
Fully Succinct Batch Arguments for NP from

Indistinguishability Obfuscation

Rachit Garg
1
, Kristin Sheridan

1
, Brent Waters

1,2
, and David J. Wu

1

1
UT Austin

{rachg96, kristin, bwaters, dwu4}@cs.utexas.edu
2
NTT Research

Abstract

Non-interactive batch arguments for NP provide a way to amortize the cost of NP veri�cation across multiple

instances. In particular, they allow a prover to convince a veri�er of multiple NP statements with communication

that scales sublinearly in the number of instances.

In this work, we study fully succinct batch arguments for NP in the common reference string (CRS) model where

the length of the proof scales not only sublinearly in the number of instances T , but also sublinearly with the size

of the NP relation. Batch arguments with these properties are special cases of succinct non-interactive arguments

(SNARGs); however, existing constructions of SNARGs either rely on idealized models or strong non-falsi�able

assumptions. The one exception is the Sahai-Waters SNARG based on indistinguishability obfuscation. However,

when applied to the setting of batch arguments, we must impose an a priori bound on the number of instances.

Moreover, the size of the common reference string scales linearly with the number of instances.

In this work, we give a direct construction of a fully succinct batch argument for NP that supports an unbounded

number of statements from indistinguishability obfuscation and one-way functions. Then, by additionally relying

on a somewhere statistically binding (SSB) hash function, we show how to extend our construction to obtain a

fully succinct and updatable batch argument. In the updatable setting, a prover can take a proof π on T statements

(x1, . . . , xT) and “update” it to obtain a proof π ′ on (x1, . . . , xT , xT+1). Notably, the update procedure only requires

knowledge of a (short) proof for (x1, . . . , xT) along with a single witnesswT+1 for the new instance xT+1. Importantly,

the update does not require knowledge of witnesses for x1, . . . , xT .

1 Introduction
Non-interactive batch arguments (BARGs) provide a way to amortize the cost of NP veri�cation across multiple

instances. Speci�cally, in a batch argument, the prover has a collection of NP statements x1, . . . , xT and their goal is

to convince the veri�er that xi ∈ L for all i , where L is the associated NP language. The trivial solution is to have

the prover send over the associated NP witnesses w1, . . . ,wT and have the veri�er check each one individually. The

goal in a batch argument is to obtain shorter proofs—namely, proofs whose size scales sublinearly in T .

In this work, we operate in the common reference string (CRS) model where we assume that there is a one-time

(trusted) sampling of a structured reference string. Within this model, we focus on the setting where where the proof

is non-interactive (i.e., the proof consists of a single message from the prover to the veri�er) and publicly-veri�able

(i.e., verifying the proof only requires knowledge of the associated statements and the CRS). Finally, we require

soundness to hold against computationally-bounded provers; namely, our goal is to construct batch argument systems.

Recently, there has been a �urry of work constructing batch arguments for NP satisfying these requirements from

standard lattice assumptions [CJJ21b, DGKV22], assumptions on groups with bilinear maps [WW22], and from a

combination of subexponential hardness of the DDH assumption together with the QR assumption [CJJ21a].

1

mailto:rachg96@cs.utexas.edu
mailto:kristin@cs.utexas.edu
mailto:bwaters@cs.utexas.edu
mailto:dwu4@cs.utexas.edu

This work: fully succinct batch arguments. The size of the proof in the aforementioned BARG constructions

all scale linearly with the size of the NP relation. In other words, to check T statements for an NP relation that is

computable by a circuit of size s , the proof sizes scale with poly(λ, s) · o(T), where λ is the security parameter. In

this work, we study the setting where the proof size |π | scales sublinearly in both the number of instances T and the

size s of the NP relation. More precisely, we require that |π | = poly(λ, log s, logT), and we refer to batch arguments

satisfying this property to be “fully succinct.” Our primary goal in this work is to minimize the communication cost

of batch NP veri�cation.

We note that this level of succinctness is typically characteristic of succinct non-interactive arguments (SNARGs),

and indeed any SNARG directly implies a fully succinct batch argument. However, existing constructions of SNARGs

either rely on random oracles [Mic95, BBHR18, COS20, CHM
+

20, Set20], the generic group model [Gro16], or strong

non-falsi�able assumptions [Gro10, BCCT12, DFH12, Lip13, PHGR13, GGPR13, BCI
+

13, BCPR14, BISW17, BCC
+

17,

BISW18, ACL
+

22]. Indeed, Gentry and Wichs [GW11] showed that no construction of an (adaptively-sound) SNARG

for NP can be proven secure via a black-box reduction to a falsi�able assumption [Nao03].

The only construction of (non-adaptively sound) SNARGs from falsi�able assumptions is the construction by

Sahai and Waters based on indistinguishability obfuscation (iO) [SW14] in conjunction with the recent breakthrough

works of Jain et al. [JLS21, JLS22] that base indistinguishability obfuscation on falsi�able assumptions. However, the

Sahai-Waters SNARG from iO imposes an a priori bound on the number of statements that can be proven, and in

particular, the size of the CRS grows with the total length of the statement and witness (i.e., the CRS consists of an

obfuscated program that reads in the statement and the witness and outputs a signature on the statements if the input

is well-formed). When applied to the setting of batch veri�cation, this limitation means that we need to impose an a
priori bound of the number of instances that can be proved, and the size of the CRS necessarily scales with this bound.

Our goal in this work is to construct a fully succinct batch argument for NP that supports an arbitrary number of

instances from indistinguishability obfuscation and one-way functions (i.e., the same assumption as the construction

of Sahai and Waters).

An approach using recursive composition. A natural approach for constructing a fully succinct batch argument

that supports an arbitrary polynomial number of statements is to compose a SNARG with polylogarithmic veri�cation

cost (for a single statement) with a batch argument that supports an unbounded number of statements. Namely, to

prove that (x1, . . . , xT) are true, the prover would proceed as follows:

1. First, for each statement xi ∈ {0, 1}
`
, the prover constructs a SNARG proof πi . If the SNARG has a polyloga-

rithmic veri�cation procedure, then the size of the SNARG veri�cation circuit for checking (xi , πi) is bounded

by poly(λ, `, log s), where s is the size of the circuit for checking the underlying NP relation.

2. Next, the prover uses a batch argument to demonstrate that it knows (π1, . . . , πT) where πi is an accepting

SNARG proof on instance xi ∈ {0, 1}
`
. This is a batch argument for checking T instances of the SNARG

veri�cation circuit, which has size poly(λ, `, log s). If the size of the batch argument scales polylogarithmically

with the number of instances, then the overall proof has size poly(λ, `, log s, logT).

Moreover, using a somewhere extractable commitment scheme [HW15, CJJ21b], it is possible to remove the dependence

on the instance size `.1 This yields a fully succinct batch argument with proof size poly(λ, log s, logT). To argue (non-

adaptive) soundness of this approach, we rely on soundness of the underlying SNARG and somewhere extractability

of the underlying batch argument (i.e., a BARG where the CRS can be programmed to a speci�c (hidden) index i∗

such that there exists an e�cient extractor that takes any accepting proof π for a tuple (x1, . . . , xT) and outputs

a valid witness wi∗ for instance xi∗). We can now instantiate the SNARG with polylogarithmic veri�cation cost

using the Sahai-Waters construction based on iO and one-way functions, and the somewhere extractable BARG for

an unbounded number of instances with the recent lattice-based scheme of Choudhuri et al. [CJJ21b]. This result

provides a basic feasibility result for the existence of fully succinct batch arguments for NP. However, instantiating

this compiler requires two sets of assumptions: iO and one-way functions for the underlying SNARG, and lattice-based

assumptions for the BARG.

1
One way to do this is to observe that the above approach already gives a fully succinct batch argument for index languages (i.e., a batch language

where the T ≤ 2
λ

instances are de�ned to be (x1, x2, . . . , xT) = (1, 2, . . . ,T)). Then, we can apply the index BARG to BARG transformation

from Choudhuri et al. [CJJ21b], which relies on somewhere extractable commitments.

2

Our results. In this work, we provide a direct route for constructing fully succinct BARGs that support an unbounded

number of statements from iO and one-way functions. Notably, combined with the breakthrough work of Jain, Lin,

and Sahai [JLS22], this provides an instantiation of fully succinct BARGs without lattice assumptions (in contrast

to the generic approach above). Using our construction, proving T statements for an NP relation of size s requires

a proof of length poly(λ). This is independent of both the number of statements T and the size s of the associated

NP relation. Like the scheme of Sahai and Waters, our construction satis�es non-adaptive soundness (and perfect

zero-knowledge). We summarize this instantiation in the informal theorem below:

Theorem 1.1 (Fully Succinct BARG (Informal)). Assuming the existence of indistinguishability obfuscation and one-way
functions, there exists a fully succinct, non-adaptively sound batch argument for NP. The batch argument satis�es perfect
zero knowledge.

Updatable batch arguments. We also show how to extend our construction to obtain an updatable BARG through

the use of somewhere statistically binding (SSB) hash functions [HW15, OPWW15]. In an updatable BARG, a prover

is able to take an existing proof πT on statements (x1, . . . , xT) along with a new statement xT+1 with associated NP
witness wT+1 and update π to a new proof π ′ on instances (x1, . . . , xT , xT+1). Notably, the update algorithm does not
require the prover to have a witness for any statement other than xT+1. This is useful in settings where the full set

of statements/witnesses are not �xed in advance (e.g., in a streaming setting). For example, a prover might want to

compute a summary of all transactions that occur in a given day and then provide a proof that the summary re�ects

the complete set of transactions from the day. An updatable BARG would allow the prover to maintain just a single

proof that authenticates all of the summary reports from di�erent days, and moreover, the prover does not have to

maintain the full list of transactions from earlier days to perform the update. We show how to obtain a fully succinct

updatable BARG in Section 5, and we summarize this instantiation in the following theorem.

Theorem 1.2 (Updatable BARG (Informal)). Assuming the existence of indistinguishability obfuscation and somewhere
statistically binding hash functions, there exists a fully succinct, non-adaptively sound updatable batch argument for NP.
The batch argument satis�es perfect zero knowledge.

1.1 Technical Overview
In this section, we provide a high-level overview of the techniques that we use to construct fully succinct BARGs.

Throughout this section, we consider the batch NP language of Boolean circuit satis�ability. Namely, the prover has

a Boolean circuit C and a collection of instances x1, . . . , xT , and its goal is to convince the veri�er that there exist

witnesses w1, . . . ,wT such that C(xi ,wi) = 1 for all i ∈ [T].

The Sahai-Waters SNARG. As a warmup, we recall the Sahai-Waters [SW14] construction of SNARGs from iO
for a single instance (i.e., the case where T = 1). In this construction, the common reference string (CRS) consists

of two obfuscated programs: Prove and Verify. The Prove program takes in the circuit C , the statement x , and the

witness w , and outputs a signature σ on (C, x) if C(x,w) = 1 and ⊥ otherwise. The proof is simply the signature

π = σ . The Verify program takes in the description of the circuit C , the statement x , and the proof π = σ , and checks

whether σ is a valid signature on (C, x) or not. The signature in this case just corresponds to the evaluation of a

pseudorandom function (PRF) on the input (C, x). The key to the PRF is hard coded in the obfuscated proving and

veri�cation programs. Security in turn, relies on the Sahai-Waters “punctured programming” technique.

Batch arguments for index languages. To construct fully succinct batch arguments, we start by considering

the special case of an index language (similar to the starting point in the lattice-based construction of Choud-

huri et al. [CJJ21b]). In a BARG for an index language, the statements are simply the indices (1, 2, . . . ,T). The prover’s

goal is to convince the veri�er that there exists wi such that C(i,wi) = 1 for all i ∈ [T]. We start by showing how to

construct a fully succinct BARG for index languages with an unbounded number of instances (i.e., an index language

for arbitrary polynomial T). Our construction proceeds iteratively as follows. Like the Sahai-Waters construction, the

CRS in our scheme consists of the obfuscation of the following two programs:

3

• The proving program takes in a circuit C , an index i , a witness wi for instance i , and a proof π for the �rst i − 1
statements. The program checks that C(i,wi) = 1 and that the proof π on the �rst i − 1 statements is valid.

When i = 1, then we ignore the latter check. If both conditions are satis�ed, the program outputs a signature

on statement (C, i). Notably, the size of the prover program only scales with the size of the circuit and the

bit-length of the number of instances (instead of linearly with the number of instances).

Similar to the construction of Sahai and Waters, we de�ne the “signature” on the statement (C, i) to be

π = F(k, (C, i)), where F is a puncturable PRF [BW13, KPTZ13, BGI14],
2

and k is a PRF key that is hard-coded

in the proving program.

• To verify a proof on T statements (i.e., the instances 1, . . . ,T), the veri�cation program simply checks that

the proof π is a valid signature on the pair (C,T). Based on how we de�ned the proving program above, this

corresponds to checking that π = F(k, (C,T)). Now, to argue soundness using the Sahai-Waters punctured

programming paradigm, we modify this check and replace it with the check

G(π) ?

= G(F(k, (C,T))),

where G is a length-doubling pseudorandom generator (PRG). This will be critical for arguing soundness.

Soundness of the index BARG. To argue non-adaptive soundness of the above approach (i.e., the setting where

the statement is chosen independently of the CRS), we apply the punctured programming techniques of Sahai

and Waters [SW14]. Take any circuit C∗ and suppose there is an index i∗ where for all witnesses w , we have that

C∗(i∗,w) = 0. Our soundness analysis proceeds in two steps:

• We �rst show that no e�cient prover can compute an accepting proof π on instances (1, . . . , i∗) for circuit C∗.

• Then, we show how to “propagate” the inability to construct a valid proof on index i∗ to all indices i ≥ i∗. This

in turn su�ces to argue non-adaptive soundness for an arbitrary polynomial number of statements.

We now sketch the argument for the �rst step. In the following overview, suppose the output space of the PRF F is

{0, 1}λ and suppose that G : {0, 1}λ → {0, 1}2λ is a length-doubling PRG.

• The real CRS consists of obfuscations of the following proving and veri�cation programs:

Prove(C , i ,wi , π):

– If C(i ,wi) = 0, output ⊥.

– If i = 1, output F(k , (C , i)).
– If G(π) = G(F(k , (C , i − 1))), output F(k , (C , i)).
– Output ⊥.

Verify(C , i , π):

– If G(π) = G(F(k , (C , i))), output 1

– Output 0.

• First, instead of embedding the real PRF key k in the proving and veri�cation programs, we embed a punctured

PRF key k ′ that is punctured on the input (C∗, i∗). Whenever the proving and veri�cation program needs to

evaluate F on the punctured point (C∗, i∗), we hard-code the value z = F(k, (C∗, i∗)):

Prove(C , i ,wi , π):

– If C(i ,wi) = 0, output ⊥.

– If C = C∗ and i = i∗, output ⊥.

– If i = 1, output F(k ′, (C , i)).
– If C = C∗ and i − 1 = i∗:

∗ If G(π) = G(z), output F(k ′, (C , i)).
∗ Otherwise, output ⊥.

– If G(π) = G(F(k ′, (C , i − 1))), output F(k ′, (C , i)).
– Output ⊥.

Verify(C , i , π):

– If C = C∗ and i = i∗, output 1 if G(π) = G(z) and 0 otherwise.

– If G(π) = G(F(k ′, (C , i))), output 1.

– Output 0.

2
A puncturable PRF is a PRF where the holder of the master secret key can “puncture” the key on an input x ∗. The resulting punctured key k ′ can

be used to evaluate the PRF on all inputs except x ∗. The value of the PRF at x ∗ remains pseudorandom (i.e., computationally indistinguishable

from random) even given the punctured key k ′. We provide the formal de�nition in De�nition 2.2.

4

Since the punctured PRF is functionality-preserving, on all inputs (C, i) , (C∗, i∗), we have that F(k, (C, i)) =
F(k ′, (C, i)). Since z = F(k, (C∗, i∗)), the input/output behavior of the veri�cation program is unchanged. Next,

C(i∗,w) = 0 for all w , so the input/output behavior of the proving program is also unchanged. Security of iO
then ensures that the obfuscated proving and veri�cation programs are computationally indistinguishable from

those in the real CRS.

• Observe that both the proving and veri�cation programs can be constructed given just the value of G(z) without
necessarily knowing z itself. We now replace the target value G(z) with a uniform random string t r

← {0, 1}2λ .

This follows by (1) puncturing security of F which says that the value of z = F(k, (C∗, i∗)) is computationally

indistinguishable from a uniform string z r

← {0, 1}λ ; and (2) by PRG security since the distribution of G(z)
where z r

← {0, 1}λ is computationally indistinguishable from sampling a uniform random string t r

← {0, 1}2λ .

With these modi�cations, the proving and veri�cation programs behave as follows:

Prove(C , i ,wi , π):

– If C(i ,wi) = 0, output ⊥.

– If C = C∗ and i = i∗, output ⊥.

– If i = 1, output F(k ′, (C , i)).
– If C = C∗ and i − 1 = i∗:

∗ If G(π) = t , output F(k ′, (C , i)).
∗ Otherwise, output ⊥.

– If G(π) = G(F(k ′, (C , i − 1))), output F(k ′, (C , i)).
– Output ⊥.

Verify(C , i , π):

– If C = C∗ and i = i∗, output 1 if G(π) = t and 0 otherwise.

– If G(π) = G(F(k ′, (C , i))), output 1.

– Output 0.

• Since t is uniform in {0, 1}2λ , the probability that t is even in the image of G is at most 2
−λ

. Thus, in this

experiment, with probability 1 − 2−λ , there does not exist any accepting proof π for input (C∗, i∗). This means

that we can now revert to using the PRF key k in both the proving and veri�cation programs and simply reject

all proofs on instance (C∗, i∗). In other words, we can replace the proving and veri�cation programs with

obfuscations of the following programs by appealing to the security of iO:

Prove(C , i ,wi , π):

– If C(i ,wi) = 0, output ⊥.

– If C = C∗ and i = i∗, output ⊥.

– If i = 1, output F(k , (C , i)).
– If C = C∗ and i − 1 = i∗, output ⊥.

– If G(π) = G(F(k , (C , i − 1))), output F(k ′, (C , i)).
– Output ⊥.

Verify(C , i , π):

– If C = C∗ and i = i∗, output 0.

– If G(π) = G(F(k , (C , i))), output 1.

– Output 0.

In this �nal experiment, there no longer exists an accepting proof π on instances (1, . . . , i∗) for circuit C∗. Next, we

show how to extend this argument to additionally remove accepting proofs on the batch of instances (1, . . . , i∗, i∗ + 1).
We leverage a similar strategy as before:

• We replace the PRF key k with a punctured key k ′ that is punctured at (C∗, i∗ + 1) in both the proving and

veri�cation programs. Again, whenever the programs need to compute F(k, (C∗, i∗ + 1)), we substitute a

hard-coded value z = F(k, (C∗, i∗ + 1)):

Prove(C , i ,wi , π):

– If C(i ,wi) = 0, output ⊥.

– If C = C∗ and i∗ ≤ i ≤ i∗ + 1, output ⊥.

– If i = 1, output F(k ′, (C , i)).
– If C = C∗ and i − 1 = i∗ + 1:

∗ If G(π) = G(z), output F(k ′, (C , i)).
∗ Otherwise, output ⊥.

– If G(π) = G(F(k ′, (C , i − 1))), output F(k ′, (C , i)).
– Output ⊥.

Verify(C , i , π):

– If C = C∗, and i = i∗, output 0.

– If C = C∗, i = i∗ + 1, output 1 if G(π) = G(z) and 0 otherwise.

– If G(π) = G(F(k ′, (C , i))), output 1.

– Output 0.

Note that to simplify the notation, we merged the individual checks (C = C∗ and i = i∗) and (C = C∗ and

i − 1 = i∗) in the proving program into a single check that outputs ⊥ if satis�ed.

• Observe once again that the description of the proving and veri�cation programs only depends on G(z) (and not
z itself). By the same sequence of steps as above, we can appeal to puncturing security of F, pseudorandomness

5

of G, and security of iO to show that the obfuscated proving and veri�cation programs are computationally

indistinguishable from the following programs:

Prove(C , i ,wi , π):

– If C(i ,wi) = 0, output ⊥.

– If C = C∗ and i∗ ≤ i ≤ i∗ + 2, output ⊥.

– If i = 1, output F(k , (C , i)).
– If G(π) = G(F(k , (C , i − 1))), output F(k , (C , i)).
– Output ⊥.

Verify(C , i , π):

– If C = C∗ and i∗ ≤ i ≤ i∗ + 1, output 0.

– If G(π) = G(F(k , (C , i))), output 1.

– Output 0.

We can repeat the above strategy any polynomial number of times. In particular, for any T = poly(λ), we can replace

the obfuscated programs in the CRS with the following programs:

Prove(C , i ,wi , π):

– If C(i ,wi) = 0, output ⊥.

– If C = C∗ and i∗ ≤ i ≤ T + 1, output ⊥.

– If i = 1, output F(k , (C , i)).
– If G(π) = G(F(k , (C , i − 1))), output F(k , (C , i)).
– Output ⊥.

Verify(C , i , π):

– If C = C∗ and i∗ ≤ i ≤ T , output 0.

– If G(π) = G(F(k , (C , i))), output 1.

– Output 0.

By security of iO, the puncturable PRF, and the PRG, this modi�ed CRS is computationally indistinguishable from the

real CRS. However, when the veri�cation program is implemented as above, there are no accepting proofs on input

(C∗, i) for any i∗ ≤ i ≤ T . Moreover, the size of the obfuscated programs only depends on logT (and not T). As such,

the scheme supports an arbitrary polynomial number of statements. We give the full analysis in Section 3.

Adaptive soundness and zero knowledge. Using standard complexity leveraging techniques, we show how to

extend our BARG for index languages with non-adaptive soundness into one with adaptive soundness in Appendix A.

We note that due to the reliance on complexity leveraging, the resulting BARGs we obtain are no longer fully succinct;

the proof size now scales with the size of the NP relation, but critically, still sublinearly in the number of instances.

Moreover, in the case of general NP languages, our adaptively-sound construction has an expensive veri�cation

procedure (i.e., which runs in time poly(λ,T , s), whereT is the number of instances and s is the size of the underlying

NP relation). We also note that much like the construction of Sahai and Waters, both our fully succinct non-adaptive

BARG and our adaptive BARG satisfy perfect zero-knowledge.

From index languages to general NP languages. Next, we show how to bootstrap our fully succinct BARG for

index languages to obtain a fully succinct BARG for NP that supports an arbitrary polynomial number of statements.

In this setting, the prover has a Boolean circuit C and arbitrary instances x1, . . . , xT ; the prover’s goal is to convince

the veri�er that for all i ∈ [T], there exists wi such that C(xi ,wi) = 1.

The key di�erence between general NP languages and index languages is that the tuple of statements (x1, . . . , xT)
no longer has a succinct description. This property was critical in our soundness analysis above. The soundness

argument we described above works by embedding the instances xi∗, xi∗+1, . . . , xT into the proving and veri�cation

programs (where xi∗ denotes a false instance) and have the programs always reject proofs on these statements (with

respect to the target circuit C∗). For index languages, these instances just correspond to the interval [i∗ + 1,T], which

can be described succinctly with O(logT) bits. When xi∗, xi∗+1, . . . , xT are arbitrary instances, they do not have a

short description, and we cannot embed these instances into the proving and veri�cation programs without imposing

an a priori bound on the number of instances.

Instead of modifying the above construction, we instead adopt the approach of Choudhuri et al. [CJJ21b] who

previously showed how to generically upgrade any BARG for index languages to a BARG for NP by relying on

somewhere extractable commitment schemes. If the underlying BARG for index languages supports an unbounded

number of instances, then the transformed scheme also does. In our setting, we observe that if we only require

(non-adaptive) soundness (as opposed to “somewhere extraction”), we can use a positional accumulator [KLW15] in

place of the somewhere extractable commitment scheme. The advantage of basing the transformation on positional

accumulators is that we can construct positional accumulators directly from indistinguishability obfuscation and

one-way functions. Applied to the above index BARG construction (see also Section 3), we obtain a fully succinct

6

batch argument for NP from the same set of assumptions. In contrast, if we invoke the compiler of Choudhuri et al.,

we would need to additionally assume the existence of a somewhere extractable commitment scheme which cannot
be based solely on indistinguishability obfuscation together with one-way functions in a fully black-box way [AS15].

Very brie�y, in the Choudhuri et al. approach, to construct a batch argument on the tuple (C, x1, . . . , xT), the

prover �rst computes a succinct hash y of the statements (x1, . . . , xT). Using y, they de�ne an index relation where

instance i is satis�ed if there exists an opening (xi , πi) to y at index i , and moreover, there exists a satisfying witness

wi whereC(xi ,wi) = 1. The proof then consists of the hash y and a proof for the index relation. In this work, we show

that using a positional accumulator to instantiate the hash function su�ces to obtain a BARG with non-adaptive

soundness. We provide the full details in Section 4.

Updatable BARGs for NP. Our techniques also readily generalize to obtain an updatable batch argument (for

general NP) from the same underlying set of assumptions. Recall that in an updatable BARG, a prover can take an

existing proof π on a tuple (C, x1, . . . , xT) together with a new statement xT+1 and witness wT+1 and extend π to a

new proof π ′ on the tuple (C, x1, . . . , xT , xT+1). One way to construct an updatable BARG is to recursive compose a

succinct non-interactive argument of knowledge [BCCT13] or a rate-1 batch argument [DGKV22].
3

Here, we opt for

a more direct approach based on the above techniques, which does not rely on recursive composition.

First, our index BARG construction described above is already updatable. However, if we apply the Choud-

huri et al. [CJJ21b] transformation to obtain a BARG for NP, the resulting scheme is no longer updatable. This is

because the transformation requires the prover to commit to the complete set of statements and then argue that the

statement associated with each index is true (which in turn requires knowledge of all of the associated witnesses).

Instead, we take a di�erent and more direct tree-based approach. For ease of exposition, suppose �rst that T = 2
k

for some integer k . Our construction will rely on a hash function H . Given a tuple of T statements (x1, . . . , xT), we

construct a binary Merkle hash tree [Mer87] of depth k as follows: the leaves of the tree are labeled x1, . . . , xT , and

the value of each internal node v is the hash H (v1,v2) of its two children v1 and v2. The output h of the hash tree is

the value at the root node, and we denote this by writing h = HMerkle(x1, . . . , xT). A proof on the tuple of instances

(x1, . . . , xT) is simply a signature on the root node HMerkle(x1, . . . , xT). Now, instead of providing an obfuscated

program that takes a proof on index i and extends it into a proof on index i + 1, we de�ne our obfuscated proving

program to take in two signatures on hash values h1 = HMerkle(x1, . . . , xT) and h2 = HMerkle(y1, . . . ,yT) and output

a signature on the hash value h = H (h1,h2) = HMerkle(x1, . . . , xT ,y1, . . . ,yT). This new “two-to-one” obfuscated

program allows us to merge two proofs on T instances into a single proof on 2T instances. More generally, the

(obfuscated) proving program in the CRS now supports the following operations:

• Signing a single instance: Given a circuit C , a statement x , and a witness w , output a signature on (C, x, 1) if

C(x,w) = 1 and ⊥ otherwise. This can be viewed as a signature on a hash tree of depth 1.

• Merge trees: Given a circuitC , hashes h1,h2 associated with two trees of depth k , along with signatures σ1,σ2,
check that σ1 is a valid signature on (C,h1,k), and σ2 is a valid signature on (C,h2,k). If both checks pass,

output a signature on (C,H (h1,h2),k + 1). This is a signature on a hash tree of depth k + 1.

To construct a proof on instances (x1, . . . , xT) using witnesses (w1, . . . ,wT) for arbitraryT , we now proceed as follows:

• Run the (obfuscated) proving algorithm on (C, x1,w1) to obtain a signature σ on (C, x1, 1). The initial proof π is

simply the set {(1, x1,σ)}.

• Suppose π = {(i,hi ,σi)} is a proof on the �rst T − 1 statements. To update the proof π to a proof on the �rst T
statements, �rst run the proving algorithm on (C, xT ,wT) to obtain a signature σ on (C, xT , 1). Now, we apply

the following merging procedure:
4

– Initialize (k,h′,σ ′) ← (1, xT ,σ) and π ′← π .

– While there exists (i,hi ,σi) ∈ π
′

where i = k , run the (obfuscated) merge program on (C,hi ,h
′,k,σi ,σ

′)

to obtain a signature σ ′′ on (C,H (hi ,h
′),k + 1). Remove (i,hi ,σi) from π ′ and update (k,h′,σ ′) ←

(k + 1,H (hi ,h
′),σ ′′).

3
If the underlying BARG is not rate-1, then we can only compose a bounded number of times.

4
In our formal construction (Section 5), we defer the “merging” step to the subsequent update.

7

– Add the tuple (k,h′,σ ′′) to π ′ at the conclusion of the merging process.

Observe that the update procedure only requires knowledge of the new statement xT , its witness wT , and the

proof on the previous statements π ; it does not require knowledge of the witnesses to the previous statements.

Moreover, observe that the number of hash-signature tuples in π is always bounded by logT .

To verify a proof π = {(i,hi ,σi)} with respect to a Boolean circuitC , the veri�er checks that σi is a valid signature on

(C,hi , i) for all tuples in π , and moreover, that each of the intermediate hash values hi are correctly computed from

(x1, . . . , xT). Non-adaptive soundness of the above construction follows by a similar argument as that for our index

BARG. Notably, we show that if an instance xi∗ is false, then the proving program will never output a signature on

input (C, xi∗, 1). Using the same punctured programming technique sketched above, we can again “propagate” the

inability to compute a signature on the leaf node i∗ to argue that any e�cient prover cannot compute a signature

on any node that is an ancestor of xi∗ in the hash tree. Here, we will need to rely on the underlying hash function

being somewhere statistically binding [HW15, OPWW15]. By a hybrid argument, we can eventually move to an

experiment where there are no accepting proofs on tuples that contain xi∗ , and soundness follows. We provide the

formal description in Section 5.

2 Preliminaries
Throughout this work, we write λ to denote the security parameter. We say a function f is negligible in the security

parameter λ if f = o(λ−c) for all c ∈ N. We denote this by writing f (λ) = negl(λ). We write poly(λ) to denote

a function that is bounded by a �xed polynomial in λ. We say an algorithm is e�cient if it runs in probabilistic

polynomial time (PPT) in the length of its input. Throughout this work, we consider security against non-uniform
adversaries (indexed by λ) that run in deterministic polynomial time in the length of their input and takes in an advice

string of poly(λ) size.
5

For a positive integer n ∈ N, we write [n] to denote the set {1, . . . ,n} and [0,n] to denote the set {0, . . . ,n}. For

a �nite set S , we write x r

← S to denote that x is sampled uniformly at random from S . For a distribution D, we

write x ← D to denote that x is sampled from D. We say an event E occurs with overwhelming probability if its

complement occurs with negligible probability.

Some of our constructions in this work will rely on hardness against adversaries running in sub-exponential time

or achieving sub-exponential advantage (i.e., success probability). To make this explicit, we formulate our security

de�nitions in the language of (τ , ε)-security, where τ = τ (λ) and ε = ε(λ). Here, we say a primitive is (τ , ε)-secure if

for all (non-uniform)
6

polynomial time adversaries running in time τ (λ) and all su�ciently large λ, the adversary’s

advantage is bounded by ε(λ). For ease of exposition, we will also write that a primitive is “secure” (without an

explicit (τ , ε) characterization) if for every polynomial τ = poly(λ), there exists a negligible function ε(λ) = negl(λ)
such that the primitive is (τ , ε)-secure. We now review the main cryptographic primitives we use in this work.

De�nition 2.1 (Indistinguishability Obfuscation [BGI
+

01]). An indistinguishability obfuscator for a circuit class

C = {Cλ}λ∈N is a PPT algorithm iO(·, ·) with the following properties:

• Correctness: For all security parameters λ ∈ N, all circuits C ∈ Cλ , and all inputs x ,

Pr[C ′(x) = C(x) : C ′← iO(1λ,C)] = 1.

• Security: We say that iO is (τ , ε)-secure if for all adversaries A running in time at most τ (λ), there exists

λA ∈ N, such that for all security parameters λ > λA , all pairs of circuits C0,C1 ∈ Cλ where C0(x) = C1(x) for

all inputs x , we have that ���Pr[A(iO(1λ,C0)) = 1] − Pr[A(iO(1λ,C1)) = 1]

��� ≤ ε(λ).
5
Recall that in the non-uniform model, we can derandomize any adversary by �xing its random coins to the choice that maximizes the adversary’s

advantage; this �xed set of coins is in turn provided to the adversary as advice.
6
In Remark 3.10, we clarify why we rely on hardness against non-uniform adversaries in our constructions.

8

De�nition 2.2 (Puncturable PRF [BW13, KPTZ13, BGI14]). A puncturable pseudorandom function family on key

space K = {Kλ}λ∈N, domain X = {Xλ}λ∈N and range Y = {Yλ}λ∈N consists of a tuple of PPT algorithms ΠPPRF =

(KeyGen, Eval, Puncture) with the following properties:

• KeyGen(1λ) → K : On input the security parameter λ, the key-generation algorithm outputs a key K ∈ Kλ .

• Puncture(K, S) → K{S}: On input the PRF key K ∈ Kλ and a set S ⊆ Xλ , the puncturing algorithm outputs a

punctured key K{S} ∈ Kλ .

• Eval(K, x) → y: On input a key K ∈ Kλ and an input x ∈ Xλ , the evaluation algorithm outputs a value y ∈ Yλ .

In addition, ΠPPRF should satisfy the following properties:

• Functionality-preserving: For every polynomial s = s(λ), every security parameter λ ∈ N, every subset

S ⊆ Xλ of size at most s , and every x ∈ Xλ\S ,

Pr[Eval(K, x) = Eval(K{S}, x) : K ← KeyGen(1λ),K{S} ← Puncture(K, S)] = 1.

• Punctured pseudorandomness: For a bit b ∈ {0, 1} and a security parameter λ, we de�ne the (selective)

punctured pseudorandomness game between an adversary A and a challenger as follows:

– At the beginning of the game, the adversary commits to a set S ⊆ Xλ .

– The challenger then samples a keyK ← KeyGen(1λ), constructs the punctured keyK{S} ← Puncture(K, S),
and gives K{S} to A.

– If b = 0, the challenger gives the set {(xi , Eval(K, xi))}xi ∈S to A. If b = 1, the challenger gives the set

{(xi ,yi)}xi ∈S where each yi
r

← Yλ .

– At the end of the game, the adversary outputs a bit b ′ ∈ {0, 1}, which is the output of the experiment.

We say that ΠPPRF satis�es (τ , ε)-punctured pseudorandomness if for all adversaries A running in time at most

τ (λ), there exists λA such that for all security parameters λ > λA ,

| Pr[b ′ = 1 : b = 0] − Pr[b ′ = 1 : b = 1]| ≤ ε(λ)

in the punctured pseudorandomness security game.

For ease of notation, we will often write F (K, x) to represent Eval(K, x).

De�nition 2.3 (Pseudorandom Generator). A pseudorandom generator (PRG) on domain X = {Xλ}λ∈N and range

Y = {Yλ}λ∈N is a deterministic polynomial-time algorithm PRG : X → Y. We say that the PRG is (τ , ε)-secure if for

all adversaries A running in time at most τ (λ), there exists λA ∈ N, such that for all security parameters λ > λA , we

have that ��
Pr[A(PRG(x)) = 1 : x ← Xλ] − Pr[A(y) = 1 : y ← Yλ]

�� ≤ ε(λ).
2.1 Batch Arguments for NP
We now recall the notion of a non-interactive batch argument (BARG) for NP. We focus speci�cally on the language

of Boolean circuit satis�ability.

De�nition 2.4 (Circuit Satis�ability). For a Boolean circuitC : {0, 1}` ×{0, 1}m → {0, 1}, and a statement x ∈ {0, 1}n ,

we de�ne the language of Boolean circuit satis�ability LCSAT as follows:

LCSAT = {(C, x) | ∃w ∈ {0, 1}
m
: C(x,w) = 1}.

De�nition 2.5 (Batch Circuit Satis�ability). For a Boolean circuit C : {0, 1}` × {0, 1}m → {0, 1}, positive integer

t ∈ N, and statements x1, . . . , xt ∈ {0, 1}
n

, we de�ne the batch circuit satis�ability language as follows:

LBatchCSAT,t = {(C, x1, . . . , xt) | ∀i ∈ [t], ∃wi ∈ {0, 1}
m
: C(xi ,wi) = 1}.

9

De�nition 2.6 (Batch Argument for NP). A batch argument (BARG) for the language of Boolean circuit satis�ability

consists of a tuple of PPT algorithms ΠBARG = (Gen, P,V) with the following properties:

• Gen(1λ, 1`, 1T , 1s) → crs: On input the security parameter λ, a bound on the instance size `, a bound on the

number of statementsT , and a bound on the circuit size s , the generator algorithm outputs a common reference

string crs.

• P(crs,C, (x1, . . . , xt), (w1, . . . ,wt)) → π : On input the common reference string crs, a Boolean circuitC : {0, 1}`×
{0, 1}m → {0, 1}, a list of statements x1, . . . , xt ∈ {0, 1}

`
, and a list of witnessesw1, . . . ,wt ∈ {0, 1}

m
, the prove

algorithm outputs a proof π .

• V(crs,C, (x1, . . . , xt), π) → {0, 1}: On input the common reference string crs, a Boolean circuit C : {0, 1}` ×
{0, 1}m → {0, 1}, a list of statements x1, . . . , xt ∈ {0, 1}

`
, and a proof π , the veri�cation algorithm outputs a bit

b ∈ {0, 1}.

Moreover, the BARG scheme should satisfy the following properties:

• Completeness: For all security parameters λ ∈ N and bounds ` ∈ N, s ∈ N, T ∈ N, t ≤ T , Boolean circuits

C : {0, 1}` × {0, 1}m → {0, 1} of size at most s , all statements x1, . . . , xt ∈ {0, 1}
n

, and all witnesses w1, . . . ,wt
where C(xi ,wi) = 1 for all i ∈ [t], it holds that

Pr[V(crs,C, (x1, . . . , xt), π) = 1 : crs← Gen(1λ, 1`, 1T , 1s), π ← P(crs,C, (x1, . . . , xt), (w1, . . . ,wt))] = 1.

• Succinctness: We require ΠBARG satisfy two notions of succinctness:

– Succinct proof size: There exists a universal polynomial poly(·, ·, ·) such that for all t ≤ T , |π | =
poly(λ, log t, s) in the completeness experiment de�ned above. We say the proof is fully succinct if for all

t ≤ T , we have that |π | = poly(λ, log t, log s).

– Succinct veri�cation time: There exists a universal polynomial poly(·, ·, ·) such that for all t ≤ T , the

running time of V(crs,C, (x1, . . . , xt), π) is bounded by poly(λ, t, `) + poly(λ, log t, s) in the completeness

experiment de�ned above.

• Soundness: We consider two di�erent notions of soundness:

– Non-adaptive soundness: For a security parameter λ, we de�ne the non-adaptive soundness experiment

between a challenger and an adversary A as follows:

∗ AlgorithmA outputs a bound on the number of instances 1
T

, the maximum circuit size 1
s
, a Boolean

circuit C : {0, 1}` × {0, 1}m → {0, 1} of size at most s(λ) and statements x1, . . . , xt ∈ {0, 1}
`
. Here,

we require that t ≤ T .

∗ The challenger samples crs← Gen(1λ, 1`, 1T , 1s) and sends crs to A.

∗ Algorithm A outputs a proof π .

∗ The experiment outputs b = 1 if V(crs,C, (x1, . . . , xt), π) = 1 and (C, (x1, . . . , xt)) < LBatchCSAT,t .

Otherwise it outputs b = 0.

The scheme satis�es non-adaptive soundness if for every non-uniform polynomial time adversary A,

there exists a negligible function negl(·) such that Pr[b = 1] = negl(λ) in the non-adaptive soundness

experiment.

– Adaptive soundness: For a security parameter λ, we de�ne the adaptive soundness experiment between

a challenger and an adversary A as follows:

∗ Algorithm A outputs a bound on the number of instances 1
T

, the maximum circuit size 1
s
, and the

input size 1
`
.

∗ The challenger samples crs← Gen(1λ, 1`, 1T , 1s) and sends crs to A.

∗ Algorithm A outputs a Boolean circuit C : {0, 1}` × {0, 1}m → {0, 1} of size at most s(λ), statements

x1, . . . , xt ∈ {0, 1}
`(λ)

, and a proof π . Here, we require that t ≤ T .

10

∗ The experiment outputs b = 1 if V(crs,C, (x1, . . . , xt), π) = 1 and (C, (x1, . . . , xt)) < LBatchCSAT,t .

Otherwise it outputs b = 0.

The scheme satis�es adaptive soundness if for every non-uniform polynomial time adversary A, there

exists a negligible function negl(·) such that Pr[b = 1] = negl(λ) in the adaptive soundness experiment.

• Perfect zero knowledge: The scheme satis�es perfect zero knowledge if there exists a PPT simulator S such

that for all λ ∈ N, all bounds ` ∈ N, T ∈ N, s ∈ N, all t ≤ T , all tuples (C, x1, . . . , xt) ∈ LBatchCSAT,t , and all

witnesses (w1, . . . ,wt) where C(xi ,wi) = 1 for all i ∈ [t], the following distributions are identically distributed:

– Real distribution: Sample crs ← Gen(1λ, 1`, 1T , 1s) and π ← P(crs,C, (x1, . . . , xt), (w1, . . . ,wt)). Out-

put (crs, π).

– Simulated distribution: Output (crs∗, π ∗) ← S(1λ, 1T , 1s ,C, (x1, . . . , xt)).

De�nition 2.7 (BARGs for Arbitrary Number of Statements). We say that a BARG scheme ΠBARG = (Gen, P,V) sup-

ports an arbitrary polynomial number of statements if the algorithmGen in De�nition 2.6 runs in time poly(λ, `, s, logT),
and correspondingly, outputs a CRS of size poly(λ, `, s, logT). Notably, the dependence on the bound T is polyloga-
rithmic. In this case, we implicitly set T = 2

λ
as the input to the Gen algorithm. Observe that in this case, the P and V

algorithms can now take any arbitrary polynomial number t = t(λ) of instances as input where t ≤ 2
λ
.

Batch arguments for index languages. Similar to [CJJ21b], we also consider the special case of batch arguments

for index languages. We recall the relevant de�nitions here.

De�nition 2.8 (Batch Circuit Satis�ability for Index Languages). For a positive integer t ≤ 2
λ
, we de�ne the batch

circuit satis�ability problem for index languages LBatchCSATindex,t = {(C, t) | ∀i ∈ [t], ∃wi ∈ {0, 1}
m

: C(i,wi) = 1}

where C : {0, 1}λ × {0, 1}m → {0, 1} is a Boolean circuit.
7

De�nition 2.9 (Batch Arguments for Index Languages). A BARG for index languages is a tuple of PPT algorithms

ΠIndexBARG = (Gen, P,V) that satisfy De�nition 2.7 for the index language LBatchCSATindex,t . Since we are considering

index languages, the statements always consist of the indices (1, . . . , t). As such, we can modify the P and V algorithms

in De�nition 2.6 to take as input the single index t (of length λ bits) rather than the tuple of statements (x1, . . . , xt).
Similarly, the generator algorithm Gen only needs the security parameter and the bound on the circuit size s; the

bound on the instance size is simply λ (to support up to T = 2
λ

instances). Speci�cally, we modify the syntax as

follows:

• Gen(1λ, 1s) → crs: On input the security parameter λ and a bound on the circuit size s , the generator algorithm

outputs a common reference string crs.

• P(crs,C, t, (w1, . . . ,wt)) → π : The prove algorithm takes as input the common reference string crs, a Boolean

circuit C : {0, 1}λ × {0, 1}m → {0, 1}, the index t ∈ N, and a list of witnesses w1, . . . ,wt ∈ {0, 1}
m

, and outputs

a proof π .

• V(crs,C, t, π) → {0, 1}: The veri�cation algorithm takes as input the common reference string crs, a Boolean

circuit C : {0, 1}λ × {0, 1}m → {0, 1}, the index t ∈ N, and a proof π , and outputs a bit b ∈ {0, 1}.

The completeness and zero-knowledge properties are the same as those in De�nition 2.6 (adapted to the unbounded

case where T = 2
λ
). We de�ne soundness analogously, but require that the adversary outputs the bound on the

number of instances T in binary and the challenge number of instances t in unary. Thus, the adversary is still

restricted to choosing a polynomially-bounded number of instances t = poly(λ) even if the upper bound on t isT = 2
λ
.

For succinctness, we require the following stronger property on the veri�cation time:

• Succinct veri�cation time: For all t ≤ 2
λ
, the veri�cation algorithm V(crs,C, t, π) runs in time poly(λ, s) in

the completeness experiment.

7
Here, and throughout the exposition, we associate elements of the set [2λ] with their binary representation in {0, 1}λ , and the value 2

λ
with the

all-zeroes string 0
λ

.

11

3 Non-Adaptive Batch Arguments for Index Languages
In this section, we show how to construct a batch argument for index languages that can support an arbitrary

polynomial number of statements. We show how to obtain a construction with non-adaptive soundness. As described

in Section 1.1, we include two obfuscated programs in the CRS to enable sequential proving and batch veri�cation:

• The proving program takes as input a Boolean circuitC : {0, 1}λ ×{0, 1}m → {0, 1}, an instance number i ∈ [2λ],
a witness w ∈ {0, 1}m for instance i as well as a proof π for the �rst i − 1 instances. The program validates the

proof on the �rst i − 1 instances and that C(i,w) = 1. If both checks pass, then the program outputs a proof for

instance i . Otherwise, it outputs ⊥.

• The veri�cation program takes as input the circuit C , the �nal instance number t ∈ [2λ], and a proof π . It

outputs a bit indicating whether the proof is valid or not. In this case, outputting 1 indicates that π is a valid

proof on instances (1, . . . , t).

Construction 3.1 (Batch Argument for Index Languages). Let λ be a security parameter and s = s(λ) be a bound

on the size of the Boolean circuit. We construct a BARG scheme that supports index languages with up to T = 2
λ

instances (i.e., which su�ces to support an arbitrary polynomial number of instances) and circuits of size at most

s . The instance indices will be taken from the set [2λ]. For ease of notation, we use the set [2λ] and the set {0, 1}λ

interchangably in the following description. Our construction relies on the following primitives:

• Let PRF be a puncturable PRF with key space {0, 1}λ , domain {0, 1}s × {0, 1}λ and range {0, 1}λ .

• Let iO be an indistinguishability obfuscator.

• Let PRG be a pseudorandom generator with domain {0, 1}λ and range {0, 1}2λ .

We de�ne our batch argument ΠBARG = (Gen, P,V) for index languages as follows:

• Gen(1λ, 1s): On input the security parameter λ and a bound on the circuit size s , the setup algorithm starts by

sampling a PRF key K ← PRF.KeyGen(1λ). The setup algorithm then de�nes the proving program Prove[K]
and the veri�cation program Verify[K] as follows:

Constants: PRF key K
Input: Boolean circuit C of size at most s , instance number i ∈ [2λ], witness wi , proof π ∈ {0, 1}λ

1. If i = 1 and C(1,w1) = 1, output PRF.Eval(K, (C, 1)).
2. Else if PRG(π) = PRG(PRF.Eval(K, (C, i − 1))) and C(i,wi) = 1, output PRF.Eval(K, (C, i)).
3. Otherwise, output ⊥.

Figure 1: Program Prove[K]

Constants: PRF key K
Input: Boolean circuit C of size at most s , instance count t ∈ [2λ], proof π ∈ {0, 1}λ

1. If PRG(π) = PRG(PRF.Eval(K, (C, t))), output 1.

2. Otherwise, output 0.

Figure 2: Program Verify[K]

The setup algorithm constructs the obfuscated programs ObfProve ← iO(1λ, Prove[K]) and ObfVerify ←
iO(1λ,Verify[K]). Note that both the proving circuit Prove[K] and Verify[K] are padded to the maximum

size of any circuit that appears in the proof of Theorem 3.3. Finally, it outputs the common reference string

crs = (ObfProve,ObfVerify).

12

• P(crs,C, (w1, . . . ,wt)): On input crs = (ObfProve,ObfVerify), a Boolean circuit C : {0, 1}λ × {0, 1}m → {0, 1},
and a collection of witnesses w1, . . . ,wt ∈ {0, 1}

m
, the prove algorithm �rst sets π0 ← ⊥. Then, for i ∈ [t], the

prove algorithm computes πi ← ObfProve(C, i,wi , πi−1). Finally, the algorithm outputs πt .

• V(crs,C, t, π): On input crs = (ObfProve,ObfVerify), a Boolean circuit C : {0, 1}λ × {0, 1}m → {0, 1}, the

instance count t ∈ [2λ], and a proof π ∈ {0, 1}λ , the veri�cation algorithm outputs ObfVerify(C, t, π).

Theorem 3.2 (Completeness). If iO is correct, then Construction 3.1 is complete.

Proof. Take any security parameter λ ∈ N, any s , any Boolean circuit C : {0, 1}λ × {0, 1}m → {0, 1} of size at most s
and any instance number t ∈ [2λ]. Let w1, . . . ,wt be a collection of witnesses such that C(i,wi) = 1 for all i ∈ [t].
Suppose crs = (ObfProve,ObfVerify) ← Gen(1λ, 1s) and π ← Prove(crs,C, (w1, . . . ,wt)).

• Consider the sequence of proofs π1, . . . , πt = π computed by the Prove algorithm. By correctness of iO,

π1 = Prove[K](C, 1,w1,⊥) = PRF.Eval(K, (C, 1)). Then, for i > 1, by correctness of iO, we have πi =
Prove[K](C, i,wi , πi−1) = PRF.Eval(K, (C, i)). Thus, πt = PRF.Eval(K, (C, t)).

• Consider the output of Verify(crs,C, t, π). By correctness of iO, the output of Verify is the output of the program

Verify[K](C, t, π), which is 1 by construction.

Thus, the veri�cation algorithm accepts and correctness holds. �

Theorem 3.3 (Soundness). If PRF is functionality-preserving and satis�es punctured pseudorandomness, PRG is a
secure PRG, and iO is secure, then Construction 3.1 satis�es non-adaptive soundness.

Proof. We start by de�ning a sequence of hybrid experiments:

• Hyb
0
: This is the non-adaptive soundness experiment:

– Adversary A, on input 1
λ
, starts by outputting the maximum circuit size 1

s(λ)
, a Boolean circuit C∗λ of

size at most s(λ), and the number of instances 1
tλ

where tλ ≤ 2
λ
. The challenger checks that there exists

an index i∗λ ∈ [tλ] such that C∗λ
(
i∗λ,w

)
= 0 for all w ∈ {0, 1}∗. If such an i∗ does not exist, the challenger

aborts with output 0. For ease of notation, we simply write C∗ = C∗λ , t = tλ , and i∗ = i∗λ in the following

description.

– The challenger samples crs← Gen(1λ, 1s) and gives crs = (ObfProve,ObfVerify) to A.

– Adversary A outputs a proof π .

– The output of the experiment is Verify(crs,C∗, t, π), which by de�nition, is ObfVerify(C∗, t, π).

• Hybj for j ∈ {i∗, . . . , t}: Same as Hyb
0
, except the challenger changes the distribution of the CRS. Speci�cally,

it de�nes the modi�ed programs Prove′[K, i∗, ithresh,C∗] and Verify′[K, i∗, ithresh,C∗] as follows:

Constants: PRF key K , starting index i∗, threshold index ithresh, Boolean circuit C∗

Input: Boolean circuit C of size at most s , instance number i ∈ [2λ], witness wi , and proof π ∈ {0, 1}λ

1. If C = C∗ and i∗ ≤ i ≤ ithresh, output ⊥.

2. Else if i = 1 and C(1,w1) = 1, output PRF.Eval(K, (C, 1)).
3. Else if PRG(π) = PRG(PRF.Eval(K, (C, i − 1))) and C(i,wi) = 1, output PRF.Eval(K, (C, i)).
4. Otherwise, output ⊥.

Figure 3: Program Prove′[K, i∗, ithresh,C∗]

13

Constants: PRF key K , starting index i∗, threshold index ithresh, Boolean circuit C∗

Input: Boolean circuit C of size at most s , instance number t ∈ [2λ], proof π ∈ {0, 1}λ

1. If C = C∗ and i∗ ≤ t < ithresh, output 0.

2. Else if PRG(π) = PRG(PRF.Eval(K, (C, t))), output 1

3. Otherwise, output 0

Figure 4: Program Verify′[K, i∗, ithresh,C∗]

To construct the CRS, the challenger computes ObfProve ← iO(1λ, Prove′[K, i∗, j,C∗]) and ObfVerify ←
iO(1λ,Verify′[K, i∗, j,C∗]), where Prove′ and Verify′ are the programs in Fig. 3 and Fig. 4. As in the real scheme,

the challenger pads the size of Prove′ and Verify′ to the maximum size of the circuits that appear in the proof

of Theorem 3.3.

For an adversary A, we write Hybi (A) to denote the output distribution of Hybi (A) with adversary A. In the

following analysis, we model A as a deterministic non-uniform algorithm that takes as input the security parameter

1
λ

(and advice string ρλ), and outputs the maximum circuit size 1
s(λ)

, a Boolean circuit C∗λ of size at most s(λ), and

the number of instances 1
tλ

where tλ ≤ 2
λ
. If the advantage of A is non-zero in the non-adaptive soundness game, it

must be the case that there exists an index i∗λ ∈ [tλ] such that C∗λ
(
i∗λ,w

)
= 0 for all w ∈ {0, 1}∗. If there are multiple

such indices, we de�ne i∗λ to be the �rst such index. In the following, we will consider deterministic non-uniform

reduction algorithms that are provided (ρλ, i
∗
λ) as advice.

8
We now show that each pair of adjacent distributions

de�ned above are indistinguishable.

Lemma 3.4. Suppose iO is secure. Then, for all non-uniform polynomial time adversaries A, there exists a negligible
function negl(·) such that for all λ ∈ N, | Pr[Hybi∗ (A) = 1] − Pr[Hyb

0
(A) = 1]| = negl(λ).

Proof. We claim that the programs Prove[K] and Prove′[K, i∗, i∗,C∗] have identical behavior, and similarly for pro-

grams Verify[K] and Verify′[K, i∗, i∗,C∗]:

• By construction, Prove[K] and Prove′[K, i∗, i∗,C∗] have identical functionality except perhaps on inputs of the

form (C∗, i∗,w, π) for some w ∈ {0, 1}∗ and π ∈ {0, 1}λ . On such inputs, program Prove′[K, i∗, i∗,C∗] always

outputs ⊥. Next, by assumption,C∗(i∗,w) = 0 for allw ∈ {0, 1}∗, so Prove[K](C, i∗,w, π) = ⊥ for allw ∈ {0, 1}∗

and π ∈ {0, 1}λ . Thus, we conclude that Prove[K] and Prove′[K, i∗, i∗,C∗] have identical input/output behavior.

• We claim that Verify[K] and Verify′[K, i∗, i∗,C∗] compute the same functionality. The only di�erence between

these two programs is the extra check that Verify′ performs. By construction, Verify′[K, i∗, i∗,C∗] only di�ers

from Verify[K] if the circuit C satis�es C = C∗ and the instance number t satis�es i∗ ≤ t < i∗. This latter

condition is always false, so the two programs have identical input/output behavior.

Since Prove[K] and Verify[K] compute identical functions as Prove′[K, i∗, i∗,C∗] and Verify′[K, i∗, i∗,C∗] respectively,

indistinguishability now follows by iO security and a standard hybrid argument. Note that constructing the programs

Prove′[K, i∗, i∗,C∗] and Verify′[K, i∗, i∗,C∗] requires knowledge of the index i∗, which would be provided as part of

the advice string in our non-uniform reduction. �

Lemma 3.5. If PRF is functionality-preserving and satis�es punctured pseudorandomness, PRG is a secure PRG, and iO
is secure, then for all j ∈ {i∗, . . . , t − 1} and all non-uniform polynomial time adversaries A, there exists a negligible
function negl(·) such that for all λ ∈ N, | Pr[Hybj (A) = 1] − Pr[Hybj+1(A) = 1]| = negl(λ).

Proof. We begin by introducing a sequence of intermediate hybrids:

8
We rely on non-uniformity here because the index i∗ may not be e�ciently-computable from the challenge circuit C∗. For this reason, we rely on

a non-uniform reduction where the reduction algorithm is given the index i∗ as advice (we are guaranteed that such an index i∗ always exists

if algorithm A successfully breaks non-adaptive soundness with non-negligible advantage). Correspondingly, security relies on non-uniform
hardness of the underlying cryptographic primitives. We discuss this further in Remark 3.10.

14

• Hyb(1)j : Same as Hybj except the challenger changes the distribution of the CRS. Speci�cally, it de�nes the mod-

i�ed programs Prove′′[K{(C∗, ithresh)}, i∗, ithresh,C∗, z] and Verify′′[K{(C∗, ithresh)}, i∗, ithresh,C∗, z] as follows:

Constants: Punctured PRF key Kp , starting index i∗, threshold index ithresh, Boolean circuit C∗, value z

Input: Boolean circuit C of size at most s , instance number i ∈ [2λ], witness wi , proof π ∈ {0, 1}λ

1. If C = C∗ and i∗ ≤ i ≤ ithresh, output ⊥.

2. Else if i = 1 and C(1,w1) = 1, output PRF.Eval(Kp , (C, 1)).
3. Else if (C, i − 1) = (C∗, ithresh) and PRG(π) = z and C(i,wi) = 1, output PRF.Eval(Kp , (C, i)).
4. Else if (C, i − 1) , (C∗, ithresh) and PRG(π) = PRG(PRF.Eval(Kp , (C, i − 1))) and C(i,wi) = 1, output

PRF.Eval(Kp , (C, i)).
5. Otherwise, output ⊥

Figure 5: Program Prove′′[Kp, i
∗, ithresh,C

∗, z]

Constants: Punctured PRF key Kp , starting index i∗, threshold index ithresh, Boolean circuit C∗, value z

Input: Boolean circuit C of size at most s , instance number t ∈ [2λ], proof π ∈ {0, 1}λ

1. If C = C∗ and i∗ ≤ t < ithresh, output 0.

2. Else if (C, t) = (C∗, ithresh) and PRG(π) = z, output 1.

3. Else if (C, t) , (C∗, ithresh) and PRG(π) = PRG(PRF.Eval(Kp , (C, t))), output 1.

4. Otherwise, output 0.

Figure 6: Program Verify′′[Kp, i
∗, ithresh,C

∗, z]

Next, the challenger computes the punctured key K{(C∗, j)} ← PRF.Puncture(K, (C∗, j)) and the evaluation

z∗ ← PRG(PRF.Eval(K, (C∗, j))). It then constructs ObfProve ← iO(1λ, Prove′′[K{(C∗, j)}, i∗, j,C∗, z∗]) and

ObfVerify ← iO(1λ,Verify′′[K{(C∗, j)}, i∗, j,C∗, z∗]). As in the real scheme, the challenger pads the size of

Prove′′ and Verify′′ to the maximum size of the circuits that appear in the proof of Theorem 3.3. The CRS is

still crs = (ObfProve,ObfVerify).

• Hyb(2)j : Same as Hyb(1)j but when constructing the CRS, the challenger sets z∗ ← PRG(y∗) where y∗ r

← {0, 1}λ .

• Hyb(3)j : Same as Hyb(2)j but when constructing the CRS, the challenger samples z∗ r

← {0, 1}2λ .

We now argue that each pair of adjacent hybrid experiments are indistinguishable for all j ∈ {i∗, . . . , t}.

Claim 3.6. Suppose PRF is functionality-preserving and iO is secure. Then, for all non-uniform polynomial time
adversaries A, there exists a negligible function negl(·) such that for all λ ∈ N,

| Pr[Hyb(1)j (A) = 1] − Pr[Hybj (A) = 1]| = negl(λ).

Proof. Similar to the proof of Lemma 3.4, it su�ces to show that the prover and veri�er programs in Hybj and

Hyb(1)j have identical input/output behavior. First, since the PRF is functionality-preserving property, for all inputs

(C, i) , (C∗, j), we have that PRF.Eval(K, (C, i)) = PRF.Eval(K{(C∗, j)}, (C, i)). We �rst argue that Prove′[K, i∗, j,C∗]
and Prove′′[K{(C∗, j)}, i∗, j,C∗, z] have identical input/output behavior:

• Suppose j > 1. Since the PRF satis�es functionality-preserving, PRF.Eval(K, (C, i)) = PRF.Eval(K{(C∗, j)}, (C, i))
whenever (C, i) , (C∗, j). Next, in Hyb(1)j , the challenger sets z ← PRG(PRF.Eval(K, (C∗, j))). As such, the

checks in program Prove′′ are identical to those in Prove′. Thus, the two programs have the same input/output

behavior.

• Suppose j = 1. Recall that j ≥ i∗ ≥ 1. In this case, on input (C∗, 1), the �rst check in Prove′ and Prove′′ ensures

that the output is ⊥. This matches the behavior of Prove′ in Hybj . On all other inputs (C, i) with i , 1, the

behavior is identical by functionality-preserving of the underlying punctured PRF.

15

Now consider Verify′[K, i∗, j,C∗] and Verify′′[K{(C∗, j)}, i∗, j,C∗, z∗]. Once again, since the challenger sets z =
PRG(PRF.Eval(K, (C∗, j))), the veri�cation checks in the two programs are identical. The claim now follows from iO
security and a standard hybrid argument. Similar to the proof of Lemma 3.4, the formal reduction is non-uniform

(with advice string i∗) and thus, security relies on non-uniform hardness of iO. �

Claim 3.7. If PRF satis�es punctured pseudorandomness, then for all non-uniform polynomial-time adversariesA, there
exists a negligible function negl(·) such that for all λ ∈ N, | Pr[Hyb(2)j (A) = 1] − Pr[Hyb(1)j (A) = 1]| = negl(λ).

Proof. Suppose there exists a non-uniform polynomial time adversary A (with advice string ρλ) such that

| Pr[Hyb(2)j (A) = 1] − Pr[Hyb(1)j (A) = 1]| ≥ ε .

We useA to construct a non-uniform adversary B with advice string (ρ, i∗) = (ρλ, i
∗
λ) that breaks puncturing security

of PRF. Recall that i∗ = i∗λ is the index of the (�rst) false instance output by A (on input 1
λ

and with advice ρλ).

1. Algorithm B runs adversary A on input 1
λ

and with advice string ρ. Algorithm A outputs the maximum

circuit size 1
s
, a Boolean circuit C∗ of size at most s , and the number of instances 1

t
where t ≤ 2

λ
.

2. Algorithm B chooses (C∗, j) as it challenge point. It receives from the challenger a punctured key K{(C∗, j)}
and a challenge y ∈ {0, 1}λ .

3. Algorithm B computes z∗ ← PRG(t), ObfProve ← iO(1λ, Prove′′[K{(C∗, j)}, i∗, j,C∗, z∗], and ObfVerify ←
iO(1λ,Verify′′[K{(C∗, j)}, i∗, j,C∗, z∗). Finally, it sets the crs = (ObfProve,ObfVerify) and gives crs to A.

4. At the end of the game, algorithm A outputs a proof π and algorithm B outputs ObfVerify(C∗, t, π).

By construction, the challenger samples K ← PRF.KeyGen(1λ) and constructs the punctured key as K{(C∗, j)} ←

PRF.Puncture(K, (C∗, j)). This coincides with the speci�cation in Hyb(1)j and Hyb(2)j . Consider now the distribution of

the challenge t :

• Suppose y = PRF.Eval(K, (C∗, j)). Then algorithm A perfectly simulates distribution Hyb(1)j .

• Suppose y r

← {0, 1}λ . Then algorithm A perfectly simulates distribution Hyb(2)j .

Algorithm B breaks puncturing security of the PRF with advantage ε and the claim follows. �

Claim 3.8. If PRG is secure, then for all non-uniform polynomial time adversaries A, there exists a negligible function
negl(·) such that for all λ ∈ N, | Pr[Hyb(3)j (A) = 1] − Pr[Hyb(2)j (A) = 1]| = negl(λ).

Proof. Suppose there exists a non-uniform polynomial time adversary A (with advice string ρλ) where

| Pr[Hyb(3)j (A) = 1] − Pr[Hyb(2)j (A) = 1]| ≥ ε

for some non-negligible ε . We useA to construct an adversary B with advice string (ρ, i∗) = (ρλ, i
∗
λ) that breaks PRG

security:

1. Algorithm B runs adversary A on input 1
λ

and advice string ρλ . Algorithm A outputs the maximum circuit

size 1
s
, a Boolean circuit C∗ of size at most s , and the number of instances 1

t
where t ≤ 2

λ
.

2. Algorithm B receives a challenge z∗ ∈ {0, 1}2λ from the PRG challenger.

3. Algorithm B samples K ← PRF.KeyGen(1λ) and computes the punctured key

K{(C∗, j)} ← PRF.Puncture(K, (C∗, j)).

Next, it computes the obfuscated programsObfProve← iO(1λ, Prove′′[K{(C∗, j)}, i∗, j,C∗, z∗]) andObfVerify←
iO(1λ,Verify′′[K{(C∗, j)}, i∗, j,C∗, z∗]). Algorithm B gives crs = (ObfProve,ObfVerify) to A.

16

4. Algorithm A outputs a proof π and algorithm B outputs ObfVerify(C∗, t, π).

If z∗ ← PRG(y∗) where y∗ r

← {0, 1}λ , then algorithm B perfectly simulates Hyb(2)j for A. Alternatively, if z∗ r

←

{0, 1}2λ , then algorithm B perfectly simulates Hyb(3)j for A. The claim follows. �

Claim 3.9. If PRF is functionality-preserving and iO is secure, then for all non-uniform polynomial time adversaries A,
there exists a negligible function negl(·) such that for all λ ∈ N, | Pr[Hybj+1(A) = 1] − Pr[Hyb(3)j (A) = 1]| = negl(λ).

Proof. We start by showing that with overwhelming probability over the choice of z∗ r

← {0, 1}2λ , the programs

Prove′′[K{(C∗, j)}, i∗, j,C∗, z∗] and Verify′′[K{(C∗, j)}, i∗, j,C∗, z∗] in Hyb(3)j compute identical functionality as pro-

grams Prove′[K, i∗, j + 1,C∗] and Verify′[K, i∗, j + 1,C∗] in Hybj+1. Since z∗ r

← {0, 1}2λ ,

Pr[∃y ∈ {0, 1}λ : PRG(y) = z∗] ≤ 2
−λ .

Thus, with overwhelming probability, the value z∗ in Hyb(3)j is not in the range of PRG. Next, since PRF is functionality-

preserving, PRF.Eval(K, (C, i)) = PRF.Eval(K{(C∗, j)}, (C, i)) whenever (C, i) , (C∗, j). Now, consider the programs

Prove′′[K{(C∗, j)}, i∗, j,C∗, z∗] and Prove′[K, i∗, j + 1,C∗]:

• Suppose j > 1. By construction of Prove′ and Prove′′, this means that the only inputs on which the programs

can di�er are inputs of the form (C∗, j + 1,w, π) for some choice of w ∈ {0, 1}∗ and π ∈ {0, 1}λ . Consider the

behavior of the two programs on inputs of this form:

– Prove′′[K{(C∗, j)}, i∗, j,C∗, z∗](C∗, j + 1,w, π) outputs ⊥ if z∗ is not in the image of PRG (in which case

PRG(π) , z∗).

– Prove′[K, i∗, j + 1,C∗](C∗, j + 1,w, π) always outputs ⊥ since i∗ ≤ j + 1 ≤ j + 1.

We conclude that on all inputs, the output of Prove′ and Prove′′ is identical with overwhelming probability

over the choice of z∗.

• Suppose j = 1. In this case, the two programs’ logic also di�er on inputs of the form (C∗, 1,w, π) for some

w ∈ {0, 1}∗ and π ∈ {0, 1}λ (since the punctured key is used to evaluate at (C∗, 1) in Prove′′ while the real key

is used in Prove′). However, since j ≥ i∗ ≥ 1, both programs output ⊥ on input (C∗, 1,w, π). The behavior on

all other inputs is identical by the analysis from the previous case.

Consider now the veri�cation programs Verify′[K, i∗, j + 1,C∗] and Verify′′[K{(C∗, j)}, i∗, j,C∗, z∗]. Similar to the case

with the proving circuits, the only inputs on which the programs can di�er are inputs of the form (C∗, j + 1,w, π) for

some choice of w ∈ {0, 1}∗ and π ∈ {0, 1}λ .

• Verify′′[K{(C∗, j)}, i∗, j,C∗, z∗] outputs 0 if z∗ is not in the image of PRG (in which case PRG(π) , z∗).

• Verify′[K, i∗, j + 1,C∗](C∗, j + 1,w, π) always outputs 0.

From the above analysis, we see that as long as z∗ is not in the image of PRG, Prove′ and Prove′′ as well as Verify′ and

Verify′′ in the two experiments have identical input/output behavior. Since this event happens with overwhelming

probability, the claim now follows by iO security. �

Combining Claims 3.6 to 3.8, we have that for all j ∈ {i∗, . . . , t − 1}, hybrids Hybj and Hybj+1 are computationally

indistinguishable and Lemma 3.5 follows. �

Combining Lemmas 3.4 and 3.5, we have that hybrids Hyb
0

and Hybt are computationally indistinguishable. It is

easy to show that for all adversaries A in Hybt , Pr[Hybt (A) = 1] = 0. This follows by construction: namely, in

Hybt , ObfVerify is an obfuscation of the veri�cation program Verify′[K, i∗, t,C∗] which outputs 0 on all inputs of the

form (C∗, t, π) for any π ∈ {0, 1}λ . Correspondingly, for all e�cient adversaries A, Pr[Hyb
0
(A) = 1] = negl(λ) and

non-adaptive soundness holds. �

17

Remark 3.10 (Non-Uniform Hardness). The proof of non-adaptive soundness (Theorem 3.3) leverages non-uniform
security reductions where the reduction algorithms are also given the particular index i∗ of the false instance as

non-uniform advice (i.e., the instance i∗ where C∗(i∗,w) = 0 for all w ∈ {0, 1}∗). We rely on non-uniform advice

since in general, computing i∗ from the adversary’s chosen circuit C∗ may not be e�cient (note that such an index is

guaranteed to exist given an adversary that breaks non-adaptive soundness with non-negligible probability). Because

our security reductions are non-uniform, we correspondingly rely on non-uniform hardness of each of the underlying

primitives. Note that we could alternatively rely on sub-exponential hardness (and compute i∗ fromC∗ in a brute-force

way) to obtain a uniform security reduction, but this would jeopardize the full succinctness of our construction. We

also note that for settings where the index i∗λ can be e�ciently computed from C∗λ by a uniform family of circuits,

then our security reductions would also be uniform (and correspondingly, we can base security on hardness of the

underlying primitives against uniform adversaries).

Theorem 3.11 (Succinctness). Construction 3.1 is fully succinct.

Proof. We show that Construction 3.1 satis�es the two succinctness requirements from De�nition 2.9:

• Succinct proof size: The size of the proof is the output of PRF which has length λ. Thus, the proof is fully

succinct.

• Succinct veri�cation time: Veri�cation consists of evaluating the ObfVerify program on input (C, t, π). By

construction, ObfVerify is an obfuscation of the veri�cation algorithm Verify[K]. Again by construction, the

running time of Verify[K] is poly(λ, s). Since the obfuscator is e�cient, the running time of ObfVerify is also

poly(λ, s), as required. �

Theorem 3.12 (Zero Knowledge). Construction 3.1 satis�es perfect zero knowledge.

Proof. To show zero knowledge, we construct an e�cient simulator S as follows. On input the security parameter

λ, the bound s on the circuit size, a Boolean circuit C : {0, 1}` × {0, 1}m → {0, 1} of size at most s , and the instance

number t , the simulator algorithm proceeds as follows:

1. Compute crs← Gen(1λ, 1s). LetK be the PRF key sampled in the construction of crs and compute the simulated

proof π ← PRF.Eval(K, (C, t)).

2. Output (crs, π).

By construction, the simulator samples crs exactly as in the real scheme. It su�ces to consider the proofs. By

construction and correctness of iO, a proof on (C, (1, . . . , t)) is always π = PRF.Eval(K, (C, t)). This is the simulated

proof. �

4 Non-Adaptive BARGs for NP from BARGs for Index Languages
In this section, we describe an adaptation of the compiler of Choudhuri et al. [CJJ21b] for upgrading a batch argument

for an index language to a batch argument for NP. The transformation of Choudhuri et al. relied on somewhere

extractable commitments, which can be based on standard lattice assumptions [HW15, CJJ21b] or pairing-based

assumptions [WW22]. Here, we show that the same transformation is possible using the positional accumulators

introduced by Koppula et al. [KLW15]. The advantage of basing the transformation on positional accumulators is that

we can construct positional accumulators directly from indistinguishability obfuscation and one-way functions, so

we can apply the transformation to Construction 3.1 from Section 3 to obtain a fully succinct batch argument for NP
from the same set of assumptions. A drawback of using positional accumulators in place of somewhere extractable

commitments is that our transformation can only provide non-adaptive soundness, whereas the Choudhuri et al.

transformation satis�es the stronger notion of semi-adaptive somewhere extractability.

18

Positional accumulators. Like a somewhere statistically binding (SSB) hash function [HW15], a positional accu-

mulator allows a user to compute a short “digest” or “hash” y of a long input (x1, . . . , xt). The scheme supports local

openings where the user can open y to the value xi at any index i with a short opening πi . The security property

is that the hash value y is statistically binding at a certain (hidden) index i∗. An important di�erence between

positional accumulators and somewhere statistically binding hash functions is that positional accumulators are

statistically binding for the hash y of a speci�c tuple of inputs (x1, . . . , xt) while SSB hash functions are binding for

all hash values. We give the de�nition below. Our de�nition is a simpli�cation of the corresponding de�nition of

Koppula et al. [KLW15, §4] and we summarize the main di�erences in Remark 4.3.

De�nition 4.1 (Positional Accumulators [KLW15, adapted]). Let ` ∈ N be an input length. A positional accumulator

scheme for inputs of length ` is a tuple of PPT algorithms ΠPA = (Setup, SetupEnforce,Hash,Open,Verify) with the

following properties:

• Setup(1λ, 1`) → pp: On input the security parameter λ and the input length `, the setup algorithm outputs a

set of public parameters pp.

• SetupEnforce(1λ, 1`, (x1, . . . , xt), i∗) → pp: On input the security parameter λ, an input length `, a tuple of

inputs x1, . . . , xt ∈ {0, 1}
`
, and an index i∗ ∈ [t], the enforcing setup algorithm outputs a set of public parameters

pp.

• Hash(pp, (x1, . . . , xt)) → y: On input the public parameters pp and a tuple of inputs x1, . . . , xt ∈ {0, 1}
`
, the

hash algorithm outputs a value y. This algorithm is deterministic.

• Open(pp, (x1, . . . , xt), i) → π : On input the public parameters pp, a tuple of inputs x1, . . . , xt ∈ {0, 1}
`

and an

index i ∈ [t], the opening algorithm outputs an opening π .

• Verify(pp,y, x, i, π) → {0, 1}: On input the public parameters pp, a hash value y, an input x ∈ {0, 1}` , an index

i ∈ {0, 1}λ , and an opening π , the veri�cation algorithm outputs a bit b ∈ {0, 1}.

Moreover, the positional accumulator ΠPA should satisfy the following properties:

• Correctness: For all security parameters λ ∈ N and input lengths ` ∈ N, all polynomials t = t(λ), indices

i ∈ [t], and inputs x1, . . . , xt ∈ {0, 1}
`
, it holds that

Pr

Verify(pp,y, xi , i, π) = 1 :

pp← Setup(1λ, 1`),
y ← Hash(pp, (x1, . . . , xt)),
π ← Open(pp, (x1, . . . , xt), i)

 = 1.

• Succinctness: There exists a polynomial poly(·, ·) such that the length of the hash value y output by Hash
and the length of the proof π output by Open in the correctness experiment satisfy |y | = poly(λ, `) and

|π | = poly(λ, `).

• Setup indistinguishability: For a security parameter λ, a bit b ∈ {0, 1}, and an adversary A, we de�ne the

setup-indistinguishability experiment as follows:

– Algorithm A starts by choosing inputs x1, . . . , xt ∈ {0, 1}
`

and an index i ∈ [t].

– If b = 0, the challenger samples pp ← Setup(1λ, 1`). Otherwise, if b = 1, the challenger samples

pp← SetupEnforce(1λ, 1`, (x1, . . . , xt), i). It gives pp to A.

– Algorithm A outputs a bit b ′ ∈ {0, 1}, which is the output of the experiment.

We say that ΠPA satis�es (τ , ε)-setup-indistinguishability if for all adversaries running in time τ = τ (λ), there

exists λA ∈ N such that for all λ > λA

| Pr[b ′ = 1 | b = 0] − Pr[b ′ = 1 | b = 1]| ≤ ε(λ).

in the setup-indistinguishability experiment.

19

• Enforcing: Fix a security parameter λ ∈ N, block size ` ∈ N, a polynomial t = t(λ), an index i∗ ∈ [t], and a

set of inputs x1, . . . , xt . We say that a set of public parameters pp are “enforcing” for a tuple (x1, . . . , xt , i
∗) if

there does not exist a pair (x, π) where x , xi∗ , Verify(pp,y, x, i∗, π) = 1, and y ← Hash(pp, (x1, . . . , xt)). We

say that the positional accumulator is enforcing if for every polynomial ` = `(λ), t = t(λ), index i∗ ∈ [t] and

collection of inputs x1, . . . , xt ∈ {0, 1}
`
, there exists a negligible function negl(·) such that for all λ ∈ N,

Pr[pp is “enforcing” for (x1, . . . , xT , i
∗) : pp← SetupEnforce(1λ, 1`, (x1, . . . , xt), i∗)] ≥ 1 − negl(λ),

where the probability is taken over the random coins of SetupEnforce.

Theorem 4.2 (Positional Accumulators [KLW15]). Assuming the existence of an indistinguishability obfuscation
scheme and one-way functions, there exists a positional accumulator for arbitrary polynomial input lengths ` = `(λ).

Remark 4.3 (Comparison with [KLW15]). De�nition 4.1 describes a simpli�ed variant of the positional accumulator

from Koppula et al. [KLW15, §4]. Speci�cally, we instantiate their construction with an (implicit) bound of T = 2
λ

for the number of values that can be accumulated. The positional accumulators from Koppula et al. also supports

insertions (i.e., “writes”) to the accumulator structure, whereas in our setting, all of the inputs are provided upfront

(as an input to Hash).

Construction 4.4 (Batch Argument for NP Languages). Let λ be a security parameter and s = s(λ) be a bound on

the size of the Boolean circuit. We construct a BARG scheme that supports arbitrary NP languages with up to T = 2
λ

instances (which su�ces to support an arbitrary polynomial number of instances) and Boolean circuits of size at

most s . For ease of notation, we use the set [2λ] and the set {0, 1}λ interchangably in the following description. Our

construction relies on the following primitives:

• Let ΠPA = (PA.Setup, PA.SetupEnforce, PA.Hash, PA.Open, PA.Verify) be a positional accumulator for inputs

of length `.

• Let ΠIndexBARG = (IndexBARG.Gen, IndexBARG.P, IndexBARG.V) be a BARG for index languages (that sup-

ports up to T = 2
λ

instances).
9

We de�ne our batch argument ΠBARG = (Gen, P,V) for batch circuit satis�ability languages as follows:

• Gen(1λ, 1`, 1s): On input the security parameter λ, the statement length `, and a bound on the circuit size s ,
sample pp← PA.Setup(1λ, 1`). Let s ′ be a bound on the size of the following circuit:

Constants: Public parameters pp for ΠPA, a hash value h for ΠPA, Boolean circuit C of size at most s
Inputs: Index i ∈ {0, 1}λ , a tuple (x,σ ,w) where x ∈ {0, 1}`

1. If C(x,w) = 0, output 0.

2. If PA.Verify(pp,h, x, i,σ) = 0, output 0.

3. Otherwise, output 1.

Figure 7: The Boolean circuit C ′[pp,h,C] for an index relation

Then, sample IndexBARG.crs← IndexBARG.Gen(1λ, 1s
′

). Output crs = (pp, IndexBARG.crs).

• P(crs,C, (x1, . . . , xt), (w1, . . . ,wt)): On input the common reference string crs = (pp, IndexBARG.crs), a Boolean

circuit C : {0, 1}` × {0, 1}m → {0, 1}, statements x1, . . . , xt ∈ {0, 1}
`
, and witnesses w1, . . . ,wt ∈ {0, 1}

m
,

compute h ← PA.Hash(pp, (x1, . . . , xt)). Then, for each i ∈ [t], let σi ← PA.Open(pp, (x1, . . . , xt), i) and let

w ′i = (xi ,σi ,wi). Output π ← IndexBARG.P(IndexBARG.crs,C ′[pp,h,C], t, (w ′
1
, . . . ,w ′t)), whereC ′[pp,h,C] is

the circuit for the index relation from Fig. 7.

9
Our transformation also applies in the setting where the number of instances is bounded and the transformed scheme inherits the same bound.

For simplicity of exposition, we just describe the transformation for the unbounded case.

20

• V(crs,C, (x1, . . . , xt), π): On input the common reference string crs = (pp, IndexBARG.crs), the Boolean circuit

C : {0, 1}` × {0, 1}m → {0, 1}, instances x1, . . . , xt ∈ {0, 1}
`
, and a proof π , the veri�cation algorithm computes

h ← PA.Hash(pp, (x1, . . . , xt)) and outputs IndexBARG.V(IndexBARG.crs,C ′[pp,h,C], t, π), whereC ′[pp,h,C]
is the circuit for the index relation from Fig. 7.

Theorem 4.5 (Completeness). If ΠIndexBARG is complete and ΠPA is correct, then Construction 4.4 is complete.

Proof. Take any security parameter λ ∈ N, circuit size bound s ∈ N, input length ` ∈ N, any Boolean circuit

C : {0, 1}` × {0, 1}m → {0, 1} of size at most s , and any instance number t ∈ [2λ]. Let x1, . . . , xt ∈ {0, 1}
`

be a

collection of statements and w1, . . . ,wt be a collection of corresponding witnesses such that C(xi ,wi) = 1 for all

i ∈ [t]. Suppose crs = (pp, IndexBARG.crs) ← Gen(1λ, 1`, 1s) and π ← Prove(crs,C, (x1, . . . , xt), (w1, . . . ,wt)). Let

σi ← PA.Open(pp, (x1, . . . , xt), i) be the openings computed by the prove algorithm. ConsiderV(crs,C, (x1, . . . , xt), π).
Since ΠPA is correct, for every i ∈ [t], PA.Verify(pp,h, xi , i,σi) = 1. Thus, for every i ∈ [t],C ′(i, (xi ,σi ,wi)) = 1, where

C ′ = C ′[pp,h,C] is the circuit from Fig. 7. Completeness now follows from completeness of the underlying BARG for

index languages. �

Theorem 4.6 (Soundness). Suppose ΠIndexBARG satis�es non-adaptive soundness, ΠPA satis�es setup-indistinguishability
and is enforcing. Then, Construction 4.4 satis�es non-adaptive soundness.

Proof. We start by de�ning a sequence of hybrid experiments:

• Hyb
0

: This is the non-adaptive soundness experiment:

– AdversaryA starts by outputting the maximum circuit size 1
s(λ)

, a Boolean circuitC∗λ of size at most s(λ),

and statements x∗
1
, . . . , x∗tλ where tλ ≤ 2

λ
. The challenger checks that there exists an index i∗λ ∈ [tλ] such

that C∗λ
(
x∗i∗λ
,w

)
= 0 for all w ∈ {0, 1}∗. If such an i∗ does not exist, the challenger aborts with output 0.

For ease of notation, we simply write C∗ = C∗λ , t = tλ , and i∗ = i∗λ in the following description.

– The challenger samples crs← Gen(1λ, 1`, 1s) and gives it to A. Here, crs = (pp, IndexBARG.crs) where

pp← PA.Setup(1λ, 1`) and IndexBARG.crs← IndexBARG.Gen(1λ, 1s
′

).

– Adversary A outputs a proof π .

– The output of the experiment is 1 if V(crs,C∗, (x∗
1
, . . . , x∗t), π) and 0 otherwise.

• Hyb
1
: Same as the previous experiment, but the challenger samples the public parameters pp using SetupEnforce:

pp← PA.SetupEnforce(1λ, 1`, (x∗
1
, . . . , x∗t), i

∗).

For an adversary A, we write Hybi (A) to denote the output distribution of Hybi (A) with adversary A. We now

show that each pair of adjacent distributions de�ned above are indistinguishable. As in the proof of Theorem 3.3, we

model the adversary A as a deterministic non-uniform algorithm that takes as input the security parameter 1
λ

(and

advice string ρλ) and outputs the maximum circuit size 1
s(λ)

, a Boolean circuit C∗λ of size at most s(λ), and statements

x∗
1
, x∗

2
, . . . , x∗tλ where tλ ≤ 2

λ
. If the advantage of A is non-zero in the non-adaptive soundness game, it must be

the case that there exists an index i∗λ ∈ [tλ] such that C∗λ
(
x∗i∗λ
,w

)
= 0 for all w ∈ {0, 1}∗. If there are multiple such

indices, we de�ne i∗λ to be the �rst such index. In the following, we will consider deterministic non-uniform reduction

algorithms that are provided (ρλ, i
∗
λ) as advice (similar to the proof of Theorem 3.3, we rely on non-uniformity because

the index i∗ = i∗λ may not be e�ciently-computable; see also Remark 3.10). We now show that each pair of adjacent

distributions de�ned above are indistinguishable.

Lemma 4.7. Suppose ΠPA satis�es setup indistinguishability. Then for every non-uniform polynomial time adversary
A, there exists a negligible function negl(·) such that for all λ ∈ N, | Pr[Hyb

1
(A) = 1] − Pr[Hyb

0
(A) = 1]| = negl(λ).

Proof. Let A be a (deterministic) non-uniform polynomial time adversary where

| Pr[Hyb
1
(A) = 1] − Pr[Hyb

0
(A) = 1]| ≥ ε

for some non-negligible ε . We construct a non-uniform adversary B with advice string (ρ, i∗) = (ρλ, i
∗
λ) that breaks

setup indistinguishability of the positional accumulator.

21

1. Algorithm B runs adversary A on input 1
λ

and advice string ρ. Algorithm A outputs the maximum circuit

size 1
s
, a Boolean circuit C∗ of size at most s , and statements x1, . . . , xt where t ≤ 2

λ
.

2. Algorithm B gives (x∗
1
, . . . , x∗t) along with the index i∗ to the challenger.

3. Algorithm B receives a set of public parameters pp from the challenger. If b = 0, these are sampled as

pp← Setup(1λ, 1`) and if b = 1, they are sampled as pp← SetupEnforce(1λ, 1`, (x∗
1
, . . . , x∗t), i

∗).

4. Algorithm B computes IndexBARG.crs← IndexBARG.Gen(1λ, 1s
′

) and gives crs = (pp, IndexBARG.crs) toA.

Algorithm A then outputs a proof π .

5. Algorithm B outputs V(crs,C∗, (x∗
1
, . . . , x∗t), π).

Observe that if b = 0, algorithm B perfectly simulates distribution Hyb
0

and if b = 1, algorithm B perfectly simulates

distribution Hyb
1
. Thus, B’s advantage in breaking setup indistinguishability is ε , which is non-negligible. �

Lemma 4.8. Suppose ΠIndexBARG satis�es non-adaptive soundness and ΠPA is enforcing. Then for every non-uniform
polynomial time adversary A, there exists a negligible function negl(·) such that for all λ ∈ N, Pr[Hyb

1
(A) = 1] =

negl(λ).

Proof. Suppose there exists a (deterministic) non-uniform polynomial time adversary A where Pr[Hyb
1
(A) = 1] ≥ ε

and ε is non-negligible. We construct a non-uniform adversary B with advice string (ρ, i∗) = (ρλ, i
∗
λ) that breaks

non-adaptive soundness of ΠIndexBARG:

1. Algorithm B runs adversary A on input 1
λ

and advice ρ. Algorithm A outputs the maximum circuit size 1
s
, a

Boolean circuit C∗ of size at most s , and statements x∗
1
, . . . , x∗t where t ≤ 2

λ
.

2. Algorithm B computes pp← PA.SetupEnforce(1λ, 1`, x∗
1
, . . . , x∗t , i

∗) and h∗ ← PA.Hash(pp, x∗
1
, . . . , x∗t). It also

computes the circuit C ′[pp,h∗,C∗](·) according to Fig. 7.

3. Algorithm B outputs the maximum circuit size 1
s ′

, where s ′ is the bound on the size of the circuit from Fig. 7,

the Boolean circuit C ′ of size at most s ′, and the number of instances 1
t

where t ≤ 2
λ
.

4. Algorithm B receives a common reference string IndexBARG.crs ← Gen(1λ, 1s
′

). Using IndexBARG.crs,
algorithm B sets crs← (pp, IndexBARG.crs) and gives crs to A.

5. Algorithm A outputs a proof π , which algorithm B also outputs.

By construction, algorithm B perfectly simulates an execution of Hyb
1

for A. Thus, with probability at least ε ,
algorithm A outputs a proof π such that V(crs,C∗, (x∗

1
, . . . , x∗t), π) = 1. This means that

IndexBARG.V(IndexBARG.crs,C ′, t, π) = 1, (4.1)

where C ′[pp,h∗,C∗](·) is the circuit for the index relation according to Fig. 7 and h∗ ← PA.Hash(pp, x∗
1
, . . . , x∗t). We

now argue that C ′(i∗,w ′i∗) = 0 for all w ′i∗ . First write w ′i∗ = (x
′,σ ′,w ′). We consider two possibilities:

• Suppose x ′ = x∗i∗ . By de�nition of i∗, x∗i∗ is a false instance so C∗
(
x∗i∗,w

′
)
= 0 irrespective of the value of w ′.

Thus, C ′(i∗,w ′i∗) = 0.

• Suppose x ′ , x∗i∗ . Since the parameters (pp,h) are sampled in enforcing mode to bind on statement x∗i∗ at

index i∗, with all but negligible probability over the choice of pp, the only value of x ′ for which there exists σ ′

such that PA.Verify(pp,h, x ′, i∗,σ ′) = 1 is x ′ = x∗i∗ . Thus, with overwhelming probability over the choice of pp,

PA.Verify(pp,h, x ′, i∗,σ ′) = 0 in this case. This again means C ′(i∗,w ′i∗) = 0.

In both cases, we see that C ′(i∗,w ′i∗) = 0. This holds for all w ′i∗ ∈ {0, 1}
∗
, so (C ′, t) < LBatchCSATindex,t , and yet

Eq. (4.1) holds. Thus, algorithm B breaks non-adaptive soundness of the underlying index BARG with advantage

≥ ε − negl(λ). �

22

Combining Lemmas 4.7 and 4.8, we conclude that for all polynomial-time (non-uniform) adversaries A, there exists a

negligible function such that Pr[Hyb
0
(A) = 1] = negl(λ). �

Theorem 4.9 (Succinctness). If ΠIndexBARG is succinct (resp., fully succinct) and ΠPA is e�cient, then Construction 4.4 is
succinct (resp., fully succinct).

Proof. We show the two necessary succinctness properties.

• Succinct proof size: The proofπ on t instances output by P in Construction 4.4 consists of a proof forΠIndexBARG
on the circuitC ′ = C ′[pp,h,C] and the same number of instances t . By construction, pp← PA.Setup(1λ, 1`) and

h ← PA.Hash(pp, (x1, . . . , xt)). The e�ciency and succinctness requirements of ΠPA imply that |pp| = poly(λ, `)
and |h | = poly(λ, `). Correspondingly, this means that |C ′ | = poly(λ, `, s) = poly(λ, s) since s ≥ `. Succinctness

(resp., full succinctness) now follows from succicntness (resp., full succinctness) of ΠIndexBARG.

• Succinct veri�cation time: By construction, the veri�cation algorithm needs to compute PA.Hash followed

by IndexBARG.Verify. Since PA.Hash runs in polynomial time, computing h ← PA.Hash(pp, (x1, . . . , xt)) takes

poly(λ, t, `) time. By the same analysis as above, constructing the circuit C ′[pp,h,C] can takes poly(λ, s) time.

Finally, succinctness of ΠIndexBARG requires poly(λ, |C ′ |, |π |) time, so the overall veri�cation time is bounded by

poly(λ, t, `) + poly(λ, s) time, as required. �

Theorem 4.10 (Zero Knowledge). If ΠIndexBARG is perfect zero-knowledge, then Construction 4.4 is perfect zero-
knowledge.

Proof. Let IndexBARG.S be the simulator for ΠIndexBARG. We construct a simulator for ΠBARG as follows. On

input the security parameter λ, a bound ` on the instance size, a bound s on the circuit size, a Boolean circuit

C : {0, 1}` × {0, 1}m → {0, 1}, and instances x1, . . . , xt ∈ {0, 1}
`
, the simulator proceeds as follows:

1. Sample pp← PA.Setup(1λ, 1`) and compute h ← PA.Hash(pp, (x1, . . . , xt)).

2. LetC ′ = C ′[pp,h, s] be the circuit from Fig. 7 and let s ′ be a bound on the size ofC ′, and compute the simulated

CRS and proof (IndexBARG.crs, π) ← IndexBARG.S(1λ, 1s
′

,C ′, t).

3. Output the simulated CRS crs = (pp, IndexBARG.crs) and the simulated proof π .

By construction, the positional accumulator parameters pp and the circuit C ′ = C ′[pp,h, s] are constructed exactly as

in the real scheme. Perfect zero-knowledge now follows from perfect zero-knowledge of ΠIndexBARG. �

Remark 4.11 (Weaker Notions of Zero Knowledge). If ΠIndexBARG satis�es computational (resp., statistical) zero-

knowledge, then Construction 4.4 satis�es computational (resp., statistical) zero-knowledge. In other words, Con-

struction 4.4 preserves the zero-knowledge property on the underlying index BARG.

5 Updatable Batch Argument for NP
We say that a BARG scheme is updatable if it supports an a priori unbounded number of statements (see De�nition 2.7)

and the prover algorithm is updatable. Formally, we replace the prover algorithm P in the BARG with an UpdateP
algorithm. The UpdateP algorithm takes in a hash ht (representing a short representation for some statements

(x1, . . . , xt)), a proof πt on these t statements, a new statement xt+1, along with an associated witness wt+1, and

outputs an “updated” proof πt+1 on the new set of statements (x1, . . . , xt+1). The updated proof should continue to

satisfy the same succinctness requirements as before. We give the formal de�nition below:

De�nition 5.1 (Updatable BARG). An updatable batch argument (BARG) for the language of Boolean circuit

satis�ability consists of a tuple of e�cient algorithms ΠBARG = (Gen,Hash,UpdateP,V)with the following properties:

• Gen(1λ, 1`, 1s) → crs: On input the security parameter λ ∈ N, a bound on the instance size ` ∈ N, and a bound

on the maximum circuit size s ∈ N, the generator algorithm outputs a common reference string crs.

23

• Hash(crs, (x1, . . . , xt)) → ht : On input the common reference string crs, a sequence of statements x1, . . . , xt ∈
{0, 1}` , the hash algorithm outputs a hash ht .

• UpdateP(crs,C,ht , πt , xt+1,wt+1) → (ht+1, πt+1): On input the common reference string crs, a Boolean circuit

C : {0, 1}`×{0, 1}m → {0, 1}, a hashht , a proof πt , a new statement xt+1 ∈ {0, 1}
`
, and a witnesswt+1 ∈ {0, 1}

m
,

the update proof algorithm outputs an updated hash ht+1 and an updated proof πt+1. Note that ht , πt are

allowed to be empty. We write ⊥ to denote an empty hash (representing an empty list of statements) and an

empty proof.

• V(crs,C, (x1, . . . , xt), π) → b: On input the common reference string crs, a Boolean circuitC : {0, 1}`×{0, 1}m →
{0, 1}, a list of statements x1, . . . , xt ∈ {0, 1}

`
, and a proof π , the veri�cation algorithm outputs a bit b ∈ {0, 1}.

An updatable BARG scheme should satisfy the following properties:

• Completeness: For every security parameter λ ∈ N, any t ≤ 2
λ
, bounds ` ∈ N and s ∈ N, Boolean circuits

C : {0, 1}` × {0, 1}m → {0, 1} of size at most s , any collection of statements x1, . . . , xt ∈ {0, 1}
`

and associated

witnesses w1, . . . ,wt ∈ {0, 1}
m

where ∀i ∈ [t],C(xi ,wi) = 1, we have that,

Pr

∀i ∈ [t],V(crs,C, (x1, . . . , xi), πi) = 1 :

crs← Gen(1λ, 1`, 1s)
h0 ← ⊥, π0 ← ⊥,

∀i ∈ [t], (hi , πi) ← UpdateP(crs,C,hi−1, πi−1, xi ,wi)

 = 1.

• Succinctness: Similar to De�nition 2.6, we require two succinctness properties:

– Succinct proof size: There exists a universal polynomial poly(·, ·) such that for every λ ∈ N, t ≤ 2
λ
,

i ∈ [t], s ∈ N, we have, |πi | = poly(λ, s) in the completeness experiment above. Moreover, we say the

proof is fully succinct if |π | = poly(λ, log s).

– Succinct veri�cation time: There exists a universal polynomial poly(·, ·, ·) such that for λ ∈ N, t ≤ 2
λ
,

i ∈ [t], s ∈ N, ` ∈ N, the veri�cation algorithm V(crs,C, (x1, . . . , xi), πi) runs in time poly(λ, i, `) +
poly(λ, log i, s) in the completeness experiment above.

• Soundness: The soundness de�nition is de�ned exactly as in De�nition 2.6 except the adversary outputs the

bound on the number of instances T in binary (since we implicitly set T = 2
λ
).

• Perfect zero knowledge: The scheme satis�es perfect zero knowledge if there exists an e�cient simulator

S such that for all λ ∈ N, all bounds ` ∈ N, s ∈ N, all t ≤ 2
λ
, all tuples (C, x1, . . . , xt) ∈ LBatchCSAT,t , and all

witnesses (w1, . . . ,wt) where C(xi ,wi) = 1 for all i ∈ [t], the following distributions are identically distributed:

– Real distribution: Set h0, π0 = ⊥. Sample crs ← Gen(1λ, 1`, 1s) and for i = 1 to t , (hi , πi) ←
P(crs,C,hi−1, πi−1, xi ,wi). Output (crs, πt).

– Simulated distribution: Output (crs∗, π ∗t) ← S(1
λ, 1`, 1s ,C, (x1, . . . , xt)).

Strong completeness. For updatable batch arguments, we can de�ne an even stronger notion of completeness

which says that any valid proof (i.e., not just one output by the honest UpdateP algorithm) on statements (x1, . . . , xt)
can be extended to a proof on (x1, . . . , xt+1). To ensure non-triviality, we require that the empty proof (denoted ⊥) be

a valid proof for the empty tuple of statements (also denoted ⊥). We state the formal de�nition below. It is easy to see

that strong completeness implies the vanilla version of completeness.

De�nition 5.2 (Strong Completeness). We say that an updatable BARG ΠBARG = (Gen,Hash,UpdateP,V) satis�es

strong completeness if for every security parameter λ ∈ N, any t ≤ 2
λ
, bounds ` ∈ N and s ∈ N, Boolean circuits

C : {0, 1}` × {0, 1}m → {0, 1} of size at most s , the following conditions hold:

• Pr[V(crs,C,⊥,⊥) = 1 : crs← Gen(1λ, 1`, 1s)] = 1.

24

• For all statements x1, . . . , xt ∈ {0, 1}
`
, any proof πt−1, any witness wt ∈ {0, 1}

m
, and any crs in the support of

Gen(1λ, 1`, 1s) where V(crs,C, (x1, . . . , xt−1), πt−1) = 1 and C(xt ,wt) = 1, we have,

Pr

[
V(crs,C, (x1, . . . , xt), πt) = 1 :

ht−1 ← Hash(crs, (x1, . . . , xt−1)),
πt ← UpdateP(crs,C,ht−1, πt−1, xt ,wt)

]
= 1.

5.1 Updatable BARGs for NP from Indistinguishability Obfuscation
We now give a direct construction of an updatable batch argument for NP languages from indistinguishability

obfuscation together with somewhere statistically binding (SSB) hash functions [HW15].

Two-to-one somewhere statistically binding hash functions. Our construction relies on a two-to-one some-

where statistically binding (SSB) hash function [OPWW15]. Informally, a two-to-one SSB hash function hashes two

input blocks to an output whose size is comparable to the size of a single block. We recall the de�nition below:

De�nition 5.3 (Two-to-One Somewhere Statistically Binding Hash Function [OPWW15]). Let λ be a security

parameter. A two-to-one somewhere statistically binding (SSB) hash function with block size `blk = `blk(λ) and

output size `out = `out(λ, `blk) is a tuple of e�cient algorithms ΠSSB = (Gen,GenTD, LocalHash) with the following

properties:

• Gen(1λ, 1`blk) → hk: On input the security parameter λ and the block size `blk, the generator algorithm outputs

a hash key hk.

• GenTD(1λ, 1`blk, i∗) → hk: On input a security parameter λ, a block size `blk, and an index i∗ ∈ {0, 1}, the

trapdoor generator algorithm outputs a hash key hk.

• LocalHash(hk, x0, x1) → y: On input a hash key hk and two inputs x0, x1 ∈ {0, 1}
`blk

, the hash algorithm

outputs a hash y ∈ {0, 1}`out .

Moreover, ΠSSB should satisfy the following requirements:

• Succinctness: The output length `out satis�es `out(λ, `blk) = `blk · (1 + 1/Ω(λ)) + poly(λ).

• Index hiding: For a security parameter λ, a bit b ∈ {0, 1}, and an adversary A, we de�ne the index-hiding

experiment as follows:

– Algorithm A starts by choosing a block size 1
`blk

, and an index i ∈ {0, 1}.

– If b = 0, the challenger samples hk0 ← Gen(1λ, 1`blk). Otherwise, if b = 1, the challenger samples

hk1 ← GenTD(1λ, 1`blk, i). It gives hkb to A.

– Algorithm A outputs a bit b ′ ∈ {0, 1}, which is the output of the experiment.

We say that ΠSSB satis�es (τ , ε)-index-hiding, if for all adversaries running in time τ = τ (λ), there exists λA ∈ N
such that for all λ > λA , | Pr[b ′ = 1 | b = 0] − Pr[b ′ = 1 | b = 1]| ≤ ε(λ) in the index-hiding experiment.

• Somewhere statistically binding: Let λ ∈ N be a security parameter and ` ∈ N be an input length. We say a

hash key hk is "statistically binding" at index i ∈ {0, 1}, if there does not exist two inputs (x0, x1) and (x∗
0
, x∗

1
)

such that x∗i , xi and Hash(hk, (x0, x1)) = Hash(hk, (x∗
0
, x∗

1
)). We then say that the hash function is somewhere

statistically binding if for all polynomials `blk = `blk(λ), there exists a negligible function negl(·) such that for

all indices i∗ ∈ {0, 1} and all λ ∈ N,

Pr[hk is statistically binding at index i : hk← GenTD(1λ, 1`blk, i)] ≥ 1 − negl(λ).

Theorem 5.4 (Somewhere Statistically Binding Hash Functions [OPWW15]). Under standard number-theoretic
assumptions (e.g., DDH, DCR, LWE, or ϕ-Hiding), there exists a two-to-one somewhere statistically binding hash function
for arbitrary polynomial block size `blk = `blk(λ).

25

Notation. Our updatable BARG construction uses a tree-based construction. Before describing the construction,

we introduce some notation. First, for an integer t < 2
d

, we write bind (t) ∈ {0, 1}d to denote the d-bit binary

representation of t . We say ind ≤ ind′ if the string ind precedes the string ind′ lexicographically (if the strings have

uneven length, the shorter one is �rst padded with 0s on the right to the length of the longer string before comparing

them lexicographically). For strings s1, s2 ∈ {0, 1}
∗
, we write s1‖s2 to denote their concatenation. We say that a

string x ∈ {0, 1}∗ is a pre�x of a string y ∈ {0, 1}∗ if there exists a string z ∈ {0, 1}∗ such that y = x ‖z. For a length

parameter `, we write {0, 1}≤` to denote the set of bit-strings with length at most `.

Binary trees. A binary tree Γ of height d consists of nodes where each node is indexed by a binary string of length

at most d . We now de�ne a recursive labeling scheme for the nodes of the tree; subsequently, we will refer to nodes

by their labels.

• Root node: The root node is labeled with the empty string ε .

• Child nodes: The left child of node ind has label ind‖0 and the right child has label ind‖1. We also say that

node ind‖0 is the “left sibling” of the node ind‖1.

We de�ne the level of a node ind by level(ind) = d − |ind|. In particular, the root node is at level d while the leaf nodes

are at level 0. We write {0, 1}≤d to denote the set of node labels associated in the binary tree (i.e., the set of all binary

strings of length at most d). Finally, we can also associate each node in the binary tree with a value; formally, for a

binary tree Γ we write val(ind) to denote the value associated with the node ind. When we write (Γ, val(·)), we imply

our binary tree has been initialized with the corresponding value function. Finally, we de�ne the notion of a “path”

and a “frontier” of a node in a binary tree Γ:

• Path of a node: We de�ne the path associated with a node ind ∈ {0, 1}≤d as

path(ind) =
{
ind′ | ind′ ∈ {0, 1}≤d and ind′ is a pre�x of ind

}
.

Namely, path(ind) consists of the nodes along the path from the root to ind.

• Frontier of a node: For any ind ∈ {0, 1}≤d , we de�ne

frontier(ind) = {ind} ∪
{
ind′ ∈ {0, 1}≤d | ind′ is a left sibling of a node in path(ind)

}
.

Claim 5.5 (Size of Frontier). Let Γ be a binary tree of height d . Then, for any leaf node ind ∈ {0, 1}d , |frontier(ind)| ≤
d + 1 (i.e., the frontier of a leaf nodes ind contains at most d + 1 nodes).

Proof. The path from the root to ind ∈ {0, 1}d contains d + 1 nodes. The frontier of ind includes ind itself along with

the left sibling of each node along the path (if one exists). Since the root node has no sibling node, the maximum

number of nodes in frontier(ind) is at most d + 1. �

Construction 5.6 (Non-Adaptive Updatable Batch Argument for NP). Let λ be a security parameter, ` = `(λ) be

the statement size, and s = s(λ) be a bound on the size of the Boolean circuit. We construct an updatable BARG

scheme that supports NP languages with up to T = 2
λ

instances of length ` and circuit size at most s . Note that

setting T = 2
λ

means the construction support an arbitrary polynomial number of instances. Our construction relies

on the following primitives:

• Let ΠSSB = (SSB.Gen, SSB.GenTD, SSB.LocalHash) be a two-to-one somewhere statistically binding hash

function with output length `out = `out(λ, `blk), where `blk denotes the block length. Our construction will

consider a binary tree of depth d = λ, and we de�ne a sequence of block lengths `0, . . . , `d where `0 = ` and

for j ∈ [d], let `j = `out(λ, `j−1).
10

Let `max = max(`0, . . . , `j).

10
Formally, our hash function will take inputs in {0, 1}`j−1 ∪ {⊥}. For ease of exposition, we drop the special input symbol ⊥ in our block length

description.

26

• Let ΠPRF = (PRF.KeyGen, PRF.Puncture, PRF.Eval) be a puncturable PRF with key space {0, 1}λ , domain

{0, 1}≤s × {0, 1}≤`max × {0, 1}d and range {0, 1}λ .

• Let iO be an indistinguishability obfuscator for general circuits.

• Let PRG be a pseudorandom generator with domain {0, 1}λ and range {0, 1}2λ .

We de�ne our updatable batch argument ΠBARG = (Gen,Hash,UpdateP,Verify) for NP languages as follows:

• Gen(1λ, 1`, 1s): On input the security parameter λ, the statement size `, and a bound on the circuit size s , the setup

algorithm starts by sampling a PRF key K ← PRF.KeyGen(1λ). For j ∈ [d], sample hkj ← SSB.Gen(1λ, 1`j−1),
Let hk← (hk1, . . . , hkd) and de�ne the proving program Prove[K, hk] and the veri�cation program Verify[K]
as follows:

Constants: PRF key K , hash key hk = (hk1, . . . , hkd)
Input: Boolean circuit C : {0, 1}` × {0, 1}m → {0, 1} of size at most s , node values h0,h1 ∈ {0, 1}

≤`max
, index

ind ∈ {0, 1}≤d , and proofs π0, π1 ∈ {0, 1}
≤max(m,λ)

1. If ind ∈ {0, 1}d (i.e., a leaf in the binary tree),

(a) Parse h0 as a statement x1 ∈ {0, 1}
`

and π0 as a witness w1 ∈ {0, 1}
m

.

(b) If C(x1,w1) , 1, output ⊥. Otherwise, output PRF.Eval(K, (C, x1, ind)).

2. Otherwise, if ind ∈ {0, 1}<d (i.e., an internal node in the binary tree),

(a) Let d ′ = level(ind) and compute the hash h ← SSB.LocalHash(hkd ′,h0,h1).

(b) Check the following conditions:

– PRG(π0) = PRG(PRF.Eval(K, (C,h0, ind‖0)));
– PRG(π1) = PRG(PRF.Eval(K, (C,h1, ind‖1))).

If either check fails, output ⊥. Otherwise, output PRF.Eval(K, (C,h, ind)).

Figure 8: Program Prove[K, hk]

Constants: PRF key K
Input: Boolean circuit C of size at most s , node value h ∈ {0, 1}≤`max

, index ind ∈ {0, 1}≤d , a proof π ∈ {0, 1}λ

1. Output 1 if PRG(π) = PRG(PRF.Eval(K, (C,h, ind))) and 0 otherwise.

Figure 9: Program Verify[K]

The setup algorithm obfuscates the above programs to obtainObfProve← iO(1λ, Prove[K, hk]) andObfVerify←
iO(1λ,Verify[K]). Note that both the proving circuit Prove[K, hk] and Verify[K] are padded to the maximum

size of any circuit that appears in the proof of Theorem 5.8. Finally, it outputs the common reference string

crs = (ObfProve,ObfVerify, hk).

• Hash(crs, (x1, . . . , xt)): On input a common reference string crs = (ObfProve,ObfVerify, hk = (hk1, . . . , hkd))
and sequence of statements x1, . . . , xt ∈ {0, 1}

`
, the hash algorithm proceeds as follows:

1. If t = 0 (i.e., the sequence of statements is empty), then the hash algorithm outputs (0,�).

2. Otherwise, if t , 0, the algorithm constructs a binary tree (Γhash, valhash) ← HashProg[hk](x1, . . . , xt) of

depth d whose values correspond to the statements (x1, . . . , xt) and their hashes. Speci�cally, we de�ne

the HashProg[hk] function as follows:

27

Constants: Hash key hk = (hk1, . . . , hkd)
Input: Statements x1, . . . , xt ∈ {0, 1}

`

On input a collection of statements (x1, . . . , xt), the hash algorithm constructs a binary tree Γhash of depth d
with a value function valhash de�ned recursively as follows:

– Leaf nodes: For a leaf node ind ∈ {0, 1}d , let i ∈ [1, 2d] be its associated value (when viewed as an

integer). For instance, we associate the string 0
d

with the integer 1, and more generally, if ind = b1, . . . ,bd ,

then we associated ind with the integer 1 +
∑
j ∈[d] 2

d−jbj). Then, we associate a value valhash(ind) as

follows:

valhash(ind) =

{
xi i ≤ t

⊥ otherwise.

– Internal nodes: For an internal node ind ∈ {0, 1}<d , we de�ne its value as follows:

∗ For all indices where ind > bind (t − 1), de�ne valhash(ind) ← ⊥. Recall that ind > bind (t − 1) if

the binary string ind follows the binary string bind (t − 1) lexicographically.

∗ If ind ≤ bind (t − 1), de�ne valhash(ind) to be the hash of its children ind‖0 and ind‖1 computed

using hkd ′ , where d ′ = level(ind). Namely,

valhash(ind) ← SSB.LocalHash
(
hkd ′, valhash(ind‖0), valhash(ind‖1)

)
.

Output (Γhash, valhash). By construction, the value of valhash(ind) is ⊥ whenever ind > bind (t − 1). The number

of such indices is at most 2t , so the value function valhash(ind) is de�ned (i.e., not ⊥) on at most 2t indices.

Figure 10: The function HashProg[hk](x1, . . . , xt)

Essentially, HashProg[hk] computes a Merkle tree on the statements (x1, . . . , xt).

3. Finally, output the hash ht =
(
t, {(ind, valhash(ind))}ind∈frontier(ind(t))

)
.

• UpdateP(crs,C,ht , πt , xt+1,wt+1): On input a common reference string crs = (ObfProve,ObfVerify, hk), where

hk = (hk1, . . . , hkd), a Boolean circuit C : {0, 1}` × {0, 1}m → {0, 1}, a hash of t statements denoted by

ht = (t, {(ind,hind)}ind∈I1), a proof πt = {(ind, πind)}ind∈I2 on the �rst t statements where t ≤ 2
λ

and I1,I2 ⊆

{0, 1}≤d , and a witness wt+1 ∈ {0, 1}
m

, the update algorithm proceeds as follows:
11

1. If t = 0, let ind(1) = bind (0) = 0
d

. Let π ← ObfProve(C, x1,⊥, ind(1),w1,⊥) and output {(ind(1), π)}.

2. If I1 , I2, output ⊥. Otherwise let I = I1 = I2. Then, the update algorithm computes ind(t) = bind (t − 1)
and checks that frontier(ind(t)) = I. If the check fails, then the update algorithm outputs ⊥.

3. The hash algorithm then de�nes a binary tree Γhash of depth d with the following value function valhash:

– For each index ind ∈ I, let valhash(ind) = hind.

– Let ind(t+1) = bind (t). Let valhash(ind(t+1)) = xt+1.

– For all other nodes ind < I or ind , ind(t+1), let valhash(ind) = ⊥.

The invariant will be that the nodes ind associated with the frontier of leaf node t (with index bind (t − 1))
are associated with a hash hind.

4. The update algorithm then de�nes a binary tree Γproof of depth d with the following value function valproof :

– For each index ind ∈ I, let valproof(ind) = πind.

– Let ind(t+1) = bind (t). Let valproof(ind(t+1)) = ObfProve(C, xt+1,⊥, ind(t+1),wt+1,⊥).

– For all other nodes ind < I, let valproof(ind) = ⊥.

The invariant will be that the nodes ind associated with the frontier of leaf node t (with index bind (t − 1))
are associated with a proof πind.

11
Note that if πt = ⊥, then we interpret I2 as I2 = �.

28

5. Let ind′ be the longest common pre�x to ind(t) and ind(t+1). Write ind(t) = b1 · · ·bd and ind′ = b1 · · ·bρ ,

where ρ = |ind′ | denotes the length of the common pre�x. If ρ < d − 1, then we apply the following

procedure for k = d − 1, . . . , ρ + 1 to merge proofs:

– Let ind = b1 · · ·bk and compute

valhash(ind) ← SSB.LocalHash (hkd−k , valhash(ind‖0), valhash(ind‖1)) ,

valproof(ind) ← ObfProve
(
C,h0,h1, ind, valproof(ind‖0), valproof(ind‖1)

)
,

where h0 ← valhash(ind‖0) and h1 ← valhash(ind‖1).

6. Output the updated hash ht+1 =
(
t + 1, {(ind, valhash(ind))}ind∈frontier(ind(t+1))

)
and the updated proof

πt+1 =
{
(ind, valproof(ind))

}
ind∈frontier(ind(t+1)).

• V(crs,C, (x1, . . . , xt), π): On input a common reference string crs = (ObfProve,ObfVerify, hk), a Boolean circuit

C : {0, 1}`×{0, 1}m → {0, 1}, statements x1, . . . , xt ∈ {0, 1}
`
, and a proof π = {(ind, πind)}ind∈I , the veri�cation

algorithm proceeds as follows:

1. If t = 0 and π = ⊥, then the veri�cation algorithm outputs 1. If t = 0 and π , ⊥, then the veri�cation

algorithm outputs 0.

2. Otherwise, let ind(t) = bind (t − 1). If I , frontier(ind(t)), output ⊥.

3. The algorithm runs ht ← Hash(crs, (x1, . . . , xt)). Parse ht =
(
t, {(ind, valhash(ind))}ind∈frontier(ind(t))

)
.

4. The veri�cation algorithm checks that ObfVerify(C, valhash(ind), ind, πind) = 1 for all ind ∈ frontier(ind(t)).
If any checks fail, output 0. Otherwise output 1.

Theorem 5.7 (Strong Completeness). If iO is correct, then Construction 5.6 satis�es strong completeness.

Proof. Take any security parameter λ ∈ N, any t ≤ 2
λ
, any bounds `, s ∈ N, and any Boolean circuit C : {0, 1}` ×

{0, 1}m → {0, 1} of size at most s . Let crs← Gen(1λ, 1`, 1s). First, V(crs,C,⊥,⊥) always outputs 1 by construction.

For the main requirement, take any sequence of statements x1, . . . , xt ∈ {0, 1}
`
, any proof πt−1, and any witness

wt ∈ {0, 1}
m

where V(crs,C, (x1, . . . , xt−1), πt−1) = 1 and C(xt ,wt) = 1. For each j ∈ [t], let ind(j) = bind (j − 1). We

consider two cases depending on the value of t .

Case 1. Suppose t = 1. Let h0 ← Hash(crs,⊥). By construction, h0 = (0,�). Since V(crs,C,⊥, π0) = 1, it must be

the case that π0 = ⊥. Consider the proof π1 output by UpdateP(crs,C,h0, π0, x1,w1). Since t = 0, UpdateP algorithm

computes a proof π by evaluating π ← ObfProve(C, x1,⊥, ind(1),w1,⊥). By correctness of iO, and the fact that

C(x1,w1) = 1,

π = PRF.Eval
(
K,

(
C, x1, ind(1)

))
.

By construction, UpdateP outputs the proof

π1 =
{(
ind(1), PRF.Eval(K, (C, x1, ind(1)))

)}
.

Now consider the output of V(crs,C, (x1), π1). The veri�cation algorithm �rst computes ind(1) = bind (0). Since ind(1)

is the leftmost node, we have frontier(ind(1)) = ind(1), and the �rst check succeeds. Next, the veri�cation algorithm

computes h1 ← Hash(crs, (x1)). By construction, this means

h1 =
(
1,

{(
ind(1), valhash(ind(1))

)})
.

By construction of Hash, we have that valhash(ind(1)) = x1. Then, the veri�cation algorithm runs ObfVerify on

the input

(
C, x1, ind(1), PRF.Eval(K, (C, x1, ind(1)))

)
. By correctness of iO, the program check succeeds. Since all the

checks pass, the veri�cation algorithm outputs 1.

29

Case 2. Suppose t > 1. First, write πt−1 = {(ind, πind)}ind∈I . Similarly, let ht−1 ← Hash(crs, (x1, . . . , xt−1)). By

construction of Hash, we can write

ht−1 =
(
t − 1, {(ind, valhash(ind))}ind∈frontier(ind(t−1))

)
. (5.1)

Let ind(t−1) = bind (t − 2). Since πt−1 is a valid proof on (x1, . . . , xt), the following properties hold by de�nition of V:

• The set of indices I associated with πt−1 satis�es I = frontier(ind(t−1)).

• Since veri�cation succeeds, for all ind ∈ frontier(ind(t−1)), ObfVerify(C, valhash(ind), ind, πind) = 1. By correct-

ness of iO, this means that,

PRG(πind) = PRG(PRF.Eval(K, (C, valhash(ind), ind))). (5.2)

Consider the proof πt computed by UpdateP(crs,C,ht−1, πt−1, xt ,wt) where ht−1 and πt−1 are de�ned above.

• Since t − 1 > 0, and from the checks above, ht−1 and πt−1 are both computed on the set I = frontier(ind(t−1)).

• The update algorithm de�nes a binary tree Γhash and de�nes valhash on I = frontier(ind(t−1)) using the values

taken from ht−1 (i.e., this de�nes valhash on all ind ∈ I). In addition, it sets valhash(ind(t)) = xt . For all other

nodes ind < I ∪
{
ind(t)

}
, it sets valhash(ind) = ⊥.

• Similarly, the update algorithm de�nes a binary tree Γproof and sets valproof on I = frontier(ind(t−1)) using

the values taken from πt−1. It sets valproof(ind(t)) = ObfProve(crs,C, xt ,⊥, ind(t),wt ,⊥). For all other nodes

ind < I ∪
{
ind(t)

}
, it sets valhash(ind) = ⊥.

• Since C(xt ,wt) = 1, by correctness of iO, we have that,

πind(t) = valproof(ind(t)) = PRF.Eval(K, (C, xt , ind(t))). (5.3)

Let ind′ be the longest common pre�x to ind(t−1) and ind(t) and let ρ = |ind′ |. Let ind(t−1) = b1 · · ·bd and ind′ =
b1 · · ·bρ . Let I∗ =

{
ind(t)

}
∪ frontier(ind(t−1)). Observe �rst that ind(t−1) , ind(t), so the length of their longest pre�x

is less than d (i.e., 0 ≤ ρ < d). We now consider two possibilities:

• Case (i) : Suppose ρ = d − 1. Then ind(t−1) = ind′‖0 and ind(t) = ind′‖1. This corresponds to the case where

ind(t−1) and ind(t) are siblings in the binary tree. Thus, in this case,

frontier(ind(t)) = frontier(ind(t−1)) ∪
{
ind(t)

}
= I∗.

In this case, the hash value ht and the proof πt include the same set of components as in ht−1 and πt−1 along

with additional values corresponding to the hash value and the proof associated with node ind(t). We now

show that V(crs,C, (x1, . . . , xt), πt) outputs 1.

– The veri�cation algorithm starts by computing ht ← Hash(crs, (x1, . . . , xt)). By de�nition, this means

that

ht =
(
t, {(ind, valhash(ind))}ind∈frontier(ind(t−1)) ∪

{
(ind(t), xt)

})
,

where {(ind, valhash(ind))}ind∈frontier(ind(t−1)) are the same values as in ht−1.

– Consider now the veri�cation relation. As argued above, validity of πt−1 for statements (x1, . . . , xt−1)
means that that for all ind ∈ frontier(t−1),

PRG(πind) = PRG(PRF.Eval(K, (C, valhash(ind), ind))).

Moreover, by Eq. (5.3), the veri�cation relation also holds for ind = ind(t), and the veri�cation algorithm

outputs 1.

30

• Case (ii) : Suppose ρ < d − 1. Then the update algorithm constructs the proof iteratively. Let k be the

loop counter (i.e., k ranges from d − 1 to ρ + 1). Since ind(t−1) and ind(t) are adjacent leaves in the binary

tree, we can write them as ind(t−1) = b1 · · ·bρ01 · · · 1 and ind(t) = b1 · · ·bρ10 · · · 0. Let (Γ′hash, val
′
hash) ←

HashProg[hk](x1, . . . , xt) (using the algorithm from Fig. 10). Let I∗d =
{
ind(t)

}
∪ frontier(ind(t−1)), and for

each k ∈ {ρ + 1, . . . ,d − 1}, de�ne I∗k = I
∗
k+1 ∪ {indk }, where indk = b1b2 · · ·bk is the index that the update

algorithm processes in iteration k . We now show that the following invariant holds for all k ∈ {ρ + 1, . . . ,d}:

for all indices ind ∈ I∗k , it holds that

PRG(valproof(ind)) = PRG(PRF.Eval(K, (C, valhash(ind), ind))); (5.4)

valhash(ind) = val′hash(ind). (5.5)

First, we use the fact that V(crs,C, (x1, . . . , xt−1), π) = 1 to argue that the invariant holds at the beginning of

the update process (for the initial I∗d):

– Consider an index ind ∈ frontier(ind(t−1)). Then the above analysis (see Eq. (5.2)) shows that the �rst

property (Eq. (5.4)) holds. It su�ces to show that the second property (Eq. (5.5)) also holds for such indices.

For all ind ∈ frontier(ind(t−1)), since ind(t−1) < ind(t), ind cannot be a pre�x of ind(t) (recall that ind is a

left sibling of a node on the path to ind(t−1)). By construction of HashProg, the value of any node only

depends on the values of its descendants. Correspondingly, this means that val′hash(ind) only depends on

the values of valhash(ind(1)) = x1, . . . , valhash(ind(t−1)) = xt−1, or in other words, the �rst t − 1 nodes of the

tree. This precisely coincides with the values obtained by computing HashProg[hk](x1, . . . , xt−1). Recall

that ind(t−1) = b1b2 · · ·bd . By Eq. (5.1), we conclude that for all ind ∈ frontier(ind(t−1)), val′hash(ind) =
valhash(ind).

– For ind = ind(t), the update algorithm sets valproof(ind) = PRF.Eval(K, (C, xt , ind(t))) (see Eq. (5.3)) so the

�rst requirement holds. Moreover, by construction of HashProg, val′hash(ind
(t)) = xt = valhash(ind(t)), so

Eq. (5.5) of the invariant also holds.

We now show that the invariant continues to hold at the end of each iteration:

– Base case: When k = d − 1, the update algorithm sets ind = indd−1 = b1 · · ·bd−1 (i.e., the �rst d − 1 bits

of ind(t−1)).

∗ Since ind‖1 = ind(t−1), this means that ind‖0 is a left sibling of ind(t−1). By de�nition, both ind‖0 and

ind‖1 are contained in the set frontier(ind(t−1)) ⊆ I∗.
∗ Algorithm UpdateP runs valhash(ind) ← SSB.LocalHash(hkd−k , valhash(ind‖0), valhash(ind‖1)). Ad-

ditionally, it runs valproof(ind) ← ObfProve
(
C,h0,h1, ind, valproof(ind‖0), valproof(ind‖1)

)
, where

h0 ← valhash(ind‖0) and h1 ← valhash(ind‖1). By correctness of iO, this means that

valproof(ind) = Prove[K, hk]
(
C,h0,h1, ind, valproof(ind‖0), valproof(ind‖1)

)
.

∗ By construction, the Prove program checks that Eq. (5.4) holds on ind‖0, ind‖1. Since ind‖0 and ind‖1
are both in frontier(ind(t−1)), the checks pass by the above analysis (see Eq. (5.2)). In this case, the

Prove program outputs PRF.Eval(K, (C, valhash(ind), ind)), which is the value of valproof(ind). Clearly,

Eq. (5.4) holds for index ind.

∗ By construction, ind is a pre�x of ind(t−1) but not a pre�x of ind(t). Since ind(t−1) < ind(t), this means

that the descendants of ind cannot include ind(t). By the same argument as above, we can appeal to

the construction of HashProg to conclude that val′hash(ind) is a function only of (x1, . . . , xt−1) and so

valhash(ind) = val′hash(ind). Thus, ind satis�es Eq. (5.5).

At the end of this step, we see that the invariant holds for index ind = indd−1. Since the invariant holds

for I∗d , it now holds for I∗d ∪ {indd−1} = I
∗
d−1, as required.

31

– Iterative case: When ρ + 1 ≤ k < d − 1, the update algorithm sets indk = ind = b1 · · ·bk . Since

ind(t−1) = b1 · · ·bρ01 · · · 1 and ind(t) = b1 · · ·bρ10 · · · 0, it must be the case that bk+1 = 1. First, we observe

that ind‖0, ind‖1 ∈ I∗t+1:

∗ Since ind‖0 is a left sibling of ind‖1 and ind‖1 is a pre�x of ind(t−1), we conclude that ind‖0 ∈
frontier(ind(t−1)) ⊆ I∗k+1.

∗ Since bk+1 = 1, ind‖1 = b1 · · ·bk+1 = indk+1 ∈ I∗k+1.

Since the invariant holds for I∗k+1, Eq. (5.4) holds for both ind‖0 and ind‖1. Now, by the same analysis as

in the base case, we conclude that both Eq. (5.4) and Eq. (5.5) holds for index ind.

To complete the proof, we consider the behavior of the veri�cation algorithm. Since ind(t) = b1 · · ·bρ10 · · · 0,

every ind ∈ frontier(ind(t)) satis�es one of the following three conditions:

– ind = ind(t) and thus, ind ∈ I∗d ⊂ I
∗
ρ+1;

– ind is a left sibling of a pre�x of ind′ = b1 · · ·bρ , and thus, ind ∈ frontier(ind(t−1)) ⊂ I∗d ⊂ I
∗
ρ+1; or

– ind = b1 · · ·bρ0 = indρ+1 ∈ I∗ρ+1.

Thus, we conclude that frontier(ind(t)) ⊆ I∗ρ+1. We now show that V(crs,C, (x1, . . . , xt), πt) outputs 1.

– The veri�cation algorithm computes the hash ht using Hash

ht =
(
t,

{
(ind, val′hash(ind))

}
ind∈frontier(ind(t))

)
,

where (Γ′hash, val
′
hash) ← HashProg[hk](x1, . . . , xt). By the invariant, val′hash(ind) = valhash(ind) for all

ind ∈ frontier(ind(t)). Namely, the hash tree computed by the veri�cation algorithm is the same as that

computed by the update algorithm.

– The veri�cation algorithm checks that ObfVerify(C, valhash(ind), ind, πind) = 1 for all ind ∈ frontier(ind(t)).
By correctness of iO, this corresponds to checking that Eq. (5.4) holds for all ind ∈ frontier(ind(t)), which

is precisely our invariant condition. Since frontier(ind(t)) ⊆ I∗ρ+1, the claim holds.

We conclude that strong completeness holds in this case. �

Theorem 5.8 (Soundness). If ΠPRF is correct and satis�es punctured pseudorandomness, PRG is a secure PRG, ΠSSB is a
two-to-one somewhere statistically binding hash function, and iO is secure, then Construction 5.6 satis�es non-adaptive
soundness.

Proof. We begin by de�ning a sequence of hybrid experiments:

• Hyb
0
: This is the non-adaptive soundness experiment:

– Adversary A, on input 1
λ
, outputs the maximum circuit size 1

s(λ)
, a Boolean circuit C∗λ of size at most

s(λ), and statements x∗
1
, . . . , x∗tλ where tλ ≤ 2

λ
. The challenger checks that there exists i∗λ ∈ [tλ] such

that C∗λ
(
x∗i∗λ
,w

)
= 0 for all w ∈ {0, 1}∗. If such an index i∗ does not exist, the experiment aborts and the

challenger outputs 0. For ease of notation, we simply write C∗ = C∗λ , t = tλ , and i∗ = i∗λ in the following

description.

– The challenger samples crs ← Gen(1λ, 1`, 1s) and gives crs = (ObfProve,ObfVerify, hk) to A. By

construction, hk = (hk1, . . . , hkd).

– Adversary A outputs a proof π .

– The output of the experiment is Verify(crs,C∗, (x∗
1
, . . . , x∗t), π).

• Hyb
1
: Same as Hyb

0
, except the challenger samples the hash keys hk1, . . . , hkd to bind on the bits of i∗.

Speci�cally, let ind(i
∗) = bind (i∗ − 1) = b1 · · ·bd ∈ {0, 1}

d
. For each j ∈ [d], the challenger samples hkj ←

SSB.GenTD(1λ, 1`j−1,bd+1−j).

32

• Hyb
2
: Same asHyb

1
, except when constructing the CRS, the challenger changes how it constructs the obfuscated

programs in the CRS:

1. First, the challenger samples the hash keys hk = (hk1, . . . , hkd) exactly as in Hyb
1
.

2. Next, the challenger constructs a binary tree (Γhash, valhash) ← HashProg[hk](x∗
1
, . . . , x∗t) using the algo-

rithm from Fig. 10.

3. Let ind(i
∗) = bind (i∗ − 1) = b1 · · ·bd . For all i ∈ [0, j], let prefix(i)i∗ = b1 · · ·bd−i be the pre�x of ind(i

∗)
of

length d − i . Let X = {(prefix(i)i∗ , valhash(prefix
(i)
i∗))}i ∈{0, ...,d } .

4. The challenger now de�nes the modi�ed prover program Prove′[K, hk,C∗,X, 0, ind(i
∗)] and veri�er pro-

gram Verify′[K,C∗,X, 0, ind(i
∗)] as follows:

Constants: PRF key K , hash key hk = (hk1, . . . , hkd), Boolean circuit C∗, set X, level dthresh, index ind(i
∗)

Input: Boolean circuit C : {0, 1}` × {0, 1}m → {0, 1} of size at most s , node values h0,h1 ∈ {0, 1}
≤`max

, index

ind ∈ {0, 1}≤d , proofs π0, π1 ∈ {0, 1}
max(m,λ)

(a) If ind ∈ {0, 1}d (i.e., a leaf in the binary tree),

i. If C = C∗, ind is a pre�x of ind(i
∗)

, and (ind,h0) ∈ X, then output ⊥.

ii. Parse h0 as a statement x1 ∈ {0, 1}
`

and π0 as a witness w1 ∈ {0, 1}
m

.

iii. If C(x1,w1) , 1, output ⊥. Otherwise, output PRF.Eval(K, (C, x1, ind)).

(b) Otherwise, if ind ∈ {0, 1}<d (i.e., an internal node in the binary tree),

i. Let d ′ = level(ind) and compute the hash h ← SSB.LocalHash(hkd ′,h0,h1).

ii. If d ′ ≤ dthresh, C = C∗, ind is a pre�x of ind(i
∗)

, and (ind,h) ∈ X, then output ⊥.

iii. Check the following conditions:

– PRG(π0) = PRG(PRF.Eval(K, (C,h0, ind‖0)));
– PRG(π1) = PRG(PRF.Eval(K, (C,h1, ind‖1))).

If either check fails, output ⊥. Otherwise, output PRF.Eval(K, (C,h, ind)).

Figure 11: Program Prove′[K, hk,C∗,X,dthresh, ind(i
∗)]

Constants: PRF key K , circuit C∗, set X, level dthresh, index ind(i
∗)

Input: Boolean circuit C of size at most s , node value h ∈ {0, 1}≤`max
, index ind ∈ {0, 1}≤d , proof π ∈ {0, 1}λ

(a) Let d ′ = level(ind). If d ′ < dthresh, C = C∗, ind is a pre�x of ind(i
∗)

, and (ind,h) ∈ X, then output 0.

(b) Output 1 if PRG(π) = PRG(PRF.Eval(K, (C,h, ind))) and 0 otherwise.

Figure 12: Program Verify′[K,C∗,X,dthresh, ind(i
∗)]

5. When constructing the CRS, the challenger computes ObfProve← iO(1λ, Prove′[K, hk,C∗,X, 0, ind(i
∗)])

and ObfVerify ← iO(1λ,Verify′[K,C∗,X,dthresh, ind(i
∗)]). The challenger pads the size of the prov-

ing circuit Prove′[K, hk,C∗,X, 0, ind(i
∗)] and veri�cation circuit Verify′[K,C∗,X,dthresh, ind(i

∗)] to the

maximum size of any circuit that appear in the proof of Theorem 5.8. The challenger gives crs =
(ObfProve,ObfVerify, hk) to A.

6. The remainder of the experiment proceeds identically to Hyb
1
.

• Hybj+2 for j ∈ [d]: Same as Hybj+1, except when constructing the CRS, the challenger computes ObfProve←
iO(1λ, Prove′[K, hk,C∗,X, j, ind(i

∗)]) and ObfVerify ← iO(1λ,Verify′[K,C∗,X, j, ind(i
∗)]), where Prove′ and

Verify′ are the programs in Fig. 11 and Fig. 12.

For an adversary A, we write Hybi (A) to denote the output distribution of Hybi (A) with adversary A. As in the

proof of Theorem 3.3, we model the adversary A as a deterministic non-uniform algorithm that takes as input the

33

security parameter 1
λ

(and advice string ρλ), and outputs the maximum circuit size 1
s(λ)

, a Boolean circuit C∗λ of size

at most s(λ), and statements x∗
1
, x∗

2
, . . . , x∗tλ where tλ ≤ 2

λ
. If the advantage of A is non-zero in the non-adaptive

soundness game, it must be the case that there exists an index i∗λ ∈ [tλ] such that C∗λ
(
x∗i∗λ
,w

)
= 0 for all w ∈ {0, 1}∗. If

there are multiple such indices, we de�ne i∗λ to be the �rst such index. In the following, we will consider deterministic

non-uniform reduction algorithms that are provided (ρλ, i
∗
λ) as advice. We now show that each pair of adjacent

distributions de�ned above are indistinguishable.

Lemma 5.9. Suppose ΠSSB satis�es index hiding. Then for every non-uniform polynomial time adversaryA, there exists
a negligible function negl(·) such that for all λ ∈ N, | Pr[Hyb

0
(A) = 1] − Pr[Hyb

1
(A) = 1]| = negl(λ).

Proof. We begin by introducing a sequence of intermediate hybrids. First, we set Hyb(0)
0
≡ Hyb

0
. Then for j ∈ [d], we

de�ne experiment Hyb(j)
0

as follows:

• Hyb(j)
0

: Same as Hyb(j−1)
0

except when constructing the CRS, the challenger uses i∗ to sample hkj . Speci�cally,

let ind(i
∗) = bind (i∗ − 1) = b1 · · ·bd . The challenger samples hkj ← SSB.GenTD(1λ, 1`j−1,bd+1−j).

We now analyze each adjacent pair of intermediate hybrid experiments:

Claim 5.10. Suppose ΠSSB satis�es index hiding. Then for all j ∈ [d] and every non-uniform polynomial time adversary
A, there exists a negligible function negl(·), such that for all λ ∈ N, | Pr[Hyb(j−1)

0
(A) = 1]−Pr[Hyb(j)

0
(A) = 1]| = negl(λ).

Proof. Let A be an e�cient non-uniform adversary (with advice string ρλ) where

| Pr[Hyb(j−1)
0
(A) = 1] − Pr[Hyb(j)

0
(A) = 1]| ≥ ε,

and ε is non-negligible. We use A to construct a non-uniform adversary B with advice string (ρ, i∗) = (ρλ, i
∗
λ) that

breaks index hiding:

1. Algorithm B runs algorithm A on input 1
λ

and advice ρ. Algorithm A outputs the maximum circuit size 1
s
, a

Boolean circuit C∗ of size at most s , and statements x1, . . . , xt where t ≤ 2
λ
.

2. Next, algorithm B sets ind(i
∗) = bind (i∗ − 1) = b1 · · ·bd ∈ {0, 1}

d
and sends index bd+1−j ∈ {0, 1} to the

challenger.

3. Algorithm B receives hkj from the challenger. If b = 0, the challenger sampled hkj ← SSB.Gen(1λ, 1`j−1) and

if b = 1, the challenger sampled hkj ← SSB.GenTD(1λ, 1`j−1,bd+1−j).

4. Then, for each k ∈ [d], algorithm B computes the hkk as follows:

• If k < j, set hkk ← SSB.GenTD(1λ, 1`k−1,bd+1−k).

• If k > j, set hkk ← SSB.Gen(1λ, 1`k−1).

5. AlgorithmB constructs ObfProve,ObfVerify according to Hyb
0

and sets crs = (ObfProve,ObfVerify, hk)where

hk = (hk1, . . . , hkd). Algorithm B gives crs to A.

6. After A outputs the proof π , algorithm B outputs Verify(crs,C∗, (x∗
1
, . . . , x∗t), π).

By construction, if b = 0, algorithm B perfectly simulates distribution Hyb(j−1)
0

and if b = 1, algorithm B perfectly

simulates distribution Hyb(j)
0

. Thus, algorithmB breaks index hiding with advantage at least ε , and the claim holds. �

By construction, for all adversaries A, Hyb(d)
0
(A) ≡ Hyb

1
(A). Appealing to Claim 5.10 and the fact that d = poly(λ),

the lemma follows by a hybrid argument. �

Lemma 5.11. Suppose iO is secure. Then, for all non-uniform polynomial time adversaries A, there exists a negligible
function negl(·) such that for all λ ∈ N, | Pr[Hyb

1
(A) = 1] − Pr[Hyb

2
(A) = 1]| = negl(λ).

34

Proof. We show that the programs Prove[K, hk] and Prove′[K, hk,C∗,X,dthresh, ind(i
∗)] have identical behavior and

similarly for programs Verify[K] and Verify′[K,C∗,X,dthresh, ind(i
∗)]:

• Consider the programs Prove[K, hk] and Prove′[K, hk,C∗,X,dthresh, ind(i
∗)]. Consider an input of the form

(C,h0,h1, ind, π0, π1):

– Suppose ind ∈ {0, 1}d is a leaf node. By construction, the only inputs on which Prove and Prove′ can

di�er in this case are those where ind = ind(i
∗)

. By de�nition of HashProg[hk] (see Fig. 10), we have that

hind = valhash(ind(i
∗)) = x∗i∗ . Then, this means Prove and Prove′ agree on all inputs unless C = C∗ and

h0 = x∗i∗ . On these inputs, Prove′ always outputs ⊥. Consider the output of Prove. By assumption, there

does not exist any input π0 ∈ {0, 1}
∗

where C∗(x∗i∗, π0) = 0, so Prove on these inputs also outputs ⊥.

– Suppose ind ∈ {0, 1}<d is an internal node. In this case, level(ind) = d − |ind| > 0. Since dthresh = 0 in

Hyb
2
, the condition level(ind) < d is never satis�ed, so the extra check introduced in Hyb

2
never triggers.

We conclude that Prove[K, hk] and Prove′[K, hk,C∗,X,dthresh, ind(i
∗)] have identical input/output behavior.

• The programs Verify[K] and Verify′[K,C∗,X,dthresh, ind(i
∗)] have identical functionality. The only di�erence

between these two programs is the extra check that Verify′ performs. By de�nition level(ind) ≥ 0 = d∗, so the

additional condition level(ind) < d∗ in Verify′ never triggers. Consequently, Verify and Verify′ has identical

input/output behavior.

Since Prove[K, hk] and Prove′[K, hk,C∗,X,dthresh, ind(i
∗)] compute identical functions and likewise for Verify[K] and

Verify′[K,C∗,X,dthresh, ind(i
∗)], indistinguishability now follows by iO security and a standard hybrid argument. �

Lemma 5.12. Suppose ΠPRF is functionality-preserving and satis�es punctured pseudorandomness, PRG is a secure PRG,
ΠSSB is somewhere statistically binding, and iO is secure. Then, for all j ∈ [d] and all non-uniform polynomial time
adversaries A, there exists a negligible function negl(·) such that for all λ ∈ N,

| Pr[Hybj+1(A) = 1] − Pr[Hybj+2(A) = 1]| = negl(λ).

Proof. We begin by introducing a sequence of intermediate hybrids:

• Hyb(1)j+1: Same as Hybj+1 except the challenger changes the distribution of the CRS. Speci�cally, it starts by

de�ning the programs Prove′′[Kp, hk,C∗,X,dthresh, ind(i
∗), z] and Verify′′[Kp,C

∗,X,dthresh, ind(i
∗), z] as follows:

35

Constants: Punctured PRF key Kp , hash key hk = (hk1, . . . , hkd), Boolean circuitC∗, setX, level dthresh, index ind(i
∗)

,

hard-coded value z
Input: Boolean circuit C : {0, 1}` × {0, 1}m → {0, 1} of size at most s , node values h0,h1 ∈ {0, 1}

≤`max
, index

ind ∈ {0, 1}≤d , proofs π0, π1 ∈ {0, 1}
max(m,λ)

1. If ind ∈ {0, 1}d (i.e., a leaf in the binary tree),

(a) If C = C∗, ind is a pre�x of ind(i
∗)

, and (ind,h0) ∈ X, then output ⊥.

(b) Parse h0 as a statement x1 ∈ {0, 1}
`
. Parse π0 as witness w1 ∈ {0, 1}

m
.

(c) If C(x1,w1) , 1, output ⊥. Otherwise, output PRF.Eval(Kp , (C, x1, ind)).

2. Otherwise, if ind ∈ {0, 1}<d (i.e., an internal node in the binary tree),

(a) Let d ′ = level(ind) and compute the hash h ← SSB.LocalHash(hkd ′,h0,h1).

(b) If d ′ ≤ dthresh, C = C∗, ind is a pre�x of ind(i
∗)

, and (ind,h) ∈ X, then output ⊥.

(c) Check the following conditions:

– If d ′ = dthresh + 1, C = C∗, ind‖0 is a pre�x of ind(i
∗)

and (ind‖0,h0) ∈ X, check if PRG(π0) = z.

Otherwise, check if PRG(π0) = PRG(PRF.Eval(Kp , (C,h0, ind‖0))).

– If d ′ = dthresh + 1, C = C∗, ind‖1 is a pre�x of ind(i
∗)

and (ind‖1,h1) ∈ X, check if PRG(π1) = z.

Otherwise, check if PRG(π1) = PRG(PRF.Eval(Kp , (C,h1, ind‖1))).

If any check fails, output ⊥. Otherwise, output PRF.Eval(Kp , (C,h, ind)).

Figure 13: Program Prove′′[Kp, hk,C∗,X,dthresh, ind(i
∗), z]

Constants: Punctured PRF key Kp , circuit C∗, set X, level dthresh, index ind(i
∗)

, hard-coded value z

Input: Boolean circuit C of size at most s , node value h ∈ {0, 1}≤`max
, index ind ∈ {0, 1}≤d , proof π ∈ {0, 1}λ

1. Let d ′ = level(ind). If d ′ < dthresh, C = C∗, ind is a pre�x of ind(i
∗)

, and (ind,h) ∈ X, then output 0.

2. If d ′ = dthresh, C = C∗, ind is a pre�x of ind(i
∗)

and (ind,h) ∈ X, then output 1 if PRG(π) = z and 0 otherwise.

3. Otherwise, output 1 if PRG(π) = PRG(PRF.Eval(Kp , (C,h, ind))) and 0 otherwise.

Figure 14: Program Verify′′[Kp,C
∗,X,dthresh, ind(i

∗), z]

The challenger constructs the CRS as follows:

– First, the challenger samples the hash keys hk = (hk1, . . . , hkd) exactly as in Hybj+1 (same as in Hyb
1

and

Hyb
2
). It also samples the PRF key K ← PRF.KeyGen(1λ).

– Next, the challenger computes a binary tree (Γhash, valhash) ← HashProg[hk](x∗
1
, . . . , x∗t) using the algo-

rithm from Fig. 10.

– Let ind(i
∗) = bind (i∗ − 1) = b1 · · ·bd . For all i ∈ [0, j], let prefix(i)i∗ = b1 · · ·bd−i be the pre�x of ind(i

∗)
of

length d − i . Let X = {(prefix(i)i∗ , valhash(prefix
(i)
i∗))}i ∈{0, ...,d } .

– Next, the challenger computes Kp ← PRF.Puncture(K, {(C∗, valhash(prefix
(j−1)
i∗), prefix

(j−1)
i∗)}) and the

evaluation z∗ ← PRG(PRF.Eval(K, (C∗, valhash(prefix
(j−1)
i∗), prefix

(j−1)
i∗))).

– It then constructs the obfuscated programs ObfProve ← iO(1λ, Prove′′[Kp, hk,C∗,X, j − 1, ind(i
∗), z∗])

and ObfVerify ← iO(1λ,Verify′′[Kp,C
∗,X, j − 1, ind(i

∗), z∗]). As in the real scheme, the challenger

pads the size of the proving circuit Prove′′[Kp, hk,C∗,X, j − 1, ind(i
∗), z∗]) and the veri�cation circuit

Verify′′[Kp,C
∗,X, j − 1, ind(i

∗), z∗]) to the maximum size of any circuit that appear in the proof of Theo-

rem 5.8.

– The challenger gives crs = (ObfProve,ObfVerify, hk) to A.

The remainder of the experiment proceeds as in Hybj+1.

36

• Hyb(2)j+1: Same as Hyb(1)j+1 but when constructing the CRS, the challenger sets z∗ ← PRG(y∗) where y∗ r

← {0, 1}λ .

• Hyb(3)j+1: Same as Hyb(2)j+1 but when constructing the CRS, the challenger samples z∗ r

← {0, 1}2λ .

We now argue that each pair of adjacent hybrid experiments are indistinguishable for all j ∈ [d].

Claim 5.13. Suppose ΠPRF is functionality-preserving and iO is secure. Then, for all j ∈ [d] and all non-uniform
polynomial time adversaries A, there exists a negligible function negl(·) such that for all λ ∈ N,

| Pr[Hyb(1)j+1(A) = 1] − Pr[Hybj+1(A) = 1]| = negl(λ).

Proof. Similar to the proof of Lemma 5.11, it su�ces to show that the prover and veri�er programs in Hybj+1 and

Hyb(1)j+1 have identical input/output behavior. The main di�erence in Hyb(1)j+1 is that we substitute a PRF key Kp

punctured at the point p = (C∗, valhash(prefix
(j−1)
i∗), prefix

(j−1)
i∗) for the real PRF key K . Since the punctured PRF is

functionality-preserving, on all inputs (C,h, ind) , p,

PRF.Eval(K, (C,h, ind)) = PRF.Eval(Kp, (C,h, ind)).

In addition, in Hyb(1)j+1, the challenger sets z∗ = PRG(PRF.Eval(K,p)). We �rst argue that the proving programs

Prove′[K, hk,C∗,X, j − 1, ind(i
∗)] and Prove′′[Kp, hk,C∗,X, j − 1, ind(i

∗), z∗] have identical input/output behavior,

where X = {(prefix(i)i∗ , valhash(prefix
(i)
i∗))}i ∈{0, ...,d } is the set de�ned in Hybj+1 and Hyb(1)j+1. Consider any input

(C,h0,h1, ind, π0, π1) to the two programs. Let d ′ = level(ind).

• Suppose d ′ = 0 (i.e., ind is a leaf in the binary tree),

– If C = C∗, (ind,h0) ∈ X, then both programs output ⊥.

– Suppose that either C , C∗ or h0 , prefix(0)i∗ . Then PRF is never evaluated at point p. Both Prove′ and

Prove′′ perform identical checks using keys K and Kp , respectively. The two programs’ behavior are

identical by the functionality-preserving property of ΠPRF.

• We analyze the cases when d ′ > 0, (ind is an internal node in the binary tree).

– First, if d ′ , j or C , C∗, then neither program needs to evaluate the PRF at the point

p = (C∗, valhash(prefix
(j−1)
i∗), prefix

(j−1)
i∗).

– Suppose d ′ = j, C = C∗, ind‖0 is a pre�x of ind(i
∗)

, and (ind‖0,h0) ∈ X. Since ind‖0 is a pre�x of ind(i
∗)

and d ′ = j, we have ind‖0 = prefix(j−1)i∗ and (ind‖0, valhash(prefix
(j−1)
i∗)) is the corresponding value stored

in X. In this case, Prove′ checks the condition PRG(π0) = PRG(PRF.Eval(K, (C,h0, ind‖0))) while Prove′′

checks the condition PRG(π0) = z∗, where as noted above,

z∗ = PRG(PRF.Eval(K,p)) = PRG(PRF.Eval(K, (C∗, valhash(prefix
(j−1)
i∗), prefix

(j−1)
i∗))).

Thus, the two programs perform identical checks in this case.

– Suppose d ′ = j, C = C∗, ind‖1 is a pre�x of ind(i
∗)

, and (ind‖1,h1) ∈ X. Since ind‖1 is a pre�x of ind(i
∗)

and d ′ = j, we have ind‖1 = prefix(j−1)i∗ and (ind‖1, valhash(prefix
(j−1)
i∗)) is the corresponding value stored

in X. In this case, Prove′ checks the condition PRG(π1) = PRG(PRF.Eval(K, (C,h1, ind‖1))) while Prove′′

checks the condition PRG(π1) = z∗. By the analogous logic as in the previous case, the behavior of these

two checks is identical.

– Suppose none of the above conditions hold. Then, we have the following:

∗ Suppose d ′ = j ,C = C∗, and ind‖0 is not a pre�x of ind(i
∗)

. Then ind‖0 , prefix(j−1)i∗ and PRF is never

evaluated at point p.

37

∗ Suppose d ′ = j ,C = C∗, and ind‖1 is not a pre�x of ind(i
∗)

. Then ind‖1 , prefix(j−1)i∗ and PRF is again

never evaluated at point p.

∗ Suppose d ′ = j, C = C∗, ind‖0 is pre�x of ind(i
∗)

, and (ind‖0,h0) < X. Then ind‖0 = prefix(j−1)i∗ and

h0 , valhash(prefix
(j−1)
i∗). In this case, PRF is not evaluated at point p.

∗ Suppose d ′ = j, C = C∗, ind‖1 is pre�x of ind(i
∗)

, and (ind‖1,h1) < X. Then ind‖1 = prefix(j−1)i∗ and

h1 , valhash(prefix
(j−1)
i∗). As in the previous case, PRF is not evaluated at point p.

Since PRF is never evaluated at point p, both Prove′ and Prove′′ perform identical checks using PRF keys

K and Kp , respectively. Thus, the two programs’ behavior are identical by the functionality-preserving

property of ΠPRF.

Next consider the veri�cation programs Verify′[K,C∗,X, j − 1, ind(i
∗)] and Verify′′[Kp,C

∗,X, j − 1, ind(i
∗), z∗]. Once

again, the challenger sets z∗ = PRG(PRF.Eval(K,p)).

• Suppose that d ′ , j−1 orC , C∗. Then, PRF is never evaluated at point p and Verify′ and Verify′′ have identical

behavior (since ΠPRF is functionality-preserving).

• Suppose d ′ = j − 1, C = C∗, and ind is not a pre�x of ind(i
∗)

. Then ind , prefix(j−1)i∗ and PRF is never evaluated

at point p.

• Suppose d ′ = j − 1, C = C∗, ind is pre�x of ind(i
∗)

, and (ind,h) < X. By construction of X, this means that

ind = prefix(j−1)i∗ and h , valhash(prefix
(j−1)
i∗). Once again, PRF is never evaluated at point p in this case.

• Suppose d ′ = j − 1, C = C∗, ind is a pre�x to ind(i
∗)

, and (ind,h) ∈ X. Since d ′ = level(ind) = j − 1 and ind is a

pre�x to ind(i
∗)

, this means that ind = prefix(j−1)i∗ . By construction of X, this means that h = valhash(prefix
(j−1)
i∗).

In this case, Verify′′ checks the condition PRG(π) = z∗ = PRG(PRF.Eval(K,p)), which is exactly the same check

as in Verify′.

The claim now follows from iO security and a standard hybrid argument. �

Claim 5.14. If ΠPRF satis�es punctured pseudorandomness, then for all j ∈ [d] and all non-uniform polynomial time
adversaries A, there exists a negligible function negl(λ) such that for all λ ∈ N,

| Pr[Hyb(2)j+1(A) = 1] − Pr[Hyb(1)j+1(A) = 1]| = negl(λ).

Proof. Suppose there exists a non-uniform polynomial time adversary A (with advice string ρλ) where

| Pr[Hyb(2)j+1(A) = 1] − Pr[Hyb(1)j+1(A) = 1]| ≥ ε,

for some non-negligible ε . We useA to construct a non-uniform adversary B with advice string (ρ, i∗) = (ρλ, i
∗
λ) that

breaks punctured pseudorandomness of ΠPRF:

1. Algorithm B runs adversary A on input 1
λ

and with advice string ρ. Algorithm A outputs the maximum

circuit size 1
s
, a Boolean circuit C∗ of size at most s , and statements x1, . . . , xt where t ≤ 2

λ
.

2. Algorithm B sets ind(i
∗) = bind (i∗ − 1) = b1 · · ·bd ∈ {0, 1}

d
. For all i ∈ [0, j], let prefix(i)i∗ = b1 · · ·bd−i . For

each j ∈ [d], algorithm B samples hkj ← SSB.GenTD(1λ, 1`j−1,bd+1−j). Then, it computes a binary tree

(Γhash, valhash) ← HashProg[hk](x∗
1
, . . . , x∗t) using the algorithm from Fig. 10.

3. Then, for all i ∈ [0, j], let prefix(i)i∗ = b1 · · ·bd−i be the pre�x of ind(i
∗)

of length d − i . Algorithm B de�nes the

set X = {(prefix(i)i∗ , valhash(prefix
(i)
i∗))}i ∈{0, ...,d } .

4. Algorithm B chooses p = (C∗, valhash(prefix
(j−1)
i∗), prefix

(j−1)
i∗) as its challenge point. It receives from the chal-

lenger a punctured key Kp and a challenge y ∈ {0, 1}λ .

38

5. AlgorithmB computes z∗ ← PRG(y),ObfProve← iO(1λ, Prove′′[Kp, hk,C∗,X, j−1, ind(i
∗), z∗]), andObfVerify←

iO(1λ,Verify′′[Kp,C
∗,X, j − 1, ind(i

∗), z∗]). Finally, it sets the crs = (ObfProve,ObfVerify, hk) and gives crs to

A.

6. At the end of the game, algorithm A outputs a proof π and algorithm B outputs Verify(crs,C∗, (x∗
1
, . . . , x∗t), π).

By construction, the challenger samplesK ← PRF.KeyGen(1λ) and constructs the punctured key asKp ← PRF.Puncture(K, (C∗, valhash(prefix
(j−1)
i∗), prefix

(j−1)
i∗)).

This coincides with the speci�cation in Hyb(1)j+1 and Hyb(2)j+1. Consider now the distribution of the challenge y:

• Suppose y = PRF.Eval(K, (C∗, valhash(prefix
(j−1)
i∗), prefix

(j−1)
i∗)). Then algorithm A perfectly simulates distribu-

tion Hyb(1)j+1.

• Suppose y r

← {0, 1}λ . Then algorithm A perfectly simulates distribution Hyb(2)j+1.

Algorithm B breaks punctured pseudorandomness with the same advantage ε and the claim follows. �

Claim 5.15. If PRG is secure, then for all j ∈ [d] and all non-uniform polynomial time adversaries A, there exists a
negligible function negl(λ) such that for all λ ∈ N, | Pr[Hyb(3)j+1(A) = 1] − Pr[Hyb(2)j+1(A) = 1]| = negl(λ).

Proof. Suppose there exists a non-uniform polynomial time adversary A (with advice string ρλ) where

| Pr[Hyb(3)j+1(A) = 1] − Pr[Hyb(2)j+1(A) = 1]| = ε(λ),

for some non-negligible ε . We useA to construct a non-uniform adversary B with advice string (ρ, i∗) = (ρλ, i
∗
λ) that

breaks PRG security:

1. Algorithm B runs adversary A on input 1
λ

and advice string ρ. Algorithm A outputs the maximum circuit

size 1
s
, a Boolean circuit C∗ of size at most s , and statements x1, . . . , xt where t ≤ 2

λ
.

2. Algorithm B sets ind(i
∗) = bind (i∗ − 1) = b1 · · ·bd ∈ {0, 1}

d
. For all i ∈ [0, j], let prefix(i)i∗ = b1 · · ·bd−i . For

each j ∈ [d], algorithm B samples hkj ← SSB.GenTD(1λ, 1`j−1,bd+1−j). Then, it computes a binary tree

(Γhash, valhash) ← HashProg[hk](x∗
1
, . . . , x∗t) using the algorithm from Fig. 10.

3. Then, for all i ∈ [0, j], let prefix(i)i∗ = b1 · · ·bd−i be the pre�x of ind(i
∗)

of length d − i . Algorithm B de�nes the

set X = {(prefix(i)i∗ , valhash(prefix
(i)
i∗))}i ∈{0, ...,d } .

4. Algorithm B receives a challenge z∗ ∈ {0, 1}2λ from the PRG challenger.

5. Algorithm B samples K ← PRF.KeyGen(1λ) and constructs the punctured key Kp ← PRF.Puncture(K,p),
where p = (C∗, valhash(prefix

(j−1)
i∗), prefix

(j−1)
i∗).

6. Next, it computes the obfuscated programs ObfProve ← iO(1λ, Prove′′[Kp, hk,C∗,X, j − 1, ind(i
∗), z∗]) and

ObfVerify← iO(1λ,Verify′′[Kp,C
∗,X, j − 1, ind(i

∗), z∗]). Algorithm B gives crs = (ObfProve,ObfVerify, hk) to
A.

7. Algorithm A outputs a proof π and algorithm B outputs Verify(crs,C∗, (x∗
1
, . . . , x∗t), π).

If z∗ ← PRG(y∗) where y∗ r

← {0, 1}λ , then algorithm B perfectly simulates Hyb(2)j+1 for A. Alternatively, if z∗ r

←

{0, 1}2λ , then algorithm B perfectly simulates Hyb(3)j+1 for A. The claim follows. �

Claim 5.16. If ΠPRF is functionality-preserving, ΠSSB is somewhere statistically binding, and iO is secure, then for all
j ∈ [d] and all non-uniform polynomial time adversaries A, there exists a negligible function negl(·) such that for all
λ ∈ N, | Pr[Hybj+2(A) = 1] − Pr[Hyb(3)j+1(A) = 1]| = negl(λ).

39

Proof. We �rst show that with overwhelming probability over the choice of hkj ← SSB.GenTD(1λ, 1`j−1,bd+1−j) and

z∗ r

← {0, 1}2λ , the programs Prove′′[Kp, hk,C∗,X, j − 1, ind(i
∗), z∗] and Verify′′[Kp,C

∗,X, j − 1, ind(i
∗), z∗] in Hyb(3)j+1

have the same input/output behavior as the programs Prove′[K, hk,C∗,X, j, ind(i
∗)] and Verify′[K,C∗,X, j, ind(i

∗)]

in Hybj+2, where the set X is de�ned according to the speci�cation of Hyb(3)j+1 and Hybj+2. To see this, we start by

analyzing the main quantities used to construct these programs:

• First, z∗ r

← {0, 1}2λ . Thus, Pr[∃y ∈ {0, 1}λ : PRG(y) = z∗] = 2
−λ

, so with overwhelming probability, the value

z∗ in Hyb(3)j+1 is not in the range of PRG.

• Next, we note that hkj is sampled in trapdoor mode to be binding on index bd+1−j . We consider two possibilities:

– Suppose bd+1−j = 0. By construction of Γhash (see Fig. 10),

valhash(prefix
(j)
i∗) = SSB.LocalHash(hkj , valhash(prefix

(j)
i∗ ‖0), valhash(prefix

(j)
i∗ ‖1)).

For any h0,h1 if valhash(prefix
(j)
i∗) = SSB.LocalHash(hkj ,h0,h1), since hkj ← SSB.GenTD(1λ, 1`j−1, 0) and

ΠSSB is somewhere statistically binding; with overwhelming probability over the choice of hkj , we have

that h0 must be equal to valhash(prefix
(j)
i∗ ‖0). Since, bd+1−j = 0, we have, prefix(j)i∗ ‖0 = prefix(j−1)i∗ . Thus, h0

must be equal to valhash(prefix
(j−1)
i∗).

– Suppose bd+1−j = 1. By construction of Γhash (see Fig. 10),

valhash(prefix
(j)
i∗) = SSB.LocalHash(hkj , valhash(prefix

(j)
i∗ ‖0), valhash(prefix

(j)
i∗ ‖1)).

For any h0,h1 if valhash(prefix
(j)
i∗) = SSB.LocalHash(hkj ,h0,h1), since hkj ← SSB.GenTD(1λ, 1`j−1, 1) and

ΠSSB is somewhere statistically binding; with overwhelming probability over the choice of hkj , we have

that h1 must be equal to valhash(prefix
(j)
i∗ ‖1). Since, bd+1−j = 1, we have, prefix(j)i∗ ‖1 = prefix(j−1)i∗ . Thus, h1

must be equal to valhash(prefix
(j−1)
i∗).

• Finally, since ΠPRF is functionality-preserving, we have that PRF.Eval(K, (C,h, ind)) = PRF.Eval(Kp, (C,h, ind))
whenever (C,h, ind) , (C∗, valhash(prefix

(j−1)
i∗), prefix

(j−1)
i∗).

Now, consider the programs Prove′′[Kp, hk,C∗,X, j − 1, ind(i
∗), z∗] and Prove′[K, hk,C∗,X, j, ind(i

∗)]:

• Suppose bd+1−j = 0. In this case, the behavior of the two programs only di�ers on inputs (C,h0,h1, ind, π0, π1)
where d ′ = level(ind) = j > 0 (non-leaf node), C = C∗, ind = prefix(j)i∗ , and h = valhash(prefix

(j)
i∗), where the

hash h is computed as h ← SSB.LocalHash(hkj ,h0,h1, prefix
(j)
i∗).

– On such an input, Prove′[K, hk,C∗,X, j, ind(j)] always outputs ⊥.

– Consider the output of Prove′′[K, hk,C∗,X, j − 1, ind(i
∗), z∗]. Since bd+1−j = 0, by the above analy-

sis, with overwhelming probability over the choice of hkj , if SSB.LocalHash(hkj ,h0,h1, prefix
(j)
i∗) =

valhash(prefix
(j)
i∗), then h0 = valhash(prefix

(j−1)
i∗). In this case, Prove′′ checks whether PRG(π0) = z∗ and

outputs ⊥ if not. As argued above, with overwhelming probability over the choice of z∗, there does not

exist any π0 such that PRG(π0) = z∗. Thus, with overwhelming probability over the choice of hkj and z∗,
the output of Prove′′ on all such inputs is ⊥.

On all other inputs, the programs’ behavior is identical as long as the PRF is functionality-preserving (since the

punctured key in Prove′′ is never used to evaluate on the punctured point).

• Suppose bd+1−j = 1. In this case, the behavior of the two programs only di�ers on inputs (C,h0,h1, ind, π0, π1)
where d ′ = level(ind) = j > 0 (non-leaf node), C = C∗, ind = prefix(j)i∗ , and h = valhash(prefix

(j)
i∗), where the

hash h is computed as h ← SSB.LocalHash(hkj ,h0,h1, prefix
(j)
i∗).

40

– On such an input, Prove′[K, hk,C∗,X, j, ind(j)] always outputs ⊥.

– Consider the output of Prove′′[K, hk,C∗,X, j − 1, ind(i
∗), z∗]. Since bd+1−j = 1, by the above analy-

sis, with overwhelming probability over the choice of hkj , if SSB.LocalHash(hkj ,h0,h1, prefix
(j)
i∗) =

valhash(prefix
(j)
i∗), then h1 = valhash(prefix

(j−1)
i∗). In this case, Prove′′ checks whether PRG(π1) = z∗ and

outputs ⊥ if not. As argued above, with overwhelming probability over the choice of z∗, there does not

exist any π1 such that PRG(π1) = z∗. Thus, with overwhelming probability over the choice of hkj and z∗,
the output of Prove′′ on all such inputs is ⊥.

On all other inputs, the programs’ behavior is identical as long as the PRF is functionality-preserving (since the

punctured key in Prove′′ is never used to evaluate on the punctured point).

Consider now the veri�cation programs Verify′[K,C∗,X, j, ind(i
∗)] and Verify′′[Kp,C

∗,X, j − 1, ind(i
∗), z∗]. By design,

the only inputs on which the programs can di�er are those of the form (C,h, ind, π) where C = C∗, ind = prefix(j−1)i∗ ,

and h = valhash(prefix
(j−1)
i∗) = valhash(ind).

• On such an input, Verify′[K, hk,C∗,X,dthresh, ind(i
∗)] always outputs 0 since d ′ = level(ind) = j − 1 < j.

• Consider the output of Verify′′[Kp,C
∗,X,dthresh, ind(i

∗), z∗]. By construction, the output is 1 if PRG(π) = z∗

and 0 otherwise. As argued above, with overwhelming probability over the choice of z∗, there does not exist π
such that PRG(π) = z∗, and so the output of Verify′′ on all such inputs is 0 with overwhelming probability.

By the above analysis, we see that with overwhelming probability over the choice of hkj and z∗, the programs Prove′

in Hybj+2 and Prove′′ in Hyb(3)j+1 as well as the programs Verify′ in Hybj+2 and Verify′′ in Hyb(3)j+1 have identical

input/output behavior. The claim now follows by iO security. �

Combining Claims 5.13 to 5.16, we have that for all j ∈ [d], hybrids Hybj+1 and Hybj+2 are computationally indistin-

guishable and the lemma follows. �

To complete the proof of Theorem 5.8, we show that for all adversaries A, Pr[Hybd+2(A) = 1] = 0.

Lemma 5.17. For all non-uniform polynomial time adversaries A and all λ ∈ N, Pr[Hybd+2(A) = 1] = 0.

Proof. Take any adversaryA. Let crs be the common reference string sampled according to the speci�cation of Hybd+2
and let π be the proof that A outputs for the statement (C∗, (x∗

1
, . . . , x∗t)

)
in Hybd+2. We consider the probability that

the output of Hybd+2(A) = 1. By de�nition, the output in Hybd+2 is 1 only if the adversary outputs a circuit C∗ and

instances x∗
1
, . . . , x∗t where x∗i∗ is a false instance. Consider V(crs,C∗, (x∗

1
, . . . , x∗t), π):

• First, the veri�cation algorithm constructs a binary tree (Γhash, valhash) ← HashProg[hk](x∗
1
, . . . , x∗t) using the

algorithm from Fig. 10 (when running Hash).

• The veri�cation algorithm parses the proof π as π = {(ind, πind)}ind∈frontier(ind(t)), and outputs 0 if the proof

does not have this format. Then, for each ind ∈ frontier(ind(t)), the veri�cation algorithm checks that

ObfVerify(C∗, valhash(ind), ind, πind) = 1 and rejects with output 0 if any check fails.

Let ind′ be the longest common pre�x of ind(i
∗)

and ind(t). We now de�ne an index ind′′ ∈ frontier(ind(t)) where

ind′′ is a pre�x of ind(i
∗)

as follows:

• Suppose ind′ = ind(i
∗) = ind(t). Then, de�ne ind′′ = ind′. By de�nition, ind′′ ∈ frontier(ind(t)) and is a pre�x

of ind(i
∗)

.

• Suppose ind′ , ind(i
∗)

. Let |ind′ | = j where 0 ≤ j ≤ d − 1. Note that j , d since ind(i
∗) , ind(t). Since ind′ is

de�ned to be the the longest common pre�x, the (j + 1)th bit of ind(i
∗)

and ind(t) must be di�erent. Additionally,

ind(t) > ind(i
∗)

and moreover, the (j + 1)th is the �rst di�ering bit between ind(t) and ind(i
∗)

. This means that

the j + 1th bit of ind(i
∗)

must be 0 and the (j + 1)th bit of ind(t) must be 1. In this case then, let ind′′ = ind′‖0.

By construction, ind′′ is a pre�x of ind(i
∗)

, and moreover is a left sibling of a node on the path to ind(t). This

means that ind′′ ∈ frontier(ind(t)), as required.

41

Consider now the output of ObfVerify(C∗, valhash(ind′′), ind′′, πind′′). By correctness of iO, this corresponds to the

output of program Verify′[K,C∗,X,d, ind(i
∗)](C∗, valhash(ind′′), ind′′, πind′′):

• By construction, ind′′ is not the root node so level(ind′′) < d .

• Again by construction, ind′′ is a pre�x of ind(i
∗)

, and moreover, (ind′′, valhash(ind′′)) ∈ X. Next, the hash tree

Γhash is computed in an identical fashion in both the veri�cation algorithm V and in the construction of the

obfuscated program ObfVerify. The output of Verify′′ on the input (C∗, valhash(ind′′), ind′′, πind′′) is always 0,

irrespective of the value of πind′′ .

We conclude there always exists an index ind′′ ∈ frontier(ind(t)) such that ObfVerify(C∗, valhash(ind), ind, πind) = 0.

Thus, the output of the veri�cation algorithm is always 0 in Hybd+2 and the claim holds. �

Non-adaptive soundness of Construction 5.6 now follows by Lemmas 5.9, 5.11, 5.12 and 5.17. �

Theorem 5.18 (Succinctness). If ΠSSB is succinct, then Construction 5.6 is fully succinct.

Proof. Recall that ` is the length of the statement. We start by showing that `max = poly(λ, `). Since ΠSSB is

succinct, there exists some polynomial q = q(λ) such that the output length `out of the hash function satis�es

`out(λ, `blk) = `blk · (1 + 1/Ω(λ)) + q(λ). Next, by de�nition, `0 = ` and for j ∈ [d], we de�ne `j = `out(λ, `j−1). Thus,

`1 = ` · (1 + 1/Ω(λ)) + q(λ), and more generally, we have that

`d = ` · (1 + 1/Ω(λ))
d + q(λ) ·

∑
j ∈[d]

(1 + 1/Ω(λ))j−1.

Since d = λ and (1 + 1/Ω(λ))λ = O(1), we have that `d = O(`) + q(λ) ·O(λ). Thus, `max = poly(λ, `).

• Succinct proof size: The value stored at a node in the tree Γproof is the output of the PRF, whose codomain

consists of bitstrings of length λ. From Claim 5.5, for any polynomial t , frontier(ind(t)) consists of at most d + 1
nodes so the total proof size is at most (d + 1) · (d + λ). Since d = λ, the size of the proof is O(λ2). Thus, the

BARG is fully succinct.
12

• Succinct veri�cation time: For all λ ∈ N, instance numbers t ≤ 2
λ
, indices i ∈ [t], size parameters s ∈ N, and

statement lengths ` ∈ N, the veri�cation algorithm on input (crs,C, (x1, . . . , xi), πi) starts by computing the

hash tree Γhash (using the algorithm from Fig. 10). This requires times poly(λ, i, `) time. Next, the veri�cation

algorithm parses the proof πi as πi = {(ind, πind)}ind∈frontier(ind(i)). Since iO is e�cient, it takes poly(λ, s) time

to run the program ObfVerify on each proof πind. From Claim 5.5, |frontier(ind(i))| ≤ d + 1 = λ + 1. Thus, the

overall veri�cation cost is poly(λ, i, `) + poly(λ, s), which is succinct, as required. �

Theorem 5.19 (Zero Knowledge). Construction 5.6 satis�es perfect zero-knowledge.

Proof. To show zero knowledge, we construct an e�cient simulator S as follows. On input the security parameter λ,

the bound s on the circuit size, a Boolean circuit C : {0, 1}` × {0, 1}m → {0, 1} of size at most s , the set of statements

x1, . . . , xt such that (C, (x1, . . . , xt)) ∈ LBatchCSAT,t , the simulator algorithm proceeds as follows:

1. Compute crs← Gen(1λ, 1`, 1s). Let hk be the hash key and K be the PRF key sampled in the construction of

CRS.

2. Compute the binary tree (Γhash, valhash) ← HashProg[hk](x1, . . . , xt) using the algorithm from Fig. 10.

3. Let ind(t) = bind (t − 1). Then, construct the proof

πt = {(ind, PRF.Eval (K, (C, valhash(ind), ind)))}ind∈frontier(ind(t)) .
12

Note that we can apply a tighter analysis to show that the proof size on t instances is O (λ log t). The analysis described here implicitly is for an

arbitrary t ≤ 2
λ

.

42

4. Output (crs, πt).

By construction, the simulator samples crs exactly as in the real scheme. If su�ces to show that the simulated proofs

are distributed exactly as in the real distribution. Let x1, . . . , xt be a sequence of statements and w1, . . . ,wt be a

corresponding set of witnesses (for all i ∈ [t], C(xi ,wi) = 1). Let π0 = ⊥, h0 = (0,�), and for every i ∈ [t], hi ←
Hash(crs, (x1, . . . , xi)). We compute the proofs iteratively (i.e., for i ∈ [t], πi ← UpdateP(crs,C,hi−1, πi−1, xi ,wi)).

Let ind(i) = bind (i − 1), hi =
(
i, {(ind, valhash(ind))}ind∈frontier(ind(i))

)
and πi = {(ind, πind)}ind∈frontier(ind(i)). We show

that the following invariant in our proof computation: for all indices ind ∈ frontier(ind(i)),

πind = PRF.Eval(K, (C, valhash(ind), ind)). (5.6)

We now show that this invariant holds:

• In the base case (i = 1), UpdateP computes π ← ObfProve(C, x1,⊥, ind(1),w1,⊥). By correctness of iO and the

fact that C(x1,w1) = 1, we have π = PRF.Eval
(
K, (C, x1, ind(1))

)
and the invariant holds.

• By the exact same analysis as in the proof of Theorem 5.7, we can show that Eq. (5.6) holds.

We conclude that the proofs output by the simulator are distributed identically to the proofs output in the real scheme,

so the scheme satis�es perfect zero knowledge. �

Combining Theorems 5.7, 5.8, 5.18 and 5.19, we obtain the following corollary:

Corollary 5.20 (Non-Adaptive Updatable BARGs). Assuming the existence of a secure indistinguishability obfuscation
scheme (for Boolean circuits) and somewhere statistically binding hash functions, there exists an updatable batch argument
for NP satisfying non-adaptive soundness.

Remark 5.21 (Non-Adaptive Updatable BARGs from iO and One-Way Functions). For our non-adaptive construction,

we can replace the two-to-one somewhere statistically binding hash functions with positional accumulators to obtain

an updatable BARG scheme based only on iO and one-way functions.

Acknowledgments
We thank the anonymous TCC reviewers for helpful feedback on this work. B. Waters is supported by NSF CNS-

1908611, a Simons Investigator award, and the Packard Foundation Fellowship. D. J. Wu is supported by NSF

CNS-2151131, CNS-2140975, a Microsoft Research Faculty Fellowship, and a Google Research Scholar award.

References
[ACL

+
22] Martin R. Albrecht, Valerio Cini, Russell W. F. Lai, Giulio Malavolta, and Sri AravindaKrishnan Thyagara-

jan. Lattice-based SNARKs: Publicly veri�able, preprocessing, and recursively composable. In CRYPTO,

2022.

[AS15] Gilad Asharov and Gil Segev. Limits on the power of indistinguishability obfuscation and functional

encryption. In FOCS, pages 191–209, 2015.

[BB04] Dan Boneh and Xavier Boyen. E�cient selective-id secure identity-based encryption without random

oracles. In EUROCRYPT, pages 223–238, 2004.

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, transparent, and post-quantum

secure computational integrity. IACR Cryptol. ePrint Arch., 2018, 2018.

[BCC
+

17] Nir Bitansky, Ran Canetti, Alessandro Chiesa, Sha� Goldwasser, Huijia Lin, Aviad Rubinstein, and Eran

Tromer. The hunting of the SNARK. J. Cryptol., 30(4), 2017.

43

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable collision resistance to

succinct non-interactive arguments of knowledge, and back again. In ITCS, 2012.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composition and bootstrapping

for SNARKS and proof-carrying data. In STOC, pages 111–120, 2013.

[BCI
+

13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth. Succinct non-

interactive arguments via linear interactive proofs. In TCC, 2013.

[BCPR14] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the existence of extractable one-way

functions. In STOC, 2014.

[BGI
+

01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan, and

Ke Yang. On the (im)possibility of obfuscating programs. In CRYPTO, pages 1–18, 2001.

[BGI14] Elette Boyle, Sha� Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom functions. In

PKC, pages 501–519, 2014.

[BISW17] Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu. Lattice-based SNARGs and their application to

more e�cient obfuscation. In EUROCRYPT, 2017.

[BISW18] Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu. Quasi-optimal snargs via linear multi-prover

interactive proofs. In EUROCRYPT, pages 222–255, 2018.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications. In ASI-
ACRYPT, pages 280–300, 2013.

[CHM
+

20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and Nicholas P. Ward.

Marlin: Preprocessing zkSNARKs with universal and updatable SRS. In EUROCRYPT, 2020.

[CJJ21a] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. Non-interactive batch arguments for NP from

standard assumptions. In CRYPTO, pages 394–423, 2021.

[CJJ21b] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. Snargs for \mathcal{P} from LWE. In FOCS,

pages 68–79, 2021.

[COS20] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-quantum and transparent recursive

proofs from holography. In EUROCRYPT, 2020.

[DFH12] Ivan Damgård, Sebastian Faust, and Carmit Hazay. Secure two-party computation with low communica-

tion. In TCC, 2012.

[DGKV22] Lalita Devadas, Rishab Goyal, Yael Kalai, and Vinod Vaikuntanathan. Rate-1 non-interactive arguments

for batch-NP and applications. IACR Cryptol. ePrint Arch., 2022, 2022.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs and

succinct NIZKs without PCPs. In EUROCRYPT, 2013.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In ASIACRYPT, 2010.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In EUROCRYPT, 2016.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all falsi�able

assumptions. In STOC, pages 99–108, 2011.

[HW15] Pavel Hubácek and Daniel Wichs. On the communication complexity of secure function evaluation with

long output. In ITCS, pages 163–172, 2015.

44

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-founded assumptions.

In STOC, pages 60–73, 2021.

[JLS22] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from LPN over f_p, dlin, and

prgs in ncˆ0. In EUROCRYPT, 2022.

[KLW15] Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishability obfuscation for turing

machines with unbounded memory. In STOC, pages 419–428, 2015.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Delegatable

pseudorandom functions and applications. In ACM CCS, pages 669–684, 2013.

[Lip13] Helger Lipmaa. Succinct non-interactive zero knowledge arguments from span programs and linear

error-correcting codes. In ASIACRYPT, 2013.

[Mer87] Ralph C. Merkle. A digital signature based on a conventional encryption function. In CRYPTO, pages

369–378, 1987.

[Mic95] Silvio Micali. Computationally-sound proofs. In Proceedings of the Annual European Summer Meeting of
the Association of Symbolic Logic, 1995.

[Nao03] Moni Naor. On cryptographic assumptions and challenges. In CRYPTO, 2003.

[OPWW15] Tatsuaki Okamoto, Krzysztof Pietrzak, Brent Waters, and Daniel Wichs. New realizations of somewhere

statistically binding hashing and positional accumulators. In ASIACRYPT, pages 121–145, 2015.

[PHGR13] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly practical veri�able

computation. In IEEE Symposium on Security and Privacy, 2013.

[Set20] Srinath T. V. Setty. Spartan: E�cient and general-purpose zkSNARKs without trusted setup. In CRYPTO,

2020.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable encryption, and

more. In STOC, 2014.

[WW22] Brent Waters and David J. Wu. Batch arguments for NP and more from standard bilinear group

assumptions. In CRYPTO, 2022.

A Adaptive BARGs for Index Languages
In this section, we show how to construct adaptively-sound batch arguments for index languages that support an

unbounded number of statements. The construction closely follow our non-adaptively-sound BARG from Section 3,

but now relies on complexity leveraging [BB04] to argue adaptive soundness. In particular, the reduction algorithm

will guess the challenge circuit upfront; this incurs a loss of 2
−s

in the reduction’s success probability, where s is a

bound on the circuit size (i.e., the description length of the Boolean circuit). Moreover, the reduction will also need to

decide the underlying circuit-SAT relation to identify the index of the false instance across the t = t(λ) instances,

Thus, we need to additionally rely on hardness against super-polynomial time adversaries. We provide the formal

details below.

Construction A.1 (Adaptively-Sound BARG for Index Languages). Let λ be a security parameter. We construct a

BARG scheme that supports index languages with up to T = 2
λ

instances (i.e., which su�ces to support an arbitrary

a priori unbounded polynomial number of instances) and circuits of size at most s . The instance indices will be

taken from the set [2λ]. For ease of notation, we use the set [2λ] and the set {0, 1}λ interchangeably in the following

description. Our construction relies on the following primitives, which will be instantiated with di�erent security

parameters λ1 = λ1(λ, s), λ2 = λ2(λ, s), and λ3 = λ3(λ, s). We set these parameters to satisfy the requirements of

Theorem A.3.

45

• Let PRF be a puncturable PRF with key space {0, 1}λ1 , domain {0, 1}s × {0, 1}λ and range {0, 1}λ2 .

• Let iO be an indistinguishability obfuscator.

• Let PRG be a pseudorandom generator with domain {0, 1}λ2 and range {0, 1}2λ2 .

We de�ne our batch argument ΠBARG = (Gen, P,V) for index languages as follows:

• Gen(1λ, 1s): This is essentially the same as in Construction 5.6, except instantiated with di�erent security

parameters λ1 = λ1(λ), λ2 = λ2(λ), and λ3 = λ3(λ). Speci�cally, on input the security parameter λ, and a bound

on the circuit size s , the setup algorithm proceeds as follows:

1. First, it samples a PRF key K ← PRF.KeyGen(1λ1).

2. Next, the setup algorithm de�nes the proving program Prove[K] and the veri�cation program Verify[K] ex-

actly as in Construction 3.1 (see Figs. 1 and 2). The setup algorithm constructsObfProve← iO(1λ3, Prove[K])
and ObfVerify← iO(1λ3,Verify[K]). Note that both the proving circuit Prove[K] and Verify[K] are padded

to the maximum size of any circuit that appears in the proof of Theorem A.3.

Finally, it outputs the common reference string crs = (ObfProve,ObfVerify).

• P(crs,C, (w1, . . . ,wt)): Same as in Construction 3.1.

• V(crs,C, t, π): Same as in Construction 3.1.

Theorem A.2 (Completeness). If iO is correct, then Construction A.1 is complete.

Proof. This proof is exactly the same as the proof for the non-adaptive case (Theorem 3.2). �

Theorem A.3 (Soundness). Suppose there exists positive constants α, β,γ ∈ (0, 1) such that

• The puncturable PRF ΠPRF is functionality-preserving and satis�es (2λ
α
, 2−λ

α
)-punctured pseudorandomness;

• The pseudorandom generator PRG is (2λ
β
, 2−λ

β
)-secure; and

• The indistinguishability obfuscator iO is (2λ
γ
, 2−λ

γ
)-secure.

Suppose moreover that we instantiate Construction A.1 with λ1 = (s + log s + ω(log λ))1/α , λ2 = (s + log s + ω(log λ))1/β ,
and λ3 = (s + log s + ω(log λ))1/γ , for a �xed polynomial poly(·). Note that λ1, λ2, λ3 = poly(λ, s). Then, Construction A.1
is adaptively sound.

Proof. We start by de�ning a sequence of hybrid experiments. In the following analysis, we say that C is a Boolean

circuit of size s if it can be described by a binary string of length exactly s . Moreover, we will associate the set of all

Boolean circuits with size at most s with a binary string of length s + 1 (i.e., an element of the set {0, 1}s+1).

• Hyb
0
: This is the adaptive soundness experiment:

– At the beginning of the experiment, the adversary A outputs the maximum circuit size 1
s
. The number

of instances is implicitly taken to be T = 2
λ
.

– The challenger samples crs← Gen(1λ, 1s) and gives crs = (ObfProve,ObfVerify) to adversary A.

– The adversary A outputs (C∗, t, π) where the size of C∗ is at most s .

– The output of the experiment is 1 if V(crs,C∗, t, π) = 1 (i.e., if ObfVerify(C∗, t, π) = 1) and there exists an

index i ∈ [t] such that for all w ∈ {0, 1}∗, C∗(i,w) = 0. Otherwise, the experiment outputs 0.

• Hyb′
0
: Same as Hyb

0
, except at the beginning of the security game, after the adversary outputs the bound 1

s
on

the maximum circuit size, the challenger guesses a circuitC ′ r

← {0, 1}s+1. After the adversary outputs (C∗, t, π),
the challenger outputs 0 if C ′ , C∗. Otherwise, the output is computed exactly as in Hyb

0
.

Additionally, the challenger exhaustively searches for a bad instance i∗ ∈ {0, 1}λ . Namely, for each instance

index i ∈ {0, 1}λ , it checks to see if for all w ∈ {0, 1}m , it holds that C ′(i,w) = 0. If so, it sets i∗ = i . If there

are multiple such indices i ∈ {0, 1}λ , it sets i∗ to be the smallest index (when interpreting i as the binary

representation of a λ-bit integer).

46

• Hybj for j ∈ {i∗, . . . , t}: Same as Hyb′
0

except the challenger changes the distribution of the CRS. Speci�cally, it

de�nes the modi�ed programs Prove′[K, i∗, ithresh,C ′] andVerify′[K, i∗, ithresh,C ′] exactly as in the proof of Theo-

rem 3.3 (see Figs. 3 and 4). To construct the CRS, the challenger computesObfProve← iO(1λ, Prove′[K, i∗, j,C ′])
and ObfVerify← iO(1λ,Verify′[K, i∗, j,C ′]) As in the real scheme, the challenger pads the size of Prove′ and

Verify′ to the maximum size of the circuits that appear in the proof of Theorem A.3.

For an adversary A, we write Hybi (A) to denote the output distribution of Hybi (A) with adversary A. We now

show that each pair of adjacent distributions de�ned above are indistinguishable. Unlike the proof of Theorem 3.3,

our analysis here relies on complexity leveraging and the reduction algorithm will compute for itself the index i∗ of

the false instance. As a result, we no longer need to rely on non-uniform advice, and thus, the following reductions

are all uniform.

Lemma A.4. For all adversaries A and all security parameters λ ∈ N, Pr[Hyb
0
(A) = 1] = 2

s+1 · Pr[Hyb′
0
(A) = 1].

Proof. If Hyb
0
(A) outputs 1, then it must be the case that A outputs a circuit C∗ of size at most s , which means

C∗ ∈ {0, 1}s+1. Since the challenger samples C ′ r

← {0, 1}s+1 and moreover, C ′ is independent of the adversary’s view,

Pr[C ′ = C∗] = 1/2s+1. Thus, Pr[Hyb′
0
(A) = 1] = 1/2s+1 · Pr[Hyb

0
(A) = 1]. �

Lemma A.5. Suppose iO is (2λ
γ
, 2−λ

γ
)-secure. Then for every e�cient adversary A, there exists a negligible function

ε(λ) = negl(λ) such that for all λ ∈ N, | Pr[Hybi∗ (A) = 1] − Pr[Hyb′
0
(A)]| ≤ ε/2s .

Proof. By the same argument as in the proof of Lemma 3.4, the programs Prove[K] and Prove′[K, i∗, i∗,C ′] as well as

the programs Verify[K] and Verify′[K, i∗, i∗,C ′] have identical input/output behavior. The claim now follows by iO
security. Since we need to rely on complexity leveraging in the security reduction, we provide more details here.

First, let Hyb′′
0

be an intermediate experiment where we change the ObfProve program from ObfProve ←
iO(1λ3, Prove[K]) (as in Hyb′

0
) to ObfProve← iO(1λ3, Prove′[K, i∗, i∗,C ′]) as in Hybi∗). In Hyb′′

0
, the veri�cation

program is still computed as ObfVerify← iO(1λ3,Verify[K]) as in Hyb′
0
. We now show that if there exists a poly(λ)-

time algorithm A where | Pr[Hyb′′
0
(A) = 1] − Pr[Hyb′

0
(A) = 1]| = ε/2s , for some ε = ε(λ), then there exists a

2
λγ

-time algorithm B that break iO security with advantage ε/2s :

1. Algorithm B starts running algorithm A, which outputs the bound on the circuit size 1
s
.

2. Algorithm B randomly samples a Boolean circuit C ′ r

← {0, 1}s+1 of size at most s . Algorithm B interprets

C ′ : {0, 1}λ × {0, 1}m → {0, 1} as a circuit for an index relation. If C ′ cannot be interpreted as a Boolean circuit

in this way, then algorithm B aborts with output 0.

3. Algorithm B exhaustively searches for a bad instance i∗ ∈ {0, 1}λ . Namely, for each instance index i ∈ {0, 1}λ ,

algorithm B checks to see if for all w ∈ {0, 1}m , it holds that C ′(i,w) = 0. If so, algorithm B sets i∗ = i . If there

are multiple such indices i ∈ {0, 1}λ , algorithm B sets i∗ to be the smallest index (when interpreting i as the

binary representation of a λ-bit integer).

4. Algorithm B samples a PRF key K ← PRF.KeyGen(1λ1) and outputs Prove[K] and Prove′[K, i∗, i∗,C ′] as its

challenge programs. Let ObfProve be the obfuscated program it receives from the challenger.

5. Algorithm B computes ObfVerify← iO(1λ3,Verify[K]) and gives crs = (ObfProve,ObfVerify) to A.

6. Finally, algorithmA outputs a tuple (C∗, t, π). IfC ′ , C∗ or i∗ > t , algorithm B outputs 0. Otherwise, algorithm

B outputs 1 if V(crs,C∗, t, π) = 1 (i.e., if ObfVerify(C∗, t, π) = 1) and 0 otherwise.

First, consider the running time of B. Since C ′ is a circuit of size s , evaluating C ′ requires time s . Thus, computing

the index of the bad instance i∗ takes time at most 2
λ+m · s ≤ 2

s+log s
since s ≥ λ +m (i.e., the size of the circuit

is at least as large as the input length to the circuit). Thus, the total running time of algorithm B is bounded by

2
s · poly(λ) ≤ 2

s+log s+ω(log λ) = 2
λγ
3 (for su�ciently-large λ). Next, we consider the advantage of B.

• Suppose the challenger obfuscates Prove[K]. Then algorithm B perfectly simulates the distribution of Hyb′
0

and algorithm B outputs 1 with probability Pr[Hyb′
0
(A) = 1].

47

• Suppose the challenger obfuscates Prove′[K, i∗, i∗,C ′]. Then B perfectly simulates Hyb′′
0

and outputs 1 with

probability Pr[Hyb′′
0
(A) = 1].

Thus, the distinguishing advantage of B is | Pr[Hyb′′
0
(A) = 1] − Pr[Hyb′

0
(A) = 1]| = ε/2s . Since iO is (2λ

γ
, 2−λ

γ
)-

secure, and algorithm B runs in time 2
λγ

, we have that ε/2s ≤ 2
−λγ

3 = 2
−s−ω(log λ)

(for su�ciently-large λ), or

equivalently, that ε ≤ 2
−ω(log λ) = negl(λ), as required.

By an analogous argument, we can show that for all e�cient adversaries A, there exists a negligible function

ε ′(λ) = negl(λ) such that for all λ ∈ N, | Pr[Hyb′′
0
(A) = 1] − Pr[Hybi∗ (A) = 1]| = ε ′/2s . The claim now follows by a

hybrid argument. �

Lemma A.6. Suppose iO is (2λ
γ
, 2−λ

γ
) secure, ΠPRF is functionality-preserving and satis�es (2λ

α
, 2−λ

α
)-punctured

pseudorandomness, and PRG is (2λ
β
, 2−λ

β
)-secure. Then, for all j ∈ {i∗, . . . , t − 1}, and every e�cient adversary A,

there exists a negligible function ε(λ) = negl(λ) such that for all λ ∈ N

| Pr[Hybj+1(A) = 1] − Pr[Hybj (A) = 1]| ≤ ε/2s .

Proof. We begin by introducing a sequence of intermediate hybrids:

• Hyb(1)j : Same as Hybj except the challenger changes the distribution of the CRS. Speci�cally, it de�nes the

modi�ed programs Prove′′[K{(C ′, ithresh)}, i∗, ithresh,C ′, z] and Verify′′[K{(C ′, ithresh)}, i∗, ithresh,C ′, z] exactly

as in the proof of Lemma 3.5 (see Figs. 5 and 6). The challenger then computes the punctured key K{(C ′, j)} ←
PRF.Puncture(K, (C ′, j)) and the evaluation z∗ ← PRG(PRF.Eval(K, (C ′, j))). It then constructs ObfProve ←
iO(1λ, Prove′′[K{(C ′, j)}, i∗, j,C ′, z∗]) and ObfVerify ← iO(1λ,Verify′′[K{(C ′, j)}, i∗, j,C ′, z∗]). As in the real

scheme, the challenger pads the size of Prove′′ and Verify′′ to the maximum size of the circuits that appear in

the proof of Theorem A.3. The CRS is still crs = (ObfProve,ObfVerify).

• Hyb(2)j : Same as Hyb(1)j but when constructing the CRS, the challenger sets z∗ ← PRG(y∗) where y∗ r

← {0, 1}λ .

• Hyb(3)j : Same as Hyb(2)j but when constructing the CRS, the challenger samples z∗ r

← {0, 1}2λ .

We now argue that each pair of adjacent hybrid experiments are indistinguishable for all j ∈ {i∗, . . . , t}.

Claim A.7. Suppose ΠPRF is functionality preserving and suppose iO is (2λ
γ
, 2−λ

γ
)-secure. Then for all j ∈ {i∗, . . . , t}

and every e�cient adversary A, there exists a negligible function ε(λ) = negl(λ) such that for all λ ∈ N,

| Pr[Hyb(1)j (A) = 1] − Pr[Hyb(0)j (A) = 1]| ≤ ε/2s .

Proof. We appeal to the proof of Claim 3.6 to show that Prove′[K, i∗, j,C ′] and Prove′′[K{(C ′, j)}, i∗, j,C ′, z] have the

same functionality, as do Verify′[K, i∗, j,C ′] and Verify′′[K{(C ′, j)}, i∗, j,C ′, z∗]. From here, we can apply the same

reduction as in the proof of Lemma A.5 to show the claim. �

Claim A.8. Suppose ΠPRF satis�es (2λ
α
, 2−λ

α
)-pseudorandomness. Then for all j ∈ {i∗, . . . , t}, every e�cient adversary

A, there exists a negligible function ε(λ) = negl(λ) such that for all λ ∈ N,

| Pr[Hyb(2)j (A) = 1] − Pr[Hyb(1)j (A) = 1]| ≤ ε/2s .

Proof. Suppose there exists an e�cient adversary A such that | Pr[Hyb(2)j (A) = 1] − Pr[Hyb(1)j (A) = 1]| ≤ ε/2s for

some function ε = ε(λ). We use A to construct an adversary B for the punctured pseudorandomness security game:

1. Algorithm B starts running algorithm A, which outputs the bound on the circuit size 1
s
.

2. Algorithm B randomly samples a Boolean circuit C ′ r

← {0, 1}s+1 of size at most s . Algorithm B interprets

C ′ : {0, 1}λ × {0, 1}m → {0, 1} as a circuit for an index relation. If C ′ cannot be interpreted as a Boolean circuit

in this way, then algorithm B aborts with output 0.

48

3. Algorithm B exhaustively searches for a bad instance i∗ ∈ {0, 1}λ . Namely, for each instance index i ∈ {0, 1}λ ,

algorithm B checks to see if for all w ∈ {0, 1}m , it holds that C ′(i,w) = 0. If so, algorithm B sets i∗ = i . If there

are multiple such indices i ∈ {0, 1}λ , algorithm B sets i∗ to be the smallest index (when interpreting i as the

binary representation of a λ-bit integer).

4. Algorithm B outputs (C ′, j) as its challenge point. The challenger replies with a punctured key K{(C ′, j)} and a

challenge value y where either y ← PRF.Eval(K, (C ′, j)) or y r

← {0, 1}λ2 .

5. Algorithm B computes z∗ ← PRG(y) and computes ObfProve ← iO(1λ3, Prove′′[K{(C ′, j)}, i∗, j,C ′, z∗]) and

ObfVerify← iO(1λ3,Verify′′[K{(C ′, j)}, i∗, j,C ′, z∗]). It gives crs = (ObfProve,ObfVerify) to A.

6. Adversary A outputs (C∗, t, π). If C ′ , C∗ or i∗ > t , algorithm B outputs 0.

7. Otherwise, algorithm B outputs 1 if ObfVerify(C∗, t, π) = 1.

If B received PRF.Eval(K, (C ′, j)), then it perfectly simulates an execution of hybrid Hyb(1)j and outputs 1 with

probability Pr[Hyb(1)j (A) = 1]. Alternatively, if it receives a random challenge, then it perfectly simulates Hyb(2)j and

outputs 1 with probability Pr[Hyb(2)j (A) = 1]. Thus, the advantage of B is exactly

| Pr[Hyb(2)j (A) = 1] − Pr[Hyb(1)j (A) = 1]| ≤ ε/2s .

Since algorithm B performs an exhaustive search to �nd the index i∗, the running time of B is 2
s · s · poly(λ) ≤ 2

λα
1 .

The claim now follows by (2λ
α
, 2−λ

α
) security: namely, we require that ε/2s ≤ 2

−λα
1 = 2

−s−ω(log λ)
. �

Claim A.9. Suppose PRG is (2λ
β
, 2−λ

β
) secure. Then for all j ∈ {i∗, . . . , t} and every e�cient adversary A, there exists

a negligible function ε(λ) = negl(λ) such that for all λ ∈ N,

| Pr[Hyb(3)j (A) = 1] − Pr[Hyb(2)j (A) = 1]| ≤ ε/2s .

Proof. Suppose there exists an e�cient adversary A such that | Pr[Hyb(2)j (A) = 1] − Pr[Hyb(1)j (A) = 1]| ≤ ε/2s for

some function ε = ε(λ). We use A to construct an adversary B for the PRG security game:

1. Algorithm B starts running algorithm A, which outputs the bound on the circuit size 1
s
.

2. Algorithm B randomly samples a Boolean circuit C ′ r

← {0, 1}s+1 of size at most s . Algorithm B interprets

C ′ : {0, 1}λ × {0, 1}m → {0, 1} as a circuit for an index relation. If C ′ cannot be interpreted as a Boolean circuit

in this way, then algorithm B aborts with output 0.

3. Algorithm B exhaustively searches for a bad instance i∗ ∈ {0, 1}λ . Namely, for each instance index i ∈ {0, 1}λ ,

algorithm B checks to see if for all w ∈ {0, 1}m , it holds that C ′(i,w) = 0. If so, algorithm B sets i∗ = i . If there

are multiple such indices i ∈ {0, 1}λ , algorithm B sets i∗ to be the smallest index (when interpreting i as the

binary representation of a λ-bit integer).

4. Algorithm B samples a PRF key K ← PRF.KeyGen(1λ1) and computes the punctured key K{(C ′, j)} ←
PRF.Puncture(K, (C ′, j)).

5. Algorithm B receives a challenge z∗ from the challenger where either z∗ ← PRG(y) for y ← {0, 1}λ2 or

z∗ ← {0, 1}2λ2 .

6. Algorithm B computes the programs ObfProve ← iO(1λ3, Prove′′[K{(C ′, j)}, i∗, j,C ′, z∗]) and ObfVerify ←
iO(1λ3,Verify′′[K{(C ′, j)}, i∗, j,C ′, z∗]). It gives crs = (ObfProve,ObfVerify) to A.

7. Adversary A outputs (C∗, t, π). If C ′ , C∗ or i∗ > t , algorithm B outputs 0.

8. Algorithm B outputs 1 if ObfVerify(C∗, t, π) = 1.

49

If z∗ ← PRG(y), then algorithm B perfectly simulates an execution of hybrid Hyb(2)j and if z∗ ← {0, 1}2λ2 , it perfectly

simulates an execution of hybrid Hyb(3)j . Thus, the advantage of B is exactly

| Pr[Hyb(3)j (A) = 1] − Pr[Hyb(2)j (A) = 1]| ≤ ε/2s .

Since algorithm B performs an exhaustive search to �nd the index i∗, the running time of B is 2
s · s · poly(λ) ≤ 2

λβ
2 .

The claim now follows by (2λ
β
, 2−λ

β
) security: namely, we require that ε/2s ≤ 2

−λβ
2 = 2

−s−ω(log λ)
. �

Claim A.10. Suppose iO is (2λ
γ
, 2−λ

γ
)-secure. Then, for all j ∈ {i∗, . . . , t}, and all e�cient adversariesA, there exists a

negligible function ε(λ) = negl(λ) such that for all λ ∈ N,

| Pr[Hybj+1(A) = 1] − Pr[Hybj (3) (A) = 1]| ≤ ε/2s .

Proof. Using the same analysis as in Claim 3.9, with overwhelming probability Prove′′[K{(C ′, j)}, i∗, j,C ′, z∗] and

Prove′[K, i∗, j + 1,C ′] have the same functionality, as do Verify′′[K{(C ′, j)}, i∗, j,C ′, z∗] and Verify′[K, i∗, j + 1,C ′] in

Hybj+1. From here, we can apply the same reduction as in the proof of Lemma A.5 to show the claim. �

Combining Claims A.7 to A.10, we have that for all j ∈ {i∗, . . . , t − 1}, there exists a negligible function ε(λ) = negl(λ)
such that for all λ ∈ N, we have that | Pr[Hybj+1(A) = 1] − Pr[Hybj (A) = 1]| ≤ ε/2s and Lemma A.6 follows. �

By construction, in Hybt , the program ObfVerify is an obfuscation of the veri�cation program Verify′[K, i∗, t,C ′]
which outputs 0 on all inputs of the form (C ′, t, π) for any π ∈ {0, 1}λ2 . Correspondingly, for all e�cient adversaries

A, it follows that Pr[Hybt (A) = 1] = 0. Then combining Lemmas A.5 and A.6, we have that there exists a negligible

function ε(λ) = negl(λ) such that Pr[Hyb′
0
(A) = 1] ≤ ε(λ)/2s . By Lemma A.4, this means that

Pr[Hyb
0
(A) = 1] ≤ 2

s+1 · ε(λ)/2s = 2 · ε(λ) = negl(λ),

and adaptive soundness holds. �

Theorem A.11 (Succinctness). Construction A.1 is succinct (but not fully succinct).

Proof. We consider each property separately:

• Succinct proof size: The size of the proof is the output of PRF, which is a bit-string of length λ2. For soundness

(Theorem A.3), we require that λ2 = (s + log s + ω(log λ))
1/β

, for some constant β ∈ (0, 1). Thus, the proof size

is poly(λ, s), which is independent of the number of instances. Thus, Construction A.1 is succinct (but not fully

succinct since the proof size scales with the circuit size s).

• Succinct veri�cation time: The veri�cation algorithm consists of evaluating ObfVerify on a triple (C, t, π).
By construction, ObfVerify is an obfuscation of the veri�cation algorithm Verify[K]. construction, the running

time of Verify[K] is poly(λ, s). Since iO is e�ciency-preserving, the running time of the obfuscated program

ObfVerify is also poly(λ, s), as required. �

Theorem A.12 (Zero Knowledge). Construction A.1 satis�es perfect zero-knowledge.

Proof. Our proof here is identical to the proof of Theorem 4.10 where the simulator invokes the underlying algorithms

under their respective security parameters. �

B BARGs for NP from BARGs for Index Languages
In this section, we show how to upgrade an adaptively-secure index BARG (e.g., Construction A.1) to construct batch

arguments for arbitrary NP languages. Our construction is the direct analog of Construction 4.4 except we need to

rely on somewhere statistically-binding (SSB) hash functions [HW15] in place of the positional accumulators in order

to argue adaptive security. Similar to Construction A.1, our construction critically relies on sub-exponential hardness

of the underlying primitives. We start by recalling the formal de�nition of an SSB hash function (this is essentially a

generalization of the two-to-one SSB hash functions from Section 5.1):

50

De�nition B.1 (Somewhere Statistically Binding Hash Function [HW15, OPWW15, adapted]). A somewhere statisti-

cally binding (SSB) hash function consists of a tuple of e�cient algorithms ΠSSB = (Gen,GenTD,Hash,Open,Verify)
with the following properties:

• Gen(1λ, 1`) → hk: On input the security parameter λ and the block size `, the hash-key-generator algorithm

outputs a hash key hk.

• GenTD(1λ, 1`, i∗) → hk: On input the security parameter λ, the block size `, and a target index i∗ ≤ 2
λ
, the

trapdoor-generator algorithm outputs a hash key hk.

• Hash(hk, (x1, . . . , xt)) → y: On input a hash key hk and an ordered list of inputs x1, . . . , xt ∈ {0, 1}
`
, the hash

algorithm outputs a hash value y.

• Open(hk, (x1, . . . , xt), i) → π : On input a hash key hk, an ordered list of inputs x1, . . . , xt ∈ {0, 1}
`
, and an

index i ∈ [t], the open algorithm outputs an opening π .

• Verify(hk,y, x, i, π) → b: On input a hash key hk, a hash value y, an input x ∈ {0, 1}` , an index i ∈ {0, 1}λ , and

an opening π , the veri�cation algorithm outputs a bit b ∈ {0, 1}.

Moreover, ΠSSB should satisfy the following requirements:

• Correctness: For all security parameters λ ∈ N, block sizes ` ∈ N, all t ≤ 2
λ
, all indices i ∈ [t], and all tuples

of inputs x1, . . . , xt ∈ {0, 1}
`
,

Pr

Verify(hk,y, xi , i, π) = 1 :

hk← Gen(1λ, 1`),
y ← Hash(hk, (x1, . . . , xt)),
π ← Open(hk, (x1, . . . , xt), i)

 = 1.

• Succinctness: There exists a universal polynomial poly(·, ·) such that the lengths of the hash values y output

by Hash and the lengths of the proofs π output by Open in the completeness experiment satisfy |y | = poly(λ, `),
|π | = poly(λ, `).

• Index hiding: For a security parameter λ, a bit b ∈ {0, 1}, and an adversary A, we de�ne the index-hiding

experiment as follows:

– Algorithm A starts by choosing an input length ` and an index i ≤ 2
λ
.

– If b = 0, the challenger samples hk0 ← Gen(1λ, 1`). Otherwise, if b = 1, the challenger samples

hk1 ← GenTD(1λ, 1`, i). It gives hkb to A.

– Algorithm A outputs a bit b ′ ∈ {0, 1}, which is the output of the experiment.

We say that ΠSSB satis�es (τ , ε)-index hiding, if for all adversaries running in time τ = τ (λ), there exists λA ∈ N
such that for all λ > λA

| Pr[b ′ = 1 | b = 0] − Pr[b ′ = 1 | b = 1]| ≤ ε(λ).

in the index-hiding experiment.

• Somewhere statistically binding: We say that a hash key hk is statistically binding at index i if for all y, π , π ∗,
there does not exist inputs x, x∗ ∈ {0, 1}` where x , x∗ and Verify(hk,y, x, i, π) = 1 = Verify(hk,y, x∗, i, π ∗).
We say that the hash function is statistically binding if for all block sizes ` = poly(λ) , there exists a negligible

function negl(·) such that for all λ ∈ N

Pr[hk is statistically binding at index i : hk← GenTD(1λ, 1`, i)] ≥ 1 − negl(λ).

Theorem B.2 (Somewhere Statistically Binding Hash Functions [HW15, OPWW15]). Under standard number-
theoretic assumptions (e.g., DDH, DCR, LWE, or ϕ-Hiding), there exists an SSB hash function for arbitrary polynomial
input lengths ` = `(λ).

51

Remark B.3 (Hashing Variable Number of Inputs). In [HW15, OPWW15], the generator algorithms Gen,GenTD for

the SSB hash function also take as input the number of inputs T (in binary); correspondingly, the hashing algorithm

always takes T inputs x1, . . . , xT as input. In our setting, we allow the hash function to support an arbitrary number

of inputs t ≤ 2
λ
.
13

We can construct an SSB hash function that supports a variable number of inputs (with a maximum

of 2
λ

inputs) with poly(λ) overhead using a standard “powers-of-two” construction:

• First, we de�ne the hash key to be a tuple of λ hash keys hk = (hk1, . . . , hkλ), where the ith hash key hkλ is for

an SSB scheme on exactly 2
i

inputs.

• To hash an input (x1, . . . , xt) where t ≤ 2
λ
, the hashing algorithm �rst pads (x1, . . . , xt ,⊥, . . . ,⊥) to a tuple of

length 2
i

where i is the smallest integer where t ≤ 2
i
. It then hashes the padded input with hki to obtain the

hash value y ′. The overall hash value is the pair y = (t,y ′).

Observe that this construction still supports e�cient hashing (padding to the next power of two only incurs constant

overhead). Including the input length as part of the hash output preserves the somewhere statistical binding property.

Construction B.4 (Adaptively-Sound Batch Argument for NP Languages). Let λ be a security parameter and s = s(λ)
be a bound on the size of the Boolean circuit. We construct a BARG scheme that supports arbitrary NP languages

with up to T = 2
λ

instances (i.e., which su�ces to support an arbitrary polynomial number of instances) and Boolean

circuits of size at most s . For ease of notation, we use the set [2λ] and the set {0, 1}λ interchangably in the following

description. Our construction relies on the following primitives:

• Let ΠSSB = (SSB.Gen, SSB.GenTD, SSB.Hash, SSB.Open, SSB.Verify) be an somewhere statistically binding

hashing function.

• Let ΠIndexBARG = (IndexBARG.Gen, IndexBARG.P, IndexBARG.V) be a BARG for Index languages that supports

unbounded statements.
14

We de�ne our batch argument ΠBARG = (Gen, P,V) for batch circuit satis�ability as follows:

• Gen(1λ, 1`, 1s): On input the security parameter λ, the statement length `, and a bound on the circuit size s ,
sample hk← SSB.Gen(1λ

′

, 1`)where λ′ is set according to Theorem B.6. Let s ′ be the size of the following circuit:

Constants: Hash key hk for ΠSSB, hash value h for ΠSSB, Boolean circuit C of size at most s
Inputs: Index i ∈ {0, 1}λ , a tuple (x,σ ,w) where x ∈ {0, 1}`

1. If C(x,w) = 0, output 0.

2. If SSB.Verify(hk,h, x, i,σ) = 0, output 0.

3. Otherwise, output 1.

Figure 15: The Boolean circuit C ′[hk,h,C] for an index relation

Then, sample IndexBARG.crs← IndexBARG.Gen(1λ, 1s
′

). Output crs = (hk, IndexBARG.crs).

• P(crs,C, (x1, . . . , xt), (w1, . . . ,wt)): On input crs = (hk, IndexBARG.crs), a Boolean circuitC : {0, 1}`×{0, 1}m →
{0, 1}, statements x1, . . . , xt ∈ {0, 1}

`
, and witnesses w1, . . . ,wt ∈ {0, 1}

m
, the prove algorithm starts by

computing a hash h ← SSB.Hash(hk, (x1, . . . , xt)). Then, for each all i ∈ [t], let w ′i = (xi ,σi ,wi) where

σi ← SSB.Open(hk, (x1, . . . , xt), i). Output the proof π ← IndexBARG.P(IndexBARG.crs,C ′, t, (w ′
1
, . . . ,w ′t))

where C ′[hk,h,C] is the circuit for the index relation from Fig. 15.

• V(crs,C, (x1, . . . , xt), π): On input crs = (hk, IndexBARG.crs), a Boolean circuit C : {0, 1}` × {0, 1}m → {0, 1},
statements x1, . . . , xt ∈ {0, 1}

`
, and a proof π , the veri�cation algorithm starts by computing the hash h ←

SSB.Hash(hk, (x1, . . . , xt)). It then outputs IndexBARG.V(IndexBARG.crs,C ′, t, π) where C ′[hk,h,C] is the

circuit for the index relation from Fig. 15.

13
Note that padding the input to T = 2

λ
would render the hashing algorithm ine�cient (when invoked on poly(λ)-length inputs).

14
Our transformation also applies in the setting where the number of instances is bounded. In this case, the transformed scheme inherits the same

bound. For simplicity of exposition, we just describe the transformation for the unbounded case.

52

Theorem B.5 (Completeness). If ΠIndexBARG scheme is complete and ΠSSB scheme is correct, then Construction B.4 is
complete.

Proof. Take any security parameter λ ∈ N, circuit size bound s ∈ N, input length ` ∈ N, Boolean circuit C : {0, 1}` ×
{0, 1}m → {0, 1} with size at most s , and any instance number t ≤ 2

λ
. Let x1, . . . , xt ∈ {0, 1}

`
be a collection

of statements and w1, . . . ,wt be a collection of corresponding witnesses such that C(xi ,wi) = 1 for all i ∈ [t].
Suppose crs = (hk, IndexBARG.crs) ← Gen(1λ, 1`, 1s) and π ← Prove(crs,C, (x1, . . . , xt), (w1, . . . ,wt)). Let σi ←
SSB.Open(hk, (x1, . . . , xt), i) be the openings computed by the prove algorithm. Since SSB is correct, for every

i ∈ [t], SSB.Verify(hk,h, x, i,σi) = 1, and correspondingly, for every i ∈ [t], C ′(i, (xi ,σi ,wi)) = 1, where C ′(·) =
C ′[hk,h,C](·) is the circuit from Fig. 15. Completeness now follows from completeness of the underlying BARG for

index languages. �

Theorem B.6. Suppose ΠIndexBARG satis�es adaptive soundness. Moreover, suppose there exists a constant δ ∈ (0, 1) and
a negligible function negl(·) such that ΠSSB satis�es (2λ

δ
, negl(λ))-index hiding. Let λ′ = (s + ω(log λ))1/δ , where s is a

bound on the circuit size. Then Construction B.4 satis�es adaptive soundness.

Proof. We start by de�ning a series of hybrid experiments. Let q = q(λ) be a polynomial that upper bounds the

number of instances an adversary outputs (or equivalently, the running time of the adversary).

• Hyb
0
: This is the adaptive soundness experiment.

– Adversary A starts by outputting the maximum circuit size 1
s(λ)

, and a statement length 1
`(λ)

.

– The challenger responds with crs← Gen(1λ, 1`, 1s).

– AdversaryA outputs (C∗, (x∗
1
, . . . , x∗t), π

∗)whereC∗ is a Boolean circuit of size at most s(λ) and x∗i ∈ {0, 1}
`

for all i ∈ [t].

– The output of the experiment is 1 if V(crs,C∗, (x∗
1
, . . . , x∗t), π

∗) = 1 and there exists i ≤ t where for all

w ∈ {0, 1}∗, C∗(x∗i ,w) = 0. Otherwise, the challenger outputs 0.

• Hyb
1
: Same as Hyb

0
, except at the beginning of the security experiment, the challenger samples a random

index i∗ ∈ [q]. After the adversary outputs (C∗, (x∗
1
, . . . , x∗t), π

∗), the challenger outputs 0 if either i∗ > t or

there exists a witness w ∈ {0, 1}∗ such that C∗(x∗i∗,w) = 1.

• Hyb
2
: Same as Hyb

1
except the challenger samples hk← SSB.GenTD(1λ, 1`, i∗).

For an adversary A, we write Hybi (A) to denote the output distribution of an execution of Hybi (A) with adversary

A. We now show that each pair of adjacent distributions are indistinguishable.

Lemma B.7. For every adversary A and for all λ ∈ N, Pr[Hyb
0
(A) = 1] ≤ q · Pr[Hyb

1
(A) = 1].

Proof. If Hyb
0

outputs 1, then there is at least one index i ≤ t such that for all witnesses w ∈ {0, 1}∗, C∗(xi ,w) = 0.

Since i∗ is uniform and independent of the view of the adversary (and thus, of the index i) and q ≥ t , with probability

at least 1/q, it will be the case that i = i∗. In this case, the output in Hyb
1

is identical to the output in Hyb
0
. Thus

Pr[Hyb
1
(A) = 1] ≥ 1/q · Pr[Hyb

0
(A) = 1] and the claim holds. �

Lemma B.8. Suppose there exist a constant δ ∈ (0, 1) and a negligible function ε(λ) = negl(λ) such that ΠSSB satis�es
(2λ

δ
, ε(λ))-index hiding. Suppose also that λ′ = (s + log s + ω(log λ))1/δ , where s is a bound on the size of the Boolean

circuit for the NP relation. Then for every e�cient adversaryA, there exists a negligible function negl(·) such that for all
λ ∈ N,

| Pr[Hyb
2
(A) = 1] − Pr[Hyb

1
(A) = 1]| ≤ negl(λ).

Proof. By construction, Hyb
1

only outputs 1 if for all witnesses w ∈ {0, 1}∗, C∗(x∗i∗,w) = 0 and the adversary outputs

π ∗ such that V(crs,C∗, (x∗
1
, . . . , x∗t), π

∗) = 1. This is also the case in Hyb
2
, except the hash key is now sampled to be

binding on index i∗. Suppose now that there exists an e�cient adversary A where

| Pr[Hyb
2
(A) = 1] − Pr[Hyb

1
(A) = 1]| = ε ′

for some non-negligible ε ′. We use A to construct an adversary B for the index hiding game:

53

1. Algorithm B starts running algorithm A who starts by outputting a bound on the circuit size 1
s

and a bound

on the statement size 1
`
.

2. Algorithm B samples a random index i∗ ∈ [q] and gives 1
`

and i∗ to the index hiding challenger.

3. Algorithm B receives a hash key hk where either hk← Gen(1λ
′

, 1`) or hk← GenTD(1λ
′

, 1`, i∗).

4. Algorithm B samples IndexBARG.crs← IndexBARG.Gen(1λ, 1s
′

) and gives crs = (hk, IndexBARG.crs) to A.

5. Adversary A outputs (C∗, (x∗
1
, . . . , x∗t), π

∗) where C∗ is of size at most s(λ) and for every i ∈ [t], x∗i ∈ {0, 1}
`
.

6. Algorithm B outputs 1 if V(crs,C∗, (x∗
1
, . . . , x∗t), π

∗) = 1 and for all w ∈ {0, 1}∗, C∗(x∗i∗,w) = 0. Otherwise, it

outputs 0.

If A runs in poly(λ) time, then B runs in time at most 2
s · s · poly(λ) ≤ 2

s+log s+ω(log λ) = 2
(λ′)δ

(for su�ciently large

λ) since B needs to exhaustively check whether there exists a witness w where C∗(x∗i∗,w) = 1, and there can be at

most 2
s

candidate values for w (checking each candidate requires time at most s). Next, if hk← Gen(1λ
′

, 1`), then

B perfectly simulates Hyb
1
. If hk← GenTD(1λ

′

, 1`, i∗), then B perfectly simulates Hyb
2
. Thus, the distinguishing

advantage of B is

| Pr[Hyb
2
(A) = 1] − Pr[Hyb

1
(A) = 1]| = ε ′.

Since algorithm B runs in time 2
(λ′)δ

and ΠSSB satis�es (2λ
δ
, ε(λ))-index hiding, it must be the case that ε ′(λ) ≤

ε(λ′) = negl(λ′) = negl(λ), and the claim holds. �

Lemma B.9. Suppose ΠIndexBARG is adaptively sound and ΠSSB is statistically binding. Then for all e�cient adversaries
A, there exists a negligible function negl(·) such that for all λ ∈ N, Pr[Hyb

2
(A) = 1] = negl(λ).

Proof. Suppose there exists an e�cient adversary A such that Pr[Hyb
2
(A) = 1] = ε for some non-negligible ε . We

use A to construct an adversary B to break adaptive soundness of ΠIndexBARG.

1. Algorithm B starts running adversary A. Algorithm A starts by outputting the maximum circuit size 1
s

and

the statement lengths 1
`
.

2. Algorithm B outputs the maximum circuit size 1
s ′

where s ′ is an upper bound on the circuit size forC ′[hk,h,C],
where C ′ is the circuit for the index relation from Fig. 15 and the circuit C has size at most s .

3. Algorithm B receives a common reference string IndexBARG.crs from the challenger. It randomly samples an

index i∗ r

← [q], computes hk← SSB.GenTD(1λ
′

, 1`, i∗), and gives crs = (hk, IndexBARG.crs) to A.

4. Adversary A outputs (C∗, (x∗
1
, . . . , x∗t), π

∗). Algorithm B computes h∗ ← SSB.Hash(hk, (x∗
1
, . . . , x∗t)) and

outputs the circuit C ′[hk,h∗,C∗] as its challenge circuit and π ∗ as the proof.

By construction, algorithm B perfectly simulates an execution of Hyb
2

for A. Thus, with probability at least ε , the

output of Hyb
2

is 1. This means the following conditions hold with probability at least ε :

• The index i∗ satis�es i∗ ≤ t .

• For all witnesses w ∈ {0, 1}∗, it holds that C∗(x∗i∗,w) = 0.

• The proof π ∗ is a valid proof for the index relation C ′[hk,h∗,C∗]. Speci�cally,

IndexBARG.V(IndexBARG.crs,C ′[hk,h∗,C∗], t, π ∗) = 1.

We now argue that C ′[hk,h∗,C∗](i∗,w ′i∗) = 0 for all inputs w ′i∗ . First write w ′i∗ = (x
′,σ ′,w ′). We consider two

possibilities:

• Suppose x ′ = x∗i∗ . Since C∗(x∗i∗,w
′) = 0 for every choice of w ′, we conclude that C ′[hk,h∗,C∗](i∗,w ′i∗) = 0.

54

• Suppose x ′ , x∗i∗ . Since the hash key hk is sampled to bind on index i∗, with all but negligible probability

over the choice of hk, the only value of x ′ for which there exists σ ′ such that SSB.Verify(hk,h∗, x ′, i,σ ′) = 1 is

x ′ = x∗i∗ . Thus, with overwhelming probability over the choice of hk, SSB.Verify(hk,h∗, x ′, i∗,σ ′) = 0 in this

case. Once again, C ′[hk,h∗,C∗](i∗,w ′i∗) = 0.

Thus, we conclude that with overwhelming probability over the choice of hk, C[hk,h∗,C∗]′(i∗,w ′i∗) = 0 for all

w ′i∗ ∈ {0, 1}
∗
. Since i∗ ≤ t , if π ∗ is a valid proof on (C ′[hk,h∗,C∗], t), then algorithm B breaks adaptive soundness of

ΠIndexBARG with probability ε − negl(λ). �

Combining Lemmas B.7 to B.9, we have that for all e�cient adversaries A, there exists a negligible function

ε(λ) = negl(λ) such that Pr[Hyb
0
(A) = 1] ≤ q(λ) · ε(λ). Since A is e�cient, q(λ) = poly(λ), and the claim holds. �

Theorem B.10 (Succinctness). If ΠIndexBARG scheme is succinct and ΠSSB is succinct, then Construction B.4 has succinct
proofs (but not succinct veri�cation).

Proof. Let ` be the statement length and s be the size of the Boolean circuit for the underlying NP relation. The

proof π in Construction B.4 is a proof for ΠIndexBARG on the new circuit C ′[hk,h,C]. First, the size of the hash key hk
satis�es |hk| = poly(λ′, `) and λ′ = poly(λ, s). We can always bound the input length by the circuit size so overall, we

can write |hk| = poly(λ, s). Next, succinctness of ΠSSB requires that the length of a hash output h and of an opening σ
to satisfy |h |, |σ | = poly(λ′, `) = poly(λ, s). As such, the size of the circuit C ′[hk,h,C] is at most poly(λ, s). The claim

now follows by succinctness of ΠIndexBARG. �

Remark B.11 (Non-Succinct Veri�cation). We note that due to complexity leveraging, Construction B.4 does not

have succinct veri�cation time. Namely, verifying t instances of a Boolean circuit of size s requires time poly(λ, s, t).
The reason is that the size of the hash key |hk| = poly(λ′, `) = poly(λ, s), where ` is the length of the statement and

λ′ = poly(λ, s). As such, computing h ← SSB.Hash(hk, (x1, . . . , xt)) requires time poly(λ, s, t).
Note that if we have an a priori boundm on the length of the witness in the underlying NP relation, we could

use a slightly tighter analysis in the proofs of Theorem B.6 and Lemma B.8 by considering reductions that run in

time 2
m+log s+ω(log λ)

. Speci�cally, the reduction algorithm in the proof of Lemma B.8 only needs to exhaustively

search over all candidate witnesses, which requires time 2
m · s . In this case, we can set λ′ = m + log s + ω(log λ)

in Construction B.4. This would yield a BARG for NP where the veri�cation time is poly(λ,m, t, log s). This yields

a modest saving over the naïve veri�cation procedure in settings where the witness size is much smaller than the

circuit size.

Theorem B.12 (Zero Knowledge). If ΠIndexBARG satis�es perfect zero-knowledge, then Construction B.4 satis�es perfect
zero-knowledge.

Proof. Let IndexBARG.S be a simulator for ΠIndexBARG. We construct a simulator for ΠBARG as follows. On input the

security parameter λ, a bound s on the circuit size, a Boolean circuit C : {0, 1}` × {0, 1}m → {0, 1}, and instances

x1, . . . , xt ∈ {0, 1}
`
, the simulator proceeds as follows:

• Sample hk← SSB.Gen(1λ
′

, 1`), and compute h ← SSB.Hash(hk, (x1, . . . , xt)).

• Let C ′ = C ′[hk,h,C] be the circuit from Fig. 15 and let s ′ be a bound on the size of C ′. Compute the simulated

CRS and proof (IndexBARG.crs, π) ← IndexBARG.S(1λ, 1s
′

,C ′, t).

• Output the simulated CRS crs = (hk, IndexBARG.crs) and the simulated proof π .

By construction, the hash function parameters hk and the circuit C ′ = C ′[hk,h, s] are constructed exactly as in the

real scheme. Perfect zero knowledge now follows from perfect zero knowledge of ΠIndexBARG. �

Remark B.13 (Weaker Notions of Zero Knowledge). We note that Remark 4.11 also applies to Construction B.4.

Namely, if ΠIndexBARG satis�es computational (resp., statistical) zero-knowledge, then Construction B.4 also satis�es

computational (resp., statistical) zero-knowledge.

55

	1 Introduction
	1.1 Technical Overview

	2 Preliminaries
	2.1 Batch Arguments for NP

	3 Non-Adaptive Batch Arguments for Index Languages
	4 Non-Adaptive BARGs for NP from BARGs for Index Languages
	5 Updatable Batch Argument for NP
	5.1 Updatable BARGs for NP from Indistinguishability Obfuscation

	A Adaptive BARGs for Index Languages
	B BARGs for NP from BARGs for Index Languages

