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Abstract

The shuffle model has been extensively investigated in the distributed differential
privacy (DP) literature. For a class of useful computational tasks, the shuffle model
allows us to achieve privacy-utility tradeoff similar to those in the central model, while
shifting the trust from a central data curator to a “trusted shuffle” which can be im-
plemented through either trusted hardware or cryptography. Very recently, several
works explored cryptographic instantiations of a new type of shuffle with relaxed se-
curity, called differentially oblivious (DO) shuffles. These works demonstrate that by
relaxing the shuffler’s security from simulation-style secrecy to differential privacy, we
can achieve asymptotical efficiency improvements. A natural question arises, can we
replace the shuffler in distributed DP mechanisms with a DO-shuffle while retaining a
similar privacy-utility tradeoff?

In this paper, we prove an optimal privacy amplification theorem by composing
any locally differentially private (LDP) mechanism with a DO-shuffler, achieving pa-
rameters that tightly match the shuffle model. Our result asymptoticaly improves the
recent work of Gordon et al., who initiated the study of distributed DP mechanisms in
the DO-shuffle model. Moreover, we explore multi-message protocols in the DO-shuffle
model, and construct mechanisms for the real summation and histograph problems.
Our error bounds approximate the best known results in the multi-message shuffle-
model up to sub-logarithmic factors. Our results also suggest that just like in the
shuffle model, allowing each client to send multiple messages is fundamentally more
powerful than restricting to a single message.

1 Introduction
In distributed differential privacy, a set of clients each hold some private data, and an
untrusted server wants to perform some analytics over the union of the clients’ data, while
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preserving each individual client’s privacy. The shuffle model, first proposed by Bittau et
al. [11] in an empirical work, has become a popular model for implementing distributed
differentially private mechanisms. In the shuffle model, we typically assume that each client
sends one or more messages in a single shot, and a trusted shuffler takes the union of all
clients’ messages, randomly permutes them, and presents the shuffled result to the server.
The server then performs some computation and outputs the analytics result. Specifically,
the trusted shuffler guarantees the anonymity of all messages, such that the server can only
see the union of all messages, without knowing the source of an individual message. For
privacy, we want to guarantee that for two neighboring input configurations of the clients
denoted x and x′ respectively, the distributions of the server’s view are “close”. Numerous
earlier works have shown that the shuffle model often allows us to achieve differentially
private mechanisms whose utility approximates those of the central model (where the server
is trusted and we only need privacy on the outcome of the analytics). Moreover, several
works have shown that the trusted shuffler can be efficiently implemented either using trusted
hardware [11] or using cryptographic protocols [1,2,4,10,13,15,16,20–22,25,27,32,36,37,41].
This makes the shuffle model a compelling approach not just in theory, but also in practical
applications such as federated learning [31].

A couple very recent works [12,34,37] have suggested a relaxed shuffler model called the
differentially oblivious shuffle model (or DO-shuffle model for short). Unlike the traditional
shuffle model which provides full anonymity on the clients’ messages, the DO-shuffle model
shuffles the clients’ messages but possibly allowing some differentially private leakage. More
concretely, a DO-shuffle protocol guarantees that for two neighboring input vectors xH and
x′
H corresponding to the set of honest parties, the adversary’s views in the protocol execution

are computationally or statistically close. The recent works by Gordon et al. [33] and Shi
and Wu [37] both show that the relaxed DO-shuffle can be asymptotically more efficient to
cryptographically realize than a fully anonymous shuffle.

The results of Gordon et al. [33] and Shi and Wu [37] suggest that the DO-shuffle model
might be a compelling alternative to the shuffle model. This raises a very natural question:

If we were to replace the shuffler in shuffle-model differentially private (DP) mechanisms
with a DO-shuffler, can we still get comparable privacy-utility tradeoff?

A particular useful type of theorem in the shuffle model is called a privacy amplification
theorem, which we explain below. Henceforth, let Ri(xi) be some differentially private mech-
anism each client i applies to randomize its own private input xi. This kind of randomizers is
generally called locally differentially private (LDP) randomizers because the randomiza-
tion is done locally by the client itself. Let S denote the random shuffler. Roughly speaking,
a privacy amplification theorem makes a statement of the following nature: if each client’s
LDP mechanism Ri consumes ϵ0 privacy budget, then the overall shuffle-model mechanism
S(R1(x1), . . . ,R(xn)) satisfies (ϵ, δ)-DP for ϵ = ϵ(ϵ0, δ)≪ ϵ0, i.e., privacy is amplified for the
overall shuffle-model mechanism. A line of work [7, 18, 24] has focused on proving privacy
amplification theorems for the shuffle model, culminating in the recent work by Feldman et
al. [26], who proved a privacy amplification theorem for any LDP mechanism with optimal
parameters. Therefore, another meaningful question we can ask is (which is a special case
of the aforementioned question):
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Can we also prove an optimal privacy amplification theorem for the DO-shuffle model?

The pioneering work of Gordon et al. [33] was the first to explore how to use a DO
shuffler to design distributed differentially private mechanisms. Gordon et al. [33] showed two
novel results. First, they prove an optimal privacy amplification theorem for the randomized
response mechanism in the DO-shuffle model, with parameters that tightly match the shuffle-
model counterpart. Next, they generalize their first result, and prove a privacy amplification
theorem for any local differentially private (LDP) mechanism — however, this more general
result is non-optimal, since they rely on the non-optimal shuffle-model amplification theorem
from Balle et al. [7].

1.1 Our Results and Contributions
We show several new results regarding the power of the DO-shuffle model in designing
distributed DP mechanisms.

First, we prove a privacy amplification theorem for any LDP mechanism that achieves
optimal parameters, tightly matching the optimal privacy amplification theorem of the shuffle
model due to the recent work of Feldman et al. [26]. This result improves work of Gordon
et al. [33] in the following senses: 1) we asymptotically improve their privacy amplification
theorem for any general LDP mechanism; and 2) their privacy amplification theorem for
the specific randomized response mechanism can be viewed as a special case of our general
theorem.

Throughout the paper, we use Φ to denote a DO-shuffling protocol. Given an LDP-
randomizer R(·), we use the notation Π(x1, . . . , xn) := Φ(R(x1), . . . ,R(xn)) to denote the
composed protocol where each of the n parties first applies the local randomizer R(·) to
its own private data, and then invokes an instance of the DO-shuffling protocol Φ on the
outcome R(xi).

In all of our theorems below, if the underlying DO-shuffle protocol satisfies semi-honest
security [5, 33], then our result holds in a semi-honest corruption model. Similarly, if the
underlying DO-shuffle satisfies malicious security [5, 12], then our result also holds in a
malicious model.

Theorem 1 (Optimal privacy amplification for any LDP mechanism in the DO-shuffle
model). Given n copies of an ϵ0-LDP randomizer R and an (ϵ1, δ1)-DO shuffler Φ resilient
to t corrupted parties, the composed protocol Π(x1, . . . , xn) := Φ(R(x1), . . . ,R(xn)) is (ϵ +
ϵ1, δ + δ1)-DP against up to t corrupted parties where

ϵ = O

(
(1− eϵ0)eϵ0/2

√
log(1/δ)√

n− t

)
.

Furthermore, if the DO-shuffler satisfies computational (or statistical, resp.) DO, then the
composed protocol satisfies computation (or statistical, resp.) DP.

This result matches the optimal privacy amplification in the shuffle-DP model from Feld-
man et al. [26] except for the additional privacy loss (ϵ1, δ1) that comes from the DO shuffler.
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Second, we consider another natural direction that was previously unexplored, that is,
the multi-message DO-shuffle model. Recall that in the traditional shuffle model, several
works [8, 28] have shown that allowing clients to send multiple messages is fundamentally
more powerful than restricting to a single message per client. In particular, the multi-message
shuffle-model allows us to overcome lower bounds pertaining to the single-message shuffle
model [7, 28], and design mechanisms with asymptotically better privacy-utility tradeoff [6,
8, 28]. We explore the power of the multi-message DO-shuffle model, and show positive
results for two fundamental tasks in private data analytics, that is, histogram, and real-
valued summation. Our DO-shuffle model mechanisms can match the utility of the best
known shuffle-model mechanisms upto only sublogarithmic factors. Earlier works on data
privacy showed that these two primitives have important applications, such as user feedback
collection [11] and federated learning [31].

In the histogram problem, each client i holds an item xi in domain [d] and the server
wants to compute the histogram h, such that for each x ∈ [d], hx =

∑
i∈[n] I[xi = x] in a

privacy-preserving manner. We construct a histogram protocol under the DO-shuffle model
based on the multi-message shuffle-DP protocol from Ghazi et al. [30].

Theorem 2 (Multi-message DO-shuffling private histogram protocol). For ϵ ≤ 1, given an
(ϵ1, δ1)-DO shuffler, there is an O

(
log(1/ϵδ)

ϵ2

)
-message (ϵ+ ϵ1, δ + δ1) DO-shuffle summation

protocol against t < n/2 corrupted parties that achieves Õϵ,δ (log d) L∞ error.

Ghazi et al. [28] proved the L∞ any (ϵ, δ)-single-message shuffle-DP histogram proto-
col must incur at least Ωϵ,δ(min( 4

√
n,
√
d)) error — obviously, this lower bound applies to

the DO-shuffle model too. Thus, our aforementioned result shows that in the DO-shuffle
model too, permitting multiple messages per client can lead to mechanisms with fundamen-
tally better privacy-utility tradeoff than the single-message model. Moreover, the L∞-error
of the protocol is only O(

√
log d)-factor worse than the best-known results for shuffle-DP

histogram [19].
In the real summation problem, there are n clients and client i holds a real value xi ∈ [0, 1].

The server wants to compute the summation X =
∑

i∈[n] xi, while protecting the client’s
privacy. Based on the shuffle-DP protocol by Balle et al. [8], we construct a protocol in the
DO-shuffle model:

Theorem 3 (Multi-message DO-shuffling private summation protocol). For ϵ ≤ 1, given
an (ϵ1, δ1)-DO shuffler, there is an m-message (ϵ + mϵ1, δ + mδ1) DO-shuffle summation
protocol against t < n/2 corrupted parties that achieves Õδ

(
(log log n)2

ϵ2

)
mean square error

with m = ⌊log3(log2 n)⌋.

Balle et al. [7] proved the mean square error for any (ϵ, δ)-single-message shuffle-DP
summation protocol is Ω̃ϵ,δ(n

1/3). This lower bound natrually applies to the DO-shuffle
model. Thus, we show that the separation between single-message protocol and multi-
message protocol still holds in the DO-shuffle model. Also, the mean square error of this
DO-shuffle summation protocol is only O((log log n)2) factor worse than the best-known
protocol [8, 29].

Finally, recall that both Gordon et al. [33] and Bunz et al. [12], construct asymptotically
efficient DO-shuffle protocols that achieve ϵ = o(1/ log log n) privacy loss with a negligibly
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small δ. Therefore, if we instantiate the protocol in Theorem 2 using the DO-shuffle scheme
of Gordon et al. [33] or Bunz et al. [12], the total privacy loss introduced by DO-shuffle is
only by o(1).

2 Preliminaries and Definitions
We review the definitions for standard differential privacy(DP) in the appendix A. Here,
we provide the definitions for differentially oblivious(DO) protocols and specifically, DO
shufflers.

2.1 Differentially Private Protocols and the DO-Shuffle Model
Definition 16 defines a DP-protocol in the shuffle model. The definition is straightforward
partly because we are modeling the shuffle as an idealized trusted party that simply takes
the clients’ messages and outputs the randomly shuffled result. When we consider protocols
in the DO-shuffle model, it is not so clear how to represent the DO-shuffle as an ideal
functionality. Instead, earlier works [34, 37] that give a formal treatment of DO shuffle
protocols typically define security (possibly against computationally bounded adversaries)
in a protocol execution model that is standard practice in the cryptography literature.

Therefore, in this section, we give a more general notion of differentially private protocols.
This will allow us to formally model a DO-shuffle, as well as formally model the privacy of
protocols in the DO-shuffle model.

To define a differentially private protocol, imagine that n parties run a protocol each
with a private input. The adversary controls a set of at most t parties. In the semi-honest
corruption model, the corrupt parties follow the protocol faithfully but are curious and may
try to extract information about others’ secret inputs. In the malicious corruption model,
the corrupt parties can deviate arbitrarily from the prescribed protocol. We often use the
notation xH to denote the inputs corresponding to the honest parties.

Definition 4 (Differentially private protocol). Let ∼ be some neighboring relation. We say
that a protocol Π is a computational (ϵ, δ)-differentially oblivious protocol (or a computational
(ϵ, δ)-DO protocol for short) w.r.t. ∼ against t corruptions, iff for any non-uniform proba-
bilistic polynomial-time (PPT) adversary A controlling at most t parties, for any neighboring
honest input vectors x0

H ∼ x1
H , it holds that

Pr[ExptΠ,0
A (1λ,x0

H) = 1] ≤ eϵ Pr[ExptΠ,0
A (1λ,x1

H) = 1] + δ,

where for b ∈ {0, 1}, the experiment ExptΠ,b
A (1λ) simply samples a random execution of Π

using honest inputs xb
H and involving the adversary A, and outputs the adversary A’s output

at the end.
Furthermore, if A is a semi-honest (or malicious resp.) adversary, we say that the

protocol is (ϵ, δ)-DP in the semi-honest (or malicious resp.) model.

Later in the paper, when the neighboring relationship ∼ is clear, we often omit writing
it explicitly, and simply say that a protocol Π satisfies computational (ϵ, δ)-DO against t
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corruptions. The above definition is for the case of computational security since we require
the adversary A to be polynomially bounded. If we remove the PPT requirement for A,
we would then have the definition of statistical DO protocol. Now we define the (ϵ, δ)-DO
shuffler as following:

Definition 5 (Differentially Oblivious Shuffler). Given n clients and each one of them holds
a message xi. A protocol Φ is a computation (or statistical resp.) (ϵ, δ)-DO shuffler against
up to t corrupted parties iff

1. Φ({y1 . . . yn}) outputs a random permutation of y1, . . . , yn when all parties perform
honestly; and

2. Φ is a computational (or statistical resp.) (ϵ, δ)-DP protocol against up to t corrupted
parties with respect to the following neighboring relation: two honest input vectors x0

H

and x1
H are said to be neighboring, iff there exists a pair i ̸= j such that x0

H and x1
H

are equal in all other coordinates, except for swapping the coordinates i and j, i.e.,
x0
H,i = x1

H,j,x
0
H,j = x1

H,i.

3 Optimal Privacy Amplification by Differentially Obliv-
ious Shuffler

In this section, we provide an optimal privacy amplification theorem for composing DO
shufflers and any general LDP mechanism. Our proof combines techniques from Feldman et
al. [26] and Gordon et al. [33] in a non-blackbox manner.

3.1 Background on Optimal Privacy Amplification in the Shuffle
Model

Gordon et al. [33]’s privacy amplification result using DO-shuffler relies on the non-optimal
shuffle-model privacy amplification result by Balle et al. [7], and achieves parameters that
tightly match Balle et al. [7]. Balle et al. [7] states that given n copies of ϵ0-LDP randomizers,
the composition protocol of the LDP randomizer and a perfect shuffler satisfies (ϵ, δ)-DP for

ϵ = O

(
eϵ0
√

log(1/δ)
√
n

)
. By contrast, the optimal shuffle-model privacy amplification result [26]

achieves ϵ = O

(
eϵ0/2
√

log(1/δ)
√
n

)
. The difference between eϵ0 and eϵ0/2 could be crucial in many

cases as argued by Feldman [26], especially in the regime where ϵ0 > 1 which is commonly
used in practice. This regime also naturally arises when the target central ϵ is greater than
1/
√
n [26]. As an intuitive example, imagine that there are n clients each with a private

bit, and the server wants to estimate the summation of all clients’ bits. Suppose that all
clients employ the standard randomized response mechanims [40] and all clients’ messages are
permuted by trusted shuffler. Now, fix the target privacy budget ϵ = 1. If we were to apply
the amplification theorem of Balle et al. [7], we would derive an estimation error of Õ(n1/4)

where Õ hides terms related to log 1
δ
; whereas the amplification theorem of Feldman [26]

gives a tight error bound of Õ(1).
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We therefore want an optimal privacy amplification theorem for the DO-shuffle model as
well, for the same motivation as the work of Feldman et al. [26]. To understand how DO
shufflers can compose with any general LDP mechanism, we first need to understand the
proof of the optimal privacy amplification theorem for the shuffle model [26].

Theorem 6 (Optimal privacy amplification in the shuffle model [26]). Suppose R is an
ϵ0-DP function where ϵ0 ≤ log( n

16 log(2/δ)
). Then, given n copies of R and a perfectly random

shuffler S, the function S ◦ (R× · · · × R) is (ϵ, δ)-DP, where ϵ = O

(
(1−e−ϵ0 )eϵ0/2

√
log(1/δ)

√
n

)
.

In the following, we will explain the important steps in the proof from Feldman et al. [26],
which are needed later when we replace the perfect shuffler with a DO shuffler.

Without loss of generality, fix a pair of neighboring input configurations x0 = (x1, x2 . . . , xn)
and x1 = (x′

1, x2 . . . , xn) that only differ in the first client’s input. Since R is an ϵ0-LDP
randomizer, for any x, x′ ∈ X where X is the input domain and any y ∈ Y where Y is the
randomizer’s output domain, we have Pr[R(x)=y]

Pr[R(x′)=y]
≥ e−ϵ0 . Thus, we can “decompose” the dis-

tribution of R(x′) as R(x′) = e−ϵ0R(x)+(1−e−ϵ0)Q(x, x′). It means that the distribution of
R(x′) can be seen as a mixture of R(x) and some appropriate leftover distribution Q(x, x′).
Similarly, for all xi where i = 2, . . . , n, we can decompose the output distribution of R(xi)
as

R(xi) =


R(x1) w.p. 1

2eϵ0
,

R(x′
1) w.p. 1

2eϵ0
,

Q(x1, x
′
1, xi), w.p. 1− 1

eϵ0
.

Here, Q(x1, x
′
1, xi) is also some appropriate left-over distribution after the decomposition.

The properties ofQ(x1, x
′
1, xi) are irrelevant in this proof, so we only need to knowQ(x1, x

′
1, xi)

is a legal and well-defined distribution. From the decomposition, we see that with probability
of 1

2eϵ0
, client i will send a message that has the exact same distribution as R(x1). We say it

“clones” R(x1). Similarly, client i will send a message that has the exact same distribution
as R(x′

1) with probability of 1
2eϵ0

, in which case we say it clones R(x′
1). The heart of the

proof is to see that the message from client 1 hides in many clones of R(x1) and R(x′
1), so

whether the client holds x1 or x′
1 only makes a very small difference.

Denote Bin(p, n) as the binomial distribution of the number of successful trials from
n independent Bernouli experiments with individual success probability of p. We use the
following process to generate a shuffled message sequence that has the identical distribution
as the output of the shuffler, i.e., S(R(x1), . . . ,R(xn)):

1. Sample α ∼ Bin(e−ϵ0 , n − 1) where α is the number of clients that clone R(x1) or
R(x′

1);

2. Sample β ∼ Bin(1/2, c) where β is the number of clients that clone R(x1);

3. (h1, h
′
1) = (β+1, α−β), i.e., including client 1, there are exactly h1 = β+1 clients that

are submitting a message from the distribution R(x1), and α−β clients are submitting
a message from the distribution R(x′

1);
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4. Generate h1 i.i.d. messages from distribution R(x1). Generate h′
1 i.i.d. messages from

distribution R(x′
1).

5. Randomly sample n−1−α indices from {2, . . . , n}, say j1 . . . , jn−1−α. For each sampled
j ∈ {j1 . . . , jn−1−α}, generate a message from Q(x1, x

′
1, xj).

6. Shuffle and output all the messages.

From the decomposition of the LDP randomizers, it is not difficult to see the process
generates a message sequence that has the identical distribution as S(R(x1), . . . ,R(xn)). We
can use a similar process to generate a message sequence that has the identical distribution
as S(R(x′

1), . . . ,R(xn)). The only difference is, in step 3, we let (h1, h
′
1) = (β, α − β + 1)

because now client 1 holds x′
1 and will send a message of R(x′

1).
Notice that after fixing (h1, h

′
1), Steps 4 to 6 are just post-processing steps. If we can

prove that the distributions of (h1, h
′
1) in the two processes are (ϵ, δ)-close, we finish the

proof. Luckily, the distributions of (h1, h
′
1) are not complicated. We just need to analyze

the divergence between (β + 1, α − β) and (β, α − β + 1), where α ∼ Bin(e−ϵ0 , n − 1)
and β ∼ Bin(1/2, c). This part of the proof is omitted and the conclusion is that the

distributions are (ϵ, δ)-close, where ϵ = O

(
(1−e−ϵ0 )eϵ0/2

√
log(1/δ)

√
n

)
. We refer the interested

readers to Feldman et al. [26] for more details on the divergence calculation.

3.2 Optimal Privacy Amplification by DO Shufflers
We now provide the proof for the optimal privacy amplification theorem in the DO-shuffle
model. We combine the aforementioned techniques from Feldman et al. [26] and techniques
from Gordon et al. [33] in a non-black-box manner.

Theorem 7 (Optimal privacy amplification of general LDP randomizers by a DO shuffler).
Let ∼ be the neighboring relation where two honest input configurations x0

H ∼ x1
H are neigh-

boring iff they only differ in one client’s input. Suppose R is an ϵ0-DP randomizer. Then,
given n copies of R and an (ϵ1, δ1)-DO shuffler Φ against up to t corruptions. The composed
protocol Π(x1, . . . , xn) := Φ(R(x1), . . . ,R(xn)) is (ϵ+ ϵ1, δ+δ1)-DP against up to t corrupted

parties w.r.t. the neighboring relation ∼, where ϵ = O

(
(1−eϵ0 )eϵ0/2

√
log(1/δ)

√
n−t

)
.

Proof. Denote c = n − t > 1 as the number of honest clients. W.L.O.G, suppose that the
corrupted set is {n − t + 1, . . . , n}. Then clients 1 to client c are honest. Also, let the
neighboring input configurations be x0

H = (x1, x2, . . . , xc) and x1
H = (x′

1, x2, . . . , xc).
Throughout the proof, we refer messages as the results of the clients applying the local

randomizer to their private inputs, which are later treated as the new input messages in the
execution of the (interactive) shuffle protocol.

After fixing (h1, h
′
1), i.e., the number of clients that will submit the message sampled

from µ and µ′ correspondingly, the following steps are post-processing. Therefore, even if
the adversary view includes the final shuffled outcome and also the auxiliary information
about the indices and messages generated for those clients that are not “cloning”, the view
is still (ϵ, δ)-DP with the same ϵ, δ in theorem 6.
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In the proof of theorem 6, there are three types of clients: 1) client 1 who has different
input in two neighboring input configurations; 2) the clients that clone eitherR(x1) orR(x′

1);
3) the clients that do not clone. Let M be the multi-set of all honest parties’ messages. Let
V be the auxiliary information vector includes the messages from those clients that do not
clone R(x1) or R(x′

1). For example, suppose there are five clients. Client 2 and client 3
are cloning and client 4 and client 5 are not. Then, the auxiliary information vector will be
V = (⊥,⊥,⊥, y4, y5), such that y4 and y5 are the messages sent by client 4 and client 5 and
the dummy symbol ⊥ means the V does not include the information about those clients’
messages. Since V can be constructed by the post-processing step (step 5 in the proof of
theorem 6), we know the distribution of (M,V ) is (ϵ, δ)-DP.

Denote the message sequence sent from client 1 to client c to the shuffler as yH =
(y1, . . . , yc). Let M be the message set includeing all messages sent by client 1 and those
cloning clients. We first assume M doesn’t contain duplicate messages and we will handle
the duplication later. Let l = |M | and the messages in M be m1, . . . ,ml. Let j1, . . . , jl be
the indicies for client 1 and those cloning clients. Notice that j1 = 1 because client 1 is
included by definition. There are l! message sequences yH such that the messages sent by
client j1, . . . , jl are a permutation of M and we say the set for those legal sequences is Y .

We define µ as the distribution of R(x1) and µ′ as the distribution of R(x′
1). Also, we

define µ(·) and µ′(·) as their probability density functions. For any i ∈ {j2, . . . , jl}, we know
client i will clone either R(x1) or R(x′

1) with 1
2

probability. Therefore, the client will submit
a message sampled from the mixture distribution ω = 1

2
µ + 1

2
µ′. We also denote ω(·) as its

probability density function.
Given the input configuration of x0

H , define Pr0[A] as the probability of observing some
event A. Conditioned on the auxiliary information vector V , by enumerating all l! sequences
yH = (y1, . . . , yc) in Y , we have

Pr
0
[M | V ] =

∑
yH∈Y

µ(y1)ω(yj2) · · ·ω(yjl) =
∑
yH∈Y

µ(y1)

ω(y1)

∏
y∈M

ω(y).

Similarly, define Pr1[A] as the probability of observing some event A. We have Pr1[M |
V ] =

∑
yH∈Y

µ′(y1)
ω(y1)

∏
y∈M ω(y). Denote D0 as the distribution on the sequences in Y condi-

tioned on M,V and let D0(yH) = Pr[yH |M,V ]. By Bayes’ rule, we have for each yH ∈ Y ,

D0(yH) = Pr
0
[yH |M,V ]

=
Pr0[yH | V ] Prx0

H
[M | V,yH ]

Pr0[M | V ]

=
Pr0[yH | V ] · 1
Pr0[M | V ]

=

µ(y1)
ω(y1)

∏
y∈M ω(y)∑

y′=(y′1,...,y
′
c)∈Y

µ(y′1)

ω(y′1)

∏
y∈M ω(y)

=
µ(y1)/ω(y1)∑

y′∈Y µ(y′1)/ω(y
′
1)
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Notice that given any yH ∈ Y , D0(yH) is solely determined by y1 and M,V . Thus, if we
group those l! possible sequences according to the message sent from client 1, i.e., y1, there
are l groups and each group has (l− 1)! sequences. In the i-th group where y1 = mi, all the
sequences have the same conditional probability. Thus, we can rewrite D0(yH) as

D0(yH) =
1

(l − 1)!

µ(y1)/ω(y1)∑
y∈M µ(y)/ω(y)

Similarly, we can define conditional distribution D1 on Y (conditioned on M,V ) when
client 1’s input is x′

1 and we have D1(yH) =
1

(l−1)!
µ′(y1)/ω(y1)∑
y∈M µ′(y)/ω(y)

.
For any PPT adversary A, define ExptΦA(yH) as A’s output after the execution of the

shuffler Φ given the honest clients’ messages yH and the presence of A. We know that
given M,V , we have the two corresponding conditional distributions over all possible honest
parties’ input sequences Y , i.e., D0 and D1. Then, we try to prove the following lemma:
Lemma 8. For all M,V , let D0 and D1 be the corresponding conditional distribution over
the message sequences. For any PPT A:

Pr
yH

$←−D0

[ExptΦA(yH) = 1] ≤ eϵ1 Pr
yH

$←−D1

[ExptΦA(yH) = 1] + δ1

For b ∈ {0, 1}, the randomness of the probability Pr
yH

$←−Db
[ExptΦA(yH) = 1] comes from two

steps: 1) the random coin used to sample yH from distribution Db; 2) all the random coins
used in experiment ExptΦA(yH).

Proof. W.L.O.G, let’s say the clients are cloning are client 2 to client l. Now, the message
sequence set is all the permutations of M , i.e., Y = Perm(M). Recall the definition of
neighbors for the DO shuffler.

Imagine that we can find a bijection g : Y → Y that maps a message sequence yH

to one of its neighbors g(yH), such that the conditional probabilities are the same, i.e.,
D0(yH) = D1(g(yH)). Using the DO property of the shuffler, we have Pr[ExptΦA(yH) =
1] ≤ eϵ1 Pr[ExptΦA(g(yH)) = 1]+δ1. Then we have a very straightforward way to prove that:

Pr
yH

$←−D0

[ExptΦA(yH) = 1]

=
∑
yH∈Y

D0(yH) Pr[Expt
Φ
A(yH) = 1]

≤
∑
yH∈Y

D1(g(yH))(e
ϵ1 Pr[ExptΦA(g(yH)) = 1] + δ1)

=eϵ1

(∑
yH∈Y

D1(yH) Pr[Expt
Φ
A(yH) = 1]

)
+ δ1

=eϵ1 Pr
yH

$←−D1

[ExptΦA(yH) = 1] + δ1

10



Unfortunately, such a mapping g may not exist. However, we can do the mapping in a
more fine-grained way. This mapping idea comes from Gordon et al. [33]. For each sequence
yH in Y , we make l copies of the sequence, where the i-th copy is denoted as y

(i)
H . Given

some yH = (y1, . . . , yc) and y′
H = (y′1, . . . , y

′
c) such that yH and y′

H are neighbors where
they transpose the first entry and another entry (e.g. the sequence of (1, 2, 3) and (3, 2, 1)
transpose the first entry and the third entry). Recall the message sets M = {m1, . . . ,ml}.
If the neighboring pairs yH and y′

H have y1 = mj and y′1 = mi, then we map y
(i)
H to y

′(j)
H .

That is, we set g
(
y
(i)
H

)
= y

′(j)
H . For example, if M = {1, 2, 3} and the two sequences are

yH = (1, 2, 3),y′
H = (3, 2, 1), then we will map y

(3)
H to y

′(1)
H .

Denote the probability of the i-th sub-copy of yH conditioned on M,V as D0(y
(i)
H ). We

can freely assign the probability to the sub-copies, as long as they are non-negative and∑
i∈[l] D

0(y
(i)
H ) = D0(yH). The remaining work is to make the sub-copies connected by the

mapping g have the same probability. We set

D0(y
(i)
H ) = D0(yH) ·

µ′(mi)/ω(mi)∑
y∈M µ′(y)/ω(y)

=
1

(l − 1)!

µ(mj)/ω(mj)∑
y∈M µ(y)/ω(y)

· µ′(mi)/ω(mi)∑
y∈M µ′(y)/ω(y)

.

We have∑
i∈[l]

D0(y
(i)
H ) =

∑
i∈[l]

D0(yH)
µ′(mi)/ω(mi)∑
y∈M µ′(y)/ω(y)

= D0(yH)

∑
i∈[l] µ

′(mi)/ω(mi)∑
y∈M µ′(y)/ω(y)

= D0(yH).

The last equation is simply by definition that M = {m1 . . .ml}. Similarly, for the j-th
sub-copy of y′

H , we set its probability as

D1(y
′(j)
H ) = D1(y′

H) ·
µ(mj)/ω(mj)∑
y∈M µ′(y)/ω(y)

=
1

(l − 1)!

µ′(mi)/ω(mi)∑
y∈M µ′(y)/ω(y)

· µ(mj)/ω(mj)∑
y∈M µ(y)/ω(y)

.

It is easy to see that D0(y
(i)
H ) = D1(y

′(j)
H ). To see the mapping is a bijection, notice that

for all l! possible sequences, by exchanging two messages, we have one unique neighboring
pair. Thus, there are in total l · l! different neighboring pairs. Also, we have l · l! sub-copies.
Each sub-copy is mapped to another sub-copy and each mapping pairs corresponds to a
unique neighboring pairs. Thus, this mapping is a bijection. We again use g to denote this
mapping, then we have

11



Pr
yH

$←−D0

[ExptΦA(yH) = 1]

=
∑
yH∈Y

D(yH) Pr[Expt
Φ
A(yH) = 1]

=
∑
yH∈Y

∑
i∈[l]

D(y
(i)
H ) Pr[ExptΦA(yH) = 1]

≤
∑
yH∈Y

∑
i∈[l]

D′(g(y
(i)
H ))(eϵ1 Pr[ExptΦA(g(yH)) = 1] + δ1)

=eϵ1

(∑
yH∈Y

D′(yH) Pr[Expt
Φ
A(yH) = 1]

)
+ δ1

=eϵ1 Pr
yH

$←−D0

[ExptΦA(yH) = 1] + δ1.

Now we describe how to handle duplication. Assume the histogram M has unique items
m1, . . . ,mq where the count of item mi is M(mi) and

∑
i∈[t] M(mi) = l. We simply give each

item a unique tag to distinguish them (e.g., (5, 5, 5) are tagged as (5(a), 5(b), 5(c))). After the
tagging, we denote ⟨yH⟩ as tagged sequence and ⟨Y⟩ as the set of all the tagged sequences.
Then, if we consider all the permutation of those same elements with different tags, then
each untagged sequence corresponds to

∏
i∈q M(mi)! tagged sequence. In total, there are

still l! different tagged sequences. From symmetry, for each sequence ⟨yH⟩ ∈ ⟨Y⟩, we have

Pr
0
[⟨yH⟩ |M,V ] = Pr

0
[yH |M,V ] · 1∏

i∈q M(mi)!
.

The similar expression holds for Pr1[⟨yH⟩ | M,V ]. Then, we just treat those l! sequences
differently and the previous proof still holds.

Completing the proof of theorem 7. Finally, to prove the whole protocol’s privacy, we
look at the definition of experiment ExptΠ,b

A (1λ) for any PPT adversary A, any neighboring
input configuration x0

H ,x
1
H :

1. Let (x1, . . . , xc) = xb
H

2. Let yH = (R(x1), . . . ,R(xc)) ;

3. Return ExptΦA(1
λ,yH); (Run the shuffler given message sequence yH with the presence

of A)

We are now trying to prove that, for any PPT A and x0
H ∼ x1

H ,

Pr[ExptΠ,0
A (1λ) = 1] ≤ eϵ+ϵ1 Pr[ExptΠ,1

A (1λ) = 1] + δ + δ1.
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W.L.O.G, let the randomizer R’s output domain be a discrete set. The continuous case
can be proven with a similar argument. Next, we will use the composition technique for DP
mechanisms from Dwork and Roth [23], but change it accordingly to fit the computational
requirement. Let Z be the domain of the random variables (M,V ). Define

∆(M,V ) = max{Pr
0
[M,V ]− eϵ Pr

1
[M,V ], 0}.

Then Pr0[M,V ] ≤ eϵ Pr1[M,V ] + ∆(M,V ). Also, from theorem 6, we know the random

variables (M,V ) are (ϵ, δ)-DP for ϵ = O

(
(1−eϵ0 )eϵ0/2

√
log(1/δ)

√
n−t

)
and some δ > 0. Thus, we

have ∑
(M,V )∈Z

∆(M,V ) ≤ δ.

Moreover, given any M,V and the corresponding conditional distributions D0 and D1, we
have

Pr
yH

$←−D0

[ExptΦA(yH) = 1] ≤

(
eϵ1 Pr

yH
$←−D1

[ExptΦA(yH) = 1] + δ1

)
∧ 1

≤

(
eϵ1 Pr

yH
$←−D1

[ExptΦA(yH) = 1] ∧ 1

)
+ δ1.

Here, a ∧ b means min(a, b). Finally, we have

Pr[ExptΠ,0
A (1λ) = 1]

=
∑

M,V ∈Z

Pr
0
[M,V ]

∑
yH∈Y

Pr
0
[yH |M,V ] · Pr[ExptΦA(yH) = 1]

=
∑

M,V ∈Z

Pr
0
[M,V ] Pr

yH
$←−D0

[ExptΦA(yH) = 1]

≤
∑

M,V ∈Z

Pr
0
[M,V ]

(
(eϵ1 Pr

yH
$←−D1

[ExptΦA(yH) = 1] ∧ 1) + δ1

)

=δ1 +
∑

M,V ∈Z

Pr
0
[M,V ]

(
eϵ1 Pr

yH
$←−D1

[ExptΦA(yH) = 1] ∧ 1

)

≤δ1 +
∑

M,V ∈Z

(eϵ Pr
1
[M,V ] + ∆(M,V )) ·

(
eϵ1 Pr

yH
$←−D1

[ExptΦA(yH) = 1] ∧ 1

)
(For any a1, b1, a2, b2 ∈ R≥0, (a1 + b1) · (a2 ∧ b2) ≤ a1a2 + b1b2)

≤δ1 +
∑

M,V ∈Z

(
eϵ+ϵ1 Pr

1
[M,V ] Pr

yH
$←−D1

[ExptΦA(yH) = 1]

)
+∆(M,V )

≤eϵ+ϵ1 Pr[ExptΠ,1
A (1λ) = 1] + δ + δ1.

13



Many shuffle protocols are not directly derived from LDP protocols. One straightforward
way to derive the privacy parameters for the composition of general protocols and DO
shufflers is using group privacy theorem. We can get a result that for any (ϵ, δ) shuffle-
DP protocol, replacing the perfect shuffler with an (ϵ′, δ′)-DO shuffler will result in an (ϵ +
nϵ′, δ + nδ′)-DP protocols. However, the extra n-fold loss in the privacy budget may be too
large. It is an interesting open question that how to tighten the privacy guarantee for general
single message shuffle-DP protocols under the DO-shuffle model without suffering from the
n-fold privacy loss.

4 Multi-message DO-shuffle Protocols
Gordon et al. [33] only discuss single-message protocols under the DO-shuffle model. Here,
we discuss the possibility of designing multi-message protocols relying on DO shufflers to
achieve strong privacy guarantee while having a better utility than single-message protocols.
There are various analytic problems that separates the single-message shuffle models and the
multi-message shuffle model, among which the most well-studied two are the real summation
problem and the histogram problem.

In the real summation problem, each client i holds a real value x ∈ [0, 1]. The server
wants to compute

∑
i∈[n] xi. Balle et al. [7] proved the mean square error for any (ϵ, δ)-

single-message shuffle-DP protocol is Ω̃ϵ,δ(n
1/3). On the contrary, there are multiple different

multi-message protocols that achieve Õϵ,δ(1) error, see Balle et al [8] and Gahzi et al. [30].
In the histogram problem, each client i holds an item xi in domain [d] and the server

wants to compute the histogram Hx =
∑

i∈[n] I[xi = x] for x ∈ [d]. Gahzi et al. [28] proved
the L∞ error for any (ϵ, δ)-single-message shuffle-DP protocol is Ω̃ϵ,δ

(
min

(
n1/4,

√
d
))

. On
the contrary, there are multiple different multi-message protocols that achieve Oϵ,δ(log d)
error, see Cheu et al. [18], Balle et al. [7] and Gahzi et al. [28].

In this section, we discuss about how to compose DO shufflers with the recursive protocol
from Balle et al. [8] for the real summation protocol that achieves the mean square error of
Oδ

(
(log log n)2

ϵ2

)
. We also discuss how to compose DO shuffler with a special class of multi-

message protocols, which includes the histogram protocol from Gahzi [28] that achieves
Oϵ,δ(log d) error.

We first provide the definition for multi-message DO shuffler, which is a natural extension
of the single-message DO shuffler:

Definition 9 (Multi-message Differentially Oblivious Shuffler). Given n clients and each
one of them holds m message yi,1, yi,2, . . . , yi,m. A protocol Φ is an (ϵ, δ)-DO shuffler against
up to t corrupted parties if

1. Φ({y1,1 . . . yn,m}) outputs a random permutation of y1,1, . . . , yn,m when all parties behave
honestly;

2. Φ is an (ϵ, δ)-DO protocol against up to t corrupted parties given the neighboring
relation such that if x0

H ∼ x1
H , x0

H and x1
H only differ in two messages (say client
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i’s j-th message and client k’s l-th message) and those inputs are “transposed”, i.e.,
x0
H,i,j = x1

H,k,l,x
0
H,k,l = x1

H,i,j.

4.1 Multi-message real summation protocol with DO shufflers
If one multi-message DP protocol just simply runs multiple instances of single-message DP
protocols in parallel and the single-message protocols can be composed with DO shufflers
efficiently, we can simply split the privacy budgets and use the group privacy theorem to
provide the privacy guarantee for the whole protocol under the DO-shuffle model.

For example, Balle et al. [8] propose a private summation protocol that runs O(log log n)
single-message protocols in parallel. The single-message protocol takes an real value xi ∈
[0, 1] and discretizes it to some precision 1/k, where k is some positive integer. That is, let
x̄i = ⌊xik⌋ and x̄i is an integer in [0, k]. Then the server can build a histogram h over [0, k]
for those integers x̄1, . . . , x̄n such that hj =

∑
i∈n I[x̄i = j] and then estimate the sum as

1
k

∑
j∈[k] j · hj. To ensure privacy, the clients can use the ϵ0-LDP k-ary randomized response

mechanism kRR(·):

kRR(x) =

{
x w.p. eϵ0−1

eϵ0+k−1
,

y
$←− U[k] w.p. k

eϵ0+k−1
.

Here, U[k] denotes the uniform distribution over {0, 1, . . . , k−1}. Then, using the privacy am-
plification theorem, the local privacy budget ϵ0 can be amplified, such that eϵ0 = O

(
ϵ2n

log(1/δ)

)
.

By properly debiasing and ignoring the discretization error, the mean square error can be
proved to be Oδ(k

3/ϵ2). However, the discretization will leave some non-negative error, i.e.,
xi − 1

k
⌊xik⌋. The error is smaller than 1/k. When k is large, the error introduced by the

k-ary randomized mechanism is large. When k is small, the error of discretization is non-
negligible. Thus, the single-message protocol is limited by this error tradeoff. Luckily, in the
multi-message model, one can treat the discretization error as a new input to the the same
single-message summation protocol, by running the summation protocol in range [0, 1/k].
Balle et al. proved that, by running the protocol recursively with precision kj = 23

j for
j = 1, . . . , ⌊log3(log2(n))⌋ and dividing the privacy budget evenly to the sub-protocols, the
mean square error of the final estimation is Oδ

(
(log log n)2

ϵ2

)
. Notice that one can simply run

all the sub-protocols in parallel and submit all the messages at once.
Since each of the sub-protocols is an LDP protocol composing with the shuffler, it can

also run in the DO-shuffle model. Thus, we can easily prove the privacy guarantee for the
whole protocol.

Theorem 10. For ϵ ≤ 1, given an (ϵ1, δ1)-DO shuffler against up to t < n/2 corruption
clients, there is an m-message (ϵ+mϵ1, δ+mδ1)-DP summation protocol against t corrupted
parties under the DO-shuffle model that achieves Õδ

(
(log log n)2

ϵ2

)
mean square error with

m = ⌊log3(log2(n))⌋.

Proof. We take the recursive protocol from [8] and use a hybrid argument to prove the
theorem. W.L.O.G, let’s say the neighboring input configurations are x0

H = (x1, x2, . . . , xn−t)
and x1

H = (x′
1, x2, . . . , xn−t).
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For one client’s input x, the client locally runs m = ⌊log3(log2(n))⌋ randomization func-
tions R(1), . . . ,R(m) that process the input x to m messages R(1)(x), . . . ,R(m)(x). Also,
each randomized function R(i) has disjoint output domain Yi (because they need a unique
identifier to distinguish messages among parallel protocols). Given one input configuration
(x1, . . . , xn), the shuffled results can be written as a collection of m multi-sets,

({R(1)(x1), . . . ,R(1)(xn)}, . . . , {R(m)(x1), . . . ,R(m)(xn)}).

In the proof of the privacy theorem from [8], there exist sequences of ϵ1, . . . , ϵm and δ1, . . . , δm
such that for i ∈ [m], the multi-set {R(i)(x1), . . . ,R(i)(xn)} is (ϵi, δi)-DP, such that

∑
i∈[m] ϵi =

ϵ,
∑

i∈[m] δi = δ.
To prove the privacy under DO-shuffle model, we can build m+ 1 hybrids, labeled from

0 to m: in the i-th hybrids, client 1 will submit m messages:

R(1)(x1), . . . ,R(i)(x1),R(i+1)(x′
1), . . . ,R(m)(x′

1)

Also, HybA
i denotes the adversary A’s output in the i-th hybrids. Here, we see that the

only difference between the shuffled result in hybrid i and hybrid i + 1 is the multi-set
{R(i+1)(x1), . . . ,R(i+1)(xn)} and {R(i+1)(x′

1), . . . ,R(i+1)(xn)}. We know that the single-
message randomizer R(i+1) can compose with an (ϵ′, δ′)-DO shuffler (because it is a ϵ0-
LDP randomized-response randomizer). Thus, the distributions of hybrid i and i + 1 are
(ϵi + ϵ′, δi + δ′)-DP, i.e., for any PPT A,

Pr[HybA
i = 1] ≤ eϵi+ϵ′ Pr[HybA

i+1 = 1] + δi + δ.

By group privacy theorem, the hybrid 0 and hybrid m is (ϵ+mϵ′, δ+mδ′)-DP. The condition
t < n/2 ensures that the utility theorem from [8] only degrades by a constant factor.

Finally, recall that both Gordon et al. [33] and Bunz et al. [12], construct asymptotically
efficient DO-shuffle protocols that achieve ϵ = o(1/ log log n) privacy loss with a negligibly
small δ. Therefore, if we instantiate the protocol in Theorem 2 using the DO-shuffle scheme
of Gordon et al. [33] or Bunz et al. [12], the total privacy loss introduced by DO-shuffle is
only by o(1).

4.2 Multi-message DO-shuffle histogram protocol from multi-message
privacy blanket protocol

Gahzi et al. [28] propose a mulit-message shuffle-DP protocol for the histogram problem that
achieves Õϵ,δ(log d) L∞ error. We briefly describe the protocol here.

Let’s assume the domain size d = n first. Each client i will sample ρ = 36 ln(1/δ)
ϵ

extra
“fake elements” uniformly from {1, . . . , d}, combine the true element xi and send the ρ + 1
elements to the shuffler. For each particular element index j ∈ [d], let’s say the true count
of element j is Xj and server sees Yj copies in the shuffler’s output. In expectation, we have
E[Yj] = Xj + ρn/d = Xj +

36 ln(1/δ)
ϵ

. Thus, the server can simply estimate the counts by
proper debiasing. By the Chernoff bound, it is easily to bound the L∞ error of the histogram
by O(

√
log d log(1/δ)/ϵ). The whole histogram has sensitivity of 2 because only one client
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will change its element in the neighboring input configuration. The fake elements can be
seen as a layer of Binomial noise, such that Yj = Xj + Bin(ρn, 1/n). The Binomial noise
mechanism is well-studied by Agarwal et al. [3] and ρ = 36 ln(1/δ)

ϵ
is enough to ensure (ϵ, δ)

shuffle-DP. To handle the case where the domain size is much larger than n, Gahzi et al. [28]
use Hadmard encoding to “hash” the element to domain {1, . . . , n} and the aforementioned
protocol still works. When there are t < n/2 corrupted clients, the protocol simply increases
the fake element number ρ by a factor of n

n−t
, which is smaller than 2. The privacy is

preserved and the utility guarantee is only affected by a constant factor. Now we provide
the similar theorem under the DO-shuffle model.

Theorem 11 (Multi-message DO-shuffle private histogram protocol). For ϵ ≤ 1, given an
(ϵ1, δ1)-DO shuffler, there is an O

(
log(1/ϵδ)

ϵ2

)
-message (ϵ + ϵ1, δ + δ1)-DP histogram protocol

against t < n/2 corrupted parties under the DO-shuffle model that achieves Õϵ,δ (log d) L∞
error.

The protocol from Gahzi et al. [28] has the special property that each client only sends
one “data-dependent” message and all the data-independent messages, i.e., the “fake el-
ements” have the same distribution. Also, given two neighboring input configurations
x0
H = (x1, x2, . . . , xn) and x1

H = (x′
1, x2, . . . , xn), even when the adversary observes the

data-dependent message from client 2 to client n, the protocol is still DP because the pri-
vacy guarantee is achieved by taking the “fake elements” as the randomness source. We
generalize this property as following:

Definition 12 (Multi-message privacy blanket protocol). A multi-message privacy blanket
protocol in the shuffle model requires each client i, who holds input xi, only sends one
message yi = R(xi) that is dependent on the input xi and sends at most m i.i.d. “privacy
blanket” messages zi,1, . . . , zi,m sampled from a pre-defined distribution ω. Also, for any two
neighboring input xi and x′

i, the distributions of the multisets

{R(xi), z1,1, . . . , z1,m, . . . , zn,1, . . . , zn,m}

and
{R(x′

i), z1,1, . . . , z1,m, . . . , zn,1, . . . , zn,m}

are (ϵ, δ)-close.

Theorem 13 (Multi-message privacy blanket protocol under DO shuffle model). For any
(ϵ, δ)-DP multi-message privacy blanket protocol that tolerates up to t corrupted clients is
(ϵ′ + ϵ, δ′ + δ)-DP under the DO-shuffle model given an (ϵ′, δ′)-DO shuffler that tolerates up
to t corrupted clients.

Proof. The spirit of the proof is nearly the same as the proof for theorem 6. Let c = n − t
be the honest client number. W.L.O.G, let the neighboring input configurations be x0

H =
(x1, x2, . . . , xc) and x1

H = (x′
1, x2, . . . , xc). Excluding the adversary’s input, the shuffling

results M can be seen as the multi-set of

{y1, . . . , yc, z1,1, . . . , z1,m, . . . , zc,1, . . . , zc,m},
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where y1, . . . , yc are the data-dependent messages and all zi,j are the data-independent mes-
sages. Let the adversary’s view include the auxiliary information about the data dependent
messages from client 2 to client c, say V = (y2, . . . , yn). Conditioned on M,V , the remaining
mc+ 1 messages are all independent, where y1’ is R(x1) or R(x′

1) and all zi,j have the same
distribution ω. This structure is exactly the same as what we have seen in the proof of
theorem 6. Let Y be all possible permutations of all the messages from the sets that removes
all messages in V from M . Let yH be a message sequence of those mc + 1 messages. Let
D0 be the conditional distribution on Y when client 1’s input is x1 conditioned on M,V .
Similarly, let D1 be the conditional distribution when client 1’s input is x′

1. Using the same
mathcing trick in the proof of theorem 6, we can prove that for any PPT advesary A and
an (ϵ′, δ′) DO-shuffler Φ, we have

Pr
y0
H

$←−D0

[ExptΦ,0
A (1λ,x0

H) = 1] ≤ eϵ
′

Pr
y1
H

$←−D1

[ExptΦ,1
A (1λ,x1

H) = 1] + δ′

Then, using the similar composition argument like the proof for theorem 6, we get the
result.

Combining theorem 13 and the utility theorem for the histogram protocol (theorem 4.1)
from Gahzi et al. [28], the proof for theorem 11 is straightforward.

5 Related Work
We now review additional related work.
Privacy amplification in the shuffle model. Bittau et al. [11] first propose the shuffle-
DP idea as a proposal for Google’s privacy-preserving data analytic system. Later, Cheu
et al. [18] provide the first formal theoretical privacy amplification result for a simple and
important mechanism, i.e., the binary randomized response mechanism. They proved that
given n copies of ϵ0-LDP binary randomized response randomizer, the shuffled result is (ϵ, δ)-

DP for ϵ = O

(
eϵ0/2
√

log(1/δ)
√
n

)
. They also proved that the asymptotic expression is tight.

Erlingsson et al. [24] provide the first shuffle-model privacy amplification theorem for any

general ϵ0-LDP randomizers that the amplified privacy parameters are ϵ = O

(
e3ϵ0
√

log(1/δ)
√
n

)
for δ > 0. Later, Balle et al. [7] provide a better privacy amplification theorem showing

that ϵ = O

(
eϵ0
√

log(1/δ)
√
n

)
. Also, in another work, Balle et al. [9] provide the privacy am-

plification results for non-pure LDP randomizers: for (ϵ0, δ0)-LDP randomizers, the shuffled

outcome is (ϵ, δ)-DP for ϵ = O

(
e20ϵ0
√

log(1/δ)
√
n

)
and δ > 0. However, those works generally

include quite involved techniques, making the amplification result like a black box. Recently,
Feldaman et al. [26] gave a simple and elegant proof of the optimal privacy amplification
result in the shuffle model. They show that the shuffled outcome satisfies (ϵ, δ)-DP where

ϵ = O

(
eϵ0/2
√

log(1/δ)
√
n

)
, thus closing the gap between the parameters for general LDP mech-

anisms and the binary randomized response mechanism.
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From the shuffle model to the DO-shuffle model. A trusted shuffler can be realized
either through trusted hardware [11, 17] or through cryptographic techniques such as mix-
nets [1,10,15], dining cryptographer’s net (DC-net) [2,16,21], and various other cryptographic
techniques [4, 20, 27, 36, 37, 41].

Many earlier cryptographic protocols for anonymous shuffling require at least quadratic
communication and computation [1, 15, 16, 21]. Recently, some works suggested the relaxed
notion of differential privacy in anonymous communication protocols [5,12,34,35,38,39], also
referred to as differential obliviousness [14, 34]. Notably, a few recent works [12, 34] pointed
out that by relaxing the privacy notion to differential obliviousness, we can asymptoti-
cally improve the protocol’s communication complexity or computational complexity from
quadratic to (quasi-)linear. In particular, Ando et al. [5] showed how to construct a differ-
entially oblivious shuffle using onion routing in both the semi-honest and malicious model,
achieving quasilinear total communication and computation. Gordon et al. [34] showed how
to realize a concretely efficient differentially oblivious shuffle in the semi-honest setting with
O(n log n) total number of messages. Bunz et al. [12] showed a non-interactive differentially
oblivious shuffle in the malicious model that achieves O(n) total message complexity per
shuffle and sub-quadratic total computation. Bunz’s construction employs as a building
block the non-interactive fully anonymous shuffler by Shi and Wu [37]. By relaxing the se-
curity definition to DO, they improve the computation complexity of Shi and Wu [37] from
quadratic to sub-quadratic.

The elegant work of Gordon et al. [34] was also the first to explore the power of the
DO-shuffle model in distributed DP mechanisms. As mentioned, they showed an optimal
DO-shuffle-model privacy amplification for the randomized response mechanism. They also
generalize the privacy amplification result to any general LDP mechanism — but this latter
result is non-optimal since they rely on the non-optimal amplification theorem from [7].

6 Conclusion
We prove an optimal privacy amplification theorem by composing any locally differentially
private (LDP) mechanism with a DO-shuffler, achieving parameters that tightly match the
shuffle model. Moreover, we explore the multi-message protocols under DO-shuffle model and
construct mechanisms for the real summation and histograph problems. Our error bounds
approximate the best known results in the multi-message shuffle-model up to sub-logarithmic
factors.

Throughout this paper, we take advantage of the special structures in the DP-protocols
and prove the privacy guarantee for the composition protocols under DO-shuffle model. It
is still an open question that how to compose a general protocols with DO shufflers without
suffering from an n-fold privacy loss. We leave this as a part of future work.
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A Preliminaries on Differential Privacy
Definition 14 ((ϵ, δ)-close). We say the distributions of two random variables, X and X ′

are (ϵ, δ)-close if they have the same domain D and for every subset S ⊆ D,

Pr[X ∈ S] ≤ eϵ Pr[X ′ ∈ S] + δ.

Definition 15 ((ϵ, δ)-Differential Privacy). A function f is (ϵ, δ)-DP w.r.t. some neighbor-
ing relation ∼ on its input domain if for every pair v, v′ ∈ Domain(f), s.t. v ∼ v′, the
distributions of f(v) and f(v′) are (ϵ, δ)-close.

If a function f is (ϵ, 0)-DP, we also say that f is ϵ-DP for short (w.r.t. the neighboring
relation ∼).
The shuffle model. There are n clients labeled from 1 to n and each one of them holds
an input xi. A server wants to do some data analytic over inputs x1, . . . , xn. To protect
client privacy, each client i firstly encodes the input using a randomizer R, then sends the
encoding R(xi) to a shuffler S. The shuffler S takes all clients’ messages and outputs a
random permutation of them. The server receives the output of the shuffler and performs
data analytics on the shuffled messages.

Definition 16 (Differential Privacy in the Shuffle Model). For n clients, the randomizer R
is said to be (ϵ, δ)-Shuffle-DP if the function composition

S ◦ (R× · · · × R)(x1 . . . xn) := S(R(x1), . . . ,R(xn))

is (ϵ, δ)-DP given any input neighboring configurations x0 = (x1, . . . , xn) and x1 = (x′
1, . . . , x

′
n)

that only differ in one client’s input.
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