties obtaining output

at decision 𝛾𝑖 . Let Φ be a state space and 𝜙0 ∈ Φ be an initial state.

Let 𝜎1, 𝜎2, . . . ∈ E be an ordered sequence of events, where each party

in P occurs at most once.

For each event 𝜎𝑖 := (𝑝 IN

𝑖
, 𝑥𝑖), where 𝑥𝑖 is the private input of party

𝑝 IN

𝑖
∈ P, the decision function

∞
𝑓 : Φ × E → Φ × D is evaluated

as (𝜙𝑖 , 𝛾𝑖) :=
∞
𝑓 (𝜙𝑖−1, 𝜎𝑖). For each decision 𝛾𝑖 := {(𝑝OUT

𝑖,1
, 𝑦𝑖,1), . . . ,

(𝑝OUT

𝑖,𝑚𝑖
, 𝑦𝑖,𝑚𝑖

)} party 𝑝OUT

𝑖,𝑘
∈ POUT

𝑖
obtains output 𝑦𝑖,𝑘 with 𝑘 ∈

{1, . . . ,𝑚𝑖 } and𝑚𝑖 ∈ N0.
The set of all parties P consists of all parties that could even-

tually participate, e. g., all students from a certain university or

banks from a country. Note that this is different from reactive func-

tionalities: In reactive functionalities all parties in P participate in

the evaluation, e. g., we know exactly which students participate.

Online functionalities also allow that only a subset P′ ⊂ P partici-

pates, i. e., we only know that students can participate, but we do

not know which students actually will participate.

Note that Definition 4 explicitly allows that not all parties obtain

an output and also no party at all, e. g., if 𝛾𝑖 = ∅, then POUT

𝑖
:= ∅

and nobody receives any output. In addition, the party in event 𝜎𝑖
can but does not have to be part of the corresponding decision 𝛾𝑖 .

4.2 Online Trusted Third Party
A trusted third party (TTP) is an ideal entity that cannot be corrupted

and behaves exactly as specified by the (offline, reactive or online)

functionality to be evaluated. Given the input of parties, it returns

the output only to those specified by the functionality. Ideally, it

hides as much information as possible.

An offline TTP receives the inputs of the parties, evaluates the

offline functionality, and distributes to each participating party its

prescribed output. After this process, the evaluation is finished. In

11
Correction: In the original version [24] a party 𝑝OUT

𝑖,𝑘
∈ POUT

𝑖
occurring in the

decision 𝛾𝑖 obtained output if and only if 𝑦𝑖,𝑘 ≠ ⊥. However, as here now ⊥ ∉ X and

⊥ ∉ Y, this condition is now removed. Note, that here this condition was actually

never required, as a party not included in the decision did already never obtain any

output.

contrast, a reactive TTP evaluates a reactive functionality by receiv-

ing inputs and providing outputs in multiple rounds, while storing

the state. In classical SMPC the concepts of offline and reactive TTPs

have already been introduced. However, in Appendices D.3 and D.4

we redefine them to be easier comparable with our definition of an

online TTP (OTTP) later in Definition 5.

Note, in classical SMPC it is assumed that the participating par-

ties know which other parties participate, even though an ideal

TTP could hide them (as it is ideal). We use this convention for

offline and reactive TTPs, but we break with this convention for our

novel ideal OTTP, i. e., no party knows which or when other parties

participate or provide input. We therefore refer to such an OTTP

explicitly as ideal OTTP, and we use OTTP to refer to online TTPs

in general. An OTTP continuously receives inputs and provides

outputs, while the participating parties change over time.

Note, in Definition 3 parties can simply “arrive in an event” by

just “occurring in that event”. However, w. r. t. an OTTP and real

parties, this needs to be modeled more explicitly: A party will

arrive by only connecting to the OTTP, i. e., establishing a private

channel without sending any input. Then, in a second step (after

the party has already arrived/connected) the party can now send

its actual input to the OTTP. The corresponding event is then

implicitly created by the OTTP itself. In other words, a party first

connects to the OTTP (it arrives), then the (already) arrived party

sends its input (not part of the arrival itself) to the OTTP, and then

finally the OTTP creates the corresponding event, and evaluates

the decision functionality. After a decision is computed, the outputs

are distributed, and a new party can arrive.
12

Definition 5 (Ideal Online TTP
13
). Let 𝑝1, 𝑝2, . . . ∈ P be an

ordered sequence of parties arriving. An ideal online TTP (OTTP)

evaluates an online functionality with decision function

∞
𝑓 : Φ× E →

Φ × D as follows: The ideal OTTP stores the initial state 𝜙0.

(1) The 𝑖-th party 𝑝 IN

𝑖
arrives by connecting to the OTTP, i. e.,

establishing a (private) communication channel only.

(2) Party 𝑝 IN

𝑖
sends its input 𝑥𝑖 to the OTTP.

(3) The ideal OTTP sets the 𝑖-th event as 𝜎𝑖 := (𝑝 IN

𝑖
, 𝑥𝑖).

(4) The ideal OTTP computes (𝜙𝑖 , 𝛾𝑖) :=
∞
𝑓 (𝜙𝑖−1, 𝜎𝑖), where 𝛾𝑖 :=

{(𝑝OUT

𝑖,1
, 𝑦𝑖,1), . . . , (𝑝OUT

𝑖,𝑚𝑖
, 𝑦𝑖,𝑚𝑖

)} ∈ D and𝑚𝑖 ∈ N0.
(5) The ideal OTTP sends output 𝑦𝑖,𝑘 to party 𝑝OUT

𝑖,𝑘
∈ POUT

𝑖
⊆ P

for 𝑘 ∈ {1, . . . ,𝑚𝑖 }.
(6) The ideal OTTP stores the new state 𝜙𝑖 and deletes the old state

𝜙𝑖−1.

We want to stress again that we assume that the sequence of

parties arriving is unknown to all parties. This implies that parties

participating do not know which other parties participate. Note,

this differs from other models where the participating parties are

12
Correction: In the original version [24] the arrival of parties w. r. t. an OTTP was

modeled as just “receiving an event”, instead of a party arriving and then sending

its input. However, this was to abstract and thus we modeled it here more explicitly.

Note, we always modeled it that way w. r. t. the online SMPC protocol (cf. Protocol 2

in Section 5).

13
Correction: In the original version [24] the OTTP received an event containing a

party with its input. This was too abstract, and thus here we split it into a party first

only arriving, and then in a second step just sending its input. In addition, previously

a party 𝑝OUT

𝑖,𝑘
∈ POUT

𝑖
occurring in the decision 𝛾𝑖 obtained output if and only if

𝑦𝑖,𝑘 ≠ ⊥. However, as here now ⊥ ∉ X and ⊥ ∉ Y, this condition is now removed.

assumed to be known. In addition, a party does not know for which

event 𝜎𝑖 it provides input. If a party does not provide or receive

any input or output, then the party does not learn that an event

occurred, i. e., a party arrived or provided input. This is different to

a reactive TTP, where all participating parties know when the func-

tion is evaluated. We also want to stress the fact that w. r. t. online

functionalities there is a difference between a party receiving noth-

ing, and a party receiving a string with content “empty output”, as

the latter one is actually an output and additional information com-

pared to the first one, e. g., when receiving “empty output” the party

learns that an event happened, which is not learned if nothing is

received at all. This differs from offline and reactive functionalities:

Offline functionalities are computed once and receiving nothing

implies “empty output”. Similarly, for reactive functionalities, as all

parties provide input in each round, receiving nothing in a single

round implies “empty output”.

The overall goals of an ideal OTTP are to hide which and when

parties arrive or leave, the input and output of each party, and the

state. The states 𝜙𝑖 are only known to the ideal OTTP, except 𝜙0.

An example execution for an online matching problem with

general arrival is given in Example 1.

Example 1 (Online Matching with general arrival
14
). The

set of parties is infinite and defined as P := {𝑝1, 𝑝2, . . .}. The input
space is X := {1, . . . , 10}. For simplicity we assume two parties are

matched if their inputs are equal. The state will store the unmatched

parties and their input values. The initial state is 𝜙0 := ∅.
Assume the first party that arrives is 𝑝5, and it uses 9 as its input.

The corresponding first event is then 𝜎1 := (𝑝5, 9). As it is the first
party that arrives, no match is possible. The decision is 𝛾1 := ∅, and
the new state is 𝜙1 := {(𝑝5, 9)}. The next party that arrives is 𝑝2,

and it uses 3 as input. The corresponding event is then 𝜎2 := (𝑝2, 3).
As no match is possible, the decision is 𝛾2 := ∅, and the new state is

𝜙2 := {(𝑝2, 3), (𝑝5, 9)}. The third party that arrives is 𝑝1, and it uses

3 as input. The corresponding event is then 𝜎3 := (𝑝1, 3). Now, 𝑝1 is
matched with 𝑝2. The decision is then 𝛾3 := {(𝑝1, 𝑝2), (𝑝2, 𝑝1)} where
the output of each party is the ID of the party it is matched with. The

new state is then 𝜙3 := {(𝑝5, 9)}.

The ideal OTTP hides even the participation of parties perfectly.

However, hiding the participation in the real world is hard (cf.

Appendix B). We therefore introduce an additional flavor of an

OTTP, where arriving, input providing, and leaving parties are

broadcast, i. e., whenever a party arrives or provides input the party

that arrives or provides input, the parties that are present, and

the parties which are leaving are known, but the actual inputs are

still private. Broadcasting some information means sending that

information to all parties, and to the adversary.
15

In Appendix C we

will introduce additional flavors for more general arrivals (including

providing input multiple times).

14
Correction: In the original version [24] we used only events in the example. Now, it

is modeled as parties arriving and providing inputs.

15
Correction: In the original version [24] we did not explicitly mention that the adver-

sary also receives broadcast messages, which is a standard assumption in any SMPC.

The broadcast messages need to be received by the adversary as well, as otherwise the

simulator could obviously never simulate the messages on the bulletin board (intro-

duced later), as it would not know which parties are present if no malicious party has

arrived.

Definition 6 (OTTP with broadcast of Input Parties
16
).

An OTTP with broadcast of input parties (OTTPI) is an ideal OTTP

that additionally behaves as follows:

• Whenever a party 𝑝 IN

𝑖
arrives, the OTTPI broadcasts the arrival

of party 𝑝 IN

𝑖
before 𝑝 IN

𝑖
can provide input.

• Whenever a party 𝑝 IN

𝑖
provides input, the OTTPI broadcasts

that party 𝑝 IN

𝑖
provides input.

• After each decision 𝛾𝑖 (and possible output distribution), the

OTTPI broadcasts the set of parties present P𝑖 .

4.3 Security Model
In the following we will define what it means for a protocol to

securely realize an OTTP. Note, our definitions are heavily inspired

by Goldreich [19] and Canetti [10]. However, their definitions do

not allow to model an ideal OTTP where the participation itself is

perfectly hidden.

The ideal OTTP does not leak which parties participate or when

they provide input and thus, an adversary cannot decide which

parties to corrupt. This problem is avoided by outsourcing the

corruption of parties. We therefore introduce the creator as a new

entity, which will create new parties and define their behavior.

In addition, it will also decide when and which parties will be

corrupted by the adversary.
17

The adversary then takes control

over corrupted parties and learns their complete internal state, i. e.,

its input and all messages received or sent so far. We want to stress

that the adversary cannot choose which parties to corrupt. We will

then require a protocol to be able to deal with all valid corruption

strategies of the creator, and thus essentially check every valid

corruption strategy any classical adversary could have chosen.

Definition 7 (Creator). A creator is an almighty entity. It is

computationally unbound, non-corruptable and behaves deterministic

w. r. t. its input (i. e., the content of its random tape). A creator 𝐶 with

input 𝑧 ∈ {0, 1}∗ is denoted as C (𝑧). A creator creates parties 𝑝 ∈ P
(including their inputs and behavior) and defines when they arrive. In

addition, a creator can decide to corrupt (or un-corrupt) a party, i. e.,

the adversary can control that party (or loses control).
18

The creator

can always see all internal states of every entity, including any TTP.

Instead of defining security by comparing a TTP with a protocol

directly, we use the idea of Canetti [10] and compare the execution

of protocols only. Interacting with an OTTP is then executing a

protocol that instructs the parties to send their inputs to the OTTP.

This also allows the use of specialized TTPs within any protocol,

e. g., an ideal TTP that implements a bulletin board. We use this

approach, as it also allows comparing different OTTPs.

The view of an adversary 𝐴 in protocol 𝜋 consists of the com-

plete internal state of all corrupted parties and of all their mes-

sages sent or received. We then define the joint output of an ad-

versary 𝐴 and all honest participating parties for a protocol 𝜋 as

16
Correction: In the original version [24] for each event the party that provides input

and set of parties present was broadcast. However, as events are now split into an

“arrival” and “input providing” phase, we changed this to broadcasting the party that

arrives, and broadcasting when a party provides input. In addition, we modeled the

behavior more explicitly.

17
The creator is somewhat similar to the environment in the UC-framework [10] as it

creates parties and their inputs. However, here the creator will not act as a distinguisher.

18
Note the un-corruption of a party is only important for mobile corruption strategies

(cf. Section 4.4) which will not be considered here.

the output of the adversary and the output of all (honest) par-

ties.
19

For a creator𝐶 with input 𝑧 and security parameter 𝑘 we de-

note this joint output as exec𝜋,𝐴 (C (𝑧), 𝑘). We define exec𝜋,𝐴,𝐶 :={
exec𝜋,𝐴 (C (𝑧), 𝑘)

}
𝑧∈{0,1}∗,𝑘∈N as the corresponding probability

ensemble. Informally, a protocol 𝜋 perfectly emulates a protocol 𝜛

if the joint output of 𝐴 for 𝜋 is perfectly indistinguishable from the

joint output of a corresponding simulator 𝑆 for 𝜛:

Definition 8 (Perfect Emulation
20
). Let 𝐶 be a creator. A

protocol 𝜋 perfectly emulates a protocol 𝜛 if for any adversary 𝐴,

there exists an adversary (simulator) 𝑆 (polynomial in the complexity

of 𝐴) such that

exec𝜋,𝐴,𝐶

𝑝
≡ exec𝜛,𝑆,𝐶 .

Statistical or computational secure emulation can be defined by

requiring that the probability ensembles are only statistically or

computationally indistinguishable. Computational secure emula-

tion also requires the adversary to be probabilistic polynomial time.

We assume honest parties do not share their input with other

parties. In addition, we assume the existence of a broadcast channel

and private channels between all parties.

4.4 Adversary and Creator
In classical SMPC two main adversary types are considered, namely

a semi-honest and a malicious adversary [19]. The semi-honest

adversary follows the protocol definitions, but it stores all sent

and received messages in order to deduce more information. A

malicious adversary can additionally arbitrarily deviate from the

protocol, e. g., send wrong messages or stop sending messages at

all. The overall goal of the adversary is to either deduce more

information, e. g., w. r. t. private inputs or outputs of other parties,

or alter the outcome of the protocol run, i. e., the execution produces

incorrect results. The semi-honest or malicious adversary can also

have different “corruption powers”. W. r. t. offline or reactive SMPC

these are mainly static, adaptive, and mobile adversaries [19]: The

static adversary can corrupt up to 𝑚 parties chosen before the

protocol execution. An adaptive adversary can corrupt up to 𝑚

parties chosen during the protocol execution. Mobile adversaries

can also corrupt up to𝑚 parties during the protocol execution, but

additionally can decide to corrupt a new party with the cost of

losing control over an already corrupted party. In other words, the

adversary can choosemultiple times during the execution to corrupt

up to𝑚 parties chosen freely among all participating parties.

These notions of corruption can be transferred to the online

setting. However, here the set of parties participating is not fixed

and the adversary together with the creator determines the actual

corruption. We will transfer them as follows: The number of cor-

rupted parties and the corruption strategy (e. g., static, adaptive or

mobile) is determined by defining the creator accordingly. Semi-

honest and malicious behavior of corrupted parties is determined

by the adversary.

19
The adversary learns everything a corrupted party learns, and thus it is not necessary

to include the output of corrupted parties separately.

20
Correction: In the original version [24] we required that the protocols 𝜋 and𝜛 are

both probabilistic polynomial time. We removed this requirement for both protocols,

as otherwise only probabilistic polynomial time algorithms can be evaluated, and thus

not “any” online algorithm.

For simplicity, first consider an offline settingwith𝑚 semi-honest

(corrupted) parties of a total of 𝑛 parties: The creator first creates

𝑛 parties and (randomly) selects𝑚 parties to corrupt. The adver-

sary controls the corrupted parties and is then defined to behave

according to the protocol specification (semi-honest).

In the online setting we will assume an “honest majority” which

will allow us to reuse feasibility results for offline functionalities

when showing how to perfectly emulate an OTTPI in Section 5.

Therefore, we will essentially consider a limit of corrupted parties

that participate at every point in time, i. e., an honest majority of

participating parties at all times. This means that the creator has to

carefully select which parties can be corrupted at which point in

time.

A corrupted minority creator 𝐶< 1

2

ensures that at each point in

time the number of corrupted parties present or participating is

strictly less than the number of honest parties present or participat-

ing, respectively. In addition, once a party is corrupted it cannot be

un-corrupted.
21

Similarly, we define a second creator𝐶< 1

3

where at

most 1/3 of the parties present or participating are corrupted. For

each corrupted party, the semi-honest adversary 𝐴
sh

learns their

internal state and all their messages sent or received. The arrival

respecting malicious adversary 𝐴am learns the same as the semi-

honest adversary, but additionally controls the corrupted party, i. e.,

when to send which messages. However, 𝐴am will always let the

corrupted party arrive as determined by the creator, and 𝐴am will

let the corrupted party provide its (adversary controlled) input.
22

Enforcing the arrival ensures that the creator C (𝑧) determines the

number of corrupted parties and not the adversary by delaying the

arrival. Note that this is not an actual restriction, as there always

exists an input 𝑧′ such that creator C (𝑧′) lets that particular party
arrive at a later point in time.

4.5 Perfectly Emulating Offline Functionalities
The standard definitions of security for offline and reactive func-

tionalities with static corruption (e. g., see Goldreich [19]) are a

special case of Definition 8: The creator creates the honest and

corrupted parties at the very beginning and then stops generating

new parties. This restricts the setting to a fixed set of parties.

Theorem 1 (Offline Feasibility Results). For every offline

functionality there exists a (SMPC) protocol perfectly emulating the

corresponding offline TTP with known set of participating parties in

the presence of an adversary𝐴
sh
and a creator𝐶< 1

2

, or in the presence

of an adversary 𝐴am and a creator 𝐶< 1

3

.

The feasibility result of Theorem 1was proven by Ben-Or et al. [5].

Note, they did not prove security w. r. t. Definition 8 directly, but

in the offline setting Definition 8 and the security definition of

Ben-Or et al. [5] are essentially identical. Ben-Or et al. [5] used

Shamir’s secret sharing scheme [27] to share the private inputs.

They showed how to securely evaluate arithmetic circuits (addition

and multiplication of shared secrets), if the threshold is chosen as

21
This corresponds to a static or adaptive adversary in classical SMPC.

22
Correction: In the original version [24] the arrival respecting malicious adversary

let parties arrive in the corresponding event, and thus implicitly they always provide

input, too. As events are now split in arriving and providing input, we now need to

explicitly enforce that all parties provide input, too.

⌈
1

2
𝑛
⌉
in the presence of a semi-honest adversary and as

⌈
1

3
𝑛
⌉
in the

presence of a malicious adversary, where 𝑛 is the total number of

parties participating.

4.6 Ideal Bulletin Board
In the ideal OTTP setting parties can arrive by connecting to the

OTTP. However, if we replace the OTTP with a (distributed) proto-

col, then the parties need to knowwithwhom to exchangemessages.

Therefore, we will use an ideal bulletin board BB that is append-

only with certified publishing [22]: Parties can write/store messages

on BB. All messages on BB are readable by everyone, and can

neither be altered nor deleted (append-only). Every message (𝑚)𝑝
has an identifiable author 𝑝 (certified publishing).

Here, a party 𝑝 that arrives writes (arrive)𝑝 on BB. For ease

of notation we assume BB to be majority consistent: Only together,

a majority of parties participating during an event can write a

new set of parties present P𝑖 on BB, i. e., if 𝑝 IN

𝑖
arrives in event 𝜎𝑖

and P𝑖−1 is the set of parties already present, then a majority of

them can write together (present,P𝑖)P𝑖−1∪{𝑝 IN

𝑖
} . Note, the same

functionality can be achieved by every party individually writing

the set of parties present on BB. Then, a new arriving party checks

the complete history in order to find out which parties are actually

present (based on the majority of messages).

We denote an append-only and majority consistent bulletin

board with certified publishing in the following as BB. A possible

candidate was proposed by Heather and Lundin [22].

5 FEASIBILITY RESULT
In order to evaluate arbitrary online functionalities with secure

SMPC protocols, the current state of the OTTPI needs to be stored

among the parties. This requires that there are always parties

present that can store the current state, without being able to learn

it. This can be done by secret sharing the state among the parties

that are present.
23

In order to allow that at any point in time at

least one corrupted party can be present, we need to restrict the

minimal number of parties: For an adversary𝐴am with creator𝐶< 1

3

we require that there are always at least 𝑛 ≥ 4 parties present, and

𝑛 ≥ 3 for𝐴
sh

with𝐶< 1

2

. A larger 𝑛 tolerates more corrupted parties,

but requires that there are always 𝑛 parties present. The final choice

of 𝑛 depends on the actual application.

An OTTPI is then emulated by first “sharing” the initial state

𝜙0 among the first 𝑛 parties that have arrived. A special ramp-up

phase is used to evaluate the decision functionality for the first 𝑛

events (that would have happened). Note, that the ramp-up phase

differs from the ideal model, as now every party of the first 𝑛 parties

already knows every other party of the first 𝑛 parties that arrive

(will provide input), before any party provided input, e. g., the first

party learns who is the second party that will arrive/provide input

before the first party itself hast to provide any input. After the ramp-

up phase, whenever a new party arrives, the decision function is

then evaluated with an SFE protocol that receives the input and

the shares of the state, and computes and distributes the output.

Afterwards the set of parties present is published on BB so that

23
Note that there are online functionalities that cannot be implemented securely,

e. g., any online functionality where at some point only one party is present, as it is

impossible to store the state securely within one party.

new parties arriving know with whom to communicate. A single

evaluation of the decision function is described in Protocol 1 and

the protocol emulating an OTTPI is described in Protocol 2:

Protocol 1 (Evaluating the decision function for a single

event). Let the set of parties present be P𝑖−1 as defined by BB.

Evaluate the decision functionality

∞
𝑓 for 𝜎𝑖 := (𝑝 IN

𝑖
, 𝑥𝑖) as follows:

(1) The parties in P𝑖−1 and 𝑝 IN

𝑖
evaluate 𝜋𝑖 , where protocol 𝜋𝑖

perfectly emulates the following offline functionality 𝑓𝑖 :

(a) Party 𝑝 IN

𝑖
uses 𝑥𝑖 as input. The parties in P𝑖−1 use their

shares of 𝜙𝑖−1 as input.
(b) Reconstruct the state 𝜙𝑖−1 from the shares, create the event

𝜎𝑖 := (𝑝 IN

𝑖
, 𝑥𝑖), and compute (𝜙𝑖 , 𝛾𝑖) :=

∞
𝑓 (𝜙𝑖−1, 𝜎𝑖).

(c) Send the outputs to each party according to 𝛾𝑖 . Parties not

contained in 𝛾𝑖 obtain the empty output ⊥.
(d) Output the set P𝑖 of parties present in the new state 𝜙𝑖 to

each party.

(e) If |P𝑖 | < 𝑛 the execution halts. Otherwise, share the state 𝜙𝑖
among the parties P𝑖 using Shamir’s secret sharing scheme

with threshold 𝑡𝑖 :=
⌈
1

𝜏 |P𝑖 |
⌉
.

(2) The parties in P𝑖−1 ∪ {𝑝 IN

𝑖
} write (present,P𝑖)P𝑖−1∪{𝑝 IN

𝑖
} on

BB.

Protocol 2 (Emulating an OTTPI). An online functionality

with decision function

∞
𝑓 and initial state 𝜙0 is evaluated as follows:

(1) The first 𝑛 parties 𝑝 IN

1
, . . . , 𝑝 IN

𝑛 that arrive write (arrive)𝑝 IN

𝑖
for

𝑖 ∈ {1, . . . , 𝑛} on BB. All parties in P0 := {𝑝 IN

1
, . . . , 𝑝 IN

𝑛 } write
(present,P0)P0

on BB.

(2) The parties in P0 share the initial state 𝜙0 as follows:

(a) Set 𝑡0 :=
⌈
1

𝜏 |P0 |
⌉
and 𝑔(𝑥) := 𝜙0 +

∑𝑡0−1
𝑗=1

𝑥 𝑗 mod 𝑞, where

𝑞 is a sufficiently large prime.

(b) Party 𝑝 IN

𝑖
with 𝑖 ∈ {1, . . . , 𝑛} uses 𝑔(𝑖) as its share of 𝜙0.

(3) Evaluate the decision functionality

∞
𝑓 for 𝑖 ∈ {1, . . . , 𝑛}:

(a) Execute Protocol 1 for event 𝜎𝑖 := (𝑝 IN

𝑖
, 𝑥𝑖) with the following

modifications:

(i) Instead of Step 1e): If |P𝑖 | ≠ 𝑖 , the execution halts. Other-

wise share 𝜙𝑖 among P0 with 𝑡𝑖 := 𝑡0.

(ii) Instead of Step 2: The parties write (present,P0)P0
on

BB, i. e., P𝑖 := P0 on BB.

(b) If Protocol 1 has halted early, then the execution stops.

(4) Set 𝑖 := 𝑛 + 1.

(5) Wait until a party 𝑝 IN

𝑖
with input 𝑥𝑖 arrives, i. e., 𝑝

IN

𝑖
has written

(arrive)𝑝 IN

𝑖
on BB.

(6) Evaluate the decision functionality

∞
𝑓 with Protocol 1.

(7) If Protocol 1 has halted early (|P𝑖 | < 𝑛), then the execution

stops. Otherwise, set 𝑖 := 𝑖 + 1 and got to Step 5.

Note, the initial state 𝜙0 in Protocol 2 is modeled as a single value

instead of a vector for clarity of notation. However, in an actual

application (possibly) the initial state, but especially any consec-

utive states (cf. Protocol 1) are likely to be vectors.
24

Therefore,

24
Note, the initial state can always be a fixed value, e. g., 𝜙0 := 0, as the initial state

can be encoded directly in the decision functionality

∞
𝑓 itself. In addition, we think

that for many application the initial state is even empty, as no party has arrived or

provided input yet, e. g., for online matching with general arrival.

the sharing of any state has to be understood as the sharing of the

individual entries of a state-vector, instead of a single state-value.

The same holds for the input and output of parties.
25

In Protocol 1, parties not included in the decision obtain ⊥ as

output. As by definition ⊥ does not occur in the output space, i. e.,

⊥ ∉ Y, this needs to be considered when actually implementing a

corresponding SMPC protocol. One possible approach is to output

an additional bit, which indicates whether the output is actually

⊥: For simplicity assume the output is a single value. If a party

should receive an actual output (it occurred in the decision), then

the additional bit is set to 1, and the output value is set to the actual

output. If a party should not receive any output (it should receive⊥),
then the additional bit is set to 0 and the output value itself is also

set to 0. This approach does not only encode ⊥, but also allows to

distinguish between the output 0 and ⊥. In addition, this approach

prevents a (malicious) party from providing⊥ as input: If one would

only use a single value 0 to represent ⊥, then a (malicious) party

could use that also as input, as typically the input and output space

of offline SMPC protocols are the same, e. g., as in the approach by

Ben-Or et al. [5]. However, by having the additional bit not being a

part of the input phase itself, a party cannot provide ⊥ as input.
26

Theorem 2. Protocol 2 perfectly emulates an OTTPI for any online

functionality with decision functionality

∞
𝑓 in the presence of an

adversary 𝐴am and a creator 𝐶< 1

3

with 𝜏 := 3, or in the presence of

an adversary 𝐴
sh

and a creator 𝐶< 1

2

with 𝜏 := 2. This holds only if

𝑛 ∈ N and 𝑛 > 𝜏 , and initially at least 𝑛 parties arrive first without

providing input (while their arrival is broadcast by the OTTPI), and

then those 𝑛 parties provide their inputs, and then at least 𝑛 parties

are always present.
27

Note, the underlying (offline) SMPC protocol requires that at

least 𝑛 parties initially arrive before any computation can be per-

formed, e. g., protocols based on Shamir’s secret scheme typically

require at least 3 parties to perform computations while having

at least one corrupted party [5]. Therefore, initially 𝑛 parties have

to arrive (by writing “arrive” on BB) first without providing any

input (not yet possible), and then after 𝑛 parties arrived, they can

provide their input. Hence, in the ideal model initially 𝑛 parties

have to arrive first without providing input, too. And then after

𝑛 parties arrived, they can also provide their input. This is, e. g.,

required if a malicious adversary is present and 𝑛 ≥ 5, as then a

malicious party arriving as the fourth party can choose its input

based on knowing who the fifth party is.
28

Proof. First, observe that the threshold 𝑡𝑖 used to share the state

𝜙𝑖 is chosen such that at any point in time no set of corrupted parties

can reconstruct the state, alter the state, or prevent reconstruction

for 𝐶< 1

𝜏
: The honest parties have always enough shares (honest

25
Correction: In the original version [24] we did not clarify that the state and input

should be seen as vectors.

26
Correction: In the original version [24] ⊥ was part of the input an output space.

However, here it is removed, and thus we additionally describe an approach how to

encode ⊥.
27
Correction: In the original version [24] we just stated that “initially at least 𝑛 parties

arrive”, but the intended meaning was unclear. This is now corrected by specifying

this more precisely.

28
Extension: We added this paragraph to describe why we require that initially 𝑛

parties have to arrive first without providing input.

majority), and the corrupted parties always lack at least one share

(choice of the threshold).

Second, according to Theorem 1 there exists a protocol 𝜋𝑖 that

perfectly emulates the offline functionality 𝑓𝑖 in Protocol 1 for 𝐴am

and 𝐶< 1

3

, or 𝐴
sh

and 𝐶< 1

2

, respectively. Thus, there exists a corre-

sponding simulator 𝑆 ′
𝑖
for 𝑓𝑖 . This includes that simulator 𝑆 ′

𝑖
can

extract the inputs of corrupted parties in order to send them to

the OTTPI. In addition, the set of parties present is broadcast after

every decision (and possible output distribution) by the OTTPI.

Therefore, the simulator 𝑆 ′
𝑖
knows when a decision was computed

and when (possibly) corresponding outputs were distributed. Thus,

if corrupted parties do not obtain output from the OTTPI, then the

simulator 𝑆 ′
𝑖
can ensure that they obtain ⊥. As the set of parties

present is broadcast after each decision, the simulator 𝑆 ′
𝑖
can also

ensure that 𝜋𝑖 outputs the same set of parties present. The consis-

tency of the shares provided by the parties in P𝑖−1 is (implicitly)

checked by 𝑓𝑖 when it reconstructs the state 𝜙𝑖−1. This also covers

the evaluation of the first 𝑛 events, especially of 𝜎1. Note, the shares

of the initial state is shared with a fixed polynomial, and the shares

of consecutive states are generated by 𝑓𝑖 . Therefore the shares of

honest parties will always be correct (similar as if a TTP would

share a secret).

Finally, the main simulator 𝑆 has to simulate the messages on

BB and call the corresponding simulator 𝑆 ′
𝑖
multiple times: The

messages on BB are trivial to simulate by the simulator 𝑆 as when-

ever a party arrives or provides inputs, the OTTPI broadcasts the

party which arrives or provides input. In addition, after each deci-

sion the OTTPI broadcasts the set of parties present, too. Especially

the initially arriving 𝑛 parties are broadcast before they provide

any input. In particular, initially 𝑛 parties arrive, and their arrival is

broadcast by the OTTPI. Note, no party can provide input, unless

all 𝑛 parties have arrived. The simulator 𝑆 writes the corresponding

arrive messages on BB as soon as they are broadcast. After 𝑛 arrive

messages are written on BB (and thus corresponding broadcasts),

the simulator 𝑆 writes the set of parties present P0 on BB. Next,

the initially arriving 𝑛 parties provide their input one after another,

where each sending of input is broadcast by the OTTPI. Each broad-

cast of a party providing input, and each broadcast of the set of

parties present after a decision (and possible output distribution),

corresponds to the evaluation of

∞
𝑓 and corresponding output dis-

tribution. By definition, the offline functionality 𝑓𝑖 computes the

decision functionality

∞
𝑓 correctly. Therefore, the simulator 𝑆 can

simply call the corresponding simulator 𝑆 ′
𝑖
. In addition, for the first

𝑛 decisions the simulator 𝑆 will always write (present,P0) on BB.

After the ramp-up phase, the “normal” executions starts. A new

party that arrives is broadcast by the OTTPI, and thus the simu-

lator writes the corresponding arrive message on BB. When the

newly arrived party provides input, which again is broadcast, the

simulator 𝑆 calls again the corresponding simulator 𝑆 ′
𝑖
to simulate

the corresponding evaluation of the decision functionality. As the

set of parties present is broadcast after each decision, the simulator

𝑆 can write the corresponding set of parties present on BB. If at

some point the number of parties present is below 𝑛, or during

the ramp-up phase |P𝑖 | ≠ 𝑖 , the complete execution halts. As the

simulation of 𝑆𝑖 is perfect, then so is the combined simulation done

by 𝑆 .29 □

Remark 1 (Reqirement of Memory). Recall that the state has

to store the set of parties in order to compute the decision function.

However, if we assume an OTTPI, then the parties present are known

and can be hard coded in a modified protocol 𝜋 ′
𝑖
. Therefore, a state

needs to be stored only if some values need to be available in multiple

events. Hence, some online functionalities can be realized without the

need to share a state. Recall online matching with general arrival

(cf. Example 1), and assume an OTTPI with a semi-honest adversary.

Whenever a new party arrives with their input, the previously un-

matched parties will use their original input as input for 𝜋𝑖 so that no

state needs to be shared in this case. This does not work with malicious

adversaries, as they could easily alter their input, so the state needs to

be shared in this case.

Remark 2 (Malicious Parties aborting). The OTTPI and Pro-

tocol 2 can deal with malicious parties that abort as long as they have

provided their input. We do not exclude malicious parties once they

are detected: A rational malicious party will not behave maliciously

during the computation, as it otherwise would be detected. In the worst

case, it will only change its input, which cannot be detected. However,

if one wants to blame a malicious party 𝑝′, then a majority can eas-

ily write (malicious, 𝑝′)P𝑖−1∪{𝑝 IN

𝑖
} on BB and then 𝑝′ is implicitly

excluded in any further communication.

Remark 3 (Computational Security). Cramer et al. [13] showed

that for every offline functionality there exists a corresponding com-

putationally secure SMPC protocol. In their constructions they use a

homomorphic threshold cryptosystem. This allows tolerating𝐴am with

𝐶< 1

2

, or𝐴
sh
with𝐶<1 (at least one honest party). Protocols 1 and 2 and

the corresponding proof can be easily adapted to use Cramer et al. [13]

scheme by storing the state as ciphertext.

Remark 4 (Mobile Adversaries). In order to keep our model and

construction simple, we did not consider mobile adversaries (proactive

security). However, our construction in Protocols 1 and 2 could be

adapted roughly as follows: First, use the proactive secure building

blocks introduced by Eldefrawy et al. [16] (instead of Shamir’s secret

sharing scheme). Second, incorporate the refreshing of shares at suit-

able steps, e. g., multiple times when parties wait for new parties to

arrive, and during the execution of Protocol 1.

6 LIMITS OF THE OTTPI
The ideal OTTP is essentially the holy grail w. r. t. privacy and se-

curity, as no party knows which or when other parties participate

or provide input. Not even the number of participating parties is

known.
30

In classical SMPC parties are assumed to know which

other parties participate. It is therefore important to see the results

in this section not as a contradiction to our feasibility result in

Section 5, but as a motivation that more research is required w. r. t.

hiding participating parties in general. This is also desirable for

classical SMPC: Assume a simple offline function computing the

29
Extension: We added more details to the proof, especially w. r. t. the simulator’s

behavior.

30
An imperfect comparison is to assume that blind and deaf parties participate.

average 𝑀 of the parties (positive) inputs.
31

Knowing that 𝑛 par-

ties participate leaks that the input of each party is at most𝑀 · 𝑛.
However, this is not leaked if we do not know how many parties

participated.

An OTTPI leaks whether a party participates, and the order in

which parties arrive and leave. An ideal OTTP hides both informa-

tion. However, knowing the order in which parties arrive can leak

additional private information. In order to capture that leakage, we

compare an OTTPI and an ideal OTTP where in both settings the

parties that have participated are known after the execution, but

only in the OTTPI setting the order in which the parties arrive and

leave is known. Intuitively, an online functionality provides privacy

with public arrival if one cannot deduce additional information

from knowing the order in which certain parties arrived or left:

Definition 9 (Privacywith Public Arrival
32
). An online func-

tionality guarantees privacy with public arrival if for any finite set

P := {𝑝1, . . . , 𝑝𝑚} of parties arriving uniformly at random, the cor-

responding OTTPI perfectly emulates the corresponding ideal OTTP

if after the last decision 𝛾𝑚 is distributed, the unordered set P of all

parties that participated is published.

Note, that Definition 9 implicitly allows the simulator (interact-

ing with the ideal OTTP) to insert into its view (afterP is published)

a (random) order of how the parties might have arrived: The simula-

tor does not learn the order in which parties have actually arrived (if

the functionality does not leak that explicitly), and thus only learns

which parties have arrived, i. e., the simulator learns the unordered

set P. However, the adversary (interacting with the OTTPI) learns

the order in which parties arrive, and thus will include it in its view.

Security (cf. Definition 8) is defined by comparing the joint outputs

of the adversary and simulator (both including the output of honest

parties to guarantee correctness). Therefore, the simulator has to

select and insert (in retrospect) into its view an order of how the

parties could have arrived such that the corresponding probability

ensembles are indistinguishable, i. e., they have the same distribu-

tion. If during the execution nothing can be learned from the order

in which parties arrived, then a (uniformly at) random selected

order of parties arriving by the simulator (respecting the order of

corrupted parties arriving and inserted in retrospect into its view)

is perfectly indistinguishable from the parties actually arriving uni-

formly at random, as in both settings the order of parties arriving

is uniformly at random, and thus the corresponding probability

ensembles have the same distribution. However, if during the exe-

cution additional information can be learned from the actual order

in which the parties arrived, this “trick” will no longer work, and

thus the views will be distinguishable.
33

In the following we will show that there are multiple commonly

used online (matching) algorithms that do not guarantee privacy

with public arrival.

31
Correction: In the original version [24] we did not explicitly mention that the leaked

information can only be obtained if we assume that all inputs are positive.

32
Correction: In the original version [24] the definition was based on events. We

changed it here to parties arriving and decisions, as events are now split into “arriving”

and “providing input”. In addition, we now explicitly mention that the parties arrive

uniformly at random.

33
Extension: We added this paragraph as additional explanation of Definition 9.

Proposition 1. The GREEDY algorithm
34

for online matching

with general arrival does not guarantee privacy with public arrival.

Proof. Recall, a party leaves only if it is matched. As soon as

two honest parties leave in the OTTPI model, we learn that these

two parties are matched. However, the simulator can only guess

with probability 1/2 whether an honest party is matched or not. □

Another example is online maximum weighted bipartite match-

ing [23]: The problem consists of 𝑛 servers present from the very

beginning and 𝑛 requests arrive one after another. The 𝑛 servers

are publicly known, and never leave the computation. Each request

contains an ordered list of the servers reflecting the preference

for each server, where the first entry has the highest preference

value of 𝑛 and the last entry has the lowest preference value of

1. Whenever a request arrives, the online algorithm has to decide

immediately with which server the request will be matched. If a

server is matched once, it cannot be matched again. In addition,

any decision made cannot be changed later. The goal is to match all

requests such that the sum of the preference values of all matches

is maximized. The optimal solution is to greedily match the request

with its highest preference server that is still unmatched [23].

Proposition 2. The GREEDY algorithm for online maximum

weighted bipartite matching does not guarantee privacy with public

arrival.

Proof. Assume a (corrupted) server is matched with the first

request. In the OTTPI model the server knows that it is matched

with the first request, and thus learns that the request has given it

the highest priority. In the ideal OTTP model the server does not

know whether it is matched with the first, the 𝑖-th or even the last

request, and thus does not know whether it is matched due to being

preferred to others, or because it is the last unmatched server. □

Even stronger results hold for online bipartite matching, where

similar to online maximum weighted bipartite matching requests

provide preferences for servers. However, their preferences are

binary for each server indicating whether they are willing to be

matched with that server or not. A request is not matched if there

is no server available that the request is willing to be matched with.

Proposition 3. No online bipartite matching algorithm in which

a request is always matched if there is a suitable server available, i. e.,

the server is unmatched and the request is willing to be matched with

that server, guarantees privacy with public arrival.

Proof. Assume the first request 𝑅1 is matched with server 𝑆1.

Now assume (corrupted) request 𝑅2 arrives and 𝑅2 is willing to

be matched only with 𝑆1. As 𝑆1 is already matched 𝑅2 cannot be

matched. In the OTTPImodel,𝑅2 knows that it is the second request.

As it is unmatched, it can immediately deduce that 𝑅1 is matched

with 𝑆1. In the ideal OTTP model, 𝑅2 does not know that it is the

𝑖-th request, and thus learns only that 𝑆1 is already matched. □

Another simple online matching algorithm is RANDOM, i. e., for

online bipartitematching, whenever a request arrives, it is randomly

matched with any available server disregarding the preferences of

34
As soon as two parties can be matched they will be matched.

the request. It seems like RANDOM could guarantee privacy with

public arrival, but even RANDOM does not:

Proposition 4. The RANDOM algorithm does not guarantee pri-

vacy with public arrival.

Proof. Each match is completely random, and the requests do

not provide any input. Hence, nothing can be learned about their

inputs. The first 𝑛 request will be matched with the 𝑛 servers. All re-

quests that arrive later cannot be matched anymore, and they learn

that all𝑛 servers are alreadymatched. In the OTTPImodel, an adver-

sary obviously learns that the first𝑛 requests are “matched”, and the

output for all later requests is exactly “not matched”. However, in

the OTTP model, a participating request learns either it is matched,

or if is unmatched and at least 𝑛 other requests are matched. It does

not learn which requests are matched or unmatched. □

However, if we restrict the amount of possible events, then RAN-

DOM can guarantee privacy with public arrival:

Proposition 5. The RANDOM algorithm guarantees privacy with

public arrival if the execution is stopped immediately after all servers

are matched.

Proof. W.l.o.g. assume a total of 𝑛 servers. The execution is

halted after exactly 𝑛 requests have arrived and are matched. Now

assume that after decision 𝛾𝑖 with 𝑖 ∈ {1, . . . , 𝑛} the set of all par-
ticipating parties is published. The view w. r. t. corrupted parties is

trivial to simulate as they are identically in both settings: The party

connects to the simulator, the simulator connects as corresponding

party to the ideal OTTP, and returns the corresponding outputs

of the ideal OTTP.
35

All other requests are matched by definition,

and thus trivial to simulate. The order of the request in which they

arrive can be chosen uniformly at random respecting the order of

matched corrupted requests. As there is no prior knowledge on

when requests arrive, except that they arrive uniformly at random,

this is perfectly indistinguishable. □

Another positive example is bipartite matching where every

request is always matched (ALWAYS) with the best fitting server,

i. e., a server can be matched multiple times with different requests.

Proposition 6. The ALWAYS algorithm guarantees privacy with

public arrival with an adversary 𝐴
sh
, but not with an adversary 𝐴am.

Proof. Note, each match depends solely on the initial input of

the server and the input of a request. As no server can get occupied,

a request will always be matched with the same server independent

of when it arrives, as long as the input is the same. Again, corrupted

parties are trivial to simulate as their inputs and outputs in both

settings are identical. The order of the other requests arriving can

be chosen uniformly at random respecting the order of matched

corrupted requests. This is perfectly indistinguishable for a semi-

honest adversary, but not for a malicious adversary. A malicious

adversary can store some information about previous requests by

enforcing a certain matching, e. g., two servers 𝑠1, 𝑠2 are corrupted

and at least one request 𝑟 . By letting request 𝑟 be matched with

either 𝑠1 or 𝑠2 we can store information about whether exactly one

35
Correction: In the original version [24] the simulator forwarded inputs, but there

are no inputs. Therefore, we removed that, and included instead the simulation of the

connection establishment.

(𝑠1) or more requests arrived (𝑠2). As the simulator can only guess

how many requests already arrived, it is likely that the simulator

guesses wrong. Thus, the joint outputs are not identical. □

7 ADDITIONAL RESULTS
We briefly discuss the setting with a dishonest majority in Ap-

pendix A, and argue in Appendix B why the arrival time can in

general not easily be hidden. In Appendix C we will allow parties

to arrive, leave and provide input arbitrarily, and therefore intro-

duce the OTTPE and OTTPP, and briefly present the corresponding

feasibility results.

8 CONCLUSION
In this paper we proposed several new models for TTPs that can

evaluate online functionalities. We described two main types: The

ideal OTTP where the arrival of the parties is private, and the

OTTPI where it is broadcast. We also extended the model to allow

parties to arrive, leave and provide input arbitrarily, and introduced

additional models, namely the OTTPE and OTTPP in Appendix C.

We showed that for any online functionality there exists a protocol

in the OTTPI (and OTTPE/OTTPP) setting that perfectly emulates

the online functionality as long as there are always at least three

parties present. As the arrival of parties cannot be easily hidden

with reasonable assumptions (cf. Appendix B), only the OTTPI (and

OTTPE/OTTPP) model seem to be real world applicable.

In the future, we plan to investigate further how to provide better

privacy than what can be achieved by an OTTPI, while being easier

to realize than a protocol secure in the ideal OTTP model.

ACKNOWLEDGMENTS
This work is funded by the Deutsche Forschungsgemeinschaft (DFG,

German Research Foundation) – 2236/1.

REFERENCES
[1] Balamurugan Anandan and Chris Clifton. 2017. Secure minimum weighted

bipartite matching. In Conference on Dependable and Secure Computing. 60–67.

[2] David W. Archer, Dan Bogdanov, Yehuda Lindell, Liina Kamm, Kurt Nielsen,

Jakob Illeborg Pagter, Nigel P Smart, and Rebecca N Wright. 2018. From Keys to

Databases—Real-World Applications of SecureMulti-Party Computation. Comput.

J. (2018), 1749–1771.

[3] Joshua Baron, Karim El Defrawy, Joshua Lampkins, and Rafail Ostrovsky. 2015.

Communication-Optimal Proactive Secret Sharing for Dynamic Groups. In Ap-

plied Cryptography and Network Security. Springer, 23–41.

[4] Donald Beaver. 1991. Efficient Multiparty Protocols Using Circuit Randomization.

In Advances in Cryptology - CRYPTO. Springer, 420–432.

[5] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. 1988. Completeness

Theorems For Non-Cryptographic Fault-Tolerant Distributed Computation. In

Symposium on Theory of Computing. ACM, 1–10.

[6] Marina Blanton and Siddharth Saraph. 2014. Secure and Oblivious Maximum

Bipartite Matching Size Algorithm with Applications to Secure Fingerprint Iden-

tification.

[7] Dan Bogdanov. 2013. Sharemind: programmable secure computations with practical

applications. Ph.D. Dissertation. University of Tartu, Estonia.

[8] Ran Canetti. 2000. Security and Composition of Multiparty Cryptographic Proto-

cols. Journal of Cryptology 13 (2000), 143–202.

[9] Ran Canetti. 2001. Universally Composable Security: A New Paradigm for Cryp-

tographic Protocols. In International Conference on Cluster Computing. 136–145.

[10] Ran Canetti. 2020. Universally Composable Security. J. ACM 67 (2020), 28:1–

28:94.

[11] David Chaum, Claude Crépeau, and Ivan Damgard. 1988. Multiparty uncondi-

tionally secure protocols. In Symposium on Theory of Computing. ACM, 11–19.

[12] Arka Rai Choudhuri, Aarushi Goel, Matthew Green, Abhishek Jain, and Gabriel

Kaptchuk. 2020. Fluid MPC: Secure Multiparty Computation with Dynamic

Participants. Cryptology ePrint Archive, Report 2020/754.

[13] Ronald Cramer, Ivan Damgård, and Jesper Buus Nielsen. 2000. Multiparty Com-

putation from Threshold Homomorphic Encryption. Cryptology ePrint Archive,

Report 2000/055.

[14] Ivan Damgård and Jesper Buus Nielsen. 2003. Universally Composable Efficient

Multiparty Computation from Threshold Homomorphic Encryption. In Advances

in Cryptology - CRYPTO. Springer, 247–264.

[15] Yvo Desmedt and Sushil Jajodia. 1994. Redistributing secret shares to new access

structures and its applications. Technical Report ISSE TR-97-01. George Mason

University.

[16] Karim Eldefrawy, Seoyeon Hwang, Rafail Ostrovsky, and Moti Yung. 2020.

Communication-Efficient (Proactive) Secure Computation for Dynamic Gen-

eral Adversary Structures and Dynamic Groups. In Security and Cryptography

for Networks. Springer, 108–129.

[17] Amos Fiat and Gerhard Woeginger (Eds.). 1998. Online Algorithms: The State of

the Art. Springer.

[18] Buddhima Gamlath, Michael Kapralov, Andreas Maggiori, Ola Svensson, and

David Wajc. 2019. Online Matching with General Arrivals. In 2019 IEEE 60th

Annual Symposium on Foundations of Computer Science (FOCS). 26–37.

[19] Oded Goldreich. 2004. Foundations of Cryptography: Basic Applications. Cam-

bridge University Press.

[20] Oded Goldreich, Silvio Micali, and AviWigderson. 1987. How to play ANYmental

game. In Symposium on Theory of Computing. ACM, 218–229.

[21] Philippe Golle. 2006. A Private Stable Matching Algorithm. In International

Conference on Financial Cryptography and Data Security. Springer, 65–80.

[22] James Heather and David Lundin. 2009. The Append-Only Web Bulletin Board.

In Formal Aspects in Security and Trust. Springer, 242–256.

[23] Bala Kalyanasundaram and Kirk Pruhs. 1993. OnlineWeighted Matching. Journal

of Algorithms 14 (1993), 478–488.

[24] Andreas Klinger and Ulrike Meyer. 2021. Towards Secure Evaluation of Online

Functionalities. In The 16th International Conference on Availability, Reliability

and Security (ARES 2021). Association for Computing Machinery.

[25] Ming Li, Ning Cao, Shucheng Yu, and Wenjing Lou. 2011. FindU: Privacy-

preserving personal profile matching in mobile social networks. In International

Conference on Computer Communications. 2435–2443.

[26] Tal Rabin and Michael Ben-Or. 1989. Verifiable Secret Sharing and Multiparty

Protocols with Honest Majority. In Symposium on Theory of Computing. ACM,

73–85.

[27] Adi Shamir. 19799. How to Share a Secret. Commun. ACM 22 (19799), 612–613.

[28] StefanWüller, Michael Vu, Ulrike Meyer, and SusanneWetzel. 2017. Using Secure

Graph Algorithms for the Privacy-Preserving Identification of Optimal Bartering

Opportunities. In Workshop on Privacy in the Electronic Society. ACM, 123–132.

[29] Andrew C. C. Yao. 1986. How to generate and exchange secrets. In Symposium

on Foundations of Computer Science. 162–167.

A DISHONEST MAJORITY
In Section 5 we assumed to always have a majority of honest non-

corrupted parties. Another common assumption in classical SMPC

is to assume a dishonest majority [19], both with semi-honest and

malicious adversaries, i. e., in theworst case only one party is honest.

Any offline functionality can be realized computationally secure

if an early abort is allowed [19]. In the online setting assuming

a dishonest majority requires dealing with situations where at

some point only corrupted parties are present, i. e., 𝐶≤1: An honest

party arriving has to assume that after it arrived all other parties

are dishonest. Therefore, the parties that were present before the

honest party arrived and the parties that are present after the honest

parties leaves are all corrupted.

Proposition 7. There are online functionalities that cannot be

emulated even computationally secure without the help of an OTTP

(or OTTPI) in the presence of an adversary 𝐴
sh

and a creator 𝐶≤1.

Proof. Consider matching where each input is allowed to be

matched at most four times. Obviously the state has to contain

some information w. r. t. the inputs, e. g., a counter for each possible

input. Assuming no TTP, then only the parties themselves perform

the computation and store the state somehow (shared). How this

is done exactly is not important, but in order to use the state, the

parties present need to be able to recover the current state.

Now assume that currently 𝑛 corrupted parties are present. Then,

a new (honest) party arrives, provides its input, is immediately

matched, and leaves again. This means that before and after the

honest party is present, the adversary learns the state and thus the

input of the honest party. □

A consequence of Proposition 7 is that every newly arriving

party has to assume that the previous state is either known to

the adversary or even altered. This essentially implies that online

functionalities that require a state cannot be emulated securely by

any protocol without the help of a TTP. However, if we restrict the

type of online functionalities that can be evaluated such that inputs

of parties can only be considered during their presence, then we

can allow a dishonest majority.

Theorem 3. AnOTTPI for an online functionality can be emulated

computationally secure by an SMPC protocol in the presence of an

adversary 𝐴
sh

and a creator 𝐶≤1 if each state 𝜙𝑖 ∈ Φ depends solely

on the inputs and outputs of the parties present in P𝑖 .

Proof. Note, we will present only the main idea, without the

technical details and restrictions that have already been introduced

by others in classical SMPC and are required for offline or reactive

SMPC with dishonest majority.

The idea is to ensure that the contribution of the inputs and

outputs of a single party to the current state lasts only as long as it

is present. This way each party itself can prevent reconstruction of

their own input.

W.l.o.g. assume that all inputs and outputs of all parties present

in P𝑖 are stored in 𝜙𝑖 . The state 𝜙𝑖 is organized as a database,

where each entry 𝑑 𝑗 corresponds to the inputs and outputs of party

𝑝 𝑗 . Each entry is shared among all parties present such that all

parties need to cooperate in order to reconstruct the state, i. e.,

𝑡𝑖 := |P𝑖 |. If a new party arrives, the threshold is increased ac-

cordingly.
36

If a party 𝑝 𝑗 leaves, then the threshold of all database

entries 𝑑1, . . . , 𝑑 𝑗−1, 𝑑 𝑗+1, . . . , 𝑑 | P𝑖 | is decreased. The threshold of

entry 𝑑 𝑗 is not touched, and thus becomes non-recoverable as soon

as 𝑝 𝑗 has deleted its share. □

Note, online matching with general arrival (cf. Example 1) is still

possible with this approach.

The above approach only works with malicious adversaries if

we allow them to modify the current state: As soon as no honest

party is present, the malicious adversaries can change the state (not

possible with an OTTPI). Hence, a new party arriving must assume

that the state is completely controlled by the malicious parties and

thus effectively require that no state is used, i. e., just use inputs of

parties, and no state at all.

However, assuming a dishonest majority where the corrupted

parties are split between two non-colluding adversaries, allows

again to securely evaluate any online functionality: Essentially the

idea is to choose the threshold for sharing the state maximal and

evaluate the decision functionality with protocols secure against

classical dishonest majority. As the adversaries do not collude, the

state can never be reconstructed or changed by a single adversary.

36
Note, that the threshold of Shamir’s secret sharing scheme can be increased and

decreased without secret reconstruction as shown by Desmedt and Jajodia in [15]:

Each party shares their current share with all other parties. Then, the parties can

compute locally a new share from the received shares.

B HIDING THE ARRIVAL OF PARTIES
Section 6 shows that it is highly desirable to hide the arrival of the

parties, i. e., hide that a party is the 𝑖-th party to arrive. If we can

hide the arrival of parties, then we are able to securely simulate

the ideal OTTP. However, realizing this in the real world poses

multiple problems.

First, the ideal OTTP effectively hides even the presence of chan-

nels, i. e., an adversary checking all outgoing connections of all

possible parties cannot observe whether a party sends messages

to the ideal OTTP or not. We do not know whether this is pos-

sible to achieve (perfectly) in the real world. However, one can

image an adversary with limited powers that cannot observe the

existence of channels, and can only control corrupted parties. E.g.

an internet service provider can check if messages are sent, but

a “normal” hacker might be only able to corrupt certain parties

without observing the channels of all possible parties.

In order to hide the arrival itself, the participating parties have

to be at least anonymous, as otherwise it is trivially observable

which party arrives. If we assume only semi-honest adversaries,

then anonymous participation is achievable: All parties perform

the computation anonymously and follow the protocol. However,

if an adversary can be completely anonymous, the intent of being

“semi-honest” seems unrealistic, as the adversary does not have

to fear any consequences if he is blamed for cheating. If we allow

malicious adversaries, they can easily add new parties and break

the security. Therefore, parties need to be restricted such that they

can arrive at most once. How to actually realize such a check in a

privacy preserving manner is beyond the scope of this paper. For

now, we just assume that this is possible, which leaves the problem

of hiding how many parties are currently participating.

One at first glance reasonable approach (that will fail in the

end) to hide the arrival of the parties is to introduce fake parties.

A real party is an actual party in P participating, i. e., a party that

participates also in the OTTP model. A fake party is only present

in an actual protocol execution and acts like a real party, i. e., it

arrives, provides input and maybe leaves. However, a fake party is

not allowed to change the outcome of an evaluation, e. g., a fake

party can never be matched with a real party, as then the real party

would be unavailable.

Note, here we ignore the fact that fake parties introduced by real

parties are somewhat contradicting to a party arriving at most once

at the same time. However, we only want to show that even intro-

ducing fake parties does not solve the problem, and we therefore

simply assume that the decision function will somehow distinguish

between real and fake parties: First, introducing fake parties will

never be able to perfectly hide the arrival of parties. The fake par-

ties need to be introduced by the participating parties themselves

following some strategy. Such a strategy is in the most general form

the introduction of 0 to𝑀 fake parties at certain points in time. We

can safely assume an upper limit if we want to guarantee at least

some efficiency. It is possible that all participating parties decide

not to introduce any fake party at all and the arrival of parties is no

longer masked. Note that requiring each party to always introduce

a minimal amount𝑚 of fake parties leads to the same result, e. g.,

in online maximum weighted bipartite matching the first matched

server can learn that it is matched with the first party if it is matched

with the ((𝑛 + 1)𝑚 + 1)-th party, i. e., all parties decide to introduce

only𝑚 fake parties, where 𝑛 is the number of servers.

Second, even if we only try to achieve computational security (cf.

Remark 3) with a semi-honest adversary, then the computational

overhead would become computationally infeasible: Reconsider the

first argument when all parties decide to introduce 0 fake parties.

In order to make the probability for such an event negligible, we

have to introduce exponentially many fake parties.
37

As for now it seems impossible to hide the arrival of the parties

in general.

C EXTENSIONS
In the previous sections we restricted each party to provide input

only once, namely when they first arrive. In addition, in a single

event only a single party could provide input.

In this section, we remove these restrictions and thus allow to

evaluate any online functionality. First, we will allow multiple par-

ties to provide input at the same time. Second, we will additionally

allow each party to provide input in multiple events.

Note, we will discuss and proof these extensions in the following

only briefly, as they are rather straight forward. We include them

only for completeness and omitted them in the main part of the

paper for sake of clarity in the notations.

C.1 Multiple Parties per Event
A classical extension to online algorithms where parties arrive one

at a time, is to allow batch processing [17], i. e., multiple parties

arrive and provide their input at the same time.

All of our results can easily be transferred to this setting with

some minor modifications: The event space will be defined as E :=

{{(𝑝 IN

𝑗1
, 𝑥 𝑗1), . . . , (𝑝 IN

𝑗ℓ
, 𝑥 𝑗ℓ)} ∈ 2

P×X | ℓ ∈ N and all 𝑝 IN

𝑗1
, . . . , 𝑝 IN

𝑗ℓ
are

pairwise different}. The events used for evaluating the online func-
tionality are then 𝜎𝑖 := {(𝑝 IN

𝑖,1
, 𝑥𝑖,1), . . . , (𝑝 IN

𝑖,𝑛𝑖
, 𝑥𝑖,𝑛𝑖)} ∈ E, where

𝑥𝑖, 𝑗 is the input of party 𝑝
IN

𝑖, 𝑗
∈ PIN

𝑖
⊆ P and 𝑛𝑖 ∈ N. We therefore

define PIN

𝑖
⊆ P as the set of all parties that arrive at the same time

(for event 𝜎𝑖).

The modification of the OTTPs and Protocols 1 and 2 is straight

forward by exchanging 𝑝 IN

𝑖
with PIN

𝑖
. Note, that again the parties

in PIN

𝑖
arrive first without input, and then in a second step, after

all parties in PIN

𝑖
arrived, they then provide their input. And the

OTTPI broadcasts every arriving party before any party can provide

input. In order to allow parties to arrive “at the same time” one

needs to introduce some time window in which parties can arrive,

e. g., all parties that arrived during one hour are considered for PIN

𝑖
.

The exact time window depends heavily on the actual application.

The parties that arrived during this time window can then provide

their inputs. The event is again implicitly created, and the decision

function can be evaluated. Theorem 2 still holds, and the new proof

is analogous (and thus not repeated). Note, the ramp-up phase

37
Correction: In the original version [24] we used as additionally third argument an

online functionality that we thought supports that hiding of parties is sometimes

even impossible. As example we used an auction, where a higher bid is immediately

broadcast after a party has overbid the previous highest bid. However, at that time we

did not notice that the example is essentially integrating the behavior of an OTTPI in

the online function itself. Therefore, the broadcast happens in the ideal model, too.

Hence, the provided example was wrong, and is now removed.

has to consider also the corresponding time windows in order to

evaluate the correct corresponding events (which parties arrived

for which event). However, if in the first event already 𝑛 parties

arrive, then the ramp-up phase can be very short. Note, the results

discussed in Section 6 still apply, as they are a strict subset of the

new setting.
38

C.2 Provide Input in multiple Events
Next, we allow each party to provide input multiple times, i. e., a

party can provide input not only when it arrives. In other words,

we remove the restriction that each party occurs at most in one

event. This includes that the set of parties participating can stay

unchanged over multiple events, i. e., an event happens without a

new party arriving. This can be modeled with two time windows: In

the first time window parties can still only arrive, and no party can

provide any input. However, in the following second time window

any party that arrived during the first time window, and any party

that is already present can provide input, but no party can arrive.

If no party arrived and no input was provided, then no event will

be created, and the decision function will not be evaluated. If at

least one party arrived, or at least one party provided input, then an

event will be created, and the decision function will be evaluated.
39

The OTTPI would leak which party sends multiple inputs, thus

we introduce a new OTTP version that partially hides which party

provides input.

Definition 10 (OTTP with Event Broadcast
40
). An OTTP

with event broadcast (OTTPE) is an ideal OTTP that additionally

behaves as follows:

• Whenever one or multiple parties arrive, the OTTPE broadcasts

the parties that arrive before any party can provide input.

• Whenever at least one party provided input (i. e., when an event

would happen), the OTTPE broadcasts that an event happens.

• After each decision 𝛾𝑖 (and possible output distribution), the

OTTPE broadcasts the set of parties present P𝑖 .

In other words, for every event, all parties participating know

which parties participate, and which parties arrived or left (im-

plicitly). However, it is private who provides input, except newly

arrived parties, as those always have to provide input.

Protocol 3 shows how parties can determine that an event hap-

pens without a party broadcasting that it wants to provide input.

Protocol 3 (Emulating an OTTPE
41
). The overall protocol is

similar to Protocol 2, and we only describe the main differences: The

idea is to use a special offline functionality ℎ𝑖 (and corresponding

protocol 𝜛𝑖) that will determine whether an event happens, i. e., at

least one party wants to provide input. Each party currently present

38
Correction: In the original version [24] parties just arrived in an event. However, as

“arriving” and “providing input” is now separated, we included a clarification of how

multiple parties can arrive at the same time.

39
Correction: In the original version [24] parties just arrived in an event. However, as

“arriving” and “providing input” is now separated, we included an approach of how

multiple parties can arrive at the same time and how multiple parties can provide

input.

40
Correction: In the original version [24] the OTTPE broadcasts the parties for each

event. However, as this is now split in having parties first “arrive” and then “provide

input”, the OTTPE also needs to first broadcast the parties that arrived. In addition,

we modeled the behavior more explicitly.

41
Extension: We added more details of the protocol, especially w. r. t. the ramp-up

phase.

provides its actual input if it wants to provide input, and otherwise

they send ⊥. The special offline functionality ℎ𝑖 outputs “1” if the

input of at least one party is not ⊥, and otherwise “0”.
The evaluation of the decision functionality is now as follows: All

parties jointly execute the special offline protocol 𝜛𝑖 . If the output

is “0”, then compute 𝜛𝑖 again. If the output is “1”, then the parties

continue executing 𝜋𝑖 (as done in Protocol 1) with the inputs used in

𝜛𝑖 . Note, the “inputs” ⊥ are ignored for the evaluation of 𝜋𝑖 . After

the outputs are distributed, the parties can essentially continue with

executing 𝜛𝑖 again.

If at least one party arrives, then they execute𝜛′
𝑖
, which is a slightly

modified version of 𝜛𝑖 : Protocol 𝜛
′
𝑖
essentially behaves like 𝜛𝑖 , but it

additionally does not accept ⊥ as input from parties that just arrived,

i. e., it enforces that a party that just arrived will always have to

provide actual input, e. g., assuming the approach that ⊥ is encoded

with an additional bit (cf. Section 5), then this bit is just not part

of the input for parties that just arrived. Therefore, 𝜛′
𝑖
will always

evaluate to 1 and thus cause the evaluation of 𝜋𝑖 . This is required as

a party that arrives will provide input (in the ideal model), and thus

the OTTPE will evaluate the decision function, i. e., arriving parties

cause an event to happen. If 𝜛𝑖 would be executed unchanged, and

a new (malicious) party provides ⊥ as input to 𝜛𝑖 , then this would

prevent the evaluation of the decision functionality, and thus differ

from the OTTPE.

Regarding the initial ramp-up phase, we must ensure that only the

input of parties that arrived or are present in an event 𝜎𝑖 are allowed to

actually provide input to 𝜋𝑖 . Note, the events are implicitly defined by

the parties arriving in certain time windows. However, this can easily

be achieved by essentially using 𝜛′
𝑖
again, but now 𝜛′

𝑖
additionally

accepts only inputs from the corresponding parties that are already

present or just arrived for the corresponding events (time windows).

Finally, note that as multiple parties can arrive in the same event,

events can happen only at certain points in time, e. g., each 5 minutes,

in order to allow parties to arrive (parties cannot arrive at the exact

same time). This implies, that at certain points in time an event could

have occurred. Therefore, whenever such a point in time is passed, then

𝜛𝑖 (or 𝜛
′
𝑖
) needs to be executed. After the ramp-up phase, if between

two “possible” events, the number of parties present does not change,

then this is already covered by repeatedly executing 𝜛𝑖 as described

above. Then, if𝜛𝑖 outputs “1” an event has happened, and if it outputs

“0” then no event happened. For the ramp-up phase this has to be done,

too: Events where parties arrive, are already covered above. And for

“possible” events that could have occurred without parties arriving we

have to execute 𝜛′
𝑖
accordingly, in order to evaluate the corresponding

events in retrospect.

Theorem 4. Protocol 3 perfectly emulates an OTTPE for any online

functionality with decision functionality

∞
𝑓 in the presence of an

adversary 𝐴am and a creator 𝐶< 1

3

with 𝜏 := 3, or in the presence of

an adversary 𝐴
sh

and a creator 𝐶< 1

2

with 𝜏 := 2. This holds only if

𝑛 ∈ N and 𝑛 > 𝜏 , and initially at least 𝑛 parties arrive first without

providing input (while their arrival is broadcast by the OTTPE), and

then those 𝑛 parties provide their inputs, and then at least 𝑛 parties

are always present.
42

42
Correction: In the original version [24] we just stated that “initially at least 𝑛 parties

arrive”, but the intended meaning was unclear. This is now corrected by specifying

this more precisely.

Proof. The proof is similar to the one of Theorem 2. According

to Theorem 1 there exists a protocol 𝜛𝑖 that perfectly emulates ℎ𝑖
(just repeatedly simulate the execution of ℎ𝑖 until a party wants

to actually provide input). The same holds for 𝜛′
𝑖
and the ramp-

up phase. Note, if the OTTPI broadcasts that an event happens,

then the simulator needs to ensure that 𝜛𝑖 evaluates to “1”, which

however the simulator can easily do. Hence, also the combined

execution of 𝜛𝑖 (or 𝜛
′
𝑖
) and 𝜋𝑖 perfectly emulates the combined

execution of ℎ𝑖 and 𝑓𝑖 . The existence of a simulator 𝑆 then follows

directly, and 𝑆 behaves similar as in the proof of Theorem 2. □

If each party is allowed to provide input in multiple events, then

parties can arrive early without providing actual input, e. g., a party

can arrive and participate in the evaluation by first only sending

a “hello”, and later its actual input. Similar, a party can leave early,

e. g., sending a “bye” without being matched at all. In addition, a

party can leave late, if the removal from the state is triggered by

the party itself, e. g., disregarding whether a party is matched or

not, the party is only removed from the state if the party sends a

“bye”.

However, allowing such functionalities makes it desirable to

hide when an event happens: Consider the RANDOM matching

algorithm with 𝑛 servers (cf. Section 6). Assume that at least𝑚 ≥
𝑛 parties arrived and no party left. After at most 𝑚 + 𝑛 events

(“hello” and actual input) we know that at least 𝑛 of the𝑚 parties

are matched. If𝑚 = 𝑛 then we know which parties are matched.

However, if we cannot count the events w. r. t. providing actual

input, then we cannot deduce that. Therefore, we introduce again

a new OTTP version that partially hides when an event happens.

Definition 11 (OTTPwith public Participation
43
). AnOTTP

with public participation (OTTPP) is an ideal OTTP that additionally

behaves as follows:

• Whenever one or multiple parties arrive, the OTTPP broadcasts

the parties that arrive before any party can provide input.

• Whenever after a decision 𝛾𝑖 (and possible output distribution)

the set of parties present changed (P𝑖 ≠ P𝑖−1), the OTTPP
broadcasts the set of parties present P𝑖 . The index 𝑖 is not

known to any party.

Protocol 4 (Emulating an OTTPP
44
). The overall protocol is

similar to Protocol 3, and we only describe the main differences: Instead

of using a special offline functionality ℎ𝑖 (protocol 𝜛𝑖) to determine

that an event happens, we will combine ℎ𝑖 and 𝑓𝑖 into 𝑓 ′
𝑖
(combine

𝜛𝑖 and 𝜋𝑖 into 𝜋
′
𝑖
) and repeatedly evaluate 𝑓 ′

𝑖
, i. e., 𝜋 ′

𝑖
will not output

“1” or “0” depending on whether an actual input was provided or not:

Parties that want to provide input use their actual input and their

share of the state 𝜙𝑖 as input for 𝜋
′
𝑖
. Parties without actual input use

⊥ and their share of the state 𝜙𝑖 as input for 𝜋
′
𝑖
. If all parties send

⊥, then 𝜋 ′
𝑖
(i. e., 𝑓 ′

𝑖
) computes a dummy evaluation of

∞
𝑓 and outputs

(𝜙𝑖 , ∅). If at least one party sends an actual input, then 𝜋 ′
𝑖
(i. e., 𝑓 ′

𝑖
)

will evaluate

∞
𝑓 with the actual inputs and state, and distribute the

43
Correction: In the original version [24] the OTTPP broadcasts the set of parties

only when it changes. We here make it more explicit that arriving parties are always

broadcast, before any party can provide input, too. In addition, wemodeled the behavior

more explicitly.

44
Extension: We added some additional information for clarification.

outputs as done before by 𝜋𝑖 (i. e., 𝑓𝑖). After the outputs are distributed,

the parties can essentially continue with executing 𝜋 ′
𝑖
again.

Similar as in Protocol 3, the evaluation of the decision functionality

has to be done whenever new parties arrive, also the ramp-up phase

has to consider which parties are actually present in each event, and

“possible” events (caused by the time-window for each event) have to be

considered accordingly. This includes especially events in the ramp-up

phase where parties provide input multiple times, without new parties

arriving in between. These situations can be handled analogously as

already described in Protocol 3, and are thus not repeated.

Theorem 5. Protocol 4 perfectly emulates an OTTPP for any online

functionality with decision functionality

∞
𝑓 in the presence of an

adversary 𝐴am and a creator 𝐶< 1

3

with 𝜏 := 3, or in the presence of

an adversary 𝐴
sh

and a creator 𝐶< 1

2

with 𝜏 := 2. This holds only if

𝑛 ∈ N and 𝑛 > 𝜏 , and initially at least 𝑛 parties arrive first without

providing input (while their arrival is broadcast by the OTTPP), and

then those 𝑛 parties provide their inputs, and then at least 𝑛 parties

are always present.
45

Proof. The proof is similar to the ones of Theorems 2 and 4.

According to Theorem 1 there exists a protocol 𝜋 ′
𝑖
that perfectly

emulates the offline functionality 𝑓 ′
𝑖
. The existence of a simulator

𝑆 then follows directly, and 𝑆 behaves similar as in the proof of

Theorem 2. □

Remark 5 (Partial privacy with public arrival). The greedy

algorithm for online matching with general arrival can guarantee

partial privacy with public arrival if we allow parties to stay although

they are already matched and allow them to leave although they are

not yet matched. If no party arrives or leaves, then no event happens.

If at least one party arrives, and no party leaves, then either no party

is matched, or at least one party is matched and decided to stay. If at

least one party arrives, and at least one party leaves, then either no

party is matched and at least one party decided to leave unmatched,

or at least one party is matched and left. If no party arrives, and at

least one party leaves, then the party leaving is either matched and

waited till now, or left unmatched. In all cases, nothing can be learned.

However, it is not perfect: Assume that initially five parties 𝑝1, . . . , 𝑝5
arrive, where 𝑝4 and 𝑝5 are controlled by a semi-honest adversary.

Assume the matches are (𝑝2, 𝑝4) and (𝑝3, 𝑝5), but no party leaves.

Now, assume 𝑝1 and 𝑝5 leave (preserve honest majority), and the

evaluation continues with other parties arriving. If 𝑝1 never arrives

again, then the adversary learns that 𝑝1 leaves unmatched.
46

W. r. t. the amount of information leaked, it holds that OTTPI

≥ OTTPE ≥ OTTPP ≥ ideal OTTP (equality holds only for certain

functionalities): The ideal OTTP leaks nothing which is not spec-

ified by the online functionality. If a party arrives or leaves, the

OTTPI, the OTTPE and the OTTPP leak that an event happens.

Events where no parties arrive or leave stay hidden in the OTTPP

model, but are known by every participating party in the OTTPE

and the OTTPI model. Note, parties providing input or obtaining

45
Correction: In the original version [24] we just stated that “initially at least 𝑛 parties

arrive”, but the intended meaning was unclear. This is now corrected by specifying

this more precisely.

46
Correction: In the original version [24] 𝑝1 and 𝑝2 where corrupted, which is strictly

speaking not possible assuming the creator ensures an honest majority at all times.

Therefore, we changed the corrupted parties to be 𝑝4 and 𝑝5 to be consistent.

output will always learn that an event happened. Only the OTTPI

leaks always (for every event) which parties provide input.

C.3 A Note on Efficiency and Practicality
Protocols 2, 3 and 4 emulating the OTTPI, OTTPE and OTTPP

imply very different impacts on computational efficiency. They

indicate that the amount of information we want to hide correlates

with the computation overhead. Protocol 4 emulating an OTTPP is

by far the most inefficient, as the actual computation has to be done

continuously. Protocol 3 emulating an OTTPE is more efficient, as

the special offline protocol𝜛𝑖 (or𝜛
′
𝑖
) is rather simple and can easily

be called frequently. Protocol 2 emulating an OTTPI is obviously

the most efficient one, as computations are only performed when

actually required.

As discussed in Appendix B, the arrival of parties seems rather

hard to hide in a purely distributed online setting. Thus, for now the

OTTPI, OTTPE and OTTPP model seem to be the only reasonable

(and possibly feasible) models to study.

D CLASSICAL SMPC
We use the description of Goldreich [19] of SFE and reactive SMPC

as basis for Definitions 12 to 15 and the corresponding TTPs in

Definitions 16 and 17. However, we adapt it such that it is consistent

and easier comparable with our definition of online functionalities

in Section 4.
47

D.1 Offline Functionalities
An offline functionality is a function mapping inputs to outputs.

Definition 12 (Offline Functionality). Let X be an input

space and let Y be an output space. An offline functionality 𝑓 :

X𝑛 → Y𝑛
is defined as (𝑦1, . . . , 𝑦𝑛) := 𝑓 (𝑥1, . . . , 𝑥𝑛) with 𝑥ℓ ∈ X

and 𝑦ℓ ∈ Y for ℓ ∈ {1, . . . , 𝑛}.

A simple offline functionality is the function 𝑓 (𝑥1, 𝑥2) := (𝑥1 +
𝑥2, 𝑥1 + 𝑥2) which computes the sum of two inputs.

The evaluation of an offline functionality with the private inputs

of parties is defined as follows:

Definition 13 (Evaluation of an Offline Functionality).

Let P := {𝑝1, . . . , 𝑝𝑛} be a set of parties and let 𝑥1, . . . , 𝑥𝑛 ∈ X be

their corresponding private inputs.

An offline functionality 𝑓 : X𝑛 → Y𝑛
is evaluated by computing

(𝑦1, . . . , 𝑦𝑛) := 𝑓 (𝑥1, . . . , 𝑥𝑛). Party 𝑝ℓ ∈ P will obtain output𝑦ℓ ∈ Y
for ℓ ∈ {1, . . . , 𝑛}.

D.2 Reactive Functionalities
A reactive functionality maps iteratively inputs to outputs given a

state. In one iteration the reactive function computes the outputs

and updates the state.

Definition 14 (Reactive Functionality). Let X be an input

space, let Y be an output space and let Φ be a state space. A reactive

functionality maps an ordered sequence of inputs (𝑥1,1, . . . , 𝑥1,𝑛),
(𝑥2,1, . . . , 𝑥2,𝑛), . . . ∈ X𝑛

to an ordered sequence of outputs (𝑦1,1, . . . ,
47
Correction: In the original version [24] parties obtained output only if it was not

⊥. However, as here now ⊥ ∉ X and ⊥ ∉ Y, this condition is now removed in the

corresponding definitions here in Appendix D, too.

𝑦1,𝑛), (𝑦2,1, . . . , 𝑦2,𝑛), . . . ∈ Y𝑛
by iteratively computing a reactive

function 𝑓 : Φ × X𝑛 → Φ × Y𝑛
. The reactive function is defined

as (𝜙𝑖 , 𝑦𝑖,1, . . . , 𝑦𝑖,𝑛) := 𝑓
(
𝜙𝑖−1, 𝑥𝑖,1, . . . , 𝑥𝑖,𝑛

)
where 𝜙0 ∈ Φ is the

initial state.

A simple reactive functionality is the function 𝑓
(
𝜙𝑖−1, 𝑥𝑖,1, 𝑥𝑖,2

)
:=

(𝜙𝑖−1 +𝑥𝑖,1 +𝑥𝑖,2, 𝜙𝑖−1, 𝜙𝑖−1) with 𝜙0 := 0 which computes the sum

of all previous inputs over time.

The evaluation of a reactive functionality with the private inputs

of parties is defined as follows:

Definition 15 (Evaluation of a Reactive Functionality).

Let P := {𝑝1, . . . , 𝑝𝑛} be a set of parties and let (𝑥𝑖,1, . . . , 𝑥𝑖,𝑛) ∈ X𝑛

be their corresponding 𝑖-th private inputs. Let 𝜙0 ∈ Φ be the initial

state.

For each input (𝑥𝑖,1, . . . , 𝑥𝑖,𝑛) the reactive function 𝑓 : Φ × X𝑛 →
Φ × Y𝑛

is evaluated as (𝜙𝑖 , 𝑦𝑖,1, . . . , 𝑦𝑖,𝑛) := 𝑓
(
𝜙𝑖−1, 𝑥𝑖,1, . . . , 𝑥𝑖,𝑛

)
.

After each evaluation, party 𝑝ℓ ∈ P will obtain output 𝑦𝑖,ℓ ∈ Y for

ℓ ∈ {1, . . . , 𝑛}.

D.3 Offline Trusted Third Party
Next we define an offline TTP that allows parties to securely evalu-

ate an offline functionality. An offline TTP receives the inputs of

the participating parties, evaluates the functionality, and finally

distributes to each participating party is prescribed output. After

this process, the evaluation is finished.

Definition 16 (Offline TTP). An offline TTP evaluates an of-

fline functionality 𝑓 for a set of parties P := {𝑝1, . . . , 𝑝𝑛} as follows:
(1) All parties send their private inputs 𝑥1, . . . , 𝑥𝑛 to the offline

TTP.

(2) The offline TTP computes (𝑦1, . . . , 𝑦𝑛) := 𝑓 (𝑥1, . . . , 𝑥𝑛).
(3) The offline TTP sends the output𝑦 𝑗 to party 𝑝 𝑗 for 𝑗 ∈ {1, . . . , 𝑛}.

An offline TTP cannot evaluate an online functionality, as it

neither allows the parties to provide input over time nor is capable

of storing a state.

D.4 Reactive Trusted Third Party
In contrast to an offline TTP that is finished after providing outputs,

a reactive TTP continuously receives inputs and provides outputs.

Definition 17 (Reactive TTP). Let the partiesP := {𝑝1, . . . , 𝑝𝑛}
provide their inputs (𝑥1,1, . . . , 𝑥1,𝑛), (𝑥2,1, . . . , 𝑥2,𝑛), . . . in an ordered

sequence. An reactive TTP evaluates a reactive functionality with

reactive function 𝑓 : Φ × X𝑛 → Φ ×Y𝑛
as follows: The reactive TTP

stores the initial state 𝜙0.

(1) The reactive TTP receives all 𝑖-th private inputs 𝑥𝑖,1, . . . , 𝑥𝑖,𝑛 .

(2) The reactive TTP computes

(𝜙𝑖 , 𝑦𝑖,1, . . . , 𝑦𝑖,𝑛) := 𝑓
(
𝜙𝑖−1, 𝑥𝑖,1, . . . , 𝑥𝑖,𝑛

)
.

(3) The reactive TTP sends the 𝑖-th output 𝑦𝑖, 𝑗 to party 𝑝 𝑗 for

𝑗 ∈ {1, . . . , 𝑛}.
(4) The reactive TTP stores the new state 𝜙𝑖 and deletes the old

state 𝜙𝑖−1.

A reactive TTP cannot evaluate an online functionality, as it

requires a fixed set of parties that is known a priori, and it does not

allow to change the number of parties participating over time.

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Notation
	3.2 Perfect Indistinguishability
	3.3 Shamir's Secret Sharing Scheme
	3.4 Online Algorithms

	4 Model
	4.1 Online Functionalities
	4.2 Online Trusted Third Party
	4.3 Security Model
	4.4 Adversary and Creator
	4.5 Perfectly Emulating Offline Functionalities
	4.6 Ideal Bulletin Board

	5 Feasibility Result
	6 Limits of the OTTPI
	7 Additional Results
	8 Conclusion
	Acknowledgments
	References
	A Dishonest Majority
	B Hiding the Arrival of Parties
	C Extensions
	C.1 Multiple Parties per Event
	C.2 Provide Input in multiple Events
	C.3 A Note on Efficiency and Practicality

	D Classical SMPC
	D.1 Offline Functionalities
	D.2 Reactive Functionalities
	D.3 Offline Trusted Third Party
	D.4 Reactive Trusted Third Party

