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Abstract. In [2] we studied collision side-channel attacks, and derived an optimal distinguisher
for key ranking. In this note we propose a heuristic estimation procedure for key ranking based
on this distinguisher, and provide estimates of lower bounds for secret key ranks in collision
side-channel attacks. The procedure employs nonuniform sampling introduced in [1], and it is
more efficient than the subset uniform sampling procedure [3].
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1 Introduction

Side-channel attacks exploit measurable leakage signals produced by the underlying hardware
platform during execution of cryptographic functions. Given an adequate stochastic model of
the signals optimal strategies for an attack on the secret key can be derived. In [2] we studied
collision side-channel attacks based on an optimal distinguisher. The distinguisher is a function
of a key and of the measured values of leakage signals which allows to decide for any two keys
the order of their a-posteriori probabilities conditioned on the measured values, and it can be
used to enumerate the keys in a descending order. The attacker can minimize his expected
effort by trying each key starting with the first one in the enumeration until the secret key has
been found. In security evaluations a lower bound for the position of the secret key, i.e. its
rank, in the enumeration allows to rate the attacker’s best case effort needed to find the secret
key. In this note we propose a heuristic estimation procedure for key ranking based on the
optimal distinguisher, and we provide estimates of lower bounds for secret key ranks in collision
side channel attacks. The procedure employs nonuniform sampling introduced in [1], and it is
more efficient than the subset uniform sampling procedure [3].

2 Background

The optimal distinguisher Dopt.fun.gauss and its objective function D(k, x) which were derived
in [2] for collision side-channel attacks assuming Gaussian leakage function values and Gaussian
noise are restated in the following equations

Dopt.fun.gauss = argmaxk∈(Fn
2 )

L D(k, x),

D(k, x) =
∑L

i=1

∑L
j=1 Di,j(k

(i) ⊕ k(j), x),

Di,j(d, x) =
∑

q∈Fn
2
x(q)(i)x(q⊕d)(j).

The component x(q)(l) of x ∈ (R2n)L represents the measured value of the leakage signal during
the calculation of the l-th of L n-bit S-Boxes with the input data q ∈ Fn

2 . It is assumed that the
actual input to the l-th S-Box is q⊕ k∗(l), where k∗(l) ∈ Fn

2 is the l-th sub-key of the secret key
k∗ ∈ (Fn

2 )
L. The objective function D(k, x) provides for each candidate key k ∈ (Fn

2 )
L a value
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which is strictly increasing with the a-posteriori probability of k conditioned on the measured
values x. The rank of the secret key k∗ is r∗ = |{k ∈ (Fn

2 )
L | D(k, x) ≥ D(k∗, x)}|.

3 Estimation of Lower Bounds for Secret Key Ranks

The nonuniform sampling for key ranking was presented in [1], and then it was used for the es-
timation of the expectation value of a secret key rank based on scores linked to the a-posteriori
probabilities of the sub-keys. Such scores are not available in optimal collision side-channel
attacks. However, given the secret key k∗ and the measured values x an estimate r̃ of a lower
bound r for the secret key rank r∗ can be obtained by nonuniformly sampling the keys k ∈ (Fn

2 )
L

according to some heuristic probability distribution p(k) and counting the sampled keys k for
which D(k, x) ≥ D(k∗, x) and p(k) ≤ p̂ for some p̂.

Let Ni = {1, . . . , i} ⊂ N, and let f̂ , p̂ ∈ R+, m, û ∈ Z+ and t̂ ∈ Nm denote the estimation
parameters.

For i ∈ NL−1 and d ∈ Fn
2 let vi(d) = exp(

∑L
j=1 Di,j(d⊕ k∗(j), x)/L/f̂) (Variant I) and vi(d) =

exp(Di,L(d⊕k∗(L), x)/f̂) (Variant II). Let pi(d) = vi(d)/
∑

q∈Fn
2
vi(q). For k ∈ (Fn

2 )
L−1×{(0)n}

let the probability distribution p(k) be p(k) =
∏L−1

i=1 pi(k
(i)). Let S = {k ∈ (Fn

2 )
L−1 × {(0)n} |

(D(k, x) ≥ D((k∗(1), . . . , k∗(L−1), (0)n), x)) ∧ (p(k) ≤ p̂)}, and let p =
∑

k∈S p(k). Then
r = 2n p

p̂ ≤ 2n|S| is a lower bound for the secret key rank r∗. The reason for the factor 2n is: for

each k ∈ S there are 2n−1 values d ∈ Fn
2 \{(0)n} for which k⊕d /∈ S and D(k, x) = D(k⊕dL, x).

The keys k ∈ (Fn
2 )

L−1 × {(0)n} are sampled m times by randomly selecting each time L − 1
values di for the sub-keys k(i) according to the probability distribution pi(d). Let t̃ denote the
number of sampled keys k for which k ∈ S, B(m, p; i) denote the binomial distribution and

γ(m, p; l) =
∑l−1

i=0 B(m, p; i). The confidence coefficient γ(m, t̃
ûm ; t̃) (see 2.3, [4]) of the lower

bound t̃
ûm for p is at least γ(m, t̂

ûm ; t̂) for t̃ ≥ t̂ ≥ 3 and û ≥ 2 (see 3, [3]). Our estimate r̃ of

the lower bound r is r̃ = 2n t̃
mp̂ when t̃

mp̂ ≥ 1 and t̃ ≥ t̂, and r̃ = 2n otherwise (for each d ∈ Fn
2

D(k∗ ⊕ dL, x) = D(k∗, x), hence r∗ ≥ 2n). Then the confidence coefficient of the lower bound

r̃/û for r is at least γ(m, t̂
ûm ; t̂) for t̃ ≥ t̂ ≥ 3 and û ≥ 2.

4 Simulation Results

We simulated attacks for Gaussian leakage function values φq and Gaussian noise ηq,l. The
simulation parameters were n = 8, L = 16, k∗ = ((0)n)L and the noise variance σ2. In a sim-
ulated attack we first created for each q ∈ Fn

2 and for each l ∈ NL realisations φq and ηq,l of
independent standard normal random variables. Then the vector x was created by setting its
components x(q)(l) =

√
2φq + σηq,l.

In each simulated attack the estimate r̃ of the lower bound r for the secret key rank r∗ was
estimated using Variant I for σ2/18.75 ≤ 2.0 and Variant II for σ2/18.75 > 2.0 with m = 220

and selected values for f̂ and p̂ (for each f ∈ {(2 + σ2)( e2 )
i | i ∈ N10} the value p̃ of the 3-rd

smallest p(k) of the sampled keys k for which D(k, x) ≥ D((k∗(1), . . . , k∗(L−1), (0)n), x) was

determined with m = 216, then f̂ and p̃ with the smallest p̃ were selected). The confidence

coefficient of the lower bound r̃/û for r is at least γ(m, t̂
ûm ; t̂) = 0.999 for û = 16. Attacks

were simulated 1, 000 times for each noise variance σ2, and empirical quantiles of lower bound
estimates r̃ were calculated. The results are shown in Table 1.

The results match those reported in [3] and they were obtained by running around 1, 000
times less iterations.
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σ2/18.75 1st decile 2nd decile median
1.0 8 8 12
1.5 21 25 35
2.0 37 44 58
2.5 60 71 85
3.0 75 84 98
3.5 86 94 105

Table 1: log2 of empirical quantiles of lower bound estimates r̃.
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