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Abstract

A family of block ciphers parametrized by an optimal quasigroup is
proposed in this paper. The proposed cipher uses sixteen 4 × 4 bits
S-boxes as an optimal quasigroup of order 16. Since a maximum of
16! optimal quasigroups of order 16 can be formed, the family con-
sists of C16!

1 cryptosystems. All the sixteen S-boxes have the highest
algebraic degree and are optimal with the lowest linearity and differ-
ential characteristics. Therefore, these S-boxes are secure against linear
and differential attacks. The proposed cipher is analyzed against var-
ious attacks, including linear and differential attacks and we found it
to be resistant to these attacks. The proposed cipher is implemented in
C++, compared its performance with existing quasigroup based block
ciphers, and we found that our proposal is more efficient than exist-
ing quasigroup based proposals. We also evaluated our cipher using
various statistical tests of the NIST-STS test suite, and we found
it to pass these tests. We also established in this study that the
randomness of our cipher is almost the same as that of the AES-128.
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1 Introduction

Finding new methods for creating cryptographic algorithms is one of the
current trends in cryptography. Nowadays, a mathematical object called a
quasigroup [27], popularly known as Latin square [9], has received lots of
attention. It is a non-associative algebraic structure, widely used in the design
of various cryptographic algorithms such as hash functions [7, 16], message
authentication codes [16], secret sharing schemes [1, 29], stream ciphers [17, 28],
block ciphers [4, 5, 30], and in many more applications [7, 28]. This is because
the number of quasigroups grows exponentially with its order [26]. Also,
quasigroup based cryptosystems are suitable for low-resource devices such as
smartphones, sensors, tablets, etc [4]. This is in contrast to the most popular
cryptosystems, such as AES, DES, and RSA, which drain the battery of such
devices [5, 30].

This paper proposes a new cipher algorithm for the encryption/decryption
of messages. It is a family of encryption systems parametrized by an optimal
quasigroup. The family consists of C16!

1 encryption systems since there are C16!
1

ways to select an optimal quasigroup out of 16! optimal quasigroups. Once an
encryption system is fixed, the set of 16 optimal quasigroups of order 16 it
uses is fixed. These 16 optimal quasigroups are generated based on an origi-
nal optimal quasigroup used. Also, these optimal quasigroups are constructed
based on the 16 optimal S-boxes of 4 × 4 bits. For encrypting/decrypting a
message of 128 bits, the proposed cipher performs a total of 17 rounds, and
each round uses 128 bits round key along with one non-linear transformation
and two linear transformations. The non-linear transformation is nothing but
a quasigroup operation based on a key-dependent S-box. That is, for each
quasigroup operation, non-linear transformation depends on the round key
and chooses one S-box out of the 16 S-boxes. We believe that key-dependent
S-box ciphers are more secure than fixed S-box ciphers. This is because key-
dependent S-boxes do not offer any specific properties to the attackers. Most
key-dependent S-box ciphers are effectively random. Examples of such ciphers
are Blowfish [24] and SEAL [8]. The security of the proposed cipher is ana-
lyzed, and the randomness of the obtained ciphertext is tested. We noted that
the proposed cipher satisfied all the required properties.

The paper is organized as follows: Next section gives a brief overview
of quasigroups and optimal quasigroups, including quasigroup operations for
encryption and decryption. Section 3 discusses related work. The building ele-
ments of the proposed cipher, including the generation of the round key and
the related details, such as the avalanche effect of the expanded key and gen-
eration of the quasigroups, are presented in Section 4. The performance of the
proposed cipher’s algorithm and its comparison with the existing ciphers are
discussed in Section 5. The security analysis of the proposed cipher is discussed
in Section 6. The conclusion and future work are given in Section 7.
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2 Mathematical background

2.1 Quasigroup

Definition 2.1. Let Zn be the set of non-negative integers less than n. A
quasigroup Q = (Zn, ∗) defined over the set Zn with a binary operation ∗
satisfies the following properties:

(i) For all t1, t2 ∈ Zn, t1 ∗ t2 ∈ Zn, (Closure property).
(ii) For each pair (t1, t2) ∈ Zn ×Zn, there exists unique pair (t3, t4) ∈ Zn ×Zn,

such that t1 ∗ t3 = t2 and t4 ∗ t1 = t2.

Quasigroups of order n are usually represented by an n× n multiplication
table. Also, each row and each column of the multiplication table consists of
the permutations of the elements of the set Zn = {0, 1, 2, . . . , n − 1} in such
a way that each element occurs exactly once in each row and exactly once in
each column. Table 1 is an example of a quasigroup of order 16. Such a table is
also called a Latin square [9]. Various algorithms exist in the literature [15, 21]
that generate quasigroups of arbitrary order. Since the number of quasigroups
grows exponentially with its order, the generation of all the quasigroups is a
hard problem. An estimate on the number of quasigroups of order n is given
by the following inequality [19]

(n!)
2n

nn2 ≤ Q(n) ≤
n∏
k=1

(k!)
n
k , (1)

where Q(n) denotes the number of quasigroups of order n.

2.2 Optimal quasigroup

Definition 2.2. An optimal quasigroup Q = (Z2m , ∗) is a groupoid which has
the following properties:

(i) Q must be a quasigroup (see Definition 2.1).
(ii) Each row or each column of Q must be an optimal S-box of m×m bits.

An optimal quasigroup of order 2m can be viewed as a collection of m×m
bits optimal S-boxes. An m×m bits S-box is a Boolean map S : Fm2 → Fm2 ,
where F2 is Galois field of characteristic 2. In other words, an S-box is a
permutation of the elements of Z2m={0, 1, 2, . . . , 2m−1}. Our proposed cipher
uses 4× 4 bits optimal S-boxes to form an optimal quasigroup. Description of
a 4× 4 bits optimal S-box is given in Definition 2.3.

Definition 2.3. A 4 × 4 bits S-box is said to be optimal if the following
conditions are satisfied [18]:

(i) S is a bijection,
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(ii) L(S) = 8, and
(iii) D(S) = 4,

where L(S) and D(S) are the linearity and the differential characteristic
of the S-box, which are defined as follows: Let u = (u0, u1, . . . , um−1) and
v = (v0, v1, . . . , vm−1) be two binary vectors. The dot product of u and v can
be written as

u.v =

m−1∑
i=0

ui.vi, (2)

then
L(S) = max{|WS(u, v)| : u ∈ Fm2 , v ∈ Fm2 andv 6= 0} (3)

and
D(S) = max{|MS (u, v)| : u ∈ Fm2 , v ∈ Fm2 andu 6= 0}, (4)

where

WS(u, v) =
∑
x∈Fm

2

(−1)u.x+v.S(x)

and

MS (u, v) = {x ∈ Fm2 : S(x⊕ u)⊕ S(x) = v},

⊕ denotes bitwise XOR (modulo 2) operation and |·| denotes the cardinality of
a set. The linearity and the differential characteristic of an S-box measure the
resistance against the linear and differential cryptanalysis attacks, respectively.
The smaller the linearity and the differential characteristic of an S-box, the
more secure against these attacks.

As of yet, no algorithm has been developed for generating the optimal
quasigroups of order 2m,m ≥ 4. So, generating an optimal quasigroup of order
2m is still a longstanding open problem. In this paper, we described an optimal
quasigroup of order 16 using 16 optimal S-boxes of 4 × 4. In other words,
each row of an optimal quasigroup is an optimal S-box. So, firstly, we studied
various algorithms that exist in the literature [22, 31] to generate 4 × 4 bits
optimal S-boxes. And for generating the optimal S-boxes of 4 × 4 bits, we
used the algorithm described in [22]. We noted that all such S-boxes are not
suitable to form an optimal quasigroup. This is because an optimal quasigroup
is a mathematical object and has certain properties that must be satisfied (see
Definition-2). We have chosen 16 S-boxes, namely, S0, S1, S2, . . . , S15 given in
Table 1. These 16 S-boxes are suitable to form an optimal quasigroup, Q =
(Z16, ∗), where ∗ is a quasigroup operation corresponding to the quasigroup Q
of order 16.
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Table 1 Optimal quasigroup of order 16.

∗ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S0 : 0 10 0 1 12 3 13 4 15 14 9 6 7 5 8 2 11
S1 : 1 11 2 8 5 7 6 9 14 15 4 13 3 12 1 0 10
S2 : 2 5 8 2 11 14 9 6 7 3 13 4 15 10 0 1 12
S3 : 3 8 5 11 2 9 14 7 6 13 3 15 4 0 10 12 1
S4 : 4 9 14 7 6 8 5 11 2 0 10 12 1 13 3 15 4
S5 : 5 2 11 5 8 6 7 14 9 4 15 3 13 1 12 10 0
S6 : 6 12 1 0 10 15 4 13 3 7 6 9 14 11 2 8 5
S7 : 7 3 13 4 15 10 0 1 12 5 8 2 11 14 9 6 7
S8 : 8 14 9 6 7 5 8 2 11 10 0 1 12 3 13 4 17
S9 : 9 7 6 9 14 11 2 8 5 12 1 0 10 15 4 13 3
S10 : 10 1 12 10 0 4 15 3 13 6 7 14 9 2 11 5 8
S11 : 11 6 7 14 9 2 11 5 8 1 12 10 0 4 15 3 13
S12 : 12 0 10 12 1 13 3 15 4 9 14 7 6 8 5 11 2
S13 : 13 4 15 3 13 1 12 10 0 2 11 5 8 6 7 14 9
S14 : 14 13 3 15 4 0 10 12 1 8 5 11 2 9 14 7 6
S15 : 15 15 4 13 3 12 1 0 10 11 2 8 5 7 6 9 14

2.3 Quasigroup operation for encryption and decryption

Sixteen optimal quasigroups of order 16 are employed in the design of the
proposed block cipher. Therefore, all operations are performed in the form of
4-bit (also called nibbles) aggregations. Let each byte of data be divided into
two nibbles. That is, a byte value x is represented as x = x1x0, where x1 and
x0 are nibbles. Then, the quasigroup operations for encryption and decryption
are defined as

x1x0 ?i y1y0 = (x1 ∗i y1)||(x0 ∗i y0) (5)

and
x1x0]iy1y0 = (x1 \i y1)||(x0 \i y0), (6)

respectively, where (∗i, \i) and (?i, ]i) are quasigroup operations correspond-
ing to nibbles and bytes respectively, 0 ≤ i ≤ 15, and || is a concatenation
operation that concatenates two 4-bit values into one 8-bit value. Also, the
symbol ]i is called the inverse (or left inverse) quasigroup operation concerning
to the symbol ?i. That is, if a quasigroup Qi = (Zn, ?i) is used for encryption
then its left inverse quasigroup LIQi = (Zn, ]i) is used for decryption. To find
a left inverse quasigroup LIQ of a given quasigroup Q is defined in [17].

3 Related work

Various quasigroup based block ciphers exist in the literature [4, 5, 30]. These
ciphers are designed based on {e, d}-transformations [7], and perform 32 rounds
to encrypt or decrypt a block of data. In [4, 5], authors proposed two block
ciphers based on a randomly chosen quasigroup of order 256. Note that they
employed the same encryption/decryption algorithms in both their proposals.
The ciphers are resistant to quasigroup attack (exhaustive quasigroup search)
due to a large number of quasigroups of its order. But, a randomly chosen
quasigroup may not be optimal from a linear and differential point of view.
Also, it may be a challenge to store it in small devices. We tested the software
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performance of these ciphers by varying the input and noted that they take
around 10 seconds to encrypt a 4MB of data.

Zhao and Xu used an optimal quasigroup of order 16 to encrypt or decrypt
a block of 64 bits [30]. The cipher is analyzed only on the basis of the algebraic
properties of the optimal quasigroup used and not on the basis of the overall
structure of the cipher. We tested the software performance of the cipher by
varying the input and observed that the cipher is slower than that of [4, 5].
The cipher took around 13 seconds to encrypt a 4MB of data. Also, the cipher
does not exhibit a good diffusion effect.

4 Proposed block cipher

The notation employed in this section are given in Table 2. Here, we discuss

Table 2 Some important notations.

Notation Meaning
XOR or ⊕ :bitwise addition modulo 2 operation
IV :an initial value of 128 bits
N :a total number of blocks to be encrypted/decrypted
K0 :initial (0th) round key or secret key
RKr :rth round key for encryption, 0 ≤ r ≤ 16
RKt :tth round key for decryption, where t = 16− r
RKr : wp :pth word of the rth round key for encryption, 0 ≤ r ≤ 16, 0 ≤ p ≤ 67
RKt : wp :pth word of the tth round key for decryption, where t = 16− r
W :a total of 68 words of the round key
r & t :round number for encryption & decryption respectively, where 0 ≤ r, t ≤ 16
B & C :block number for encryption & decryption respectively, where 0 ≤ B,C ≤ N − 1

the proposed block cipher. It is an iterative cipher, and its design is based on
the Substitution Permutation Network (SPN). It uses a 128 bits secret key and
16 optimal quasigroups of order 16. These 16 optimal quasigroups are gener-
ated based on an original optimal quasigroup of order 16. Note that there are
16! original optimal quasigroups of order 16. These 16! optimal quasigroups
can be generated by permuting the rows of an optimal quasigroup. So, our
cipher is a family of encryption systems parametrized by an original optimal
quasigroup. It performs a total of 17 rounds to encrypt or decrypt a block of
128 bits. Each round consists of a sequence of transformations. These trans-
formations are an intermix of substitutions and permutations. Each round
of the proposed cipher uses a random optimal quasigroup out of 16 optimal
quasigroups except in the initial/last round of encryption/decryption, and this
optimal quasigroup is selected on the basis of the previous/next round key of
encryption/decryption. Because of these properties, the relationship between
the plaintext and the corresponding ciphertext is not transparent and pro-
vides a higher level of security. Also, the proposed cipher leverages the space
of a single optimal quasigroup and employs 16 optimal quasigroups by gener-
ating them from a single optimal quasigroup. That is, the space required by
16 optimal quasigroups is reduced to that of a single optimal quasigroup. The
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Theorem 4.1 is useful in proving the correctness of the proposed cipher. The
workflow of encryption and decryption of the proposed block cipher is shown
in Fig. 1. In the figure, wp, 0 ≤ p ≤ 67, denotes a 32-bit word of the round
key. The word representation of the round key is described in the next sub-

Fig. 1 Workflow of encryption and decryption of new block cipher.

section. Also, every round uses a quasigroup Qi for encryption and an inverse
quasigroup LIQi for decryption (where LIQi is the left inverse of Qi), each of
which is selected by a 16× 1 multiplexer.

The algorithm of the proposed cipher consists of four parts: (1) an algo-
rithm to randomly select an optimal quasigroup for each round of a block, (2)
an algorithm to generate a round key, (3) an encryption algorithm, and (4) a
decryption algorithm. The encryption algorithm employs three different trans-
formations: (i) Encoding function, (ii) Bit permutation, and (iii) Add round
key. Similarly, the decryption algorithm has three corresponding inverse trans-
formations: (i) Decoding function, (ii) Inverse bit permutation, and (iii) Add
round key.
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4.1 Generation of round key

Our proposed block cipher uses a round key generation algorithm to encrypt
or decrypt a block of data. It uses a 128-bit round key for each round
to encrypt or decrypt a block of 128 bits. These round keys are gener-
ated based on the secret key of 128 bits along with 16 optimal quasigroups
of order 16. The generation of each round key uses an optimal quasigroup
out of 16 optimal quasigroups, selected by a 16 × 1 multiplexer (see sub-
section 4.2). Now, the secret key of 128 bits is partitioned into four words,
and these, in turn, are arranged as four columns of a matrix. Let K0 =
(k(0,0), k(0,1), k(0,2), k(0,3), . . . , k(3,0), k(3,1), k(3,2), k(3,3)) be a secret key of 128
bits (16 bytes), where each k(i,j) is a byte value for 0 ≤ i, j ≤ 3, which are

organized as a 4× 4 matrix of bytes as shown in Fig.2 (a). In this matrix, pth

word (column) is denoted by wp, where 0 ≤ p ≤ 3 and size of each wp is 32 bits.
These four words are used to create the initial (0th) round key, and it is repre-
sented as (K0 : w0,K0 : w1,K0 : w2,K0 : w3) or simply,K0 = (w0, w1, w2, w3).
Our proposed cipher performs a total of 17 rounds for encrypting/decrypting
a block of 128 bits, and each round consists of four words as a key. Therefore,
a total of 68 words (W = {RK0 : w0, RK0 : w1, RK0 : w2, RK0 : w3, RK1 :
w4, . . . , RK15 : w63, RK16 : w64, RK16 : w65, RK16 : w66, RK16 : w67}) are
required as shown in Fig. 2. These 68 words are generated based on K0, includ-

Fig. 2 Representation of round keys.

ing four words of the initial (0th) round key K0. For 1 ≤ r ≤ 16, 4 ≤ p ≤ 67, a
pth word of the rth round key is generated based on the previous words p− 4
and p− 3. The algorithm of the round key generation is given in Algorithm 1.
In this algorithm Qi, 0 ≤ i ≤ 15, is a generated quasigroup. And Fi is the
binary operation (quasigroup operation) of 32-bit words defined as follows:
Let U = (u1, u2, u3, u4) and V = (v1, v2, v3, v4) be two words of 32 bits each,
where uj and vj are byte values (1 ≤ j ≤ 4). Then,

UFiV = Z = (u1 ?i v1, u2 ?i v2, u3 ?i v3, u4 ?i v4),
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Algorithm 1 : Generation of the round key

Input: 1. A 128-bit secret key in the form of a 4×4 matrix of bytes as shown
in Fig. 2(a).

2. An optimal quasigroup of order 16.
Output: Generates all the 17 rounds key in the form of a 4× 68 matrix of

bytes as shown in Fig. 2.

1: if (r = 0 and 0 ≤ p ≤ 3) then
2: RK0 = K0

3: else
4: for (p = 4 to 67) do
5: if (p mod 4 = 0) then
6: Qi = quasigroup generated based on rth round key.
7: r = r + 1
8: end if
9: if (RK(r−1) : w(p−3) ∈W ) then

10: RKr : wp = RK(r−1) : w(p−4) Fi RK(r−1) : w(p−3)

11: else
12: RKr : wp = RK(r−1) : w(p−4)Fi RKr : w(p−3)

13: end if
14: end for
15: end if

where ?i is one of the quasigroup operations defined in Eq. (5), 0 ≤ i ≤ 15.
Note that a quasigroup operationFi is nothing but a look-up table operation.
So, here the resultant value Z is determined by looking up the element having
the row number U and the column number V in the table representation of
the quasigroup Q = (Z232 ,Fi).

Note that both the encryption and the generation of the round key algo-
rithms use the same set of optimal quasigroups. These optimal quasigroups
are generated based on an original optimal quasigroup Q = (Z16, ∗). But in
decryption, we use a left inverse quasigroup LIQ = (Z16, \) of the quasigroup
Q. Note that both the encryption and the decryption algorithms use the same
round key. Therefore in decryption, the key generation algorithm has to per-
form the quasigroup operations corresponding to the quasigroup Q = (Z16, ∗)
based on the quasigroup LIQ = (Z16, \). The relation between these two
quasigroup operations is as follows [17]:

p \ s = r ⇔ p ∗ r = s,∀(p, q, r) ∈ Z16 × Z16 × Z16.

4.2 Generation of quasigroups

Our proposed cipher uses 16 optimal quasigroups of order 16 for either encrypt-
ing or decrypting a block of data. Of these, only one optimal quasigroup is
used in each round, and an optimal quasigroup may be used in more than
one round. This is decided by a 16 × 1 multiplexer used in each round of the
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proposed cipher as shown in Fig. 1. A multiplexer is a combinational circuit
that has a maximum of 2n input values for n selection lines and it produces
a single output. In our case n is 4. The multiplexer along with its truth table
are shown in Fig. 3. This multiplexer selects an optimal quasigroup for each

Fig. 3 16× 1 multiplexer and its truth table.

round based on the current state of selection lines s3, s2, s1, s0. The value of
sα(0 ≤ α ≤ 3) is either 0 or 1, which is updated by both the round key and an
optimal quasigroup of the previous round of the proposed encryption system,
except the 1st round. This is because the 1st round uses the initial (0th) round
key and an original optimal quasigroup Q such as the one given in Table 1. If
s3 = 0, s2 = 0, s1 = 0, s0 = 0, then the multiplexer selects an optimal quasi-
group Q0. If s3 = 0, s2 = 0, s1 = 0, s0 = 1, then the multiplexer selects an
optimal quasigroup Q1, and so on. The values of s3, s2, s1 and s0 are updated
as follows: For selecting (r + 1)th round optimal quasigroup, we consider rth

(previous) round key shown in Fig. 2. This is a 4 × 4 matrix of bytes. Now,
define

Temp0 = k(0,4r) ⊕ k(1,4r) ⊕ k(2,4r) ⊕ k(3,4r),

Temp1 = k(0,4r+1) ⊕ k(1,4r+1) ⊕ k(2,4r+1) ⊕ k(3,4r+1),

Temp2 = k(0,4r+2) ⊕ k(1,4r+2) ⊕ k(2,4r+2) ⊕ k(3,4r+2),

Temp3 = k(0,4r+3) ⊕ k(1,4r+3) ⊕ k(2,4r+3) ⊕ k(3,4r+3),

XORofTempj = Temp0 ⊕ Temp1 ⊕ Temp2 ⊕ Temp3.

Each Tempj for 0 ≤ j ≤ 3 and XORofTempj are byte values. Let XORofTempj be
divided into two 4-bit values (nibbles), that is XORofTempj = x1x0, where x0

and x1 are nibbles. Then,

Rconstval = x1 ∗i x0, (7)

where ∗i is the quasigroup operation corresponding to the rth round’s optimal
quasigroup, 0 ≤ i, r ≤ 15. The Rconstval is 4 bits and they are denoted
by s3, s2, s1, and s0, where s0 and s3 are the least significant bit and the
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most significant bit, respectively. These sα, 0 ≤ α ≤ 3, are considered as the
selection lines of the 16× 1 multiplexer.

Each round of our proposed cipher uses an optimal quasigroup of order
16. One such optimal quasigroup Q is shown in Table 1. By permuting
the rows of the optimal quasigroup Q, 16! optimal quasigroups can be cre-
ated. That is, these 16! optimal quasigroups are nothing but permutations of
S0, S1, S2, . . . , and S15 S-boxes. These 16 S-boxes are shown in Table 1. Note
that our cipher uses only 16 optimal quasigroups. So, we select any 16 out of the
total 16! optimal quasigroups. Let the selected optimal quasigroups be denoted
by Q0 = (Z16, ∗0), Q1 = (Z16, ∗1), ..., Q15 = (Z16, ∗15), where ∗0, ∗1, ..., ∗15 are
the quasigroup operations corresponding to Q0, Q1, ..., Q15, respectively. Note
that all these 16 optimal quasigroups need not be stored. This is because each
optimal quasigroup consists of the same S-boxes but in a different order (per-
mutation). A permutation of the S-boxes is generated based on the previous
round key in the case of encryption; whereas it is the next round key for the
case of decryption. Let Q = (S0, S1, S2, . . . , S15) be an original optimal quasi-
group used for encryption. Then a new permutation of Q corresponding to an
(r + 1)th round optimal quasigroup is generated using the following equation:

Q = (S(0+Rconstval)mod 16, S(1+Rconstval)mod 16, . . . , S(15+Rconstval)mod 16) (8)

where Rconstval is a round constant value, which is determined by Eq. (7),
0 ≤ Rconstval ≤ 15. Note that the resultant optimal quasigroup Q ∈
{Q0, Q1, . . . , Q15}. Also, the same permutations of the S-boxes are used for the
decryption, but these permutations are generated based on the LIQ, where
LIQ is the left inverse quasigroup of the original optimal quasigroup Q. The
correctness of this is proven by Theorem 4.1.

Theorem 4.1 Let Q and LIQ be respectively a quasigroup and its left inverse quasi-
group. Let Qx and LIQx be the result of applying a permutation P on the rows of Q
and LIQ, respectively. Then, LIQx is the left inverse quasigroup of the quasigroup
Qx.

Proof : Let Q = (Zn, ∗) and LIQ = (Zn, \) be quasigroups of order n, whose opera-
tion tables look like the ones given in Table 3 (a) and Table 3 (b), respectively. Since
LIQ is the left inverse quasigroup of Q, we have

i ∗ j = ai,j ⇔ i \ ai,j = bi,j

∀ i, j ∈ {0, 1, . . . , n− 1}.

Now let

P =

(
P(0) P(1) P(2) P(2) · · · P(n− 1)

0 1 2 3 · · · n− 1

)
be a permutation applied on the rows of the quasigroups Q and LIQ, and let Qx =
(Zn, ∗x) and LIQx = (Zn, \x) denote the resulting quasigroups, where P(i)th rows
of both the Q and the LIQ becomes the ith rows of both the Qx and the LIQx,
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respectively, 0 ≤ i,P(i) ≤ n− 1. That is, the operation tables of Qx and LIQx will
be as shown in Table 4 (a) and Table 4 (b), respectively. Therefore,

i ∗x j = aP(i),j ⇔ i \x aP(i),j = bP(i),j

∀ i, j ∈ {0, 1, . . . , n− 1}.

This is true because
i ∗ j = ai,j ⇔ i \ ai,j = bi,j

∀ i, j ∈ {0, 1, . . . , n− 1}.
�

Table 3 Representation of quasigroups Q and LIQ of order n.

∗ 0 1 . . . n− 1 \ 0 1 . . . n− 1
0 a0,0 a0,1 . . . a0,n−1 0 b0,0 b0,1 . . . b0,n−1

1 a1,0 a1,1 . . . a1,n−1 1 b1,0 b1,1 . . . b1,n−1

2 a2,0 a2,1 . . . a2,n−1 2 b2,0 b2,1 . . . b2,n−1

..

.
..
.

..

.
...

...
..
.

..

.
..
.

...
...

n− 1 an−1,0 an−1,1 . . . an−1,n−1 n− 1 bn−1,0 bn−1,1 . . . bn−1,n−1

(a) (b)

Table 4 Representation of quasigroups Qx and LIQx of order n.

∗x 0 1 . . . n− 1 \x 0 1 . . . n− 1
0 aP(0),0 aP(0),1 . . . aP(0),n−1 0 bP(0),0 bP(0),1 . . . bP(0),n−1

1 aP(1),0 aP(1),1 . . . aP(1),n−1 1 bP(1),0 bP(1),1 . . . bP(1),n−1

2 aP(2),0 aP(2),1 . . . aP(2),n−1 2 bP(2),0 bP(2),1 . . . bP(2),n−1

...
...

...
...

...
...

...
...

...
...

n− 1 aP(n−1),0 aP(n−1),1 . . . aP(n−1),n−1 n− 1 bP(n−1),0 bP(n−1),1 . . . bP(n−1),n−1

(a) (b)

The application of Theorem 4.1 is illustrated in Example 4.2.

Example 4.2. Let Q = (Z8, ∗) be a quasigroup over Z8 = {0, 1, 2, 3, 4, 5, 6, 7}.
Its left inverse quasigroup is LIQ = (Z8, \). These are shown in Table 5 (a)
and Table 5 (b), where ∗ and \ are the quasigroup operations corresponding
to the quasigroups Q and LIQ, respectively. Let

P =

(
0 1 2 3 4 5 6 7
1 0 3 2 5 4 7 6

)
be a permutation applied on the rows of the quasigroup Q, and let Qx =
(Z8, ∗x) denote the resulting quasigroup. Then Qx is as shown in Table 6 (a),
where ∗x is the quasigroup operation corresponding to the quasigroups Qx.
Now, we applied the same rows permutation P on the left inverse quasigroup
LIQ, and let LIQx = (Z8, \x) denote the resulting quasigroup. Then LIQx
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is as shown in Table 6 (b), where \x is the left inverse quasigroup operation
corresponding to the quasigroup LIQx. Using Theorem 4.1, it can be verified
that the quasigroup LIQx is the left inverse quasigroup of the quasigroup Qx.

Table 5 Quasigroups Q and LIQ of order 8.

∗ 0 1 2 3 4 5 6 7 \ 0 1 2 3 4 5 6 7
0 5 1 6 3 4 0 2 7 0 5 1 6 3 4 0 2 7
1 1 6 3 4 0 2 7 5 1 4 0 5 2 3 7 1 6
2 6 3 4 0 2 7 5 1 2 3 7 4 1 2 6 0 5
3 3 4 0 2 7 5 1 6 3 2 6 3 0 1 5 7 4
4 4 0 2 7 5 1 6 3 4 1 5 2 7 0 4 6 3
5 0 2 7 5 1 6 3 4 5 0 4 1 6 7 3 5 2
6 2 7 5 1 6 3 4 0 6 7 3 0 5 6 2 4 1
7 7 5 1 6 3 4 0 2 7 6 2 7 4 5 1 3 0

(a) (b)

Table 6 Quasigroups Qx and LIQx of order 8.

∗x 0 1 2 3 4 5 6 7 \x 0 1 2 3 4 5 6 7
0 1 6 3 4 0 2 7 5 0 4 0 5 2 3 7 1 6
1 5 1 6 3 4 0 2 7 1 5 1 6 3 4 0 2 7
2 3 4 0 2 7 5 1 6 2 2 6 3 0 1 5 7 4
3 6 3 4 0 2 7 5 1 3 3 7 4 1 2 6 0 5
4 0 2 7 5 1 6 3 4 4 0 4 1 6 7 3 5 2
5 4 0 2 7 5 1 6 3 5 1 5 2 7 0 4 6 3
6 7 5 1 6 3 4 0 2 6 6 2 7 4 5 1 3 0
7 2 7 5 1 6 3 4 0 7 7 3 0 5 6 2 4 1

(a) (b)

4.3 Encryption

Encryption is carried out in a total of 17 rounds. Each of these rounds, except
the initial and the last rounds, comprises the following three transformations
and encrypts a 128-bit block of data. Initial (0th) round performs only the add
roun key, and the last (16th) round performs encoding function and add round
key.

4.3.1 Encoding function

The encoding function (denoted by f(?i,K)) is one of the non-linear transfor-
mations of the proposed cipher. It uses 16 S-boxes in the form of an optimal
quasigroup, given in Table 1. It is nothing but a key-dependent S-box layer that
substitutes a byte for a byte, where the selection of the S-boxes depends on the
round key. In other words, it is a substitution (S-box) layer of 16×8 bits, which
is implemented with two S-boxes of 8× 4 bits. It adds to the confusion prop-
erty and hides the relationship between the key and the ciphertext; thereby
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making it difficult to find the key from the ciphertext. Let B={p0, p1, . . . , p15},
K={k0, k1, . . . , k15}, and C = {c0, c1, . . . , c15} denote input to a round, round
key, and the output of a round, respectively. Then the way of using the encod-
ing function f(?i,K) on B with round key K to obtain the corresponding C is
as follows:

cj = kj ?i pj (9)

where all pj , cj and kj are byte values for 0 ≤ j ≤ 15 and ?i is one of the
quasigroup operations defined in Eq. (5), for 0 ≤ i ≤ 15.

4.3.2 Bit permutation

This is a linear transformation used to increase the diffusion power of the
cipher. This is the second transformation in a round function. This layer
spreads the non-zero bits that increase the number of active S-boxes in a linear
or differential trail, and we get the maximum impact of the substitution layer.
It has the ability to hide the relationship between the plaintext and the cipher-
text and hence aids in increasing diffusion. It maps the yth bit to P (y)thbits,
where

P (y) =

(
1 + 32

((
3

⌊
y mod 16

4

⌋
+ (y mod 4)

)
mod 4

)
+ 4

⌊
y

16

⌋
+ (y mod 4)

)
mod 128

(10)

By examining the permutation layer one can make the following observations:

1. The four output bits of a particular round S-box enter into four distinct
S-boxes of the next round.

2. The four input bits to an S-box of a particular round come from four distinct
S-boxes of the previous round.

3. The ith bit output of an S-box of a particular round becomes the ((i +
1) mod 4)th bit input of a distinct S-box of the next round, where 0 ≤ i ≤ 3,
0 and 3 are the least and the most significant bits of the S-box.

4. The ith bit input to an S-box of a particular round comes from the ((i −
1) mod 4)th bit output of a distinct S-box of the previous round.

Based on the (1) observation; the four bits output of an S-box in one round
will affect four S-boxes in the next round, and then 16 S-boxes together in
the round after that. Therefore, it can be demonstrated that this permutation
will affect all the 32 S-boxes in three rounds using similar reasoning for the
subsequent rounds. That is, this bit permutation needs four rounds to achieve
the full diffusion, that is, an input bit to an S-box of a particular round will
influence all the 128 bits in four rounds which is optimal [2].

4.3.3 Add round key

This is also a linear transformation and it is the third and the last transforma-
tion in a round function. This transforms a round input B={p0, p1, . . . , p15} of
16 bytes to the corresponding round output C = {c0, c1, . . . , c15} of 16 bytes
by XORing the input B with a round key K={k0, k1, . . . , k15} of 16 bytes as
follows:

cj = kj ⊕ pj (11)
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where all pj , cj and kj are byte values for 0 ≤ j ≤ 15.

4.3.4 Encryption algorithm based on CBC mode of operation

The algorithm of the proposed cipher is implemented using the Cipher Block
Chaining (CBC) mode of operation. Each iteration of the proposed cipher
encrypts/decrypts 128 bits of plaintext/ciphertext, and it is repeated until the
entire plaintext/ciphertext is encrypted/decrypted. It can also be described
using other modes of operation such as Cipher Feedback (CFB) mode , Output
Feedback (OFB) and Counter (CTR) mode. Each mode of operation has its
own advantages and disadvantages [25]. The encryption algorithm of the pro-
posed block cipher is given in Algorithm 2. In this algorithm, Qj , 0 ≤ j ≤ 15,

Algorithm 2 : Encryption algorithm

Input: 1. Plaintext in the form of 128-bit (16 bytes) blocks. Let
B0, B1, . . . , B(N−1) be the N number of blocks to be encrypted.

2. Initial value (IV ) of 128 bits (16 bytes).
3. Secret key of 128 bits (16 bytes).
4. An optimal quasigroup of order 16.

Output: Ciphertext whose size is equal to the size of the plaintext.

1: {RKr:0 ≤ r ≤ 16}=Generate all the 17 rounds key.
2: for (i = 0 to N − 1) do
3: Bi =XOR(Bi, IV )
4: Bi = Add round key(Bi, RK0)
5: for (r = 1 to 15) do
6: Qj = Generated quasigroup based on RKr−1

7: Bi = Encoding function(Bi, RKr, Qj)
8: Bi = Bit permutation(Bi)
9: Bi = Add round key(Bi, RKr)

10: end for
11: Qj = Generated quasigroup based on RK15

12: Bi = Encoding function(Bi, RK16, Qj)
13: Bi = Add round key(Bi, RK16)
14: IV = Bi
15: end for

is a generated quasigroup based on the (r−1)th round key for the rth round of
Bi block. The encryption algorithm updates block Bi many times during the
encryption and the results are stored in the same block Bi, for 0 ≤ i ≤ N − 1.

4.4 Decryption

The decryption process is the reverse of encryption. It obtains the correspond-
ing plaintext from the ciphertext. The algorithm of decryption is not the same
as encryption. It uses the same sequence of round keys but in reverse order.
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Also, it uses the inverses of the quasigroups that were used in the encryption.
It also performs 17 rounds to decrypt a 128-bit block of data. Each round,
except the initial and the last rounds, comprises of the following three trans-
formations. In the initial round, add round key and decoding function; in the
last round, only the add round key takes place.

4.4.1 Add round key

The add round key transformation for decryption is the same as that of the
encryption process as described in sub-section 4.3.3.

4.4.2 Inverse bit permutation

The inverse bit permutation is the reverse of the bit permutation as defined
by the Eq. (10), that is, the P (y)th bit maps to yth bit.

4.4.3 Decoding function

The decoding function (denoted by f(]i,K)) is the inverse of the encoding
function. It uses the inverse of the same optimal quasigroup that was used
in the encoding function. Let C = {c0, c1, . . . , c15}, K={k0, k1, . . . , k15}, and
B={p0, p1, . . . , p15} denote round input, round key, and the round output,
respectively. Then the decoding function f(]i,K) on C with the round key K
to recover B is as follows:

pj = kj]icj (12)

where all pj , cj and kj are byte values for 0 ≤ j ≤ 15 and ]i is one of the left
inverse quasigroup operations defined in Eq. (6).

4.4.4 Decryption algorithm based on CBC mode

The decryption algorithm of our proposed cipher is also implemented using
the Cipher Block Chaining (CBC) mode of operation. Each iteration of the
decryption algorithm decrypts 128 bits of the ciphertext and is repeated until
the whole ciphertext is decrypted. The algorithm of decryption algorithm is
given in Algorithm 3. In this algorithm, LIQj , 0 ≤ j ≤ 15, is a generated left
inverse quasigroup based on the (t + 1)th (next) round key for the tth round
of Ci block. The CopyofCi is a temporary variable used to store the value of
Ci before starting the decryption process. The decryption algorithm updates
block Ci many times during the decryption, and the results are stored in the
same block Ci, for 0 ≤ i ≤ N − 1.

5 Implementation and Performance analysis

The proposed cipher has been implemented in C++ on a system with the
following configuration: Intel(R) Core(TM) i5-2400 CPU @3.40 GHz processor
with 8 GB RAM and 64-bit Linux operating system. The source code of the
proposed cipher is run 1000 times for different samples and we calculated the
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Algorithm 3 : Decryption algorithm

Input: 1. Ciphertext in the form of 128-bit (16 bytes) blocks. Let
C0, C1, . . . , C(N−1) be the N number of blocks to be decrypted.

2. Initial value (IV ) of 128 bits (16 bytes).
3. Secret key of 128 bits (16 bytes).
4. A left inverse quasigroup of order 16, this quasigroup is the left

inverse of a quasigroup that was used in the encryption algorithm.
Output: Plaintext whose size is equal to the size of the ciphertext.

1: {RKt:0 ≤ t ≤ 16}=Generate all the 17 rounds key.
2: for (i = 0 to N − 1) do
3: CopyOfCi= Ci
4: LIQj = Generated quasigroup based on RK1

5: Ci = Add round key (Ci, RK0)
6: Ci = Decoding function (Ci, RK0, LIQj)
7: for (t = 1 to 15) do
8: LIQj = Generated quasigroup based on RKt+1

9: Ci = Add round key (Ci, RKt)
10: Ci = Inverse bit permutation (Ci)
11: Ci =Decoding function (Ci, RKt, LIQj)
12: end for
13: Ci = Add round key (Ci, RK16)
14: Ci = XOR (Ci, IV )
15: IV = CopyOfCi
16: end for

average execution time in seconds. We have used the C++ standard <chrono>
library to measure the execution time [14]. The performance of the proposed
cipher is compared with that of the existing quasigroup based block ciphers
[4, 5, 30], DES and AES-128. The results of this analysis are shown in Table
7. Also given in the last column of the table is the space required to store S-
boxes or quasigroups in bytes corresponding to the existing and the proposed
ciphers. According to the results, as shown in Table 7, we can observe that our
proposed cipher is slightly slower than that of AES-128, but our cipher uses
half the space compared to AES-128. In addition, our cipher is more efficient
than [4, 5, 30] and DES.

Table 7 Comparison of the average execution time.

Execution time in seconds (speed) Space complex-
ity (in bytes)

Block ciphers 1 MB 2.11 MB 4.21 MB
[4, 5] 2.51 4.61 10.57 65536
[30] 3.32 6.71 13.47 128
DES 10.42 20.79 39.82 180
AES-128 0.67 1.21 2.32 256
Proposed cipher 1.23 2.47 4.95 128
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6 Security analysis

The proposed cipher is a family of encryption systems parameterized by an
optimal quasigroup of order 16. The sender and the receiver agree on a cryp-
tosystem by first deciding on an optimal quasigroup. Since there are C16!

1 ways
to select an optimal quasigroup, the family consists of C16!

1 cryptosystems.
Once a cryptosystem is fixed, the set of 16 optimal quasigroups of order 16 it
uses is fixed, and each round uses only one of these 16 quasigroups with equal
probability, depending on the secret key. To access these 16 quasigroups, a
cryptanalyst must first determine the secret key to be used.
• Exhaustive key search attack :- The proposed cipher uses a secret key of 128
bits. Therefore, a number of the possible keys is 2128 ≈ 3.4×1038. So, the run-
ning time of this attack is T = O(u) = O(2128), where u is the size of the key
space, it is an exponential. Also, let us assume an attacker uses a supercom-
puter and tries 5.37 × 1017 keys per second, then the attacker needs around
2.01 × 1013 years to determine the employed key. This is because these days
the supercomputers can perform 5.37× 1017 FLOPS1 [11].

6.1 Linear cryptanalysis

Linear cryptanalysis is a powerful attack against a block cipher. This attack
model works based on the known-plaintext. It uses linear relations of the
plaintext bits, ciphertext bits, and sub-keys that hold with a suitably high
probability. We further call them linear approximations. Let PL be the prob-
ability of a linear approximation, then its probability bias (denoted by ε) can
be defined as |PL− 1

2 |. The higher the magnitude of the probability bias ε, the
fewer known plaintexts are required to mount a linear attack. The proposed
block cipher consists of 17 rounds, in which only the 16 rounds (from the 1st

round to the 16th round of the encryption algorithm) use the substitutions
(or encoding function). And each round uses an optimal quasigroup of order
16. That is, each round uses the 16 optimal S-boxes in the form of an optimal
quasigroup.

There are various ways to mount the linear attack. In this paper, we have
followed the procedure described in [13]. We constructed the linear approxima-
tions upto 15 rounds (that is, from the 1st round upto the 15th round). This
is because, once a 15-round linear approximation is discovered with a suitably
high linear probability bias ε, then it is conceivable to attack the cipher by
recovering bits from the last (16th) round key of the cipher [13]. For u bits of
the plaintext or input to the 0th round of the proposed cipher (denoted by I0),
for v bits of the output of the 15th round of the proposed cipher (denoted by
O15), and a total of w bits of the round keys used from the 0th round to the
15th round of the proposed cipher (denoted by K(0,15)), such an approximation

1floating point operations per second
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is defined as follows(
u⊕
i=0

Ixi
0

)
⊕

(
v⊕
j=0

Oxj

15

)
=

w⊕
k=0

Kxk

(0,15) (13)

where xi, xj and xk denote bit positions, and ⊕ is a bitwise addition modulo
2 operation. The value of the right side of Eq. (13) would be either 0 or 1
depending on the round key bits involved. These bits are fixed but unknown
(as they are determined by the key under attack). This kind of linear relation
is obtained by concatenating the appropriate linear approximations of S-boxes
from round to round of the cipher. This is because S-boxes are the only non-
linear components of the proposed cipher. These linear approximations hold
input and output bits of the S-boxes with certain probability.

We investigate the construction of a linear trail by examining non-zero
inputs corresponding to the S-boxes from the 1st round to the 15th round.
Using the LATs of the S-boxes in each round, if a particular non-zero input
occurs then the corresponding output is decided with suitably high probabil-
ity bias and least hamming weight. It is observed that the LATs of all the
16 S-boxes have the same magnitude linear probability bias values (|PL − 1

2 |).
Because of this, the key-dependent non-linear (S-box) layer called encoding
function does not need to differentiate among LATs of various S-boxes while
arriving at the optimal linear trail. We only consider the linear approxima-
tions of the S-boxes that have non-zero inputs and hence non-zero outputs to
estimate the number of active S-boxes of a linear trail. Since the size of the
input block of the proposed cipher is 128 bits, it is impossible to find all of the
possible linear trails for 2128 inputs. So, we divide 128 bits input block into 4
sub-blocks as X1, X2, X3, and X4, where the size of each sub-block is 32 bits.
And then, we use all the possible non-zero inputs of the first sub-block X1

keeping all the remaining sub-blocks X2, X3, and X4 as zero values. This gives
rise to a maximum of 232 linear trails. Similarly, we repeated the same pro-
cedure for the sub-blocks X2, X3, and X4. We used a computer-based search
to find an optimal linear trail by evaluating the number of active S-boxes at
each round of the proposed cipher, and we found that the minimum number of
active S-boxes in an optimal linear trail is 190. Also, the maximum probability
bias of the S-boxes of the proposed cipher is 2−2. Therefore, using the piling-
up lemma we obtain that the probability bias ε for r rounds (here, r = 15) is
as follows [20]:

ε = 2#−1 × (Max. probability bias of an S-box)#

= 2189 × (2−2)190

= 2−191,

where # denotes the minimum number of active S-boxes in an optimal lin-
ear trail. Hence, for 15 rounds the maximum probability bias of the proposed
cipher is 2−191. The complexity of the linear cryptanalysis attack can be
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calculated by using the following formula [13]:

NL ≈
1

ε2
=

1

(2−191)2
= 2382,

where NL denotes the number of known plaintexts. Hence the required number
of known plaintexts is 2382 which is much greater than 2128. This shows that
the proposed cipher is resistant to linear cryptanalysis attacks.

6.2 Differential cryptanalysis

Differential cryptanalysis is also a powerful attack against a block cipher. It
reduces the complexity of the exhaustive key search. This attack model works
based on the chosen-plaintext. It was first successfully applied on DES [6]. For
this attack, we used the same procedure used in linear cryptanalysis, and we
discovered an R − 1 (15) round high probable differential trail of an R (16)
rounds cipher [13]. Here, we used the Difference Distribution Table (DDT) of
the active S-boxes to find the probabilities of the differential trail of the cipher.
A differential trail is said to be optimal if it contains a minimum number of
active S-boxes. A DDT of the S-box shows the differential probability for all
the possible pairs of the input and output differences. We observed that the
DDTs of all the 16 S-boxes of our cipher have the same differential probability
for all the possible pairs of the input and output differences. Because of this,
the key-dependent non-linear (S-box) layer called the encoding function does
not need to differentiate among DDTs of various S-boxes while arriving at the
optimal differential trail.

Let two 128-bit plaintexts (inputs) to the system be X ′ and X ′′ with the
corresponding outputs (outputs of the 15th round of the proposed cipher) as
Y ′ and Y ′′, respectively. The input difference is denoted by 4X = X ′ ⊕X ′′,
and the output difference is denoted by 4Y = Y ′ ⊕ Y ′′, where ⊕ is a bit-
wise addition modulo 2 operation. Both 4X and 4Y are also 128 bits. The
pair (4X,4Y ) is referred to as an expected differential characteristic (or an
optimal differential trail), if a particular output difference 4Y occurs given a
particular input difference 4X with a suitably high probability. This expected
differential characteristic can be arrived at by concatenating the appropriate
differential characteristics of the S-boxes from round to round as illustrated
in [13]. This is because S-boxes are the only non-linear components of the pro-
posed cipher, and a differential trail consists of a sequence of input and output
differences between the rounds. It follows that the output difference from one
round corresponds to the input difference for the next round. Generally, arriv-
ing at this expected differential characteristic is impractical because we have to
process 2128 differential characteristics. So, we divide 128-bit input difference
block 4X into 4 sub-blocks as 4X1,4X2,4X3, and 4X4, where the size of
each sub-block is 32 bits. And then, we find all the corresponding differential
trails for all the possible non-zero values for the first sub-block 4X1 keeping
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the remaining three sub-blocks fixed. This gives rise to a maximum of 232 dif-
ferential trails. Similarly, we repeated the same procedure for the sub-blocks
4X2, 4X3, and 4X4.

We investigate the construction of a differential trail by examining non-zero
input differences corresponding to the S-boxes from the 1st round to the 15th

round. Using the DDTs of the S-boxes in each round, if a particular non-zero
input difference occurs then the corresponding output difference is decided
with suitably high probability and least hamming weight. We only consider
the S-boxes that have non-zero input differences and hence non-zero output
differences to estimate the number of active S-boxes of a differential trail. We
used a computer-based search to find an optimal differential trail by evaluating
the number of active S-boxes at each round of the proposed cipher, and we
found that the minimum number of active S-boxes in an optimal differential
trail is 141. Also, it is determined that the proposed cipher’s S-boxes have 2−2

maximum differential probability. Therefore the differential probability for a
15 rounds cipher is bounded by 2−282. Since the complexity of the R rounds
cipher against differential cryptanalysis is inversely proportional to its largest
differential probability [13], it follows that the complexity of the proposed
cipher against differential cryptanalysis would be 2282. Hence, the proposed
cipher with a 128-bit key is resistant to differential cryptanalysis.

6.3 Avalanche effect

One of the desirable properties of a block cipher is that it should exhibit a
good avalanche effect, also called the diffusion effect. For a small change in the
plaintext difference, there should be a large difference in the ciphertext. Also,
a good avalanche effect ensures that the diffusion effect of a block cipher is at
least 50%. We looked into the avalanche effects of our proposed block cipher
based on plaintexts with low and high hamming weights. The test is as follows:
A 128 bits plaintext block B with a low hamming weight that consists of all
binary 0′s (0X00) is considered and we generated 128 plaintexts Bi that differ
in 1 bit from the original plaintext B. That is

Bi = B ⊕ (1 <<i), (14)

where ⊕ is the bit-wise XOR operation, <<i is the left shift operation by i bit
positions and 0 ≤ i ≤ 127.

Now let C be the ciphertext of the original plaintext B and Ci be the
ciphertext of the plaintext Bi for 0 ≤ i ≤ 127. As part of the test, we calculated
the hamming distances between C and Ci in percentages as

HDPi =
D(C,Ci)

SIZE(C)
× 100%, (15)

where 0 ≤ i ≤ 127, D(C,Ci) denotes the hamming distance between C and
Ci, and SIZE(C) denotes the number of binary digits in the ciphertext C.
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We repeated the same process for another 128 bits plaintext with high ham-
ming weight consisting of all binary 1′s (0XFF), and we calculated all the
corresponding values of HDPi for 0 ≤ i ≤ 127. For both the plaintexts, we
compared the HDPi values of our proposed cipher with those of the other
existing ciphers such as AES-128 and the ones given in [4, 5, 30]. The corre-
sponding results are shown in Table 8. In the table, the first column shows the
values of HDPi in the specified range; separately; the second, third, fourth,
and the fifth columns show the number of times hamming distances (HDPi)
of the ciphertexts C0, C1, . . . , C127 from C lie in the specified range given in
the first column of the table corresponding to [4, 5], [30], proposed cipher,
and AES-128, respectively. Also given in the last two rows of the table are the
average (mean) hamming distance in percentage and median absolute devia-
tion (MAD), respectively. The MAD tells us how far the hamming distances
from the mean are. From these values, we can conclude that the avalanche
effect of our cipher is approximately the same as AES-128, and better than
that of all the other existing ciphers given in [4, 5, 30].

Table 8 Results of hamming distances.

Range of
HDPi

Number of ciphertext
for [4, 5]

Number of cipher-
text for [30]

Number of cipher-
text for proposed
cipher

Number of
ciphertext
for AES-128

0X00 0XFF 0X00 0XFF 0X00 0XFF 0X00 0XFF
≤ 34.99 0 0 23 32 0 0 0 0

35− 44.99 19 24 38 24 17 16 14 17
45− 54.99 94 84 66 51 91 98 97 103
55− 64.99 15 20 1 21 20 14 17 8
≥ 65 0 0 0 0 0 0 0 0

Mean: 49.37 39.32 49.77 49.52
MAD: 3.94 13.75 3.34 3.36

6.4 Strict avalanche criterion (SAC)

A strict avalanche criterion is a generalization of the avalanche effect. It is
used to measure the impact on each bit of the ciphertext by changing the
bits of the plaintext. If there is a slight change in the plaintext, then the
impact of this change on each bit of the corresponding ciphertext should be
uniform. That is, whenever a single bit of the plaintext is changed (from 1 to
0 or from 0 to 1), each of the ciphertext’s bits changes with a probability of
approximately 50% [10]. In order to test whether the proposed cipher meets
this criterion, we generated 128 random secret keys and using each of these
secret keys we encrypted 1024 different randomly generated plaintexts of the
same length. Then, we changed a particular bit in each of these plaintexts
(the bit with the same sequence number in all plaintexts), we encrypted these
changed plaintexts with each secret key that we generated and then compared
them with the original ciphertexts to see how they differ from each other.
We repeated this process 128 times (where 128 is the length of each plaintext
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used), so that every single bit in each of these plaintexts is changed in the
process. The partial results of this experiment are shown in Table 9. Each cell
of the table represents the change percentage of the qth bit of the ciphertext
when the pth bit of the plaintext is changed, where p is the row number and
q is the column number of the table. For example, we can verify in the table
that when the 7th bit of the plaintexts is changed, then the 16th bit of the
ciphertexts changed in half of the ciphertexts (or 50%).

According to the experimental results, as shown in Table 9, we can conclude
that when an arbitrary bit of the plaintexts is changed, then each bit of the
ciphertext is changed with the probability of approximately 50%. This means
that if a single bit is changed in all of the 1024 plaintexts, then each of the
ciphertext’s bits will change in approximately half of the ciphertexts. This
result implies that the proposed cipher satisfies the strict avalanche criterion.
Also, for this test, if we compare the results of our proposed block cipher
with the results of BCMPQ, as illustrated in [10], we can observe that the
performance of the proposed cipher is better than BCMPQ.

Table 9 Strict avalanche criterion of the proposed cipher.
Plaintext bits
(input bits)

Ciphertext bits (output bits)

1 2 4 8 16 32 64 128
1 49.97% 50.07% 50.04% 50.14% 49.87% 49.90% 50.08% 50.04%
2 49.83% 49.94% 49.87% 50.04% 49.87% 50.03% 50.17% 49.95%
3 50.09% 49.93% 50.02% 49.82% 49.67% 49.94% 49.97% 49.92%
4 49.97% 49.94% 49.87% 49.78% 49.94% 49.88% 50.00% 49.76%
5 50.02% 50.05% 50.07% 49.80% 49.87% 49.76% 50.04% 49.73%
6 49.65% 50.00% 50.04% 50.01% 50.08% 49.89% 49.93% 50.00%
7 50.35% 50.02% 50.21% 50.30% 50.00% 49.95% 50.06% 49.93%
8 50.21% 49.89% 49.99% 50.09% 49.71% 50.26% 50.12% 49.95%
16 49.83% 50.07% 50.04% 50.30% 50.06% 49.91% 49.86% 49.79%
20 49.88% 49.80% 50.34% 49.95% 50.14% 49.94% 49.87% 50.00%
25 50.17% 50.04% 49.90% 50.13% 49.87% 50.00% 50.07% 49.58%
32 50.24% 50.08% 50.01% 49.94% 49.76% 49.95% 49.78% 49.74%
40 50.09% 50.17% 49.97% 49.90% 50.07% 50.07% 50.05% 50.10%
41 50.00% 50.17% 49.89% 50.07% 49.98% 49.91% 50.06% 49.89%
64 50.11% 50.15% 50.06% 49.99% 50.13% 49.90% 50.01% 49.93%
100 50.05% 50.14% 50.02% 49.90% 50.20% 50.26% 49.82% 49.91%
110 50.20% 49.87% 49.86% 50.00% 50.08% 50.10% 49.98% 49.90%
120 50.03% 50.00% 50.02% 49.85% 49.94% 49.96% 50.13% 49.90%
127 50.03% 49.79% 50.06% 50.00% 50.08% 49.84% 50.13% 49.89%
128 49.87% 49.80% 50.16% 50.08% 49.92% 50.00% 50.04% 50.17%

6.5 Statistical test for randomness

The ciphertexts created using our proposed cipher pass various statistical tests
of NIST-STS. Using the NIST-STS 2 suite we evaluated the randomness of
the obtained ciphertexts. Each test of the NIST-STS package gives a P-value
and Success/Fail status. The P-value is the probability that a perfect random

2National Institute of Technology - Statistical Test Suite
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number generator would have produced a less random sequence than the one
being tested [23]. Also, in NIST-STS, each test is given a P-value threshold,
also called the significance level α. If P-value ≥ α, the sequence is consid-
ered random; otherwise, non-random. Typically, the value of α is chosen in
the range [0.001, 0.01]. We have used NIST Spec. Publ. 800-22 rev. 1a pack-
age with α = 0.01 that consists of 15 types of statistical tests [23]. For each of
these tests, we randomly chose 128 bits IV, 128 bits secret key, and 8192 128
bits plaintext blocks. A binary sequence of 1048576 bits is constructed using
the ciphertext obtained in the CBC mode. That is, it is a binary sequence
obtained by concatenating the 8192 ciphertext blocks of 128 bits each. We
generated 1000 such binary sequences for the same plaintext blocks using dif-
ferent random 128 bits keys. We ran each of these tests on the outputs of both
the proposed cipher and AES-128 1000 times and compared the randomness
of the proposed cipher with that of the AES-128 for each binary sequence of
1048576 bits. Table 10 shows these NIST-STS experimental results. Column
A of the table lists the names of the tests carried out. The number of accepted
binary sequences, the number of rejected binary sequences, and the proportion
of binary sequences that passed a statistical test at the α = 0.01 significance
level for both the proposed cipher and AES-128 are listed in columns B and C,
respectively. As a result, the randomness of the proposed cipher is comparable
to that of the AES-128. Hence, from the NIST-STS’s point of view, both the
ciphers are random.

Table 10 For 1000 random keys, results of the NIST test for the proposed encryption as
compared to AES-128 encryption system when the same key is used for both
cryptosystems with CBC mode of operation.

A B C

Tests
Proposed AES-128

Number
of
success

Number
of
failures

Proportion of
success out of
1000

Number
of
success

Number
of
failures

Proportion of
success out of
1000

Frequency 993 7 0.993 991 9 0.991
Block frequency 983 17 0.983 991 9 0.991
Cumulative sum 994 6 0.994 992 8 0.992
Runs 990 10 0.990 989 11 0.989
Longest run 990 10 0.990 992 8 0.992
Rank 996 4 0.996 991 9 0.991
DFT 982 18 0.982 986 14 0.986
Non-overlapping
template

985 15 0.985 980 20 0.980

Overlapping
template

992 8 0.992 994 6 0.994

Universal statistical 985 15 0.985 988 12 0.988
Approximate entropy 991 9 0.991 993 7 0.993
Random excursion 989 11 0.989 985 15 0.985
Random excursion
variants

991 9 0.991 990 10 0.990

Serial 993 7 0.993 994 6 0.994
Linear complexity 995 5 0.995 981 19 0.981
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7 Conclusion and future work

This paper has proposed an efficient block cipher to encrypt or decrypt data in
the form of a block of 128 bits. The proposed cipher uses 16 optimal S-boxes of
4×4 bits that form an optimal quasigroup. The design of the proposed cipher is
based on the concept of multiple quasigroups. We have analyzed our cipher for
several attacks, including linear cryptanalysis and differential cryptanalysis.
We found that our cipher is resistant to these attacks. Also, we have analyzed
the software performance (time complexity), space complexity, and avalanche
effect (diffusion effect) of our cipher by comparing it with AES-128 and other
existing quasigroup based block ciphers [4, 5, 30]. We noted that the avalanche
effect of our cipher is almost the same as that of AES-128 and due to more
computations our cipher is slightly slower than AES-128, but our cipher uses
half the space compared to AES-128. Also, the proposed block cipher uses the
same amount of space as that used by [30] but 512 times lesser than [4, 5]. We
also noted that our cipher is more efficient than DES. In addition, our cipher is
more than 2 times faster and gives a better avalanche effect than other existing
quasigroup based block ciphers [4, 5, 30]. Hence, we concluded that our cipher
appears to be an excellent alternative for the quasigroup based proposals. We
have also analyzed our cipher against the strict avalanche criterion (SAC). The
results show that when a random bit of plaintext is changed, the proposed
cipher changes each bit of the ciphertext with a probability of approximately
50%. Hence the proposed cipher satisfies the SAC.

Remember that our cipher works as a family of block ciphers parameterized
by an optimal quasigroup. So, if required, the security of the cipher can be
enhanced by keeping the optimal quasigroup secret along with the secret key.
That is, the security of the proposed cipher depends not only on the secret
key but also on the optimal quasigroup employed. Note that our cipher uses
16 optimal quasigroups in all the 16 rounds, and these 16 quasigroups are
generated from the initial optimal quasigroup by circularly shifting the rows.
Since an optimal quasigroup is constructed using the 16 optimal S-boxes of
4 × 4 bits, we, therefore, can form a maximum of 16! optimal quasigroups
by permuting the rows. So, the total key space of our cipher would then be
C16!

1 × 1616× 2128 ≈ 2236. Therefore, our cipher can be seen to be more secure
than AES-128 against quantum attack since in quantum computing [12], the
best quantum attack against any symmetric-key cryptosystem is proportional
to the square root of the key space. And, the attack complexity of our cipher
against quantum attack is about 2118, while in the case of AES-128 is only 264.

The randomness of the obtained ciphertexts produced by the proposed
cipher is tested using the NIST statistical test suite. We ran our encryption
system for a random plaintext of 1048576 bits with 1000 different keys and
generated 1000 ciphertexts. The results of the proposed cipher are compared
with that of AES-128 for the same plaintext and the same keys. We observed
that the randomness of the outputs of our cipher and AES-128 are comparable
to each other.
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In future, we intend to cryptanalyze our cipher against impossible dif-
ferential cryptanalysis, zero-correlation linear cryptanalysis, and related-key
attack.
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