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Abstract. In CRYPTO 2019, Gohr opens up a new direction for cryptanalysis.
He successfully applied deep learning to differential cryptanalysis against the NSA
block cipher SPECK32/64, achieving higher accuracy than traditional differential
distinguishers. Until now, one of the mainstream research directions is increasing
the training sample size and utilizing different neural networks to improve the
accuracy of neural distinguishers. This conversion mindset may lead to a huge
number of parameters, heavy computing load, and a large number of memory in the
distinguishers training process. However, in the practical application of cryptanalysis,
the applicability of the attacks method in a resource-constrained environment is very
important. Therefore, we focus on the cost optimization and aim to reduce network
parameters for differential neural cryptanalysis.
In this paper, we propose two cost-optimized neural distinguisher improvement
methods from the aspect of data format and network structure, respectively. Firstly,
we obtain a partial output difference neural distinguisher using only 4-bits training
data format which is constructed with a new advantage bits search algorithm based
on two key improvement conditions. In addition, we perform an interpretability
analysis of the new neural distinguishers whose results are mainly reflected in the
relationship between the neural distinguishers, truncated differential, and advantage
bits. Secondly, we replace the traditional convolution with the depthwise separable
convolution to reduce the training cost without affecting the accuracy as much as
possible. Overall, the number of training parameters can be reduced by less than 50%
by using our new network structure for training neural distinguishers. Finally, we
apply the network structure to the partial output difference neural distinguishers. The
combinatorial approach have led to a further reduction in the number of parameters
(approximately 30% of Gohr’s distinguishers for SPECK).
Keywords: Deep Learning · Block Cipher · Neural Distinguisher · Depthwise
Separabe Convolution · SPECK

1 Introduction
As deep learning spreads to various fields, large-scale neural networks have become
more important in computer tasks. As the most important neural network, the trend
of Convolutional Neural Network (CNN) in various fields is to make more complicated
and deeper networks to get a higher accuracy such as image classification [1–3], object
detection [4–7] and semantic segmentation [8,9]. However, the huge number of parameters,
heavy computing load, and large number of memory access lead to huge power consumption,
which makes it difficult to apply the model to portable mobile devices with limited
hardware resources. Therefore, models with fewer parameters are getting more and more
attention [10–12]. MobileNet [13] is one of them which provides a solution for mobile
and embedded devices. Instead of using the standard convolution, MobileNet uses a
special convolution called depthwise separable convolution. With the depthwise separable
convolution, it needs about one-eighth of the computational cost and has only a little drop
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in accuracy.
It is worth mentioning that some researchers have investigated the viability of applying

deep learning to cryptanalysis. In CRYPTO 2019, Gohr [14] combined deep learning
with differential cryptanalysis and first presented differential neural cryptanalysis. He
trained neural distinguishers of SPECK32/64 based on the deep residual neural networks
(ResNet) [2]. The labeled data used as training data is composed of ciphertext pairs: half
the training data comes from ciphertext pairs encrypted by plaintext pairs with a fixed
input difference, and half comes from random values. Gohr obtained high accuracy for
6-round and 7-round neural distinguishers of SPECK32/64 and achieved 11-round and
12-round key recovery attacks based on the neural distinguishers.

Subsequently, Gohr’s neural distinguishers have been gradually derived into two main-
stream directions. One is adopting different neural networks to improve accuracy. Bao
et al. [15] used Dense Network and Squeeze-and-Excitation Network to train neural dis-
tinguishers, and obtained effective (7-11)-rounds neural distinguishers for SIMON32/64.
Zhang et al. [16] adopted the inception block to construct a new neural network archi-
tecture to train neural distinguishers for (5-8)-rounds SPECK32/64 and (7-12)-rounds
SIMON32/64. The other popular research direction is changing the input data format of
neural distinguishers. Chen et al. [17] proposed multiple groups of ciphertext pairs instead
of single ciphertext pair [14] as the training sample and effectively improved the accuracy
of the (5-7)-rounds neural distinguishers of SPECK32/64. Hou et al. [18] built multiple
groups of output differences pairs instead of multiple groups of ciphertext pairs [17] to
further improve the accuracy of neural distinguishers.

Similar to the development trajectory of deep learning, developments in neural dis-
tinguishers face a common problem. Researchers have focused on how to better improve
neural distinguisher performance without exploring the computational costs. This con-
version mindset may lead to a huge number of parameters, heavy computing load, and
a large number of memory, which is difficult to apply the cryptanalysis method in the
resource-constrained environment. Therefore, we decide to focus on the cost optimization
of differential neural cryptanalysis. There is not much relevant work available, and the
two notable researches are as follows. Nicoleta et al. [19] first evaluated Gohr’s neural
distinguishers with the Lottery Ticket Hypothesis. The Lottery Ticket Hypothesis states
some subnetworks match or even outperform the accuracy of the original network. They
conducted pruning based on average activations equal to zero and obtained a smaller or
better-performing network. Amirhossein et al. [20] showed experimentally that not all the
bits in a block are necessary as features to have an effective neural distinguisher. They
also found that different selections of features lead to vastly different accuracy results and
that certain bits are consistently better than others for this purpose. On this basis, they
proposed a new feature selection method for obtaining a much more compact network for
training neural distinguishers. Meanwhile, a similar view is held by Chen et al. [21]. They
argue that there is an informative bit in the ciphertext bit which is helpful to distinguish
between the cipher and a pseudo-random permutation. And they develop a simple but
effective framework for identifying informative bits.

The existing works are great explorations of the cost optimization of differential neural
cryptanalysis, but the development of reducing the time and resources consumed by the
attack while ensuring the key recovery accuracy as much as possible still needs to be
further explored. Inspired by these works, we propose two cost-optimized methods from
the aspect of data format and network structure for wider use of neural distinguishers in
resource-constrained environments. Our major contributions are listed as follows:

• Firstly, we propose a new training sample generation format to reduce the training
cost and significantly improve the training efficiency. Specifically, by observing the
round function of SPECK cipher, we propose two key improvement conditions for
constructing new advantage bits search algorithm in the partial differential ML-
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based distinguisher. The symmetry condition provides a better strategy for the
advantage bits search algorithm, which ensures the neural distinguisher accuracy. The
difference condition can significantly reduce the number of bits used in the training
samples and thus reducing the training parameters. Based on the two improved
conditions, we propose a new advantage bits selection algorithm and experimentally
verify the validity of the algorithm. We name the new neural distinguishers training
with our new advantage bits selection algorithm as partial output difference neural
distinguishers. Our new neural distinguishers can further reduce the number of bits
included in the training samples while keeping the accuracy (see Table 5). It is
worth mentioning that the advantage bits search algorithm can be applied to all
block cipher, especially for large-state block ciphers. In addition, we perform an
interpretability analysis of the new neural distinguishers whose results are mainly
reflected in the relationship between the neural distinguishers, truncated differential,
and advantage bits. The advantage bits are determined based on the accuracy of
multiple neural distinguishers, while the accuracy of the neural distinguishers is
influenced by the position and number of bits used. The advantage bits can be
propagated from the truncated difference through two rounds of the SPECK round
function, while the advantage bits used in the training samples also reflect the
important role of truncated differential in the binary classification process.

• Secondly, we propose a new network structure with a smaller training parameter
number. Specifically, we replace the traditional convolution in the convolution blocks
with a depthwise separable convolution to reduce the training cost without affecting
the accuracy as much as possible. The effect of the new network structure is mainly
reflected in the neural distinguisher accuracy and the number of training parameters.
In particular, we experimentally show that the three-dimensional depthwise separable
convolution has achieved excellent results on MCP (Multiple Ciphertext Pairs) data
formats [17]. Overall, the number of training parameters can be reduced by 50%
by using the new network structure for training neural distinguishers. Based on
the new network structure, we explore the number of required depthwise separable
convolutional blocks. The experimental results show that the new network structure
can only use one depthwise separable convolutional block while maintaining the
existing accuracy, which further reduces the number of parameters and training costs.
Table 6 provides a summary of these results. Noteworthy, we apply the improved
depthwise separable convolutional network structure to the partial output difference
neural distinguishers. The combination of the two improved schemes results in
another significant reduction in the number of parameters. The result can be seen in
Table 7.

The rest of the paper is organized as follows. Section 2 gives a brief description of
SPECK and introduces Gohr’s neural distinguisher and depthwise separable convolution.
In Section 3, we present the partial output difference neural distinguishers and give a
validity interpretation from the cryptanalysis perspective. We adopt the ideas of depthwise
separable convolution to improve network structure and further reduce the training costs
in Section 4. Finally, our work is summarized in Section 5.

2 Preliminaries

2.1 Notations

Table 1 presents the major notations.
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Table 1: The notations

Notation Description

SPECK 2n/nm SPECK acting on 2n-bit plaintext blocks
and using nm(k)-bit key

⊕ Bitwise XOR
& Modular Addition
Sα(x) Circular left shift of x by α bits
K Master key
rki i-round subkey
∆in Input difference
(P, P ′) Plaintext pair
(C,C ′) Ciphertext pair
(Pl, Pr, P ′l , P ′r) P = Pl ‖ Pr and P ′ = P ′l ‖ P ′r
(Cl, Cr, C ′l , C ′r) C = Cl ‖ Cr and C ′ = C ′l ‖ C ′r
(∆Cl,∆Cr) ∆Cl = Cl ⊕ C ′l and ∆Cr = Cr ⊕ C ′r

2.2 Brief Description of SPECK

SPECK is a family of lightweight block ciphers proposed by the National Security Agency
(NSA) [22]. SPECK adopts ARX construction that applies a composition of the basic
functions of modular addition, bitwise rotation, and bitwise addition. Various versions of
SPECK were proposed which are defined for block size 2n and key size k: 32/64, 48/72,
48/96, 64/96, 64/128, 96/96, 96/144, 128/128, 128/192, and 128/256. In this article, we
will focus mainly on SPECK with 32 bits block size and 64 bits key size (for simplicity,
SPECK32/64 will be referred to as SPECK32 in the rest of the article).

SPECK has a function that iterates for many rounds until the ciphertext is generated.
For SPECK32, the round function F : Fn2 × F 2n

2 → F 2n
2 takes as input a 16-bit subkey

rki and a cipher state consisting of two n-bit words (Li, Ri) and produces from this the
next round state (Li+1, Ri+1) as follows:

Li+1 =
((
S−7Li

)
&Ri

)
⊕ rki, Ri+1 = Li+1 ⊕

(
S2Ri

)
(1)

Li Ri

S−α

Sβ

Li+1 Ri+1

rki

Figure 1: The round function of SPECK
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2.3 Differential-based Neural Distinguishers
In the analysis of block cipher security, differential cryptanalysis [23] is one of the most
effective attack methods. It is a chosen plaintext attack and was firstly introduced by
Biham and Shamir to analyze DES block cipher in 1990. Its basic idea is to study
the probability of differential propagation of specific plaintext differential values in the
encryption process. Specifically, in a random permutation with block size of 2n, the average
probability of a differential is: Pr(∆in → ∆out) = 2−2n for all ∆in,∆out. If an attacker
can find a differential that Pr(∆in → ∆out) > 2−2n , this differential is called differential
distinguisher and can be used to attack cipher algorithms.

In [14], Gohr proposed a new differential cryptanalysis method combined with deep
learning. He first trained neural distinguishers of SPECK32 based on the deep residual
neural networks for distinguishing correct pairs from random pairs. Then he developed
a highly selective key search strategy based on a Bayesian optimization method. This
deep learning-based differential cryptanalysis can be divided into two parts according to
the traditional differential cryptanalysis: generation of neural distinguishers and subkeys
recovery based on neural distinguishers. The generation of neural distinguishers is composed
of two steps: training data generation and neural network training.

Step1: Training data generation
107 plaintext pairs (P, P ′) are randomly generated in a fit difference ∆in = (0x40, 0x0).

107 labels Y ∈ {0, 1} are randomly generated and allocated to the samples. For the samples
with label 1 which is encrypted from plaintext pairs into r−rounds to generate ciphertext
pairs; For the samples with label 0, re-generate the right half of the plaintext pairs P ′
randomly, and then encrypt r-rounds to generate ciphertext pairs.

Step2: Neural network training
Set the structure of the residual neural network used for training. Based on the training

samples generated above, the neural network is trained to perform a binary classification
task: distinguish the ciphertext pairs encrypted with fixed differences from the random
ciphertext pairs. The trained neural network is evaluated by generating 106 test samples
(repeat Step1), and if the accuracy is higher than 50%, the network is a valid neural
distinguisher.

After obtaining a valid neural distinguisher, Gohr gave a specific procedure for key
recovery attacks (Algorithm 1).

Algorithm 1 [14] Gohr’s Key Research
Input: Ciphertext pairs set C = {C0, C1, ..., Cq−1}, r-round neural distinguisher NDr,

number of candidates to be generated t, number of iterations l.
Output: Key set L.

1: S ← {sk0, sk1, ..., skt−1}, ski 6= skj if i 6= j
2: L← {}
3: for j ∈ {0, 1, ..., l − 1} do
4: Pi,sk ← Decrypt1 (Ci, sk) for all i ∈ {0, 1, ..., q − 1} and sk ∈ S
5: vi,sk ← NDr (Pi,sk) for all i ∈ {0, 1, ..., q − 1} and sk ∈ S
6: wi,sk ← log2

(
vi,sk

1−vi,sk

)
for all i ∈ {0, 1, ..., q − 1} and sk ∈ S

7: L← L||[(sk,
∑q−1
i=0 wi,sk) for sk ∈ S]

8: msk ←
∑q−1
i=0 wi,sk/n for sk ∈ S

9: λsk ←
∑t−1
i=0

(
mski

−µski⊕sk

σski⊕sk

)2
for sk ∈

{
0, 1, ..., 216 − 1

}
10: S ← argsortsk (λ) [0 : t− 1]
11: end for
12: return L



6
A Deep Learning Aided Differential Distinguisher Improvement Framework with More

Lightweight and Universality

In Algorithm 1, the r−round neural distinguisher is used for a key recovery attack on
(r+ 1)-round SPECK32. Gohr found that since the differential propagation is probabilistic,
the encrypted positive samples are not guaranteed to be traveled correctly along the
differential path. Therefore, he used k neutral bits [24] to create a ciphertext structure
that generates 2k ciphertext pairs from the same plaintext pair by changing different
neutral bits and then encrypting them in (r+1)-round. Gohr gave the generated ciphertext
structure to the algorithm and then set the corresponding parameters: the number of
candidate keys and the number of iterations. The algorithm first tries and selects the best
ciphertext structure on each structure. Finally, all guessed subkeys are scored and the
highest scoring subkey is considered the most likely correct subkey.

2.4 Depthwise Separable Convolution
Depthwise Separable Convolution [13] is a key building block for many efficient neural
network architectures [25,26] and we use them in the present work as well.

Depthwise Separable Convolution was proposed for solving the problem of a large
number of training parameters in neural networks. Depthwise separable convolution
replaces the standard convolution in the neural network which can reduce the number of
parameters required for network training and training time while greatly guaranteeing the
performance of the training model. Therefore, the significance of using depthwise separable
convolution for building a lightweight block cipher SPECK neural distinguisher is obvious.

…

Input features
Convolution 

kernels
Output features

Figure 2: Standard convolution

The standard convolution operation is shown in Figure 2. Give a specific example, if
the number of input feature channels is 3, the number of convolution kernel channels is
also 3. The specific process of convolution operation is, the convolution of corresponding
channel positions to obtain the output feature channels respectively. The number of output
feature channels is equal to the number of convolution kernels.

The depthwise separable convolution is shown in Figure 3, which mainly decomposes the
standard convolution into two steps, depth convolution and 1×1 pointwise convolution. The
specific operation is: each channel of the input features is convolved with the corresponding
single-channel convolution kernel to obtain the intermediate features. Then, M 1 × 1
convolution kernels are used to integrate all the intermediate features to obtain the output
features containing M features.

It is important to analyze the number of parameters and operations of the standard
convolution and the depthwise separable convolution. Assume that the input feature size is
DF ×DF ×M and the convolution kernel size is Dk ×Dk ×M , whose number is N . It is
supposed that one convolution operation is performed for each point in the corresponding
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Input features
Convolution 

kernels

Intermediate 

characteristics

.
..

1×1 convolution 

kernels
Output features

Figure 3: Depthwise separable convolution

input feature, so a total of DF ×DF ×Dk ×Dk ×M calculations are required for a single
convolution. As a result, the standard convolutional operations and parameter quantities
are calculated as follows.

F1 = DF ×DF ×Dk ×Dk ×M ×N (2)

P1 = M ×Dk ×Dk ×N (3)

The number of operations and the number of parameters for the depthwise separable
convolution are calculated as follows.

F2 = DF ×DF ×Dk ×Dk ×M +M × 1× 1×N (4)

P2 = M ×Dk ×Dk +M × 1× 1×N (5)

The ratio of the depthwise separable convolution to the number of standard convolu-
tional parameters is denoted as δ and calculated as follows.

δ = P2

P1
= M ×Dk ×Dk +M × 1× 1×N

M ×Dk ×Dk ×N
= 1
N

+ 1
D2
k

(6)

It can be seen that using depthwise separable convolution instead of standard con-
volution can significantly reduce the number of parameters required to train the neural
network, thus reducing the training cost of the neural network.

3 Partial Output Difference Neural Distinguishers
Currently, the key recovery attack by differential neural cryptanalysis is effective on several
lightweight block ciphers [14,27]. Lightweight block ciphers are usually used in scenarios
with resource-constrained hardware, so the cost constraints for implementing key recovery
attacks are even greater. For the SPECK family, the training sample is a 4n bits ciphertext
pair, and the cost to complete the neural distinguisher training will increase significantly as
the block size 2n keeps increasing. Therefore, reducing the time and resources consumed by
the attack while ensuring the key recovery accuracy as much as possible is a key direction
of the current differential neural cryptanalysis. Amirhossein et al. [20] proposed a partial
ML-distinguisher, but the explorations they made were limited to distinguisher feasibility.
They did not make an exploration in terms of integration with the cryptographic techniques,
nor did they make a theoretical analysis.

In this section, we propose a new neural distinguisher model based on traditional
cryptanalysis techniques and theoretical analysis. Our neural distinguisher model reduces
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the size of training samples to 1
16 of ciphertext pairs, but still maintains great accuracy.

Meanwhile, we analyze the reason why our distinguisher model can perform well from the
theoretical perspective.

3.1 New Neural Distinguisher Model
Our new neural distinguisher model consists of three parts: advantage bits search, training
sample generation and neural network training.

Step 1: Advantage bits search
In EUROCRYPT 2021, Benamira et al. [28] proved that Gohr’s neural distinguishers

made their decisions on the difference of ciphertext pair and the internal state difference in
the penultimate and ante-penultimate rounds. In traditional cryptanalysis, the probability
is different between different bit positions of the differential characteristics. In some cipher
algorithms, the probability fluctuation can be very large. Therefore, the learnable features
that can be captured by the neural distinguishers are asymmetric for different bit positions.
We further explored the bit positions in the ciphertext pairs used as training samples, with
the aim of using the smallest number of bits to obtain an effective distinguisher.

Algorithm 2 Advantage Bits Search
Input: Ciphertext pairs set C = {C0, C1, ...Cm−1}, Neural network structure, Block size

2n, Number of output bits N , Accuracy verification times k.
Output: Advantage bit set S.

1: Acc← {}
2: Initialize an all-zero matrix M2n×k
3: for each i ∈ {0, 1, ..., k − 1} do
4: Randomly select N/2 bit positions to form the set B =

{
b0, b1, ..., bN

2 −1

}
for all

bi ∈ {0, 1, ..., n− 1}
5: B ← B||

{
b0 + n, b1 + n, .., bN

2 −1 + n
}

6: C ′ =
{
C ′0, C

′
1, ...C

′
m−1

}
← Select bit positions in B for all Ci ∈ {C0, C1, ...Cm−1}

7: ND ← TrainNetwork(C ′)
8: Acc← Acc||AccuracyEvaluation(ND)
9: for each j ∈ {0, 1, ..., 2n} do

10: if j ∈ B then
11: M [j][i] = 1
12: else
13: M [j][i] = 0
14: end if
15: end for
16: end for
17: Score← {}
18: for each i ∈ {0, 1, ..., 2n− 1} do

19: Score← Score||
∑k

j=0
M [i][j]∗Acc[j]∑k

j=0
M [i][j]

20: end for
21: S ← argsort(Score)[0 : N − 1]
22: return S

The process of the advantage bits search algorithm is designed as follows. Firstly,
setting the number of target bits N and the accuracy verification times k for generating
training samples. Taking SPECK32 algorithm as an example (block size 2n = 32), we
set N = 8, k = 100. Then, we randomly select N/2 bits from the first 16 bit positions
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and record them in the set B. Next, the selected bit position is shifted right by 16 bits
and added to B. According to the set B, the ciphertext pairs set are transformed to
form the new training set C ′, and record the verification set accuracy of the new neural
distinguisher based C ′. We repeat the above steps k times, and we will get k partial neural
distinguishers whose results are saved in the set Acc.

The M matrix record the bit positions selected in each cycle. Then each bit position
is evaluated by calculating the average of the neural distinguisher accuracy. Finally, we
output the set of bit positions that score the top N . We describe the above search process
as Algorithm 2.

Step 2: Training sample generation
New neural distinguisher is to accomplish the binary classification task of distinguishing

correct pairs from random values. We denote ciphertext pairs corresponding to plaintext
pairs with the fixed difference as positive samples and denote ciphertext pairs corresponding
to plaintext pairs with a random difference as negative samples. The positive sample
generation method is described in Figure 4.

𝑃, 𝑃′

Block

Cipher

Key

𝐶, 𝐶′
Training data format

bit selection ҧ𝐶⨁ ҧ𝐶′

ҧ𝐶, ҧ𝐶′

Figure 4: Training data generation

The single plaintext pair (P, P ′) is encrypted by a random master key to obtain single
ciphertext pair (C,C ′). The ciphertext pair is then processed based on the advantage
bits set obtained in the first step. The processed ciphertext pairs are converted output
difference (C̄ ⊕ C̄ ′) to obtain 8-bits positive training samples.

Step 3: Neural network training
To demonstrate the effect of our neural distinguisher model, we use the same network as

Gohr’s work [14]. The network consists of four parts: an input layer for processing training
datasets, an initial convolutional layer, a residual tower consisting of multiple two-layer
convolutional neural networks, and a prediction head consisting of fully connected layers.
And the neural network training parameters are shown in Table 2.

Table 2: Parameters of the network architecture for training neural distinguishers

Hyperparameters Value Hyperparameters Value
Train size 107 Conv size(ks) 3
Validation size 106 Regularization parm 10−4

Batch size 10000 Optimizer Adam
Epochs 30 Loss function MSE

Because we use partial bits of ciphertext pairs and convert them to difference as the
training sample format for the neural distinguishers, we call the new distinguishers the
partial output difference neural distinguishers.

3.2 Results
Before training the distinguishers, the number and position of the used bits need to be
determined. The bit positions are determined by starting from the most efficient. And the
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number of bits needs to be determined according to the accuracy requirements and cost
requirements. For SPECK32, we set the number of bits to block size 32 in Algorithm 2, so
that we can obtain the score of all bit positions. For easy observation, we normalize the
scores and the results are shown in Table 3.

Table 3: The score of each bit pairs in the advantage bits search

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
i+ 16 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Score 0.187 0.277 0.210 0.262 0.364 0.512 0.129 0.000 0.290 0.149 0.144 0.190 1.000 0.760 0.596 0.445

Observing the Table 3, there is significant disequilibrium between bit positions, and
most bits have low ratings. Among them, there are 6 pairs of bit positions with high
scores: {4,20}, {12,28}, {13,29}, {14,30}, {5,21}, {15,31}. We highlight the bit positions
with the highest scores. The darker the color, the more important it is for the accuracy of
the neural distinguishers. We will mainly use these 6 pairs of bit positions in the actual
neural distinguisher training process.

During the implementation of the bits selection algorithm, the advantage bits set can
be divided into two related subsets: randomly select N/2 bits from the first 16 bit positions
and shift the existing bit positions by 16 bits to the right of the bit positions. The reason is
that after observing the SPECK round function, the right half of the round function output
can be written as Ri+1 = Li+1 ⊕

(
S2Ri

)
which reflects the close relationship between the

left and right halves of the output. This statement also is verified by the distribution of
the scoring results for each bit position of SPECK32 in [20]. In addition, such a selection
approach leads to another cost-saving breakthrough direction. We transform the output
pairs into differences during the construction of the training samples. There are two
advantages of this approach:

1. Providing the neural network with more directly learnable features;
2. Reducing the number of bits included in the training samples.
To illustrate the advantages of our method more clearly, we train two sets of neural

distinguishers simultaneously. One is to complete the method in [20] under the same
training conditions, and the second is to use our bits selection algorithm but the training
samples are not converted into differences. The results are shown in Table 5 (all results
are performed with the same network parameters in Table 2).

The symmetry condition indicates that the left half of the training sample corresponds
to the right half of the position; the difference condition indicates that the training sample
is the output difference. For the non-differential condition, each ciphertext in the training
sample (ciphertext pair) selects the bit position according to the bit set B, so the number
of bits in a training sample is 2×number of elements in the bit set B. For the difference
condition, the training sample (output difference) selects the bit position according to the
bit set B, so the number of sample bits is the number of elements in the bit set B.

In the first experiment, we set the same neural network structure and neural net-
work parameters, and we trained the neural network with the same training data size (8
bits). Therefore, the difference between the neural distinguishers is only the ciphertext
bit positions. In the [20], the ciphertext bit positions chosen are {12,13,14,28}. Ac-
cording to our advantage bits search algorithm, the chosen ciphertext bit positions are
{12,13,28,29} under the symmetric condition. And the chosen ciphertext bit positions
are{5,12,13,14,21,28,29,30} when both symmetric and differential conditions are used.

The results presented in Table 4 show the effectiveness of our proposed two improved
conditions for partial bit ML-distinguisher, the accuracy is 66.8% for the introduction of
the symmetric condition and 67.3% for the introduction of both symmetric and differential
conditions. The result shows that the slight improvement in neural distinguisher accuracy
comes from the symmetric and differential conditions of the advantage bits search algorithm.
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Table 4: Advantage bits search algorithm effect for 6-round SPECK32

Reference Condition Bit Set Number Accuracy
[20] None {12,13,14,28} 8 65.2%

This paper Symmetry {12,13,28,29} 8 66.8%
Symmetry
Difference {5,12,13,14,21,28,29,30} 8 67.3%

In the second experiment, we use the difference condition to train with a smaller
training sample size, and we call the new distinguishers partial output difference neural
distinguishers. The results in Table 5 show that the new distinguisher accuracy using a
4-bit training sample is comparable to the distinguisher in [20] using a 12-bit training
sample, and the new distinguisher accuracy using a 10-bit training sample is comparable
to the distinguisher in [20] using a 16-bit training sample.

Table 5: Accuracy of the partial output difference neural distinguishers for 6-round
SPECK32

Reference Condition Bit Set Number Accuracy

[20]
None {12,13,14,28} 8 65.2%
None {12,13,14,15,28,29} 12 66.8%
None {5,12,13,14,15,21,28,29} 16 68.8%

This paper

Symmetry
Difference {12,13,28,29} 4 66.7%

Symmetry
Difference {12,13,14,28,29,30} 6 67.3%

Symmetry
Difference {5,12,13,14,21,28,29,30} 8 67.3%

Symmetry
Difference {5,12,13,14,15,21,28,29,30,31} 10 68.8%

The proposed bits selection conditions further improve the effectiveness and make it
possible to use fewer bits for training the neural distinguishers. At the same time, the
benefits of reducing the training sample size are obvious which can reduce the number
of network parameters. This advantage means the cost time and data complexity of
model training will be significantly reduced. Besides, the partial output difference neural
distinguishers can reduce the time and data complexity by reducing the guessed subkey
space in the key recovery phase.

It is worth mentioning that the advantage bits search algorithm can be applied to all
block cipher, especially for large-state block ciphers. Gohr’s key-recovery framework based
on neural distinguishers seem not fit for launching practical attacks on large-state block
ciphers. Because the neural distinguishers take full states as input resulting in an attack
that requires guessing all bits of the subkey but the size of subkeys is typically too large
to do last-round subkey guessing in one go.

According to the results of our new advantage bits search algorithm (Table 3), neural
distinguishers do not exploit every bits equally. In other words, the advantage bits in
the ciphertext pair determines the discriminate result of neural distinguishers. As a
consequence, those last-round subkey bits that mainly relate to the non-advantage bits
are hard to be correctly recovered. For large-state ciphers, the role of advantage bits is
more obvious but the number decreases significantly and thus it is difficult to recover the
complete last-round subkeys. Therefore, using the advantage bits to perform distribution
recovery subkeys for large-state ciphers is the most meaningful development prospect of
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our new advantage bits search algorithm(Algorithm 2).

3.3 Interpretation from Cryptanalysis Perspective
For the partial output difference neural distinguisher, its effectiveness is validated in Table
5. Yet, our distinguisher model opened some questions. The most important one is the
interpretability of the Algorithm 2 (advantage bits search). In Algorithm 2, the advantage
bits are chosen based on the accuracy obtained from multiple distinguishers trained using
different bit sets. An obvious issue with a neural distinguisher is that its black-box nature
is not telling us much about the actual dominance of the analyzed bit positions.

In this section, we want to find out why and how the advantage bits search algorithm
works in a cryptanalytic sense. Essentially, we want to answer the following question:
What types of bit positions are preferred by the distinguisher? If the neural network is
using some currently unknown information to evaluate bit positions, we want to infer the
additional statistics it utilizes. If not, we want to find out what is causing the differences
between bit positions.

In [28], Benamira et al. proposed a thorough analysis of Gohr’s deep neural network
distinguishers of SPECK-32/64 [14]. They concluded that neural distinguishers are not
only basing their decisions on the ciphertext pairs difference, but also the internal state
difference in penultimate and antepenultimate rounds. SPECK32 has the following specific
internal state difference:

3 rounds: 10 ∗ ∗ ∗ ∗ ∗ 00 ∗ ∗ ∗ ∗ ∗ 00 10 ∗ ∗ ∗ ∗ ∗ 00 ∗ ∗ ∗ ∗ ∗ 10
4 rounds: 10 ∗ ∗ ∗ ∗ ∗ 10 ∗ ∗ ∗ ∗ ∗ 10 10 ∗ ∗ ∗ ∗ ∗ 10 ∗ ∗ ∗ ∗ ∗ 00

They conducted a 5-round neural distinguisher which was used to evaluate the set
of positive samples satisfying the above 3-round or 4-round truncated differential. The
accuracy is closer to Gohr’s neural distinguisher [14]. In other words, they successfully
verified that the recognition ability of the neural distinguisher is based on truncated
differential and not just by identifying a different set of ciphertext pairs.

Based on the conclusion, we conjecture that the source of the advantage bits used in
the partial output difference neural distinguishers is precisely the truncated differential.
So we derive the propagation of the 4-round truncated differential for SPECK32.

Figure 5 shows us how the bits evolve along the most probable difference path from a
4-round truncated differential to a 6-round output. As it goes through the modular addition
operation, we highlight the bits that have a relatively high probability of being associated
with the most probable differential. The darker the color, the higher the probability of the
difference being toggled. In each round, the fixed difference is changed to a random bit by
operating with a random bit, but we still highlight the entry bits. Finally, we obtain a set
of possible carrying entry bits {3, 4, 5, 6, 12, 13, 19, 20, 21, 22, 26, 27, 28, 29}.

In addition, we add to the set the bit positions {14, 15} that still have a fixed difference
with their counterparts in the right half {30, 31}. Although 14,15 is not marked with a
special notation in Figure 5, observing the output of 6-round, we find that the value of
the differential is fixed at the two positions 14,15. Thus the bit positions 14,15 retain the
information in the 4-round truncated differential. In summary, 14,15 can provide more
effective learnable features for neural networks compared to the existing bit positions. The
reasons for the bit positions 30,31 are as follows. In the advantage bits search algorithm,
we propose the symmetry condition and demonstrate its effect experimentally in Table
4. Also in the 3-4 rounds of truncated differential proposed by [28], all valid differential
bit positions are in symmetric form, which corroborates the advantage of the symmetry
condition. Therefore, we add the symmetric positions 30,31 of the fixed difference bits
14,15 to the set. Surprisingly, all the elements of the advantage bit set we obtained in
Table 3 (6 pairs of 12 bits) are included in the set. This confirms our conjecture about the
reason for the advantage bits.
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Figure 5: Showing the propagates from the 4-round truncated differential to 6-round
output. The darker the color, the higher the probability that it has a carry propagated to.

We sorted out the relationship between the distinguisher, truncated differential, and
advantage bits which are shown in Figure 6 to help understand the relationship. In summary,
the truncated differential provides the learnable features for training neural distinguishers,
the distinguisher also recognizes positive samples through truncated differential. For our
new distinguishers, the advantage bits are obtained by training neural distinguishers and
then building the partial output difference neural distinguishers using advantage bits.
After our theoretical derivation, we find that the advantage bits are effective significantly
because they reflect the propagation of the truncated differential.

4 Improving Network Structure with Depthwise Separable
Convolution

At present, the neural network improvement of training neural distinguishers mainly focuses
on the accuracy, but the effect is not obvious. The neural distinguisher training is the
main consumption of the precomputation in the key recovery framework. How to train the
network more efficiently is a key research problem. Meanwhile, the reduction of cost in
network training can make the application of differential neural cryptanalysis more widely.

In this section, we first describe the core layers that the network structure is built on
depthwise separable convolutions to train the neural distinguishers. The starting point of
the new network is to reduce the number of training parameters and computation. Then
we describe our comparative experimental ideas and results.

4.1 New Network Structure
We provide in Figure 7 a representation of our new network structure, whose main
components are four parts: an input layer for processing training datasets, an initial
convolutional layer, a residual tower consisting of multiple two-layer depthwise separable
convolutional neural networks, and a prediction head consisting of fully connected layers.

Input Representation. We use the SCP (Single Ciphertext Pair) [14] and the MCP
(Multiple Ciphertext Pairs) [17] on the input format to demonstrate the excellence of
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Figure 6: Relationship between the distinguisher, truncated difference and advantage bits

depthwise separable convolution in two-dimensional and three-dimensional training data.
Thus, the neural network accept data of the form {C1, C

′
1, ......, Cm, C

′
m} (m ∈ 1, 2, 4) and

m ciphertext pairs are arranged in a m× 4× n array. 2n represents the block size of the
target cipher. (For SPECK32, the block size 2n is 32.)

Initial Convolution. The input layer is connected to the initial convolutional layer,
which is a bit slice layer including 1 × 1 convolution kernels, Batch normalization, and
a ReLU activation function. Batch normalization plays a critical role in addressing the
gradient vanishing/explosion problem. Relu function greatly accelerates the convergence
of stochastic gradient descent at a smaller cost compared to the sigmoid/tanh functions.

SeparableConv Blocks. The initial convolution is connected to the SeparableConv
blocks. Each block is a residual construction and consists of two groups of depthwise
separable convolution, Batch normalization, and a ReLU activation function. Effectively
depthwise separable convolution reduces computation compared to traditional layers by
almost a factor of kernelsize× kernelsize. However it only filters input channels, it does
not combine them to create new features.

Prediction Head. The SeparableConv blocks are connected to the prediction head.
First, two layers are densely connected layers with 64 units and followed by a Batch
normalization and a ReLU activation function. Then, the final layer consists of a single
output unit using the Sigmoid activation function to output a binary classification result.

4.2 Results and Discussion
In order to compare with the existing results, we keep the conditions remain the same
except the network, we use the new network to train the neural distinguishers. When
using the SCP training format, we use the new network to train the neural distinguisher
for 6-round of SPECK32. When using the MCP training format, we use the new network
to train the neural distinguisher for 7-round of SPECK32. Meanwhile, to demonstrate the
advantages of the new network, we further approximate the network. We try to reduce
the number of separable blocks to obtain a network with fewer training parameters but
still get a neural distinguisher with great accuracy.

Table 6 shows the experimental results of the new network. For the SCP training
format, the accuracy of the 6-round SPECK32 neural distinguisher using a new network
is similarly comparable to Gohr’s results. However, the number of network training
parameters we use is 50611, which is a significant reduce over Gohr’s network training
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Table 6: Results of the new network structure

Core Net Pair Round Depth Total Params Accuracy Source

Conv
1 6 5 70177 0.7888 [14]
2 7 5 129409 0.6393 [17]4 7 5 162177 0.6861

SeparableConv

1 6 5 50661 0.7871 Sect. 4.11 6 1 40421 0.7840
2 7 5 50369 0.6470 Sect. 4.12 7 1 38593 0.6452
4 7 5 83137 0.6939 Sect. 4.14 7 1 71361 0.6598

parameter number. Meanwhile, for the neural distinguishers obtained by further reducing
the separable blocks based on the new network structure, the accuracy is comparable to
the original one, and the number of network training parameters is only 58% of Gohr’s
network. For the MCP training format, we selected ciphertext pairs of 2 and 4 for training
the 7-round SPECK32 neural distinguisher. When using two ciphertext pairs in a single
training sample, the accuracy of the neural distinguisher obtained using the new network is
64.70%. In comparison with Chen’s results, our new neural distinguishers not only improve
the accuracy, but the number of training parameters is only 39% of Chen’s network. In
addition, the neural distinguisher obtained by reducing the number of separable blocks
based on the new network to 1 has the same accuracy as the original one, and the number
of trained network parameters is further reduced to 30% of Chen’s network. When using
four ciphertext pairs in a single training sample, the neural distinguisher accuracy obtained
using the new network is 69.39%. In contrast to Chen’s results, our new neural distinguisher
not only improve the accuracy, but also reduce the number of training parameters of the
network, which is only 51% of Chen’s network. In addition, the neural distinguishers
obtained by reducing the number of separable blocks based on the new network to 1 has
a little slightly decrease in accuracy, but the number of trained network parameters is
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further reduced to 44% of Chen’s network.
Finally, we apply the improved depthwise separable convolutional network structure to

the output difference neural distinguisher presented in Section 3.1. Our main objective is
to observe how much our method saves the number of training parameters and how much
it affects the neural distinguisher accuracy.

Table 7: Results of a combination of the new network structure and the output difference
neural distinguisher

Core Net Bit Set Number Total Params Accuracy Source

Conv
{12,13,28,29} 4 41441 66.7% [20]{12,13,14,28,29,30} 6 43489 67.3%

All bits 64 70177 78.9% [14]

SeparableConv
{12,13,28,29} 4 21921 66.7% Sect. 4.2{12,13,14,28,29,30} 6 23969 67.3%

All bits 64 50661 78.7% Sect. 4.1

The results are presented in Table 7. Compared to the neural distinguishers obtained
with the traditional convolutional network in Section 3.1, the new neural distinguishers
using depthwise separable convolution can reduce the number of training parameters
by 50% without reducing the accuracy. The above results show that our two proposed
improvement schemes have their own advantages of reducing the parameters for neural
distinguishers, and then the combination of the two schemes can further reduce the training
cost.

5 Conclusion
In this paper, we focus on two aspects for reducing the cost of training neural distinguishers,
including lightweight optimization in terms of data format and network structure.

Firstly, we make the following optimization contributions in terms of data format. In
the existing partial ML-distinguisher construction process, the training data format needs
to be determined in advance by the bits selection algorithm. By observing the round
function of the SPECK cipher, we propose two key improvement conditions with important
effects on the advantage bits selection algorithm. The first improvement condition is
symmetry condition. The motivation is that the close relationship between the left and
right halves of the output. The second improvement condition is difference condition,
which represents the conversion of ciphertext pairs into differences. Without reducing the
accuracy of the neural distinguishers, the effect of the difference condition significantly
reduces the amount of sample data and the number of parameters in the training process.
Based on the above two conditions, we present a new complete advantage bits search
algorithm 2, and we conduct a series of experiments for validation effectiveness and finally
achieve satisfactory results. Moreover, the advantage bits search algorithm can be applied
to all block cipher, especially for large-state block ciphers. At the same time, the advantage
bit will provide new development ideas for key recovery methods.

Secondly, in order to optimize the network structure with fewer training parameters, we
introduce depthwise separable convolution into the existing network. Observing the results
obtained from the experiments, we find that the new network structure is greatly optimized
in the number of training parameters and training efficiency. In particular, the new network
structure can provide better parameter approximate reduction for the MCP (Mutiple
Ciphertext Pairs) training data format. Meanwhile, based on our network structure,
we further investigate the required number of SeparableConv blocks. According to the
experimental results, the new network structure can still maintain great accuracy when
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using one SeparableConv block. Furthermore, we combine the two proposed improvements
for data format and network structure, and the experimental results show that the new
combined neural distinguishers can substantially reduce the training cost with a certain
loss of accuracy.

In summary, the proposed parameter optimization scheme in terms of data format and
network structure has significant effect on the problem of huge number of parameters and
heavy computing load, which provides support for deep learning cryptanalysis technology
to be applied to larger block size ciphers. Meanwhile, our results have the potential to
open the way for efficient neural cryptanalysis in applications for portable mobile devices
with limited hardware resources. For future work, we will explore the network structures
that have shown significant results in other areas of deep learning that can be migrated to
differential neural cryptanalysis and retain their benefits.
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