
Locally Verifiable
Signature and Key Aggregation

Rishab Goyal
MIT�

Vinod Vaikuntanathan
MITy

Abstract

Aggregate signatures (Boneh, Gentry, Lynn, Shacham, Eurocrypt 2003) enable compressing
a set of N signatures on N different messages into a short aggregate signature. This reduces the
space complexity of storing the signatures from linear in N to a fixed constant (that depends
only on the security parameter). However, verifying the aggregate signature requires access to
all N messages, resulting in the complexity of verification being at least Ω(N).

In this work, we introduce the notion of locally verifiable aggregate signatures that enable
efficient verification: given a short aggregate signature σ (corresponding to a set M of N
messages), the verifier can check whether a particular message m is in the set, in time inde-
pendent of N . Verification does not require knowledge of the entire set M. We demonstrate
many natural applications of locally verifiable aggregate signature schemes: in the context of
certificate transparency logs; in blockchains; and for redacting signatures, even when all the
original signatures are produced by a single user.

We provide two constructions of single-signer locally verifiable aggregate signatures, the
first based on the RSA assumption and the second on the bilinear Diffie-Hellman inversion
assumption, both in the random oracle model.

As an additional contribution, we introduce the notion of compressing cryptographic keys
in identity-based encryption (IBE) schemes, show applications of this notion, and construct an
IBE scheme where the secret keys for N identities can be compressed into a single aggregate
key, which can then be used to decrypt ciphertexts sent to any of the N identities.

�Email: goyal@utexas.edu. Research supported by grants listed under the second author.
yEmail: vinodv@mit.edu. Research supported in part by DARPA under Agreement No. HR00112020023, a grant
from the MIT-IBM Watson AI, a grant from Analog Devices and a Microsoft Trustworthy AI grant. Any opinions,
findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the United States Government or DARPA.

Contents

1 Introduction 1
1.1 Locally Verifiable Aggregate Signatures: Definition and Applications 1
1.2 Locally Verifiable Aggregate Signatures: Our Results 5
1.3 Compressing Cryptographic Keys . 5
1.4 Other Related Work . 6

2 Technical Overview 7

3 Preliminaries 12
3.1 Pseudorandom Functions . 12
3.2 Computational Assumptions . 12

3.2.1 RSA Assumption and Shamir’s Trick . 12
3.2.2 (Bilinear) Diffie-Hellman Inversion Assumption 13

4 Aggregate Cryptosystems with Local Properties 14
4.1 Aggregate Signatures . 14

4.1.1 Locally Verifiable Aggregate Signatures . 16
4.2 Aggregate Identity-Based Encryption . 17

5 RSA-based Locally Verifiable Aggregate Signatures 19
5.1 Deterministic Prime Sequence Enumeration . 19

5.1.1 Prime Sequence Enumerator via Pseudorandom Functions 19
5.2 Construction . 21
5.3 Correctness, Compactness, and More Properties . 22
5.4 Security . 23

6 Pairing-based Locally Verifiable Aggregate Signatures 26
6.1 Construction . 27
6.2 Correctness, Compactness, and More Properties . 29
6.3 Security . 30

7 Pairing-based Aggregate Identity-Based Encryption 35
7.1 Construction . 35
7.2 Correctness and Compactness . 36
7.3 Security . 37

A Locally Verifiable Multi-Signer Aggregate Signature 44
A.1 Properties of (Aggregate) Signatures . 46

B Sampling via Random Oracles 47

i

1 Introduction

The notion of aggregate signatures, introduced by Boneh, Gentry, Lynn, and Shacham [BGLS03],
enables the compression of several signatures σi of messages mi with respect to public keys vki,
into a single, short signature σ̂ which authenticates the entire tuple of messages with respect to the
tuple of public keys. While the original motivation for aggregate signatures was the compression
of certificate chains and the aggregation of signatures in secure BGP, the notion has found a great
deal of practical interest recently in the context of blockchains [Gor18].

While the aggregate signatures are short, verifying them requires access to all the messages. In
many practical scenarios, as we describe below, the verifier is merely interested in checking if σ̂ is
an aggregated signature of some set that contains a particular message m. It may be infeasible or
undesirable to download the entire list of messages, and perform a verification computation whose
runtime scales with the number of messages N . This leads us to the central question that motivates
this work: Can we construct locally verifiable aggregate signatures?

Locality in access and computation is a central theme in computer science, in areas ranging
from coding theory [Yek12] to proof systems [Sud09] to sub-linear algorithms [Gol17]. Thus, the
question of local verifiability is both practically motivated, and also conceptually very natural.

1.1 Locally Verifiable Aggregate Signatures: Definition and Applications

Our first contribution is a definition of the notion of locally verifiable aggregate signatures, which
turns out to require some care.

A natural formalization asks for two algorithms: an aggregation algorithm Aggregate, that takes
a set of tuples {(mi, vki, σi)}Ni=1 and produces a short aggregate signature σ̂ of size, say, poly(λ) bits
and a local verification algorithm LocalAggVerify, that takes the aggregate signature σ̂, a public key
vk, and a message m, and outputs accept or reject. It seems natural to require that LocalAggVerify

runs in time independent of N , and accepts (m, vk, σ̂) if and only if (m, vk) ∈ {(mi, vki)}Ni=1.
It is not hard to see that this notion is impossible to achieve, even in the single-signer setting

where all signatures are produced w.r.t. a single public key vk, due to a simple incompressibility
argument. Indeed, such a pair of algorithms can be used to recover all the messages given just the
aggregate signature, violating incompressibility. In more detail, assume that the messages are of
the form (i, bi) where bi ∈ {0, 1} is a bit. To recover all the bits bi given σ̂, one simply runs the
LocalAggVerify algorithm with both (i, 0) and (i, 1) for every i.

In this work, we define the notion of locally verifiable aggregate signatures, overcoming the above
incompressibility barrier. We focus on the single-signer setting, and show several applications of
our notion.

Our Definition. To circumvent the incompressibility barrier, we include a hint generation algo-
rithm LocalOpen that computes a short hint to aid local verification. Formally, in addition to the
key generation, signing, and verification algorithms, a locally verifiable aggregate signature scheme
consists of three additional algorithms. For the sake of concreteness, the reader should imagine
three types of parties: signers who run KeyGen and Sign, storage servers (or aggregators) who run
Aggregate and LocalOpen, and verifiers who run Verify and LocalAggVerify.

1

Aggregate is the (single-signer) signature aggregation algorithm which takes as input a sequence
of pairs (mi, σi) under a public key vk and produces an aggregate signature σ̂;

LocalOpen is the hint generator (also called the opening algorithm) that takes as input the aggre-
gate signature σ̂ and the set of messages m = {mi}Ni=1, and a target message m ∈ m, and
produces a short hint h;

(crucially, LocalOpen does not have access to the original signatures σi as they have been
forgotten at this point.)

LocalAggVerify is the local verification algorithm that verifies the aggregate signature σ̂ and the
short hint h for a message m.

(importantly, the run-time of LocalAggVerify is independent of N .)

The first thing to note is that our formalization circumvents the incompressibility barrier as local
verification uses a message-dependent hint, and the hint generation depends on the set of all
messages m (and not just the target message). Secondly, we will shortly describe how our definition
fits into several practical applications of aggregate signatures.

For security, we propose an enhanced unforgeability property which protects from both a ma-
licious aggregator and a malicious hint generator. It is defined against an adversary who obtains
signatures for a set m and tries to produce a “fake” aggregate signature and a “fake” hint that makes
the aggregate verifier accept a message m /∈m. For more details, we refer the reader to Section 4.1.

How to use Locally Verifiable Aggregate Signatures in Applications. Local verifiability
is an extremely desirable feature as it leads to many applications in certificate transparency logs
and blockchains, generic implications to signature redactability, and provides a robust time-space
tradeoff that can smoothly interpolate between aggregate signatures and plain signatures.

Certificate Transparency Logs. Certificate transparency (CT) [BLK13] is an internet secu-
rity standard that creates public logs which record all certificates issued by certificate authorities
(CAs). The log is audited periodically to identify mistakenly or maliciously issued certificates.
A user’s browser receives a certificate σ from a website, say on the message (domain-name,IP),
and checks whether the entry exists in the CT log before proceeding to accept the connection.
(This simplified description is sufficient for our purposes; however, for more details on how CT
logs work, we refer the reader to [CTg]).

Aggregate signatures can ease the burden of storage on the CT log. Without aggregate signatures,
the CT log has to store all the signatures (certificates) explicitly. With aggregate signatures,
the CT log can store a short aggregate signature together with an arbitrary compressed data
structure that compactly stores the list of messages (namely, domain names and IP addresses).
However, even if the user’s browser stores or downloads an aggregate signature, the only way to
verify whether a particular entry exists in the log is to download all entries. Locally verifiable
aggregate signatures allow the CT log to compress the certificates into a short aggregate signature
while allowing the user to verify the existence of an entry by downloading just a few additional
kilobytes (in the form of a short hint) and performing a fast computation (using the LocalAggVerify

2

algorithm). Furthermore, our enhanced unforgeability property guarantees that this is secure
against even a malicious CT log who may try to convince the user that a message m ∈ m when
it isn’t.

We note that even single-signer locally verifiable aggregate signatures are a very meaningful
solution in this scenario given that the certificate authorities number in the hundreds while the
number of certificates generated number in the billions. The hints need not be explicitly stored,
and can be computed on-the-fly by the CT log enabling natural forms of space-time tradeoffs and
caching mechanisms (for the hints) for frequently accessed websites. Jumping ahead, we note that
one of our constructions (in particular, the RSA-based construction) has the surprising additional
feature of being able to reconstruct the original signature of any particular message m ∈m given
only the aggregate signature and the set of messages m — this could come in handy during the
auditing of the CT log.

Blockchains. Another application scenario arises in the context of blockchains where a user or
an organization wants to aggregate the signatures on the set of all transactions originating from
a single payer, and later wishes to quickly and with little communication convince a third party
(e.g. an auditor) of the existence of a particular transaction. Again, the above problem can
be elegantly solved by using locally verifiable aggregate signatures as the user/organization can
compute the short hint to prove the existence of the appropriate transaction.

We note that local verification implicitly provides a useful privacy feature. The user/organization
can prove knowledge of a single transaction without revealing the remaining transactions. This
follows from the succinctness requirements, as neither the aggregate signature nor the hint grow
with the number of transactions; thus, the signature and the hint jointly cannot leak too much
information about the other transactions. In addition, some of our constructions satisfy properties
such as dynamic aggregation which could be very useful in this scenario.

Time-Space Tradeoffs from Local Verifiability. Consider a server that stores a collection
of N messages {mi}Ni=1 along with signatures {σi}Ni=1, and several possible clients who wish to
download single messages and check that they indeed belong to the collection. While this can be
solved by using vanilla signatures, the server must dedicate large space for storing all N signatures.
Traditional aggregate signatures can handle the server space issue, but they incur (huge) linear
runtime cost for each individual client. As summarized in Table 1, the run-time for individual
clients can be lowered to O(1) by using locally verifiable aggregate signatures.

We can also obtain a smooth time-space tradeoff that interpolates between locally verifiable ag-
gregate signatures and vanilla signatures. For example, the server could split the collection of N
messages into blocks of length L and aggregate each block of L signatures, reducing the server
run-time to O(L) at the cost of increasing the server storage to O(N/L). This mechanism can
be further generalized to obtain a three-way time-space tradeoff that interpolates between vanilla
signatures, aggregate signatures, and locally verifiable aggregate signatures. In this hybrid mode
of local verification, the signer signs blocks of L2 messages by hashing the block first and then
signing it. The server stores N messages by splitting them into N/(L1L2) super-blocks, each of
which contains L1 blocks, where each block, in turn, contains L2 messages (as above). The server
aggregates the L1 (locally verifiable aggregate) signatures in each super-block and stores them.

3

Type of Signatures
Server space

(for signatures)
Server
time

Per-client space
(for signatures)

Per-client
time

Vanilla Signatures O(N) O(1) O(1) O(1)

Aggregate Signatures O(1) O(1) O(1) O(N)

L.V. Aggregate O(1) O(N) O(1) O(1)

Hybrid (with L2 batch
and L1L2 block size)

O

(
N

L1L2

)
O(L1) O(1) O(L2)

Table 1: Time-Space Tradeoffs with Locally Verifiable (L.V.) Aggregate Signatures.

The server thus stores N/L1L2 signatures. To access a message, the client retrieves an entire
block containing the message, spending O(L2) time. To answer the client query, the server runs
in time O(L1) to generate the hint corresponding to the hash of the block queried by the client.
In short, the new notion of local verification provides a robust time-space tradeoff for the parties
involved.

Given that most data in the real world is compressible, locally verifiable aggregate signatures give
the server the ability to fully leverage compression and reduce the total storage (including the
messages) and communication to sublinear in N . This is possible neither with vanilla signatures
(where one cannot compress the signatures) nor with regular aggregate signatures (where a client
cannot avoid downloading all messages). Although the hint generation is expensive, it is done once
by the (potentially untrusted) server as opposed to imposing a heavy verification cost per client as
in regular aggregate signatures. Furthermore, the hints for the most frequently accessed messages
can be cached for better performance. In a nutshell, locally verifiable aggregate signatures open
up a rich space of tradeoffs in storage, communication and verification of signatures.

Redactable Signatures. Redactable signature schemes [JMSW02, SBZ01] allow a signature
holder to publicly censor parts of a signed document such that the corresponding signature σ
can be efficiently updated without the secret signing key, and the updated signature can still
be verified given only the redacted document. These signatures have many real-world appli-
cations in privacy-preserving authentication as they can be used to sanitize digital signatures.
(See [DPSS15, DKS16] for a detailed overview.)

Locally verifiable aggregate signatures provide a fresh approach to redactability and sanitization.
Briefly, using a locally verifiable aggregate signature, we can sign the large sensitive document
in three steps: first, split the document into small message blocks; second, sign the message
blocks individually, together with their index; and third, aggregate these individual signatures
and output the aggregated signature as the final signature for the full document. To verify the
full (unredacted) document, one could use the regular verification algorithm that takes the entire
document as input. For redaction, the redacting party can generate short hints for each of the
unredacted portions of the document, and include these as part of the redacted signature. Note
that the redacted signature can be verified by running local verification. At a very informal level,
since the redacted signature is shorter than the total number of message blocks, this seems to
guarantee some form of privacy.

4

While this general outline is problematic for several reasons: first, the redacted signatures are long;
and secondly, the above argument does not guarantee true privacy, namely that the signature on
the redacted document does not reveal any information about the redacted messages. However,
it turns out that our RSA-based construction and a slight modification of our pairing-based
construction give a complete solution to the problem, ensuring privacy of the original (unredacted)
message, enabling multi-hop redaction as well as constant-size redacted signatures, improving on
the construction in [JMSW02]. We refer the reader to Section 2 for more details.

1.2 Locally Verifiable Aggregate Signatures: Our Results

Our main result constructs a single-signer locally verifiable aggregate signature scheme secure under
the strong RSA assumption [BP97].

Theorem 1.1 (Informal). Assuming strong RSA, there is a locally verifiable aggregate signature
scheme. In the random oracle model, it is fully secure; and in the standard model, it is statically
secure.

Our second result shows a weaker scheme under the bilinear Diffie-Hellman inversion (BDHI)
assumption [MSK02, BB04a, BB04b]. The scheme requires a long common reference string (CRS)
of size equal to the number of aggregated messages. The verifier, however, only needs access to a
fixed constant size portion of the CRS and is, therefore, still efficient.

Theorem 1.2 (Informal). Under the BDHI assumption, there is a locally verifiable aggregate
signature scheme in the long CRS model. With random oracles, the scheme is fully secure; and in
the standard model, it is statically secure.

Finally, we show an initial feasibility result for a multi-signer locally verifiable aggregate sig-
natures using the machinery of succinct non-interactive arguments of knowledge (SNARKs). We
note that single-signer aggregate signature schemes, without locality, have several (folklore) in-
stantiations based on the RSA assumption, the SIS assumption, and so on. This is in contrast to
the multi-signer setting where bilinear maps seem to dominate. Our work generalizes single-signer
aggregate signatures in a different direction, requiring locality, and exposing a new, challenging,
and practically motivated facet of the problem.

1.3 Compressing Cryptographic Keys

As an independently interesting contribution, we introduce a novel generalization of signature
aggregation to the setting of compressing the keys in identity-based and, more generally, attribute-
based encryption schemes (IBE, ABE). This enables the decryption key holders to compress mul-
tiple keys into a short key such that the aggregated key can be used to decrypt all ciphertexts
that any of individual (unaggregated) decryption keys are authorized to decrypt. Since one of the
main motivations behind designing advanced encryption systems is to have the ability to generate
separate keys for different users, thus it might feel counterintuitive to study compression of keys.
However, there are two main reasons to study aggregation in encryption systems.

5

First, this immediately can be used to reduce storage space in many simple applications. For
example, consider the classical application of using IBE to delegate access over time. In particular,
there is a user who has an IBE master secret key msk, and generates temporary keys skdate for
other devices (such as mobile phones) that are more easily stolen. The messages encrypted are
tagged with different dates, so the temporary keys can decrypt only the corresponding ciphertexts.
Aggregatable IBE allows to compress any subset of these temporary keys into one short key that
can decrypt ciphertexts encrypted to any of underlying dates. While one could use heavyweight
tools (such as ABE) to solve this problem, our observation is that IBE constructions with such
great aggregation properties can lead to a simpler and relatively lightweight solution. This directly
leads to the second (and broader) reason for studying aggregatable encryption systems which is
that they can enable simpler solutions to problems that otherwise needed more advanced objects.
We also provide a simple construction for an aggregatable IBE scheme from the BDHI assumption.

Theorem 1.3 (Informal). Under the BDHI assumption, there is an aggregatable IBE scheme in
the random oracle model.

1.4 Other Related Work

The concept of aggregate signatures was first put forth by Boneh, Gentry, Lynn, and Shacham [BGLS03]
to allow a third party to compress an arbitrary group of signatures into a short aggregated sig-
nature that jointly authenticates all the compressed signatures. Aggregate signatures are re-
lated to, but significantly different from, multisignatures [IN83, Oka88, OO99, MOR01, Bol03]
which were introduced in 1983 [IN83], but received a formal treatment much later by Ohta and
Okamoto [Oka88, OO99] and Micali, Ohta, and Reyzin [MOR01]. They differ in terms of func-
tionality and applications since in multisignatures, a set of users all sign the same message and
the result is a single signature; while aggregate signatures are used to compress a group of sig-
natures, where each signature might be signing a distinct message. In addition to the differing
functionalities, multisignatures can have the group of signers or verifiers cooperate interactively,
while aggregate signatures are more commonly studied in non-interactive settings.

Variants of aggregate signatures have been studied in the sequential [LMRS04] and synchro-
nized [GR06] settings. In the sequential mode of aggregation, the signers are required to interact
either by signing in a sequential chain; while in the synchronized setting, the signing algorithm
takes as input a (time) period t, and the security of the scheme is conditioned on a signer signing
at most once for each period t.

Numerous works have constructed (single- and multi-signer) aggregate signatures from pair-
ing based assumptions [BGLS03, BGLS, Bol03, GR06, LOS+06, BNN07, BGOY07, MT07, RS09,
AGH10], factoring based assumptions [LMRS04, BN07, Nev08, BJ10, FLS12, LLY13a, LLY13b,
BGR14, BMP16, HW18], and multilinear maps (and obfuscation) [FHPS13, HSW13, HKW15].

Another concept, loosely related to the notion of single-signer aggregate signatures, is that of
batch verification which has been very well studied since the foundational work of Fiat [Fia89].
The main motivation behind batch verification of signatures (generated by a single signer) is to
improve the concrete performance of the verifier checking a large sequence of messages. Thus,
batch verification of signatures is not designed to produce a shorter aggregated signature which is
our main goal.

6

2 Technical Overview

In this technical overview, we describe our RSA-based construction of locally verifiable aggregate
signature in detail (proving Theorem 1.1), and briefly describe our pairing-based construction which
uses similar high-level ideas but different algebraic tricks. At the end of the technical overview, we
also discuss a SNARK-based construction of multi-signer locally verifiable aggregate signatures.

RSA-based Locally Verifiable Aggregate Signature. Our starting point is the classical RSA-
based single-signer1 aggregate signature scheme where the signature of a message m with respect
to an RSA public key (N, e) is σ = H(m)d (mod N), where ed = 1 (mod ϕ(N)) and H is a hash
function modeled as a random oracle in the security analysis. Given L message-signature pairs
{(mi, σi)}Li=1, the aggregate signature is simply their product σ̂ =

∏L
i=1 σi (mod N). Verification

proceeds by checking that

σ̂e =
L∏
i=1

H(mi) (mod N).

Unfortunately, it is completely unclear how to “locally” verify a single message mi given σ̂ and some
hint hi related to the message vector m. Concretely, deducing how to even define the message-
dependent hint is unclear. One may attempt to define the hint hi to be the product of all hash
values H(mj) for j 6= i, and let the local verifier check that σ̂e = hi ·H(mi). However, a malicious
hint generator can easily fool the verifier: the hint is adversarially generated and the verifier has
no mechanism to check that the hint is well-formed without recomputing it which, in turn, seems
to require the verifier to know all the underlying messages, in direct conflict with the requirement
of local verification. In a nutshell, the accumulator-style aggregation and the presence of a random
oracle seems to make local verification challenging.

To avoid this issue, we look at other RSA-based signature schemes [GMR88, DN94, CD96,
GHR99, CS00, Fis03] for adding local verifiability. While this seems like a plausible approach, it
quickly gets stuck at a much earlier point. Namely, for all these schemes, the notion of single-
signer aggregation has not even been studied (to the best of our knowledge). A closer inspection
shows that, unlike the classical RSA-based signature scheme, most of these schemes do not support
aggregation. A notable exception is the Gennaro, Halevi, and Rabin [GHR99] scheme which works
as follows. Suppose H is a collision-resistant function that maps messages into large (λ-bit) prime
numbers. The signature of a message m is σ = g1/H(m) (mod N) where g ∈ Z∗N is random
and (N, g) is in the public key. Letting emi denote H(mi) and σi = g1/emi (mod N) denote
the signature of mi, the aggregation algorithm can simply compute σ̂ =

∏
i σi (mod N) as the

aggregated signature. Regular (non-local) verification can be performed by the following equation:

(σ̂)
∏
i emi

?
=
∏
i

g
∏
j 6=i emj (mod N).

1Incidentally, we mention that the problem of constructing a multi-signer aggregate signature scheme from RSA has
been a long-standing open problem, although constructions of relaxed variants such as sequential or synchronized
(multi-signer) aggregate signature schemes based on RSA exist [LMRS04, HW18].

7

A correctly generated aggregate signature passes the check because

(σ̂)
∏
i emi =

(∏
i

σi

)∏
i emi

=
∏
i

g
∏
j 6=i emj (mod N). (1)

We now show that the aggregate signatures σ̂ can also be locally verified w.r.t a message mj ∈m

(the latter being the set of all messages whose signatures have been aggregated into σ̂) without
knowing m but given only a short verification hint that depends on m and σ̂. Our first idea is to
generate the following two whole numbers as the hint:

em\mj =
∏
i 6=j

emi , fj =
∑
i 6=j

∏
k/∈{i,j}

emk .

Our key observation is the following equation (which is exactly the same as Equation 1 except it
uses a different exponent for σ̂)

(σ̂)
em\mj = gfj · gem\mj /emj (mod N). (2)

This can be translated into the following verification equation:(
(σ̂)

em\mj /gfj
)emj ?

= g
em\mj (mod N). (3)

Since emj can be computed from just the target message mj , releasing em\mj and fj as the hint
enables local verification of the aggregate signature σ̂ via the above equation. It can also be proven
secure in the presence of malicious hint generators as long as the local verification algorithm also
checks that the numbers em\mj and emj are co-prime (that is, gcd(em\mj , emj) = 1).)

At a first glance, the above scheme seems to solve the problem of locally verifiable single-signer
aggregate signatures from RSA; however, unfortunately, this is not the case. The hints em\mj and
fj have to be computed modulo φ(N), but the hint generator does not (and must not) know φ(N).
The only way out seems to be to compute them over the integers which again does not work as
they could be large O(L)-bit numbers, which is decidedly not short. These together seem like an
unfortunate limitation to obtaining local verifiability. Luckily, this conundrum can be resolved in
a rather simple, yet elegant, way using the surprising power of Shamir’s trick [Sha84].

Our central observation is that the hint generator can completely re-compute the (unique)
signature of every message in the set, starting from just the aggregate signature σ̂. In more detail,
the hint generator first computes

zj := (σ̂)
em\mj /gfj := g

em\mj /emj (mod N).

Note that em\mj and emj are co-prime, thus there exist efficently computable integers α and β such
that α · em\mj + β · emj = 1. The hint generator next re-computes the signature g1/emj of mj as

g1/emj = g
(α·em\mj+β·emj)/emj = (g

em\mj /emj)α · gβ = zαj · gβ (mod N).

It then outputs g1/emj as the hint, and the local verification algorithm simply checks it by running
the plain (non-aggregated) verification algorithm interpreting the hint as a signature on the message

8

mj . (In fact, the local verification algorithm is independent of the aggregated signature σ̂, and only
needs the hint for verification. A detailed discussion is provided in Section 5.2.)

This summarizes our RSA-based locally verifiable aggregate signature scheme, and the final
remaining detail is to figure out how the function H is selected. To that end, we present two
choices — the first is to let H employ a prime sequence generator based on a random oracle,
which gives us a scheme that is fully secure in the random oracle model; and the second is to
employ a technique similar to Micali, Rabin, and Vadhan [MRV99] (who used a t-wise independent
hash function, but we use PRFs; see Section 5.1 for more details) to instantiate the scheme in the
standard model. We point out that we could prove our standard model instantiation to be statically
secure (in the sense that the adversary must query all messages before it sees the verification key).
We leave the problem of constructing a fully secure scheme without random oracles as an interesting
open problem.

In addition to the surprising (in our mind) property of allowing exact re-computation of in-
dividual signatures from aggregate signatures, our RSA-based scheme satisfies several additional
properties such as support for multi-hop aggregation as well as unordered sequential aggregation.
We also point out that the aforementioned exact re-computation property of our aggregate signa-
tures is very useful for obtaining a redactable signature scheme which has constant-size redacted
as well as unredacted signatures. In a nutshell, the redaction algorithm can first compute the
individual signatures of all message blocks whose signature it wants to release, and can aggregate
them again to create a shorter signature.

Pairing-based Locally Verifiable Aggregation. Our pairing-based signature scheme relies on
similar core ideas, but very different details due to differing algebraic structures.

Our starting point is to translate the above process of RSA-based signature generation to
bilinear maps as follows. Recall the signature of a message m is computed as σ = g1/H(m), where
H is a collision-resistant function that maps messages into large prime numbers and the inverse in
the exponent, 1/H(m), is computed using the factorization of the RSA modulus. To port this over
to bilinear maps, we substitute H(m) with α+m, where α is a secret exponent from the master key.
Basically, the signature is set as σ = g1/(α+m), where g is a random public source group generator.
The signature verification performs a bilinear pairing to check that e(σ, gαgm) = e(g, g), where gα

is part of the public key as well.
Coincidentally, this is exactly the weakly secure short signature scheme of Boneh and Boyen

(BB) [BB04b, §4.3], and can be visualized as a bilinear analog of the RSA-based Gennaro-Halevi-
Rabin scheme. Unfortunately, the BB scheme is also not known to be aggregatable, and while there
exist pairing-based (multi-signer) aggregate signature schemes [BGLS03], they are algebraically
similar to the classical RSA-based schemes, thus do not appear to support local verifiability.

Our first main observation is that the BB scheme can actually be shown to be a single-signer
aggregatable scheme. Although the signature aggregation is not as simple as multiplying the
signatures (as in the RSA setting), we observe that, by Lagrange’s inverse polynomial interpolation
technique, we can aggregate a sequence of signatures σi = g1/(α+mi) into σ̂ = g

∏
i 1/(α+mi). Simply

put, Lagrange’s inverse polynomial interpolation allows the following computation without the

9

knowledge of the secret exponent α:

L∏
i=1

1

α+mi
=

γ1
α+m1

+ · · ·+ γL
α+mL

,

where the coefficients γi can be publicly computed given only the sequence of messages {mi}Li=1.
Thus, the aggregate signature σ̂ can be computed as

σ̂ =

L∏
i=1

σγii .

In a different context of attribute-based encryption (ABE), this idea was used by Delerablée,
Paillier, and Pointcheval [DPP07, DP08], except that they employed Newton’s iterative algorithm
instead of Lagrange’s technique. More details about aggregating the group elements is provided in
detail later in Section 6.

Note that while the above allows aggregation of signatures, for regular (non-local) verification,
the verifier requires higher degree monomials of the secret exponent α. Concretely, the aggregate
verifier symbolically evaluates the polynomial

∏L
i=1(X+mi) to simplify it as

∑L
i=0 δiX

i, and using
bilinear maps it can verify the aggregate signature as e(σ̂,

∏
i(g

αi)δi) = e(g, g), but this needs the
monomials gα

i
as part of the public key. This is precisely why our pairing-based scheme requires

a long CRS/public key.
Unlike the [BGLS03] aggregate signature scheme, we can show that this scheme is locally

verifiable. Our main observation here is that the non-local verification algorithm works in two
phases. First, it pre-processes the public key, given only the set of messages, to compute

∏
i(g

αi)δi =

g
∏
i(α+mi) in the source group; second, it uses the bilinear map to pair this with the aggregate

signature σ̂ and compare with e(g, g). We note that the first step in the verification is inefficient,
but a hint generator can speed it up for any target message mj by generating the following two
group elements as part of the short hint:

h1 = g
∏
i 6=j(α+mi), h2 = gα

∏
i6=j(α+mi) = hα1 .

Note that both h1 and h2 can also be publicly computed given only the public key, and set of
messages contained in the aggregated signature. (This follows from the same symbolic execution
of appropriate polynomials.)

And, given the hints h1, h2, a verifier can locally verify the aggregate signature as

e(σ̂, h
mj
1 h2) = e(g, g).

However, the above verification check alone is insufficient as a malicious hint generator can very eas-
ily fool the verifier. To address malicious hint generators, we also include a simple well-formedness
check of the hint as follows:

e(gα, h1) = e(g, h2).

Putting these ideas together, we construct the pairing-based locally verification single-signer ag-
gregate signature scheme in the long CRS setting. We prove this to be statically secure in the

10

standard model, and adaptively secure in the random oracle model by replacing α+m terms with
α + H(m). For more details, see Section 6. We leave the problems of reducing the CRS size and
removing the random oracle an interesting open problems.

We also note that while the above construction needs a long CRS, it satisfies a very interesting
property, namely that the hint generation algorithm is fully public, and does not even depend on
the aggregate signature. Such fully public hint generation will be useful in applications where the
hint generator is unaware of the underlying aggregate signature, or the user wants to generate the
hint even before the aggregate signature has been generated or made available.

Lastly, our aggregatable IBE scheme builds on the above ideas. For details, we refer the reader
to Section 7.

Multi-Signer Scheme from SNARKs. In the “folklore” construction of aggregate signatures
from succinct non-interactive arguments of knowledge (SNARKs), the aggregation algorithm simply
proves, w.r.t. a sequence of verification key-message pairs {(vki,mi)}i, that it knows a sequence of
signatures (σ1, . . . , σN) such that σi is an accepting signature for (vki,mi). This results in short
(aggregate) signatures and fast verification, while also ensuring that from an accepting proof, the
extractor can extract an accepting signature for every verification key-message pair.

This outline can be extended in a simple way to give us a locally verifiable aggregate signature.
To generate the short hint, the hint generator creates another SNARK proof, w.r.t. a target key-
message pair (vk,m), that proves knowledge of a sequence of key-message pairs {(vki,mi)}i and an
aggregate signature σ̂ such that (vk,m) is one of the tuples in the sequence, and σ̂ is an accepting
signature for that sequence of key-message pairs. Clearly, the hint generator has the witness (i.e.,
sequence of key-message pairs and an accepting aggregated signature) available, thus by correct-
ness and efficiency of SNARKs we get that the resulting proof is short and efficiently verifiable.
The enhanced local unforgeability of the resulting construction follows from the extractability of
SNARKs and the unforgeability of the underlying (plain) aggregate signature scheme.

We note that the above sketch serves as a proof of concept of the feasibility of locally verifiable
aggregate signatures in the multi-signer setting. However, a direct construction is more interesting
and desirable for several reasons. First, conceptually, SNARKs seem too big of a hammer to
construct aggregate signatures. Secondly, in practice, SNARKs have a high concrete performance
overhead, while direct constructions based on number theory are much more efficient (this is
akin to why number-theoretic accumulators and plain aggregate signatures are used in practice
as opposed to Merkle trees and SNARK-based plain aggregate signatures). Finally, SNARKs suffer
from impossibility results in the plain model [GW11], and are often constructed in the random
oracle model or from knowledge-type assumptions, while locally verifiable aggregate signatures
can potentially be built from fully standard assumptions in the plain model. Our single-signer
constructions demonstrate this in the static security model; we believe that adaptive security
is achievable without random oracles, but leave it as a fascinating open problem. Yet another
fascinating open problem is to construct a multi-signer locally verifiable aggregate signature scheme.

11

3 Preliminaries

Notation. We will let PPT denote probabilistic polynomial-time. We denote the set of all positive
integers up to n as [n] := {1, . . . , n}. Also, we use [0, n] to denote the set of all non-negative integers
up to n, i.e. [0, n] := {0}∪ [n]. Throughout this paper, unless specified, all polynomials we consider
are positive polynomials. For any finite set S, x← S denotes a uniformly random element x from
the set S. Similarly, for any distribution D, x← D denotes an element x drawn from distribution
D. The distribution Dn is used to represent a distribution over vectors of n components, where
each component is drawn independently from the distribution D.

3.1 Pseudorandom Functions

A pseudorandom function (PRF) consists a pair of algorithms Setup and Eval with the following
syntax:

Setup(1λ, 1n)→ K. The setup algorithm takes as input the security parameter λ and input length
parameter n, and outputs a PRF key K.

Eval(K,x)→ y. The evaluation algorithm, on input the PRF key K and string x ∈ {0, 1}n, outputs
a bit string y ∈ {0, 1}m. Here m = m(λ) denotes the output length of the PRF.

Definition 3.1 (Pseudorandomness). A PRF scheme PRF = (Setup,Eval) is said to be secure if for
every stateful PPT adversary A, there exists a negligible function negl(·) such that for all λ, n ∈ N,
the following holds:

Pr

AEval(K,·)(rb) = b :

K ← Setup(1λ, 1n), b← {0, 1}
x∗ ← AEval(K,·)(1λ, 1n)

r0 ← {0, 1}m, r1 = Eval(K,x∗)

 ≤ 1

2
+ negl(λ),

where A must not query the challenge input x∗ to the evaluation oracle Eval(K, ·).

3.2 Computational Assumptions

3.2.1 RSA Assumption and Shamir’s Trick

Below we recall (one of the) standard versions of the RSA assumption [RSA78], RSA assumption
with large prime exponents [MRV99], as well as the strong RSA assumption [BP97].

Assumption 3.2 (RSA assumption). Let λ be the security parameter. Let the positive integer
N be the product of two λ/2-bit, distinct odd primes p, q. Let e be a randomly chosen positive
integer less than and relatively prime to φ(N) = (p−1)(q−1). Given (N, e) and a random y ∈ Z∗N ,
it is hard to compute x such that xe ≡ y mod N .

Assumption 3.3 (Large Exponent RSA assumption). Let λ be the security parameter. Let the
positive integer N be the product of two λ/2-bit, distinct odd primes p, q. Let e be a randomly
chosen (λ + 1)-bit prime. Given (N, e) and a random y ∈ Z∗N , it is hard to compute x such that
xe ≡ y mod N .

12

Assumption 3.4 (Strong RSA assumption). Let λ be the security parameter. Let the positive
integer N be the product of two λ/2-bit, distinct odd primes p, q. Given N and a random y ∈ Z∗N ,
it is hard to compute (x, e) such that xe ≡ y mod N , where e > 1 is any positive integer.

We also make use of the following classical lemma due to Shamir whose proof is provided for
completeness.

Lemma 3.5 (Shamir’s trick [Sha83]). Given x, y ∈ ZN together with a, b ∈ Z such that xa =

yb (mod N) and gcd(a, b) = 1, there is an efficient algorithm for computing z ∈ ZN such that
za = y (mod N).

Proof. Let α, β ∈ Z be integers such that αa + βb = 1. Then, z = yαxβ is the desired number as
za = yαaxβa = yαayβb = yαa+βb = y (mod N).

3.2.2 (Bilinear) Diffie-Hellman Inversion Assumption

In this work, we will be using bilinear groups. Let Gen be a PPT algorithm that takes as input
a security parameter λ (in unary), and outputs a λ-bit prime p, an efficient description of groups
G,GT of order p, generator g ∈ G and an efficient non-degenerate bilinear mapping e : G×G→ GT

(that is, e(g, g) 6= 1GT , and for all a, b ∈ Zp, e(ga, gb) = e(g, g)ab). Here we rely on the well studied
family of Diffie-Hellman Inversion problems [MSK02, BB04a, BB04b].

DHI Assumption. The q-DHI assumption states that no PPT adversary, given the sequence
(g, ga, ga

2
, . . . , ga

q
) can compute g

1
a . In this experiment, a is chosen uniformly at random from

Z∗p. It is called a q-type assumption because the experiment is parameterized by the length of the
powers-in-exponent sequence given to the adversary. Here we are working in groups which have
efficient bilinear pairing operation e(·, ·).

Assumption 3.6 (q-DHI Assumption). The assumption is parameterized with an integer q ∈ Z.
We say that the q-DHI assumption holds if for all PPT A, there exists a negligible function negl(·)
such that for all λ ∈ N,

Pr

[
A(Π, L) = g

1
a :

Π = (p,G,GT , g, e(·, ·))← Gen(1λ)

a← Z∗p, L = (ga, ga
2
, . . . , ga

q
)

]
≤ negl(λ)

BDHI Assumption. In this work, we also consider the DHI assumption in the “target" group
as well, which is commonly referred to as the Bilinear Diffie-Hellman Inversion assumption. The
difference between the target and source version of the strong DH assumption is that in the target
group version, the adversary is said to win the game even if it computes 1

a only in the target group,
that is e(g, g)

1
a . Formally, we define both its search and decision versions.

Assumption 3.7 (q-BDHI Assumption). The assumption is parameterized with an integer q ∈ Z.
We say that the q-BDHI assumption holds if for all PPT A, there exists a negligible function negl(·)
such that for all λ ∈ N,

Pr

[
A(Π, L) = e(g, g)

1
a :

Π = (p,G,GT , g, e(·, ·))← Gen(1λ)

a← Z∗p, L = (ga, ga
2
, . . . , ga

q
)

]
≤ negl(λ)

13

Assumption 3.8 (Decision q-BDHI Assumption). The assumption is parameterized with an integer
q ∈ Z. We say that the decision q-BDHI assumption holds if for all PPT A, there exists a negligible
function negl(·) such that for all λ ∈ N,

Pr

A(Π, L, Zb) = b :

Π = (p,G,GT , g, e(·, ·))← Gen(1λ)

a← Z∗p, L = (ga, ga
2
, . . . , ga

q
)

b← {0, 1}, Z0 = e(g, g)
1
a , Z1 ← GT

 ≤ negl(λ)

4 Aggregate Cryptosystems with Local Properties

In this section, we recall the notion of single-signer aggregate signatures, and introduce the con-
cept of local verification for aggregate signatures. Additionally, we also introduce the concept of
aggregate identity-based encryption. Later in Appendix A, we also extend our concept of locally
verifiable aggregate signatures to the multi-signer setting.

4.1 Aggregate Signatures

The notion of aggregate signatures as introduced by Boneh, Gentry, Lynn and Shacham [BGLS03]
is simply a regular signature scheme that comes with two poly-time algorithms Aggregate and
AggVerify, where Aggregate is used to aggregate an arbitrary polynomial number of message-
signature pairs {(mi, σi)}i generated using verification keys {vki}i, into a shorter aggregate signa-
ture σ̂, and AggVerify can be used to verify such aggregate signatures with respect to the sequence
of messages (m1, . . . ,m`) and the verification keys (vk1, . . . , vk`).

An aggregate signature scheme is said to be a single-signer aggregate signature scheme if the
aggregation algorithm requires all the verification keys {vki}i to be the same. Below we define it
formally.

Syntax. A single-signer aggregate signature scheme S for message space M consists of the fol-
lowing polynomial time algorithms:

Setup(1λ)→ (vk, sk). The setup algorithm, on input the security parameter λ, outputs a pair of
signing and verification keys (vk, sk).

Sign(sk,m)→ σ. The signing algorithm takes as input a signing key sk and a message m ∈M, and
computes a signature σ.

Verify(vk,m, σ)→ 0/1. The verification algorithm takes as input a verification key vk, a message
m ∈M, and a signature σ. It outputs a bit to signal whether the signature is valid or not.

Aggregate (vk, {(mi, σi)}i)→ σ̂/⊥. The signature aggregation algorithm takes as input a verifica-
tion key vk, a sequence of tuples, each containing a message mi and signature σi, and it
outputs either an aggregated signature σ̂ or a special abort symbol ⊥.

AggVerify (vk, {mi}i, σ̂)→ 0/1. The aggregate verify algorithm takes as input a verification key vk,
a sequence of messages mi, and it outputs a bit to signal whether the aggregated signature σ̂
is valid or not.

14

Correctness and Compactness. An aggregate signature scheme is said to be correct and com-
pact if for all λ, ` ∈ N, every verification-signing key pair (vk, sk) ← Setup(1λ), messages mi for
i ∈ [`], and every signature σi ← Sign(sk,mi) for i ∈ [`], the following holds:

Correctness of signing. For all i ∈ [`], Verify(vk,mi, σi) = 1.

Correctness of aggregation. If σ̂ = Aggregate (vk, {(mi, σi)}i), then

AggVerify (vk, {mi}i, σ̂) = 1.

Compactness of aggregation. |σ̂| ≤ poly(λ). That is, the size of an aggregated signature is a
fixed polynomial in the security parameter λ, independent of the number of aggregations `.

Security. Next, we recall the security notion for regular signatures as well as for the setting of
aggregate signatures.

Definition 4.1 (Unforgeability). A signature scheme (Setup, Sign,Verify) is said to be a secure
signature scheme if for every admissible PPT attacker A, there exists a negligible function negl(·)
such that for all λ ∈ N, the following holds

Pr

[
Verify(vk,m∗, σ∗) = 1 :

(vk, sk)← Setup(1λ)

(m∗, σ∗)← ASign(sk,·)(1λ, vk)

]
≤ negl(λ),

and A is admissible as long as it did not query m∗ to the Sign oracle.

Definition 4.2 (Static Unforgeability). We say the signature scheme is statically secure if the
adversary in the above game is confined to make all of its message queries {mi}i∈[q] and declare
the challenge message m∗ at the beginning of the game (defined in Definition 4.1) before it receives
the verification key vk.

Definition 4.3 (Aggregated Unforgeability). A single-signer aggregate signature scheme (Setup,

Sign,Verify,Aggregate,AggVerify) is said to be a secure aggregate signature scheme if for every
admissible PPT attacker A, there exists a negligible function negl(·) such that for all λ ∈ N, the
following holds

Pr

[
AggVerify

(
vk, {m∗i }i∈[`], σ̂∗

)
= 1 :

(vk, sk)← Setup(1λ)(
{m∗i }i∈[`], σ̂∗

)
← ASign(sk,·)(1λ, vk)

]
≤ negl(λ),

where A is admissible if there exists i ∈ [`] such that m∗i was not queried by A to the Sign(sk, ·)
oracle.

Definition 4.4 (Static Aggregated Unforgeability). We say the aggregate signature scheme is stati-
cally secure if the adversary in the above game is confined to make all of its message queries {mi}i∈[q]
and declare the challenge messages {m∗i }i∈[`] at the beginning of the game (defined in Definition 4.3)
before it receives the verification key vk.

15

Our definition of static security is identical to the weak-CMA security for plain signatures as
defined by Boneh and Boyen [BB04b]. In addition to the above security properties, there are a
number of other interesting properties such as unique signatures, multi-hop aggregation etc that
have been considered in the literature. We describe them in detail later in Appendix A.1 when
we define aggregate signatures in the multi-signer setting. Our aggregate signature schemes satisfy
most of the properties as we discuss later.

4.1.1 Locally Verifiable Aggregate Signatures

In this work, we introduce the notion of local openings for aggregate signatures that enable faster
local verification. As described above, in existing aggregate signatures the verification algorithm
for an aggregate signature takes as input the entire sequence of messages (m1, . . . ,m`) aggregated
inside signature σ̂. Thus, the run-time of verification scales polynomially with the number of
messages `.

Aggregate signatures with local opening enable efficient verifiability, where the local verification
algorithm takes as input only the message m that has to be verified against the claimed aggregated
signature σ̂, instead of all ` messages. However, without any other modifications to the syntax of
the aggregate signatures, the notion of local verifiability is impossible to achieve (as discussed in
the introduction). In order to make the notion feasible, we introduce an auxiliary local opening
generator that generates some auxiliary information specific to the messagem being locally verified,
and this algorithm does not require any of the input signatures {σi}i that were aggregated, but
the final aggregated signature σ̂. Below we define the algorithms formally.

LocalOpen(σ̂, vk, {mi}i∈[`], j ∈ [`])→ auxj . The local opening algorithm takes as input an aggre-
gated signature σ̂, a verification key vk, a sequence of messages mi for i ∈ [`], and an index
j ∈ [`]. It outputs auxiliary information auxj corresponding to the message mi.

LocalAggVerify(σ̂, vk,m, aux)→ 0/1. The local aggregate verification algorithm takes as input an
aggregated signature σ̂, a verification key vk, a message m, and auxiliary information aux. It
outputs a bit to signal whether the aggregate signature σ̂ contains a signature for message m
under verification key vk, or not.

Correctness and Compactness of Local Opening. An aggregate signature scheme with local
openings is said to be correct and compact if for all λ, ` ∈ N, every verification-signing key pair
(vk, sk)← Setup(1λ), messages mi for i ∈ [`], and every signature σi ← Sign(sk,mi) for i ∈ [`], the
following holds:

Correctness of local opening. For all k ∈ [`], we have

LocalAggVerify (σ̂, vk,mk, LocalOpen(σ̂, vk, {mi}i, k)) = 1.

Compactness of opening. |aux| ≤ poly(λ). That is, the size of the auxiliary opening infor-
mation is a fixed polynomial in the security parameter λ, independent of the number of
aggregations `.

16

Security against adversarial openings. Now we define the security notion for aggregate sig-
natures with local openings.

Definition 4.5 (Aggregated Unforgeability with Adversarial Opening). A locally-verifiable aggre-
gate signature scheme (Setup,Sign,Verify,Aggregate,AggVerify, LocalOpen, LocalAggVerify) is said
to be a secure aggregate signature scheme against adversarial openings if for every admissible PPT
attacker A, there exists a negligible function negl(·) such that for all λ ∈ N, the following holds

Pr

[
LocalAggVerify(σ̂∗, vk,m∗, aux∗) = 1 :

(vk, sk)← Setup(1λ)

(σ̂∗, aux∗,m∗)← ASign(sk,·)(1λ, vk)

]
≤ negl(λ),

where A is admissible if m∗ was not queried by A to the Sign(sk, ·) oracle.

Definition 4.6 (Static Aggregated Unforgeability with Adversarial Opening). We say the locally-
verifiable aggregate signature scheme is statically secure against adversarial openings if the adver-
sary in the above game is confined to make all of its message queries {mi}i∈[q] and declare the
challenge message m∗ at the beginning of the game (defined in Definition 4.5) before it receives
the verification key vk.

Fully Public Openings for Aggregate Signatures. We additionally consider the setting where
the local opening algorithm does not need an aggregate signature to provide an opening w.r.t., but
only the sequence of messages.

Remark 4.7 (Fully Public Openings). An aggregate signature scheme is said to have fully local
public openings if the algorithm LocalOpen has the following syntax — LocalOpen(vk, {mi}i∈[`], j ∈
[`])→ auxj . That is, LocalOpen is oblivious to the aggregated signature.

Remark 4.8 (Optimal Compactness and Efficiency). In our definitions, we consider the size of
the aggregate signatures, auxiliary opening information, running time of the local verifier to be
independent of the number of aggregations. However, one could also consider schemes where the
compactness and efficiency of the scheme grows poly-logarithmically with the number of aggre-
gations, as for most applications poly-logarithmically dependence can be asymptotically captured
within the polynomial dependence on the security parameter.

4.2 Aggregate Identity-Based Encryption

In this section, we introduce the concept of aggregate identity-based encryption systems. We start
by recalling the notion of identity-based encryption, and later describe the concept of secret key
aggregation.

IBE Syntax. An Identity-Based Encryption (IBE) scheme IBE for set of identity spaces I =

{{0, 1}n}n∈N and message spaces M consists of four polynomial time algorithms (Setup,KeyGen,

Enc,Dec) with the following syntax:

Setup(1λ, 1n)→ (mpk,msk). The setup algorithm takes as input the security parameter λ and iden-
tity length n. It outputs the public parameters mpk and the master secret key msk.

17

KeyGen(msk, id)→ skid. The key generation algorithm takes as input the master secret key msk

and an identity id ∈ {0, 1}n. It outputs a secret key skid.

Enc(mpk, id,m)→ ct. The encryption algorithm takes as input the public parameters mpk, a mes-
sage m ∈M, and an identity id ∈ {0, 1}n. It outputs a ciphertext ct.

Dec(skid, ct)→ m/⊥. The decryption algorithm takes as input a secret key skid and a ciphertext
ct. It outputs either a message m ∈M or a special symbol ⊥.

Correctness. We say an IBE scheme is correct if for all λ, n ∈ N, (mpk,msk)← Setup(1λ, 1n), id ∈
{0, 1}n, m ∈M, skid ← KeyGen(msk, id), and ct← Enc(mpk, id,m), we have that Dec(skid, ct) = m.

Security. Next, we recall the security notion for regular IBE systems.

Definition 4.9 (Secure IBE). We say an IBE scheme IBE = (Setup,KeyGen,Enc,Dec) is secure
if for any stateful PPT adversary A there exists a negligible function negl(·), such that for all
λ, n ∈ N, the following holds

Pr

AKeyGen(msk,·)(ct) = b :

(mpk,msk)← Setup(1λ, 1n); b← {0, 1}
(m0,m1, id

∗)← AKeyGen(msk,·)(1λ, 1n,mpk)

ct← Enc(mpk, id∗,mb)

 ≤ 1

2
+ negl(λ),

where all identities id queried by A satisfy id 6= id∗.

Definition 4.10 (Static Secure IBE). We say the IBE scheme is statically secure if the adversary
in the above game is confined to make all of its secret key queries {idi}i∈[q] and declare the challenge
identity id∗ at the beginning of the game (defined in Definition 4.9) before it receives the master
public key mpk.

Aggregating Secret Keys. As mentioned previously, here we consider aggregation of secret keys
associated with different identities into a compact aggregated key. Syntactically, this corresponds
to introducing the following algorithms.

KeyAgg(sk1, . . . , sk`)→ ŝk. The key generation algorithm takes as input a sequence of secret keys
{ski}i for i ∈ [`] (for some ` > 1). It outputs an aggregated key ŝk.

AggDec(ŝk, (id1, . . . , id`), ct, j ∈ [`])→ m/⊥. The aggregated decryption algorithm takes as input
an aggregated key ŝk, a list of identities id1, . . . , id`, a ciphertext ct, and index j ∈ [`] which
denotes the identity used to compute ct. It outputs either a message m ∈ M or a special
symbol ⊥.

Correctness and Compactness. An aggregate IBE scheme is said to be correct and compact if
for all λ, ` ∈ N, master key pair (mpk,msk)← Setup(1λ), identities idi for i ∈ [`], and every secret
key ski ← KeyGen(msk, idi) for i ∈ [`], the following holds:

18

Correctness of aggregated decryption. For all i ∈ [`], every message m ← M, ciphertext
ct← Enc(mpk, idi,m), we have that

AggDec (KeyAgg(sk1, . . . , sk`), (id1, . . . , id`), ct, i) = m.

Compactness of aggregation. |ŝk| ≤ poly(λ). That is, the size of an aggregated key is a fixed
polynomial in the security parameter λ, independent of the number of aggregations `.

5 RSA-based Locally Verifiable Aggregate Signatures

In this section, we provide a locally verifiable single-signer aggregate signature scheme based on the
hardness of RSA. Our scheme satisfies a number of interesting properties, and relies on an efficient
deterministic non-colliding prime sequence enumeration.

5.1 Deterministic Prime Sequence Enumeration

Here we are interested in an efficient injective mapping from the message space (Mλ = {0, 1}λ) to
the set of (λ+ 1)-bit prime numbers. Such injective mappings were constructed by Cachin, Micali,
and Stadler [CMS99] by relying on 2λ2-wise independent hash functions, (randomized) primality
testing [SS77, Rab80], and prime density theorems [DlVP97]. The idea is to enumerate over a
fixed length (≈ 2λ2) sequence of (λ + 1)-bit numbers for each message in the message space, and
select the lexicographically first prime number in that sequence (where the sequence is decided by
the hash function). Since the hash function is pairwise independent, by relying on prime number
density theorems, one gets that with all but negligible probability, such prime numbers for each
message exist in the 2λ2 length sequence.

In this work, we rely on a similar prime sequence enumeration technique, but we slightly
adapt it as it leads to different security proofs of our aggregate signature construction. Concretely,
we rely on deterministic primality testing [AKS04] to avoid keeping random coins as part of the
setup2, and also replace the hash function with a PRF-based hash function in one instantiation
(which results in static security of our signature scheme), and with a Random Oracle [BR93] in the
second instantiation (which results in full security of our signature scheme). Additionally, we make
the sampling process to be expected polynomial time instead as we consider exponential length
sequences for the prime search. As we remark later in Remark B.2, the sampling time could be
worst-case polynomial time by relying on well-known prime gap conjectures.

5.1.1 Prime Sequence Enumerator via Pseudorandom Functions

Let PRF = (PRF.Setup,PRF.Eval) be a secure PRF that outputs λ bits of output. Below, we de-
scribe our prime sequence enumerator based on PRFs. A (fully secure) prime sequence enumerator
2We point out that we use deterministic primality testing only for the ease of exposition, and this is not necessary
as our scheme is secure even if we rely on efficient randomized primality testing. Such an approach was already
outlined in [MRV99] where the idea is to generate a sequence of random coins as part of the setup, and use those
random coins to run the randomized primality test deterministically on all those random coins. The proof relies on
the fact that, with all but negligible probability over the choice of random coins sampled during setup, randomized
primality test will fail on at least one random coins for a non-prime.

19

in the random oracle model (ROM) is described in Appendix B.

PrimeSeqPRF(1λ)→ samp. It samples a PRF key K ← PRF.Setup(1λ, 12λ), and sets samp = K.

PrimeSampPRF(samp = K,m)→ em. It proceeds as follows:

1. Set count := 0, flag := false.

2. While flag = false:

(a) Let y := PRF.Eval(K,m || count) where m || count is interpreted as a 2λ length bit
string.

(b) Run PrimalityTest to check if 2λ + y is a prime. If it is a prime, set flag := true and
em := 2λ + y. Otherwise, set count := count + 1.

Output em.

Theorem 5.1 (Efficient and Statically Secure Enumeration via PRFs). If PRF is a secure pseu-
dorandom function as per Definition 3.1, then (PrimeSeqPRF,PrimeSampPRF) satisfies the following
properties:

Efficient Sampling. For every λ ∈ N, m ∈ {0, 1}λ, the prime sampling algorithm PrimeSampPRF

runs in expected polynomial time, where the probability is taken over the coins of setup
algorithm PrimeSeqPRF.

Statically Secure Non-Colliding Prime Enumeration. For any PPT adversary A, there ex-
ists a negligible function negl(·), such that for all λ ∈ N, we have that

Pr

∃ i 6= j ∈ [Q] s.t. ei = ej ∧mi 6= mj :

{mi}i∈[Q] ← A(1λ)

samp← PrimeSeqPRF(1λ)

{ei = PrimeSampPRF(samp,mi)}i

 ≤ negl(λ).

Proof. The proof follows from [CMS99] which relied on 2λ2-wise independent hash function instead
of a PRF as we do above. Also, as in [MRV99], we force the enumerator to output truly (λ+ 1)-bit
primes by fixing the leading bit to be 1 (i.e., adding 2λ to the randomly sampled number). Now by
relying on the pseudorandomness property of the underlying PRFs, we get the desired properties for
a sequence of polynomial but “a-priori unbounded” number of messages. Since PRFs are poly-wise
independent functions by pseudorandomness for any arbitrary polynomial poly, thus the theorem
follows. Note that here the PRF key is being released as part of the public sampling parameters,
and despite that fact we are relying on PRF security for security of our samplers. Briefly, this is
due to the fact that an attacker in the static non-colliding prime enumeration is required to commit
all its messages at the beginning of the game, and the public sampling parameters (i.e., the PRF
key) is sampled after the messages are committed by the adversary. Therefore, we do not need to
supply the attacker the PRF key, and can simply check whether the non-colliding property failed
by querying the PRF oracle.

20

5.2 Construction

Below we provide our construction of single-signer aggregate signatures with λ-bit messages.

Setup(1λ)→ (vk, sk). The setup algorithm generates an RSA modulus N = pq, where p, q are
random primes of λ/2 bits each. Next, it chooses a random element g ← Z∗N , and samples
the public parameters for prime sequence enumeration as samp ← PrimeSeq(1λ). It sets the
key pair as vk = (N, samp, g) and sk = (p, q, samp, g).

Sign(sk,m)→ σ. It parses sk as above, and computes the prime number em = PrimeSamp(samp,m).
It computes the signature as ge

−1
m (mod N) using p and q from the secret key and computing

e−1m (mod φ(N)).

Verify(vk,m, σ). It parses vk as above, and computes the prime number em = PrimeSamp(samp,m).
It checks whether σem (mod N) = g. If the check succeeds, then it outputs 1 to signal that
the signature is valid, otherwise it outputs 0.

Aggregate (vk, {(mi, σi)}i)→ σ̂/⊥. The signature aggregation algorithm first verifies all the input
signatures σi, and outputs ⊥ if any of these verifications fail. Otherwise, it computes the
aggregated signature as

σ̂ =
∏
i

σi (mod N).

AggVerify
(
vk, {mi}i∈[`], σ̂

)
. The signature verification algorithm parses the verification key as above,

and computes the sequence of primes corresponding to the messages as emi = PrimeSamp(samp,mi)

for all i ∈ [`] where ` is the number of aggregated messages. It then checks whether the fol-
lowing is true or not:

σ̂
∏
i emi =

∏
i

g
∏
j 6=i emj (mod N).

If the check succeeds, then it outputs 1 to signal that the aggregated signature is valid,
otherwise it outputs 0.

LocalOpen(σ̂, vk, {mi}i∈[`], j ∈ [`])→ auxj . It parses vk as above, and computes the sequence of
prime numbers corresponding to the messages as emi = PrimeSamp(samp,mi) for all i ∈ [`].
It then computes the following terms:

em\mj =
∏
i 6=j

emi , fj =
∑
i 6=j

∏
k 6={i,j}

emk .

Note that since vk contains only N and not φ(N), thus the algorithm computes the above as
large integers without performing any modular reductions. It then computes the following:

x = σ̂
em\mj /gfj (mod N).

And, it checks that gcd(em\mj , emj) = 1. If the check fails, it outputs ⊥, otherwise using
Shamir’s trick (Lemma 3.5), it computes auxj as

auxj = Shamir(x, y = g, a = emj , b = em\mj).

21

LocalAggVerify(σ̂, vk,m, aux). The local verification algorithm simply runs the unaggregated verifi-
cation and outputs Verify(vk,m, σ = aux). That is, it interprets aux as the original signature
on m, ignores σ̂, and verifies aux as a signature for m.

Basically, the aggregate signature scheme has the special property that the local opening
algorithm is able to recover the signature for message under consideration from the aggregated
signature, therefore the local opening for a message is simply its signature. Hence, the above
local verification algorithm only needs to check that the opening information aux is a valid
signature for m, and no extra checks are needed for the aggregated signature σ̂.3

In addition to the above algorithms, we want to point out that the scheme supports unordered
sequential signing as well as multi-hop aggregation. Below we describe our sequential signing and
verification algorithms:

SeqAggSign (sk,m′, {mi}i, σ̂)→ σ̂′. The sequential signing algorithm first verifies the input aggre-
gated signature σ̂, and outputs⊥ if the verification fails. Otherwise, it computes the prime em′
as em′ = PrimeSamp(samp,m′), and computes the new aggregated signature as σ̂e

−1
m′ (mod N)

since it knows φ(N).

SeqAggVerify
(
vk, {mi}i∈[`], σ̂

)
. The sequential aggregated verification algorithm parses the verifi-

cation key as above, and computes the sequence of primes corresponding to the messages as
emi = PrimeSamp(samp,mi) for all i ∈ [`] where ` is the number of aggregated messages. It
then checks whether the following is true or not:

σ̂
∏
i emi = g (mod N).

If the check succeeds, then it outputs 1 to signal that the aggregated signature is valid,
otherwise it outputs 0.

5.3 Correctness, Compactness, and More Properties

Correctness of signing. This follows directly from the fact that PrimeSamp is a deterministic
prime number sampler, and that

(
ge
−1
m

)em
= g (mod N) for everym and em = PrimeSamp(samp,m).

Correctness of Aggregation. Consider any sequence of messages m1, . . . ,m`, and correspond-
ing signatures σi = ge

−1
mi for i ∈ [`] where emi = PrimeSamp(samp,mi). We know that aggregating

these signatures is done as σ̂ =
∏
i σi (mod N). And, the aggregated verification checks the follow-

ing:
σ̂
∏
i emi =

∏
i

g
∏
j 6=i emj (mod N).

3We point out that this does not contradict our unforgeability property with adversarial openings. Since, irrespective
of whether the adversary is maliciously aggregating signature or generating hints in a malicious way, the adversary
is never allowed to make a sign query for the message associated with a forged signature. While it seems like since
local verifier is independent of the aggregate signature σ̂, thus a verifier might supply any arbitrary string and still
pass local verification. The point is in order for the local verification to accept, it must be provided with a valid
signature (as a hint), thus an attacker can not forge by supplying only malformed aggregated signatures σ̂.

22

Now to verify that the above check succeeds for honestly computed and aggregated signatures, let
us simplify the left side term σ̂

∏
i emi .

σ̂
∏
i emi =

∏
j

σj


∏
i emi

=

∏
j

g
e−1
mj


∏
i emi

.

Now since we have that
(
g
e−1
mj

)∏
i emi

= g
∏
j 6=i emj (mod N), the correctness of aggregated verifica-

tion follows.

Compactness of Aggregation. The size of an aggregated signature is same as that of an un-
aggregated signature, which simply is a number between 0 and N .

Unique Signatues. Note that the above signature scheme is a unique signature scheme. This
follows from the fact that the prime number enumeration samples (λ+ 1)-bit primes, and since all
factors of φ(N) are primes less than λ/2-bits, thus e−1m (mod φ(N)) is uniquely and well defined.
Thus, the inversion operation ge

−1
m (mod N) is an injective mapping.

Multi-Hop, Unordered and Interleavable Aggregation. We would like to point out that the
above construction is a multi-hop aggregate signature scheme as well as the sequential signing and
non-sequential aggregation can be arbitrarily interleaved. The multi-hop property follows directly
from inspection since the aggregation algorithm is an unordered product of the corresponding
signatures. And, since the product operation is independent of the sequence of multiplication, thus
the aggregated verification does not depend on the order of aggregation, but only the needs the
unordered sequence of aggregated messages. Lastly, we could also interleave the sequential and
non-sequential signature aggregation algorithm, and the corresponding verification would need to
be appropriately modified and altered.

5.4 Security

Static (Aggregated) Unforgeability. We show that if we instantiate the prime sequence enu-
meration based on PRFs in our above aggregate signature construction, then the resulting scheme
satisfies static unforgeability. Formally, we prove the following.

Theorem 5.2 (Static Unforgeability). If the Strong RSA assumption (Assumption 3.4) holds, and
(PrimeSeq,PrimeSamp) is instantiated based on secure PRFs (as described in Section 5.1), then
the aggregate signature scheme described above satisfies static unforgeability, static aggregated
unforgeability, and static aggregated unforgeability with adversarial openings (Definitions 4.2, 4.4
and 4.6).

Proof. We would like to point out that if the scheme satisfies aggregated unforgeability, then it
also satisfies regular unforgeability. Below we first prove static aggregated unforgeability for our
signature scheme.

23

Aggregated unforgeability. Suppose there exists a PPT adversary A that breaks aggregated
unforgeability with non-negligible probability ε. Then we construct a PPT adversary B that breaks
the strong RSA assumption with ε−negl probability for some negligible function negl. We describe
reduction algorithm B below.

The strong RSA challenger samples an RSA modulus N and a random element h ∈ Z∗N , and
sends (N,h) to B. Since we are proving only static security, thus the adversary A also submits
all its signature queries {mi}i∈[Q] and the sequence of challenge messages (m∗1, . . . ,m

∗
`) at the

beginning. Also, since A is an admissible adversary, thus ` ≥ 1 and there exists an index j∗ such
that m∗j∗ /∈ {mi}i∈[Q]. (Here ` = 1 corresponds to regular unforgeability, whereas ` > 1 corresponds
to aggregated unforgeability.)

The reduction B then samples the public parameters for the PRF-based prime sequence enu-
meration as samp ← PrimeSeqPRF(1λ), and it computes the primes associated with all the above
messages as emi = PrimeSampPRF(samp,mi) for all i ∈ [Q] and em∗i = PrimeSampPRF(samp,m∗i)

for all i ∈ [`]. It checks that there does not exist two distinct messages m 6= m′ ∈ {mi}i ∪ {m∗i }i
such that em = e′m. In other words, it checks that the sequence of primes are non-colliding. If the
check fails (i.e., there is a collision), then B aborts. Otherwise, B sets g = h

∏
i∈[Q] emi (mod N),

and sets the verification key vk as vk = (N, samp, g). Here j∗ is the special index such that
m∗j∗ /∈ {mi}i∈[Q]. It also computes the signatures corresponding to each queried message mj as
σj = h

∏
i∈[Q]\{j} emi (mod N) for j ∈ [Q]. B then sends vk and {σi}i to the adversary A. A then

sends it forged signature σ̂ (which corresponds to an aggregated signature for the sequence of chal-
lenge messages m∗1, . . . ,m

∗
`). B then checks if σ̂ is a valid accepting signature. It aborts if it is an

invalid signature, otherwise it computes the following

z = Shamir

x = σ̂
∏
j∈[`]\{j∗} em∗j , y = h, a = em∗

j∗
, b =

∏
i∈[Q]

emi
∑
j∈[`]

∏
k 6=j

em∗k

 . (4)

Finally, B outputs (z, em∗
j∗

) as its strong RSA solution to (N,h).
We claim that if A wins with probability ε, then B wins with probability ε−negl. First, we claim

that if A is an admissible adversary, then B aborts with at most negligible probability. This follows
from the static non-colliding property of the PRF-based prime sequence enumeration Theorem 5.1.
Next, we argue that z

em∗
j∗ = h (mod N) whenever σ̂ is an accepting signature for (m∗1, . . . ,m

∗
`)

and A is admissible adversary. Note that if A is an admissible adversary, then j∗ as defined above
exists, and we have that

σ̂
∏
j∈[`] em∗j =

∏
j∈[`]

g
∏
k 6=j em∗k (mod N).

Substituting g in the right side, we get

σ̂
∏
j∈[`] em∗j =

∏
j∈[`]

y
∏
i∈[Q] emi

∏
k 6=j em∗k (mod N).

Rewriting both sides in the above equation gives us(
σ̂
∏
j∈[`]\{j∗} em∗j

)em∗
j∗ = y

∑
j∈[`]

∏
i∈[Q] emi

∏
k 6=j em∗k (mod N).

24

That is, if σ̂ is an accepting signature, then the above equation gives that xa = yb. Now by Shamir’s
Lemma (Lemma 3.5), we get that z

em∗
j∗ = h (mod N) as long as gcd(a, b) = 1. Here x, y, a, b, z are

as defined in Eq. (4).
Thus, to complete the proof, we simply need to show that gcd(a, b) = 1 where a = em∗

j∗
, b =∏

i∈[Q] emi
∑

j∈[`]
∏
k 6=j em∗k . First, note that a is a prime and a < b, thus either we will have

gcd(a, b) = 1 or gcd(a, b) = a. Thus, to prove that gcd(a, b) = 1, it is sufficient to show that
b mod a 6= 0. Let us now show this precise statement.

b mod a =
∏
i∈[Q]

emi
∑
j∈[`]

∏
k 6=j

em∗k mod a

=
∏
i∈[Q]

emi

∏
k 6=j∗

em∗k + em∗
j∗

∑
j∈[`]\{j∗}

∏
k 6=j,j∗

em∗k

 mod a

=
∏
i∈[Q]

emi

∏
k 6=j∗

em∗k + a
∑

j∈[`]\{j∗}

∏
k 6=j,j∗

em∗k

 mod a

=
∏
i∈[Q]

emi

∏
k 6=j∗

em∗k

 mod a

6= 0

The last inequality follows from the fact that emi and em∗k are non-colliding sequence of primes for
distinct messages. This concludes the proof of static aggregated unforgeability.

Aggregated unforgeability with adversarial openings. Next, we show that our signature
scheme also satisfies aggregated unforgeability with adversarial openings. This mostly follows from
the crucial observation that the local opening of an aggregated signature in our above construction
is simply the original (unaggregated) signature for the corresponding message, and since the above
signature scheme is a unique signature scheme, thus a pair of accepting aggregated signature σ̂
and auxiliary opening information aux for a message m simply contains the unique signature for m
which will be aux. Thus, the proof of aggregated unforgeability with adversarial openings follows
directly.

Full (Aggregated) Unforgeability in ROM. Next, we show that if we instantiate the prime
sequence enumeration in the ROM, then the above aggregate signature construction satisfies full
unforgeability. Formally, we prove the following.

Theorem 5.3 (Full Unforgeability). If the RSA assumption with large exponents (Assumption 3.3)
holds, and (PrimeSeq,PrimeSamp) is instantiated in the ROM (as described in Section 5.1), then the
aggregate signature scheme described above satisfies (full) unforgeability, aggregated unforgeability,
and aggregated unforgeability with adversarial openings (Definitions 4.1, 4.3 and 4.5).

Proof. We would like to point out that if the scheme satisfies aggregated unforgeability, then it
also satisfies regular unforgeability. Below we first prove the full aggregated unforgeability for our
signature scheme.

25

Aggregated unforgeability. Suppose there exists a PPT adversary A that breaks full/adaptive
aggregated unforgeability with non-negligible probability ε. Then we construct a PPT adversary
B that breaks the RSA assumption with ε/QRO − negl probability for some negligible function
negl, where QRO is the number of queries A makes to the random oracle.4 We describe reduction
algorithm B below.

The RSA challenger samples an RSA modulus N , a large (λ+1)-bit prime e, a random element
h ∈ Z∗N , and sends (N, e, h) to B. The reduction algorithm B is constructed analogous to that
in the proof of Theorem 5.2, except now B uses the power of programmability. B guesses the
index of the challenge message m∗j∗ amongst all the RO queries, and programs the prime associated
with it em∗

j∗
as the RSA challenge prime e. It also samples the remaining primes for all queried

messages at the beginning of the game, and programs them for each queried message at the time
the message is first queried. The entire reduction algorithm is defined as before, and the analysis
remains identical except the reduction algorithm also aborts if guesses the index of the challenge
message m∗j∗ incorrectly. Since B’s guess is correct with probability at least 1/QRO, thus B’s final
advantage will be ε/QRO − negl. This concludes the proof.

Aggregated unforgeability with adversarial openings. As before, the proof of adaptive
aggregated unforgeability with adversarial openings follows from the unique signature property
and the adaptive (unaggregated) unforgeability of the signature scheme.

6 Pairing-based Locally Verifiable Aggregate Signatures

In this section, we provide a locally verifiable single-signer aggregate signature scheme with fully
public local openings based on the hardness of Diffie-Hellman Inversion problem. Our scheme
satisfies a number of interesting properties that we discuss later, however it supports only bounded
single-hop aggregation.

Injective Message Hashing. Similar to our RSA based construction, we are interested in an
injective mapping from the message space (Mλ = {0, 1}λ) to the prime field Zp for p > 2λ. We
consider two simple such mappings (HGen,H) that lead to static and full adaptive security for our
final construction respectively.

Identity Map. The hash setup HGenI is simply the empty algorithm that outputs hk = ε, and
HI(ε,m) = m where output m is interpreted as a field element of Zp.

RO Map. Let H = {Hλ}λ be a family of hash functions where each h ∈ Hλ takes λ bits as input,
and outputs λ-bits of output. The hash setup HGenH simply samples a hash function h ∈ Hλ
and outputs hk = h, and HH(hk = h,m) = h(m) where output h(m) is interpreted as a field
element of Zp. Clearly, if h is modeled as a random oracle, then so is the resulting mapping.

4For simplicity, here we asssume that the adversary queries all its challenge messages to the random oracle. This can
be assumed without loss of generality, as these could be added on top of an already admissible adversary.

26

Aggregating Inverse Exponents. Our aggregate signature scheme relies on the “key accumula-
tion” algorithm of Delerablée, Paillier, and Pointcheval [DPP07, DP08]. We refer to the algorithm
as the DPP algorithm which takes as input a sequence of group elements {g

r
γ+xi , xi}i∈[`], and out-

puts g
r∏

i∈[`](γ+xi) . However, as discussed in the introduction, we can rely on the alternate and more
efficient Lagrange’s inverse polynomial interpolation technique for a simpler aggregation algorithm.
The idea behind our more efficient accumulation algorithm is as follows. By Lagrange’s polynomial
interpolation formula we know that for a degree-` polynomial passing through points (xi, yi) for
i ∈ [`], the corresponding polynomial p(x) can be written as follows

p(x) =
∑
j∈[`]

yjLj(x), where Lj(x) =

∏
i 6=j(x− xi)∏
i 6=j(xj − xi)

.

Now if we set yi = 1 for all i ∈ [`]. That is, p(xi) = 1 for all i. Then, by inspection, we know that
p(x) =

∏
i(x−xi) + 1 is an identity. Thus, by using the above Lagrange’s polynomial interpolation

equation, we get that ∏
i

(x− xi) + 1 =
∑
j∈[`]

∏
i 6=j(x− xi)∏
i 6=j(xj − xi)

.

Dividing both sides by
∏
i(x− xi) we get that

1 +
1∏

i(x− xi)
=
∑
i∈[`]

∆i

x− xi
, where ∆i =

1∏
j 6=i(xi − xj)

.

Since ∆i can be publicly computed given the list x1, . . . , x`, thus the aggregation algorithm for
group elements follows.

6.1 Construction

Below we provide our construction for single-signer aggregate signatures with λ-bit messages. Since
we are in the single-signer setting, thus we no longer need to introduce the CRS algorithm as part
of its description.

Setup(1λ, 1B)→ (vk(local), vk, sk). The setup algorithm takes as input the security parameter, λ,
as well as the upper bound on number of aggregations, B. It samples the bilinear group
parameters Π = (p,G,GT , g, e(·, ·)) ← Gen(1λ), and samples a random exponent α ← Z∗p.
It also samples the public parameters for message hashing as hk ← HGen(1λ). It sets the
key pair as vk = (Π, hk, {gαi}i∈[B]) and sk = (Π, hk, α). It also sets the local verification key
vk(local) as vk(local) = (Π, hk, gα).

note. We would like to point out that the setup algorithm for aggregate signatures typically
outputs only a verification-signing key pair. However, here also introduce a local verification
key that is entirely contained inside the full verification key, but it serves as a shorter key
for the local verification algorithm to use. Simply put, here we consider bounded aggregate
signatures with local verification, and to make the notion of local verification interesting in the
bounded aggregation setting, we introduce a local verification key whose size is independent of

27

the aggregation bound B thereby enabling the local verification algorithm to be independent
of the number of aggregations. One could have instead defined local verification algorithm
to have RAM access over the full verification key, and require the worst case run-time of the
local verification to not grow with the number of underlying aggregations whenever the local
verification is modeled as a RAM.

Sign(sk,m)→ σ. It parses sk as above, and hashes the message as hm = H(hk,m). It computes the
signature as g(α+hm)−1

which can be computed efficiently since it knows α.5

Verify(vk,m, σ). It parses vk as above, and computes the message hash as hm = H(hk,m). It checks
whether e(σ, gαghm) = e(g, g) where gα is taken from the verification key vk.6 If the check
succeeds, then it outputs 1 to signal that the signature is valid, otherwise it outputs 0.

Aggregate (vk, {(mi, σi)}i)→ σ̂/⊥. The signature aggregation algorithm first verifies all the input
signatures σi, and outputs ⊥ if any of these verifications fail. Otherwise, it computes the
aggregated signature as

σ̂ = DPP({σi, xi}i),

where xi = H(hk,mi).

AggVerify
(
vk, {mi}i∈[`], σ̂

)
. The signature verification algorithm parses the verification key as above,

and computes the sequence of hashed messages as xi = H(hk,mi) for all i ∈ [`] where ` is the
number of aggregated messages. It then computes the following polynomial P symbolically
to obtain the coefficients {βi ∈ Zp}i∈[`]:

P{xi}i∈[`](y) =
∏
i∈[`]

(y + xi) =
∑̀
i=0

βiy
i (mod p). (5)

It then checks that ` ≤ B and whether the following is true or not:

e(σ̂,
∏̀
i=0

(gα
i
)βi) = e(g, g),

where gα
i
are taken from the verification key vk. If the check succeeds, then it outputs 1 to

signal that the aggregated signature is valid, otherwise it outputs 0.

LocalOpen(vk, {mi}i∈[`], j ∈ [`])→ auxj . It parses vk as above, computes the sequence of hash mes-
sages as xi = H(hk,mi) for all i ∈ [`] \ {j}, and computes the coefficients {β̃i ∈ Zp}i∈[`−1],
similar to that in Eq. (5) except it removes (y + xj) from the list of monomials. Concretely,
it computes

P{xi}i∈[`]\{j}(y) =
∏

i∈[`]\{j}

(y + xi) =
`−1∑
i=0

β̃iy
i (mod p). (6)

5For simplicity, we ignore the possibility that α + hm = 0 as that could be easily handled as a special case by
outputting the identity group element, but keeping it as part of the scheme description makes it cumbersome.

6Note that the verification algorithm does not the entire verification key, but the local portion of verification key
would be sufficient.

28

It then outputs the auxiliary opening information auxj = (auxj,1, auxj,2) where auxj,1, auxj,2
are computed as

auxj,1 =
`−1∏
i=0

(gα
i
)β̃i , auxj,2 =

`−1∏
i=0

(gα
i+1

)β̃i ,

where gα
i
are taken from the verification key vk.

LocalAggVerify(σ̂, vk(local),m, aux). The local verification algorithm parses the local verification key
vk(local) as above, and auxiliary opening aux = (aux1, aux2), and computes the message hash
as hm = H(hk,m). It checks the following two conditions:

e(σ̂, aux1
hmaux2) = e(g, g)

e(gα, aux1) = e(g, aux2)

where gα is taken from the local verification key vk. If both the check succeed, then it outputs
1 to signal that the signature is valid, otherwise it outputs 0.

note. As we pointed out before, instead of defining the local verification key, we could
provide the local verifier RAM access to the full verification key, and since it only needs to
extract gα from the full verification key, thus the verification will be efficient even with that
formalization.

In addition to the above algorithms, we want to point out that the scheme supports unordered
sequential signing on top of single-hop aggregation. Below we describe our sequential signing and
verification algorithms:

SeqAggSign (sk,m′, {mi}i, σ̂)→ σ̂′. The sequential signing algorithm first verifies the input aggre-
gated signature σ̂, and outputs ⊥ if the verification fails. Otherwise, it hashes the message
as hm′ = H(hk,m′), and computes the new aggregated signature as σ̂(α+hm′)

−1
since it knows

α.

SeqAggVerify
(
vk, {mi}i∈[`], σ̂

)
. The sequential verification algorithm simply runs the (non-sequential)

aggregated verification and outputs AggVerify(vk, {mi}i, σ̂). That is, it interprets σ̂ as a non-
sequential aggregated signature on {mi}i∈[`], and verifies σ̂.

6.2 Correctness, Compactness, and More Properties

Correctness of signing. This follows directly from the fact that e(g(α+hm)−1
, gαghm) = e(g, g)

where hm = H(hk,m).

Correctness of Aggregation. Consider any sequence of messages m1, . . . ,m`, and correspond-
ing signatures σi = g(α+hmi)

−1
for i ∈ [`] where hmi = H(hk,mi). We know that aggregating these

signatures is done as σ̂ = DPP({σi, hmi}i). Now by the correctness of the key accumulation algo-
rithm of [DPP07, DP08], we have that σ̂ = g

∏
i(α+hmi)

−1
. And, the aggregated verification checks

the following:

e(σ̂,
∏̀
i=0

(gα
i
)βi) = e(g, g),

29

where βi’s are such that
∑`

i=0 βiy
i =

∏
i∈[`](y + hmi) (mod p). Thus, we have that

∏̀
i=0

(gα
i
)βi = g

∑`
i=0 α

iβi = g
∏
i∈[`](α+hmi).

Therefore, for honestly computed and aggregated signatures, the above check succeeds and cor-
rectness follows.

Compactness of Aggregation. The size of an aggregated signature is same as that of an un-
aggregated signature, which simply is a source group element (i.e., σ̂ ∈ G).

Unique Signatues. Note that the above signature scheme is a unique signature scheme. This
follows from the fact that the mesage hashing is a determinstic function, and if e(σ, gαghm) = e(g, g),
then it must be that σ = g(α+hm)−1

which can be uniquely computed since G is a prime order source
group.

Single-Hop, Unordered Sequential Aggregation with Fully Public Local Openings. We
would like to point out that the above construction is a single-hop aggregate signature scheme. And,
since the product operation is independent of the sequence of multiplication, thus the aggregated
verification does not depend on the order of aggregation, but only the needs the unordered sequence
of aggregated messages. Here the sequential signing can be performed arbitrarily on top of an
aggregated signature.

Lastly, an interesting feature of these signatures is that they provide fully public local openings,
and the LocalOpen algorithm does not need an aggregated signature as an extra input.

6.3 Security

Static (Aggregated) Unforgeability. We show that if we instantiate the message hashing as
the identity map in our above aggregate signature construction, then the resulting scheme satisfies
static unforgeability. Formally, we prove the following.

Theorem 6.1 (Static Unforgeability). If the DHI assumption (Assumption 3.6) holds, and (HGen,H)

is an identity hash, then the aggregate signature scheme described above satisfies static unforge-
ability, and static aggregated unforgeability (Definitions 4.2 and 4.4).

Also, if the BDHI assumption (Assumption 3.7) holds, and (HGen,H) is an identity hash, then
the aggregate signature scheme described above also satisfies static aggregated unforgeability with
adversarial openings (Definition 4.6).

Proof. We would like to point out that the proof of aggregated unforgeability is more general than
regular unforgeability, thus we first only prove static aggregated unforgeability for our signature
scheme. Later, we prove unforgeability in presence of adversarial openings as well.

30

Aggregated unforgeability. Suppose there exists a PPT adversary A that breaks aggregated
unforgeability with non-negligible probability ε. Then we construct a PPT adversary B that breaks
the q-DHI assumption with ε − negl probability for some negligible function negl. We describe
reduction algorithm B below.

Since we are proving only static security, thus the adversary A submits all its signature queries
{mi}i∈[qs] and the sequence of challenge messages (m∗1, . . . ,m

∗
`) at the beginning to the reduction

algorithm B. Since A is an admissible adversary, thus ` ≥ 1 and there exists an index j∗ such that
m∗j∗ /∈ {mi}i∈[qs]. (Here ` = 1 corresponds to regular unforgeability, whereas ` > 1 corresponds to
aggregated unforgeability.)

Let j∗ ∈ [`] be the smallest index with aforementioned property, and B be the aggregation
bound. The reduction algorithm then breaks the q-SDH assumption, where the hardness parameter
q is such that q ≥ qs + ` + B − 1. The DHI challenger samples the bilinear group parameters
Π = (p,G,GT , h, e(·, ·)), and a sequence of group elements {hi = ha

i}qi=0 for a randomly chosen
exponent a ∈ Z∗p, and sends (Π, h1, . . . , hq) to B.

Let S denote the set of messages S := {mi}i∈[qs] ∪ {m∗j}j∈[`]\{j∗}, that is S contains only the
distinct messages in the queried set and challenge set (after taking out m∗j∗). We know that
|S| ≤ qs + ` − 1. The reduction B then implicitly sets the signing key α = a −m∗j∗ , and the base

group element g to be h
∏qs
i=1(α+mi)

0 = h

∏qs
i=1(a+mi−m

∗
j∗)

0 . This also implies that the remaining group

elements in the verification key {gi = gα
i}i∈[B] are set as gi = h

(a−m∗
j∗)

i
∏qs
i=0(a+mi−m

∗
j∗)

0 . For ease
of notation we refer to generator g as g0 througout the proof.

Now in order to compute these elements in the verification key, B first computes the following
polynomials Pj for j ∈ [0, B] to obtain the coefficients {β(i)j ∈ Zp}|S|+ji=0 :

∀j ∈ [0, B], Pj(X) = (X −m∗j∗)j
∏
m∈S

(X +m−m∗j∗) =

|S|+j∑
i=0

β
(i)
j Xi (mod p). (7)

It samples a random exponent δ ∈ Z∗p, and computes the group elements gj to be included in the
verification key as

∀j ∈ [0, B], gj = hδPj(a) = hδ
∑|S|+j
i=0 β

(i)
j ai =

|S|+j∏
i=0

hδβ
(i)
j ai =

|S|+j∏
i=0

h
δβ

(i)
j

i . (8)

It sets the verification keys vk and vk(local) as vk = ((p,G,GT , g0, e(·, ·)), hk = ε, {gi}Bi=1), and
vk(local) = ((p,G,GT , g0, e(·, ·)), hk = ε, g1). That is, note that g0 is not the same generator that the
DHI challenger provided, but computed differently as described above.

Let Q−i be the following polynomial with coefficients {γ(j)i ∈ Zp}|S|−1j=0 :

∀i ∈ [qs], Q−i(X) =
∏

m∈S\{mi}

(X +m−m∗j∗) =

|S|−1∑
j=0

γ
(j)
i Xj (mod p),

which is simply the polynomial P0 (described in Eq. (7)) but with the monomial (X +mi −m∗j∗)

31

removed. B then computes the signatures for messages m1, . . . ,mqs as

∀i ∈ [qs], σi = g
(a+mi−m∗j∗)

−1

= h
δ

P0(a)

a+mi−m∗j∗
0 = h

δQ−i(a)
0 =

|S|−1∏
j=0

h
δγ

(j)
i

j . (9)

B then sends vk, vk(local) and {σi}i to the adversary A. A then sends its forged signature σ̂ (which
corresponds to an aggregated signature for the sequence of challenge messages m∗1, . . . ,m

∗
`). B

then checks if σ̂ is a valid accepting signature. It aborts if it is an invalid signature, otherwise it
computes the following polynomial symbolically

P ∗(X) =
P0(X)∏

j∈[`](X +m∗j −m∗j∗)
=

∏
m∈S\{m∗j}j

(X +m−m∗j∗)

X
=
β∗−1
X

+

|S|−`∑
i=0

β∗iX
i (mod p), (10)

and obtains coefficients {β∗i }
|S|−`
i=−1. Finally, it computes

Z =

σ̂1/δ |S|−`∏
i=0

h
−β∗i
i

1/β∗−1

,

and outputs Z as its DHI solution.
We claim that if A wins with probability ε, then B wins with probability ε−negl. First, observe

that if A is an admissible adversary, then B aborts with at most negligible probability. Next, we
show that Za = h0 whenever σ̂ is an accepting signature for (m∗1, . . . ,m

∗
`) and A is an admissible

adversary. This is because if A is an admissible adversary, then j∗ as defined above exists, and we
have that

e(σ̂,
∏̀
j=0

(gj)
β̃j) = e(g0, g0), (11)

where {β̃j}`j=0 is such that
∏
j∈[`](X + m∗j) =

∑`
j=0 β̃jX

j (mod p). Now, rewriting
∏`
j=0(gj)

β̃j

gives us that ∏̀
j=0

(gj)
β̃j = g

∑`
j=0 β̃jα

j

0 = g

∏
j∈[`](α+m

∗
j)

0 = g

∏
j∈[`](a+m

∗
j−m∗j∗)

0 .

This combined with Eq. (11), we get that it must be the case that σ̂ = g

∏
j∈[`](a+m

∗
j−m∗j∗)

−1

0 . And,

since we have that g0 = h
δ
∏
m∈S(a+m)

0 , we get that the following must be true

σ̂ = h
δ
∏
m∈S(a+m−m∗j∗)

∏
j∈[`](a+m

∗
j−m∗j∗)

−1

0 = h
δP ∗(a)
0 .

The last equality follows from the definition of P ∗ (see Eq. (10)) the fact that m∗j∗ /∈ S. And, we
also have that β∗−1 6= 0 as otherwise m∗j∗ ∈ S, thus rewriting the above equation gives us that

σ̂1/δ = h
P ∗(a)
0 = h

β∗−1
a

+
∑|S|−`
i=0 β∗i a

i

0 = h
β∗−1
a

0 ·
|S|−`∏
i=0

h
β∗i
i .

32

Rewriting this further gives us

σ̂1/δ
|S|−`∏
i=0

h
−β∗i
i = h

β∗−1
a

⇒

σ̂1/δ |S|−`∏
i=0

h
−β∗i
i

1/β∗−1

= h
1
a .

Here the left side term is exactly how Z is computed, thus Z is a valid solution to the DHI problem.
This concludes the proof of static aggregated unforgeability.

Aggregated unforgeability with adversarial openings. Next, we show that our signature
scheme also satisfies aggregated unforgeability with adversarial openings. As the theorem says, this
relies on the hardness of BDHI. Suppose there exists a PPT adversary A that breaks aggregated
unforgeability with adversarial openings with non-negligible probability ε. Then we construct a
PPT adversary B that breaks the q-BDHI assumption in the target group with ε− negl probability
for some negligible function negl. We describe reduction algorithm B below.

Since we are proving only static security, thus the adversary A submits all its signature queries
S := {mi}i∈[qs] and the challenge message m∗ at the beginning to the reduction algorithm B. Since
A is an admissible adversary, m∗ /∈ S. Let B be the aggregation bound. The reduction algorithm
then breaks the q-BDHI assumption in the target group, where the hardness parameter q is such that
q ≥ qs + B. The BDHI challenger samples the bilinear group parameters Π = (p,G,GT , h, e(·, ·)),
and a sequence of group elements {hi = ha

i}qi=0 for a randomly chosen exponent a ∈ Z∗p, and sends
(Π, h1, . . . , hq) to B. The reduction B then computes the polynomials Pj (for set S) symbolically to
obtain the coefficients {β(i)j ∈ Zp}|S|i=0 corresponding to set S for j ∈ [0, B] as in Eq. (7). It samples
a random exponent δ ∈ Z∗p, and computes the group element g = g0 and {gj}j∈[B] to be included
in the verification key as in Eq. (8). It sets the verification keys vk and vk(local), and computes the
signatures for messages mi ∈ S as in the reduction of aggregated unforgeability above (see Eq. (9)).
B then sends vk, vk(local) and {σi}i to the adversary A. A then sends its forged signature σ̂

along with a local opening aux = (aux1, aux2) (which corresponds to an aggregated signature with
local opening for the challenge message m∗). B then checks if σ̂ is a valid accepting signature by
running the local verification algorithm. It aborts if it is an invalid signature, otherwise it compute
the polynomial P ∗ to compute the coefficients {β∗i }

2S−1
i=−1 as

P ∗(X) =
P0(X) · P0(X)

X
=
β∗−1
X

+

2|S|−1∑
i=0

β∗iX
i (mod p),

and it outputs Z as its BDHI solution where Z ∈ GT is computed as

Z =

e(σ̂, aux1)
1/δ2

2|S|−1∏
i=0

e(hdi/2e, hbi/2c)
−β∗i

1/β∗−1

,

We claim that if A wins with probability ε, then B wins with probability ε−negl. First, observe
that if A is an admissible adversary, then B aborts with at most negligible probability. Next, we

33

claim that e(σ̂, aux1)
α+m∗ = e(σ̂, aux1)

a = e(g0, g0) = e(g, g) whenever σ̂ is an accepting signature
for m∗ with opening aux and A is admissible adversary. This is because if the signature is valid,
then have that

e(σ̂, aux1
m∗aux2) = e(g0, g0), and e(g1, aux1) = e(g0, aux2).

First, from the fact e(g1, aux1) = e(g0, aux2) and g1 = gα0 = ga−m
∗

0 we get that it must be the case
that auxa−m

∗

1 = aux2. Now this gives that e(σ̂, aux1)
a−m∗ = e(σ̂, aux2), and combining this with

e(σ̂, aux1
m∗aux2) = e(g0, g0), we obtain e(σ̂, aux1)

a = e(g0, g0). This gives us that

e(σ̂, aux1) = e(h
δP0(a)
0 , h

δP0(a)
0)1/a

= e(h0, h0)
(δP0(a))

2

a

= e(h0, h0)
δ2
(
β∗−1
a

+
∑2|S|−1
i=0 β∗i a

i

)

= e(h0, h0)
δ2
(
β∗−1
a

)
2|S|−1∏
i=0

e(ha
di/2e

0 , ha
bi/2c

0)δ
2β∗i

= e(h0, h0)
δ2
(
β∗−1
a

)
2|S|−1∏
i=0

e(hdi/2e, hbi/2c)
δ2β∗i

This can be further simplified as

e(σ̂, aux1)
1/δ2

2|S|−1∏
i=0

e(hdi/2e, hbi/2c)
−β∗i = e(h, h)

β∗−1
a .

Here the left side of the equation is precisely Zβ
∗
−1 , thus we get that Z = e(h, h)1/a whenever σ̂

is a valid signature for m∗ with opening aux, and A is an admissible adversary. Thus, aggregated
unforgeability with adversarial openings follows from hardness of BDHI.

Full (Aggregated) Unforgeability in ROM. Next, we show that if we instantiate the message
hashing in the ROM, then the above aggregate signature construction satisfies full unforgeability.
Formally, we prove the following.

Theorem 6.2 (Full Unforgeability). If the DHI assumption (Assumption 3.6) holds, and (HGen,H)

is instantiated in the ROM, then the aggregate signature scheme described above satisfies (full)
unforgeability, and aggregated unforgeability (Definitions 4.1 and 4.3).

Also, if the BDHI assumption (Assumption 3.7) holds, and (HGen,H) is instantiated in the
ROM, then the aggregate signature scheme described above also satisfies (full) aggregated unforge-
ability with adversarial openings (Definition 4.5).

Proof. As in the case for RSA-based signatures, the proof of full security in the ROM is very
similar to the proof of Theorem 5.3.

34

Aggregated unforgeability. Suppose there exists a PPT adversary A that breaks full/adaptive
aggregated unforgeability with non-negligible probability ε. Then we construct a PPT adversary B
that breaks the strong DH assumption with ε/QRO − negl probability for some negligible function
negl, where QRO is the number of queries A makes to the random oracle.7 We describe reduction
algorithm B below.

The reduction algorithm B is constructed analogous to that in the proof of Theorem 6.1, except
now B uses the power of programmability. B guesses the index of the challenge message m∗j∗
amongst all the RO queries, and programs the hashed message associated with m∗j∗ as a random
exponent hm∗

j∗
, and implicitly sets α = a − hm∗

j∗
similar to in the static security proof. It also

samples the remaining hash messages for all queried messages at the beginning of the game, and
programs them for each queried message at the time the message is first queried. The entire
reduction algorithm is defined as before, and the analysis remains identical except the reduction
algorithm also aborts if guesses the index of the challenge message m∗j∗ incorrectly. Since B’s guess
is correct with probability at least 1/QRO, thus B’s final advantage will be ε/QRO − negl. This
concludes the proof.

Aggregated unforgeability with adversarial openings. With similar modifications as in the
above proof, we can reduce full aggregated unforgeability with adversarial openings to BDHI in the
ROM. As above, the reduction suffers from a polynomial loss.

7 Pairing-based Aggregate Identity-Based Encryption

In this section, we provide an aggregate IBE scheme based on the hardness of strong Diffie-Hellman
problem. Our constructions supports bounded aggregation of secret keys.

7.1 Construction

Setup(1λ, 1B)→ (mpk,msk). The setup algorithm takes as input the security parameter, λ, as well
as the upper bound on number of aggregations, B. It samples the bilinear group parameters
Π = (p,G,GT , g, e(·, ·))← Gen(1λ), and samples a random exponent α← Z∗p. It also samples
the public parameters for identity hashing as hk← HGen(1λ). It sets the key pair as mpk =

(Π, hk, {gαi}i∈[B]) and sk = (Π, hk, α).

KeyGen(msk, id)→ skid. It parses msk as above, and hashes the identity as hid = H(hk, id). It
computes the secret key as g(α+hid)

−1
which can be computed efficiently since it knows α.

Aggregate (mpk, {(idi, ski)}i)→ ŝk. The key aggregation algorithm computes the aggregated key as

ŝk = DPP({ski, xi}i),

where xi = H(hk, idi).
7For simplicity, here we asssume that the adversary queries all its challenge messages to the random oracle. This can
be assumed without loss of generality, as these could be added on top of an already admissible adversary.

35

Enc(mpk, id,m, 1T)→ ct. The encryption algorithm takes as input key mpk (parsed as above), iden-
tity id, message m, and a bound T , where T declares the maximum number of aggregations
that any valid secret key could have and still be used for decryption.8

It samples a random exponent r ← Zp, computes hid = H(hk, id), outputs the ciphertext as

ct =
(
{gr(α+hid)αi}Ti=0, e(g, g)r ·m

)
.

Here gr(α+hid)α
i
is computed exponentiating the terms gα

i+1
, gα

i
with r, r · hid (respectively)

and then multiplying them.

AggDec(ŝk, (id1, . . . , id`), ct, j ∈ [`]). It parses ct as ({Ai}Ti=0, B), and computes the identity hash
for all but j-th identity as xi = H(hk, idi) for i ∈ [`] \ {j}. It then computes the coefficients
{β̃i ∈ Zp}i∈[`−1], as in Eq. (6). That is, it computes

P{xi}i∈[`]\{j}(y) =
∏

i∈[`]\{j}

(y + xi) =

`−1∑
i=0

β̃iy
i (mod p). (12)

It then outputs the decrypted message as

B

e(
∏`−1
i=0 A

β̃i
i , sk)

.

7.2 Correctness and Compactness

Correctness of aggregated decryption. Consider any sequence of identities id1, . . . , id`, and
corresponding keys ski = g(α+hmi)

−1
for i ∈ [`] where hidi = H(hk, idi). We know that aggregating

these keys is done as ŝk = DPP({ski, hmi}i). Now by the correctness of the key accumulation
algorithm of [DPP07, DP08], we have that ŝk = g

∏
i(α+hmi)

−1
. Now a ciphertext encrypted for

identity idi∗ consists of the following

ct =
(
{gr(α+hidi∗)α

i

}Ti=0, e(g, g)r ·m
)
.

And to decrypt, the aggregated decryption computes the following:

e(ŝk,
`−1∏
i=0

(gr(α+hidi∗)α
i

)βi)

where βi’s are such that
∑`−1

i=0 βiy
i =

∏
i∈[`]\{i∗}(y + hmi) (mod p). Thus, we have that

`−1∏
i=0

(gr(α+hidi∗)α
i

)βi = g
∑`−1
i=0 r(α+hidi∗)α

iβi = g
∏
i∈[`](α+hmi).

8Basically, if T = 0, then the ciphertext can only be decrypted by regular (non-aggregated) keys, and otherwise it
can be decrypted by any secret key which is an aggregation of secret key for id along with at most T other identity
keys.

36

Therefore, for honestly computed ciphertexts, we get that

e(ŝk,
`−1∏
i=0

(gr(α+hidi∗)α
i

)βi) = e(g, g)r

Thus, decryptor correctly recovers the message and correctness follows.

Compactness of Aggregation. The size of an aggregated secret key is same as that of an
unaggregated secret key, which simply is a source group element (i.e., ŝk ∈ G).

7.3 Security

Static Semantic Security. We show that if we instantiate the message hashing as the identity
map in our above aggregate IBE construction, then the resulting scheme satisfies static semantic
security. Formally, we prove the following.

Theorem 7.1 (Static Security). If the Decisional BDHI assumption (Assumption 3.8) holds, and
(HGen,H) is an identity hash, then the aggregate IBE scheme described above satisfies static se-
mantic security (Definition 4.10).

Proof. Suppose there exists a PPT adversary A that breaks static semantic security with non-
negligible advantage ε. Then we construct a PPT adversary B that breaks the DBDHI assumption
with ε advantage. We describe reduction algorithm B below.

In the static setting, the adversary A submits all its key queries S = {idi}i∈[qk] and the challenge
identity id∗ at the beginning to the reduction algorithm B. Let B be the aggregation bound. The
reduction algorithm then breaks the decisional q-BDHI assumption, where the hardness parameter
q is such that q ≥ qk+B−1. The decisional BDHI challenger samples the bilinear group parameters
Π = (p,G,GT , h0, e(·, ·)), and a sequence of group elements {hi = ha

i

0 }
q
i=0 for a randomly chosen

exponent a ∈ Z∗p, and sends (Π, h1, . . . , hq, Z) to B where Z is the BDHI challenge which is either
sampled random target group element, or it is e(h0, h0)1/a.

The reduction B then implicitly sets the master key α = a− id∗, and the base group element g

to be h
∏qk
i=1(α+idi)

0 = h
∏qk
i=1(a+idi−id∗)

0 . In order to compute these elements in the master public key,
B first computes the polynomials

∀j ∈ [0, B], PS,j,id∗(X) = (X − id∗)j
∏
i∈[qk]

(X + idi − id∗) =

qk+j∑
i=0

β
(i)
S,j,id∗X

i (mod p)

to obtain the coefficients {β(i)S,j,id∗}j∈[0,B],i∈[0,qk+j]. Using these coefficients, B computes the master
public key

mpk =
(

(p,G,GT , g0, e(·, ·)), hk = ε, {gj = gα
j

0 }j∈[B]

)
,

where the group elements g0, . . . , gB as:

∀j ∈ [0, B], gj =

qk+j∏
i=0

h
δβ

(i)
S,j,id∗

i = h

∑qk+j

i=0 δβ
(i)
S,j,id∗a

i

0 = h
δ(a−id∗)j

∏
i∈[qk]

(a+idi−id∗)
0 ,

37

where δ ∈ Z∗p is a randomly sampled exponent. It then computes the secret keys for the queried

identities S = {idj}j∈[qk] by first computing the coefficients {β(i)S,j}j∈[qk],i∈[0,qk−1] associated with
the following polynomials

∀j ∈ [qk], PS,j(X) =
∏

i∈[qk]\{j}

(X + idi − id∗) =

qk−1∑
i=0

β
(i)
S,jX

i (mod p)

Using these, it computes the secret keys as

∀j ∈ [qk], skj =

qk−1∏
i=0

h
δβ

(i)
S,j

i = h

∑qk−1

i=0 δβ
(i)
S,ja

i

0 = h
δ
∏
i∈[qk]\{j}

(a+idi−id∗)
0 .

B then sends the master public key mpk, and secret keys {skj}j∈[qk] as computed above to A. The
adversary submits two challenge messages m0,m1, and B after receiving the challenge messages, it
computes the challenge ciphertext by implicitly setting the random exponent r = γ/(α+ id∗) = γ/a

for a randomly sampled exponent γ ← Z∗p. By implicitly setting r = γ/a, the challenge ciphertext
look as follows:

ct∗ =
(
{gγ(a−id

∗)i

0 }Ti=0, e(g0, g0)
γ/a ·mb

)
,

where b is a randomly sampled challenge bit. Note that gj = h
δ(a−id∗)j

∏
i∈[qk]

(a+idi−id∗)
0 , thus we get

that gγ(a−id
∗)i

0 = gγi . Also, note that e(g0, g0)γ/a can be computed as follows:

e(g0, g0)
γ/a = e(

qk∏
i=0

h
δβ

(i)
S,0,id∗

i ,

qk∏
i=0

h
δβ

(i)
S,0,id∗

i)γ/a

=
∏

0≤i,j≤qk

e(h
δβ

(i)
S,0,id∗

i , h
δβ

(j)
S,0,id∗

j)γ/a

= e(h0, h0)
(δβ

(0)
S,0,id∗)

2γ/a
∏

0≤i,j≤qk
(i,j)6=(0,0)

e(h
δβ

(i)
S,0,id∗

i , h
δβ

(j)
S,0,id∗

j)γ/a

= e(h0, h0)
(δβ

(0)
S,0,id∗)

2γ/a
∏

0≤i,j≤qk
(i,j)6=(0,0)

e(hi, hj)
δ2β

(i)
S,0,id∗β

(j)
S,0,id∗γ/a

= (e(h0, h0)
1/a)

(δβ
(0)
S,0,id∗)

2γ
∏

0≤i,j≤qk
(i,j)6=(0,0)

(e(hi, hj)
1/a)

δ2β
(i)
S,0,id∗β

(j)
S,0,id∗γ

where e(hi, hj)1/a can be computed as e(hi−1, hj) whenever i 6= 0 and e(hi, hj−1) whenever j 6=
0, and the component e(h0, h0)1/a is replaced with the BDHI challenge Z. Thus, the challenge
ciphertext is set as

ct∗ =

{gγi }Ti=0, Z
(δβ

(0)
S,0,id∗)

2γ
∏

0≤i,j≤qk
(i,j) 6=(0,0)

(e(hi, hj)
1/a)

δ2β
(i)
S,0,id∗β

(j)
S,0,id∗γ ·mb

 .

38

B sends ct∗ as the challenge ciphertext to A, and A responds with its guess b′. If b′ 6= b (i.e. A’s
guess is incorrect), then B outputs 1 signalling Z is a random target group element, otherwise it
outputs 0 to signal that Z = e(h0, h0)

1/a to the DBDHI challenger.
We claim that if A wins with advantage ε, then B wins with advantage ε as well. First, observe

that B simulates all the public parameters and secret keys perfectly as in the original IBE security
game, since it can compute all these terms as appropriate polynomials of the DBDHI challenge
tuple. Next, note that if Z is a random target group element, then ct∗ completely hides the
challenge bit b from the adversary, whereas if Z = e(h0, h0)

1/a, then ct∗ perfectly encrypts the
challenge message mb under id∗. Thus, A’s advantage is 0 when Z ← GT whereas it’s advantage is
ε when Z = e(h0, h0)

1/a. This can be used to argue that B’s advantage is also ε, thereby concluding
the proof of static security.

Full Semantic Security. Next, we show that if we instantiate the identity hashing in the ROM,
then the above aggregate IBE construction satisfies full security. Formally, we prove the following.

Theorem 7.2 (Full Security). If the Decisional BDHI assumption (Assumption 3.8) holds, and
(HGen,H) is instantiated in the ROM, then the aggregate IBE scheme described above satisfies
(full) semantic security (Definition 4.9).

Proof. As in the case for bilinear-based aggregate signatures, the proof of full security in the ROM
is identical to the proof of static security as described in Theorem 6.1, except now we use the
fact that the identity hash is modeled as a RO to program each queried identity with a randomly
sampled exponent, where all such exponents are sampled at the beginning of the game. And, the
reduction B also guesses the query index of the challenge identity id∗ amongst all the RO queries9,
and programs the hashed identity associated with id∗ as a random exponent hid∗ , and implicitly
sets α = a − hid∗ as in the static security proof. It programs the sampled non-challenge identity
hashes for each queried identity at the time it is first queried. The entire reduction algorithm is
defined as before (except this programming), and the analysis remains identical except the reduction
algorithm also aborts if it guesses the query index of the challenge identity id∗ incorrectly, or the
challenge exponent hid∗ matches the DBDHI exponent a (in which case it can distinguish DBDHI
challenge itself). Since B’s guess is correct with probability at least 1/QRO, thus B’s final advantage
will be ε/QRO − negl. This concludes the proof.

Acknowledgements. We thank the anonymous reviewers for their helpful comments. And, we
thank Brent Waters for fruitful discussions.

References

[AGH10] Jae Hyun Ahn, Matthew Green, and Susan Hohenberger. Synchronized aggregate sig-
natures: new definitions, constructions and applications. In Proceedings of the 17th
ACM conference on Computer and communications security, pages 473–484, 2010.

9For simplicity, here we asssume that the adversary queries even the challenge identity to the random oracle. This
can be assumed without loss of generality, as this could be added on top of an already admissible adversary.

39

[AKS04] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. Primes is in p. Annals of math-
ematics, pages 781–793, 2004.

[BB04a] Dan Boneh and Xavier Boyen. Secure identity based encryption without random oracles.
In CRYPTO, pages 443–459, 2004.

[BB04b] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Interna-
tional conference on the theory and applications of cryptographic techniques, pages
56–73. Springer, 2004.

[BGLS] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. I. a survey of two signature
aggregation techniques. CryptoBytes, page 1.

[BGLS03] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably
encrypted signatures. In Proceedings of Eurocrypt ’03, volume 2656 of LNCS, pages
416–432, 2003.

[BGOY07] Alexandra Boldyreva, Craig Gentry, Adam O’Neill, and Dae Hyun Yum. Ordered
multisignatures and identity-based sequential aggregate signatures, with applications
to secure routing. In Proceedings of the 14th ACM conference on Computer and
communications security, pages 276–285, 2007.

[BGR14] Kyle Brogle, Sharon Goldberg, and Leonid Reyzin. Sequential aggregate signatures
with lazy verification from trapdoor permutations. Information and computation,
239:356–376, 2014.

[BJ10] Ali Bagherzandi and Stanisław Jarecki. Identity-based aggregate and multi-signature
schemes based on rsa. In International Workshop on Public Key Cryptography,
pages 480–498. Springer, 2010.

[BLK13] Adam Langley Ben Laurie and Emilia Kasper. Certificate transparency. https://
datatracker.ietf.org/doc/html/rfc6962, 2013.

[BMP16] Rachid El Bansarkhani, Mohamed Saied Emam Mohamed, and Albrecht Petzoldt.
Mqsas-a multivariate sequential aggregate signature scheme. In International Con-
ference on Information Security, pages 426–439. Springer, 2016.

[BN07] Mihir Bellare and Gregory Neven. Identity-based multi-signatures from rsa. In Cryp-
tographersâĂŹ Track at the RSA Conference, pages 145–162. Springer, 2007.

[BNN07] Mihir Bellare, Chanathip Namprempre, and Gregory Neven. Unrestricted aggregate
signatures. In ICALP, pages 411–422, 2007.

[Bol03] Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based
on the gap-diffie-hellman-group signature scheme. In Yvo Desmedt, editor, Public Key
Cryptography - PKC 2003, 6th International Workshop on Theory and Practice
in Public Key Cryptography, Miami, FL, USA, January 6-8, 2003, Proceedings,
volume 2567 of Lecture Notes in Computer Science, pages 31–46. Springer, 2003.

40

https://datatracker.ietf.org/doc/html/rfc6962
https://datatracker.ietf.org/doc/html/rfc6962

[BP97] Niko Barić and Birgit Pfitzmann. Collision-free accumulators and fail-stop signature
schemes without trees. In EUROCRYPT ’97, volume 1233 of LNCS, pages 480–494,
1997.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for de-
signing efficient protocols. In ACM Conference on Computer and Communications
Security, pages 62–73, 1993.

[CD96] Ronald Cramer and Ivan Damgård. New generation of secure and practical rsa-based
signatures. In Annual International Cryptology Conference, pages 173–185. Springer,
1996.

[CMS99] Christian Cachin, Silvio Micali, and Markus Stadler. Computationally private infor-
mation retrieval with polylogarithmic communication. In Proceedings of the 17th In-
ternational Conference on Theory and Application of Cryptographic Techniques,
EUROCRYPT’99, page 402âĂŞ414, Berlin, Heidelberg, 1999. Springer-Verlag.

[Cra36] Harald CramÃľr. On the order of magnitude of the difference between consecutive
prime numbers. Acta Arithmetica, 2(1):23–46, 1936.

[CS00] Ronald Cramer and Victor Shoup. Signature schemes based on the strong rsa as-
sumption. ACM Transactions on Information and System Security (TISSEC),
3(3):161–185, 2000.

[CTg] Certificate transparency project. https://certificate.transparency.dev/.

[DKS16] David Derler, Stephan Krenn, and Daniel Slamanig. Signer-anonymous designated-
verifier redactable signatures for cloud-based data sharing. In International Confer-
ence on Cryptology and Network Security, pages 211–227. Springer, 2016.

[DlVP97] Charles-Jean De la Vallée Poussin. Recherches analytiques sur la théorie des nombres
premiers. Hayez, Imprimeur de l’Académie royale de Belgique, 1897.

[DN94] Cynthia Dwork and Moni Naor. An efficient existentially unforgeable signature scheme
and its applications. In Annual International Cryptology Conference, pages 234–246.
Springer, 1994.

[DP08] Cécile Delerablée and David Pointcheval. Dynamic threshold public-key encryption. In
David A. Wagner, editor, Advances in Cryptology - CRYPTO 2008, 28th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 17-21,
2008. Proceedings, volume 5157 of Lecture Notes in Computer Science, pages 317–
334. Springer, 2008.

[DPP07] Cécile Delerablée, Pascal Paillier, and David Pointcheval. Fully collusion secure dynamic
broadcast encryption with constant-size ciphertexts or decryption keys. In Tsuyoshi
Takagi, Tatsuaki Okamoto, Eiji Okamoto, and Takeshi Okamoto, editors, Pairing-
Based Cryptography - Pairing 2007, First International Conference, Tokyo,

41

https://certificate.transparency.dev/

Japan, July 2-4, 2007, Proceedings, volume 4575 of Lecture Notes in Computer
Science, pages 39–59. Springer, 2007.

[DPSS15] David Derler, Henrich C Pöhls, Kai Samelin, and Daniel Slamanig. A general framework
for redactable signatures and new constructions. In ICISC 2015, pages 3–19. Springer,
2015.

[FHPS13] Eduarda SV Freire, Dennis Hofheinz, Kenneth G Paterson, and Christoph Striecks.
Programmable hash functions in the multilinear setting. In Advances in Cryptology–
CRYPTO 2013, pages 513–530. Springer, 2013.

[Fia89] Amos Fiat. Batch rsa. In Conference on the Theory and Application of Cryptology,
pages 175–185. Springer, 1989.

[Fis03] Marc Fischlin. The cramer-shoup strong-rsa signature scheme revisited. In Interna-
tional Workshop on Public Key Cryptography, pages 116–129. Springer, 2003.

[FLS12] Marc Fischlin, Anja Lehmann, and Dominique Schröder. History-free sequential ag-
gregate signatures. In International Conference on Security and Cryptography for
Networks, pages 113–130. Springer, 2012.

[GHR99] Rosario Gennaro, Shai Halevi, and Tal Rabin. Secure hash-and-sign signatures without
the random oracle. In Jacques Stern, editor, Advances in Cryptology - EUROCRYPT
’99, International Conference on the Theory and Application of Cryptographic
Techniques, Prague, Czech Republic, May 2-6, 1999, Proceeding, volume 1592 of
Lecture Notes in Computer Science, pages 123–139. Springer, 1999.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM J. Comput., 17(2):281–308, 1988.

[Gol17] Oded Goldreich. Introduction to Property Testing. Cambridge University Press, 2017.

[Gor18] Sergey Gorbunov. How not to use aggregate signatures in your blockchain, 2018.

[GR06] Craig Gentry and Zulfikar Ramzan. Identity-based aggregate signatures. In PKC, 2006.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from
all falsifiable assumptions. In Proceedings of the 43rd ACM Symposium on Theory
of Computing, STOC 2011, pages 99–108, 2011.

[HKW15] Susan Hohenberger, Venkata Koppula, and Brent Waters. Universal signature aggrega-
tors. In Annual international conference on the theory and applications of crypto-
graphic techniques, pages 3–34. Springer, 2015.

[HSW13] Susan Hohenberger, Amit Sahai, and Brent Waters. Full domain hash from (leveled)
multilinear maps and identity-based aggregate signatures. In CRYPTO, 2013.

42

[HW18] Susan Hohenberger and Brent Waters. Synchronized aggregate signatures from the rsa
assumption. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 197–229. Springer, 2018.

[IN83] Kazuharu Itakura and K. Nakamura. A public-key cryptosystem suitable for digital
multisignatures. NEC J. Res. Dev., 71, 1983.

[JMSW02] Robert Johnson, David Molnar, Dawn Song, and David Wagner. Homomorphic signa-
ture schemes. In CryptographersâĂŹ track at the RSA conference, pages 244–262.
Springer, 2002.

[LLY13a] Kwangsu Lee, Dong Hoon Lee, and Moti Yung. Sequential aggregate signatures made
shorter. In International Conference on Applied Cryptography and Network Secu-
rity, pages 202–217. Springer, 2013.

[LLY13b] Kwangsu Lee, Dong Hoon Lee, and Moti Yung. Sequential aggregate signatures with
short public keys: Design, analysis and implementation studies. In International
Workshop on Public Key Cryptography, pages 423–442. Springer, 2013.

[LMRS04] Anna Lysyanskaya, Silvio Micali, Leonid Reyzin, and Hovav Shacham. Sequential aggre-
gate signatures from trapdoor permutations. In Christian Cachin and Jan Camenisch,
editors, Advances in Cryptology - EUROCRYPT 2004, International Conference
on the Theory and Applications of Cryptographic Techniques, Interlaken, Switzer-
land, May 2-6, 2004, Proceedings, volume 3027 of Lecture Notes in Computer Sci-
ence, pages 74–90. Springer, 2004.

[LOS+06] Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters. Sequential
aggregate signatures and multisignatures without random oracles. In EUROCRYPT,
2006.

[MOR01] Silvio Micali, Kazuo Ohta, and Leonid Reyzin. Accountable-subgroup multisignatures.
In Proceedings of the 8th ACM Conference on Computer and Communications
Security, pages 245–254, 2001.

[MRV99] Silvio Micali, Michael Rabin, and Salil Vadhan. Verifiable random functions. In In
Proc. 40th IEEE Symposium on Foundations of Computer Science (FOCS, pages
120–130. IEEE, 1999.

[MSK02] Shigeo Mitsunari, Ryuichi Sakai, and Masao Kasahara. A new traitor tracing. IE-
ICE transactions on fundamentals of electronics, communications and computer
sciences, 85(2):481–484, 2002.

[MT07] Di Ma and Gene Tsudik. Forward-secure sequential aggregate authentication. In 2007
IEEE Symposium on Security and Privacy (SP’07), pages 86–91. IEEE, 2007.

[Nev08] Gregory Neven. Efficient sequential aggregate signed data. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques, pages
52–69. Springer, 2008.

43

[Oka88] Tatsuaki Okamoto. A digital multisignature scheme using bijective public-key cryp-
tosystems. ACM Transactions on Computer Systems (TOCS), 6(4):432–441, 1988.

[OO99] Kazuo Ohta and Tatsuaki Okamoto. Multi-signature schemes secure against active
insider attacks. IEICE Transactions on Fundamentals of Electronics, Communi-
cations and Computer Sciences, 82(1):21–31, 1999.

[Rab80] Michael O Rabin. Probabilistic algorithm for testing primality. Journal of number
theory, 12(1):128–138, 1980.

[RS09] Markus Rückert and Dominique Schröder. Aggregate and verifiably encrypted signa-
tures from multilinear maps without random oracles. In International Conference on
Information Security and Assurance, pages 750–759. Springer, 2009.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM, 21(2):120–126, 1978.

[SBZ01] Ron Steinfeld, Laurence Bull, and Yuliang Zheng. Content extraction signatures. In
International Conference on Information Security and Cryptology, pages 285–304.
Springer, 2001.

[Sha83] Adi Shamir. On the generation of cryptographically strong pseudorandom sequences.
ACM Trans. Comput. Syst., 1(1):38–44, 1983.

[Sha84] Adi Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO ’84,
volume 196 of LNCS, pages 47–53, 1984.

[SS77] Robert Solovay and Volker Strassen. A fast monte-carlo test for primality. SIAM
journal on Computing, 6(1):84–85, 1977.

[Sud09] Madhu Sudan. Probabilistically checkable proofs. Commun. ACM, 52(3):76–84, 2009.

[Yek12] Sergey Yekhanin. Locally decodable codes. Found. Trends Theor. Comput. Sci.,
6(3):139–255, 2012.

A Locally Verifiable Multi-Signer Aggregate Signature

In this section, we extend the concept of locally-verifiable aggregate signatures defined in Section 4
to the multi-signer setting. Naturally, in the multi-signer setting, all the local and global aggre-
gation and verification algorithms would take as input a sequence of verification keys instead of a
single verification key now. Below we define it formally.

Syntax. A locally-verifiable multi-signer aggregate signature scheme S for message space M
consists of the following polynomial time algorithms:

CRS(1λ)→ crs. The CRS generation algorithm samples global parameters crs. All the remaining
algorithms take crs as input, and for ease of notation we do not write it explicitly.

44

Setup(1λ)→ (vk, sk). The setup algorithm, on input the security parameter λ, outputs a pair of
signing and verification keys (vk, sk).

Sign(sk,m)→ σ. The signing algorithm takes as input a signing key sk and a message m ∈M, and
computes a signature σ.

Verify(vk,m, σ)→ 0/1. The verification algorithm takes as input a verification key vk, a message
m ∈M, and a signature σ. It outputs a bit to signal whether the signature is valid or not.

Aggregate ({(vki,mi, σi)}i)→ σ̂/⊥. The signature aggregation algorithm takes as input a sequence
of tuples, each containing a verification key vki, a message mi, a signature σi, and it outputs
either an aggregated signature σ̂ or a special abort symbol ⊥.

AggVerify ({(vki,mi)}i, σ̂)→ 0/1. The aggregate verify algorithm takes as input a sequence of tu-
ples, each containing a verification key vki, a message mi, and it outputs a bit to signal
whether the aggregated signature σ̂ is valid or not.

LocalOpen(σ̂, {(vki,mi)}i∈[`], j ∈ [`])→ auxj . The local opening algorithm takes as input an aggre-
gated signature σ̂, a sequence of tuples (each containing a verification key vki and a message
mi for i ∈ [`]), and an index j ∈ [`] where ` is the length of the sequence. It outputs auxiliary
information auxj corresponding to the key-message pair (vki,mi).

LocalAggVerify(σ̂, vk,m, aux)→ 0/1. The local aggregate verification algorithm takes as input an
aggregated signature σ̂, a verification key vk, a message m, and auxiliary information aux. It
outputs a bit to signal whether the aggregate signature σ̂ contains a signature for message m
under verification key vk, or not.

Correctness and Compactness. A locally-verifiable multi-signer aggregate signature scheme is
said to be correct and compact if for all λ, `,N ∈ N, parameters crs← CRS(1λ), verification-signing
key pairs (vkj , skj) ← Setup(1λ) for j ∈ [N], messages mi for i ∈ [`], every key mapping function
π : [`]→ [N], and every signature σi ← Sign(skπ(i),mi) for i ∈ [`], the following holds:

Correctness of signing. For all i ∈ [`], Verify(vkπ(i),mi, σi) = 1.

Correctness of aggregation. If σ̂ = Aggregate
(
{
(
vkπ(i),mi, σi

)
}i
)
, then

AggVerify
(
{
(
vkπ(i),mi

)
}i, σ̂

)
= 1.

Correctness of local opening. For all k ∈ [`], we have

Pr
[
LocalAggVerify

(
σ̂, vkπ(k),mk, LocalOpen(σ̂, {(vkπ(i),mi)}i, k)

)]
= 1.

Compactness of aggregation. |σ̂| ≤ poly(λ). That is, the size of an aggregated signature is a
fixed polynomial in the security parameter λ, independent of the number of aggregations `.

Compactness of opening. |aux| ≤ poly(λ). That is, the size of the auxiliary opening infor-
mation is a fixed polynomial in the security parameter λ, independent of the number of
aggregations `.

45

Security. Now for security, as in the single-signer setting, we have regular unforgeability, ag-
gregated unforgeability, and aggregated unforgeability with adversarial openings. The regular
unforgeability and aggregated unforgeability with adversarial openings is defined identically in the
multi-signer setting (which the only difference that the challenger also samples the global parame-
ters crs at the beginning of the experiments).

Below we simply provide the aggregated unforgeability property for the multi-signer setting for
completeness.

Definition A.1 (Aggregated Unforgeability). A multi-signer aggregate signature scheme (CRS,

Setup, Sign,Verify,Aggregate,AggVerify) is said to be a secure aggregate signature scheme if for
every admissible PPT attacker A, there exists a negligible function negl(·) such that for all λ ∈ N,
the following holds

Pr

[
AggVerify

(
{(vk∗i ,m

∗
i)}i∈[`], σ̂∗

)
= 1 :

crs← CRS(1λ), (vk, sk)← Setup(1λ)(
{(vk∗i ,m

∗
i)}i∈[`], σ̂∗

)
← ASign(sk,·)(1λ, vk)

]
≤ negl(λ),

where A is admissible if there exists i ∈ [`] such that vk∗i = vk and m∗i was not queried by A to the
Sign(sk, ·) oracle.

Definition A.2 (Static Aggregated Unforgeability). We say the aggregate signature scheme is
statically secure if the adversary in the above game is confined to make all of its message queries
{mi}i∈[q] and declare the challenge key-message tuples {(vk∗i ,m

∗
i)}i∈[`] at the beginning of the game

(defined in Definition 4.3) before it receives the verification key vk.

Fully Public Openings. As in the single-signer setting, we additionally consider the setting
where the local opening algorithm does not need an aggregate signature to provide an opening w.r.t.,
but only the sequence of key-message pairs. Thus, syntactically we have— LocalOpen({(vki,mi)}i∈[`], j ∈
[`])→ auxj .

A.1 Properties of (Aggregate) Signatures

An (aggregate) signature scheme can additionally satisfy following properties and/or suffer from
the corresponding restriction.

Unique Signatures. A signature scheme (Setup, Sign,Verify) is said to be a unique signature
scheme if for all tuples (vk,m, σ1, σ2) where σ1 6= σ2, Verify(vk,m, σi) = 1 for at most one i.

Single-Signer Aggregation. An aggregate signature scheme (Setup,Sign,Verify,Aggregate,AggVerify)

is said to be a single-signer aggregate signature if the aggregation algorithm and aggregate-
verify algorithms require all the verification keys to be the same. That is, the aggregation algo-
rithm only takes as input a single verification key vk, thus aggregation is only defined for a sin-
gle signer. Syntactically, the algorithms are modified as follows — Aggregate (vk, {(mi, σi)}i)
and AggVerify (vk, {mi}i, σ̂).

46

Multi-Hop vs. Single-Hop Aggregation. An aggregate signature scheme is said to be multi-
hop aggregatable if the Aggregate algorithm also takes as input an aggregated signature as
well. Syntactically, the algorithm is modified as follows — Aggregate ({(vki,mi, σ̂i)}i), where
each vki,mi are non-empty sequence of verification keys and messages, and σ̂i is a possibly
aggregated signature.

On the other hand, a single-hop aggregate signature requires the input signatures to the
Aggregate algorithm to be regular (non-aggregated) signatures.

Bounded Aggregation. For any q > 1, an aggregate signature scheme is said to be q-bounded
aggregatable if the Aggregate algorithm takes at most q message-signature pairs. That is,
Aggregate

(
{(vki,mi, σi)}i∈[`]

)
is well defined as long as ` ≤ q. To make the notion of bounded

aggregation non-trivial, it is essential to require that the size of aggregated signatures to be
independent of the bound q.

Sequential Aggregation. An aggregate signature scheme is said to be sequentially aggregatable
if the aggregation algorithm takes as input the signing key sk and a single (possibly aggre-
gated) signature σ̂ instead of a sequence of signatures. Syntactically, the aggregated signing
algorithm works as follows.

Aggregate (sk,m′, {(vki,mi)}i, σ̂)→ σ̂′/⊥. The sequential aggregation algorithm takes as in-
put a signing key sk, message m′, a sequence of tuples (each containing a verification
key vki and a message mi), and an input aggregated signature σ̂. It outputs either an
aggregated signature σ̂′ or a special abort symbol ⊥.

Typically, the aggregate verification algorithm requires the sequence of messages (m1, . . . ,m`)

(being verified with respect to the aggregated signature σ̂) to be provided in the same order
as the one in which sequential aggregation was performed. That is, typically the verification
is sensitive to the sequence of aggregation. Now sequential aggregate signature schemes where
the verification is oblivious to the ordering are said to be unordered sequential aggregation
schemes.

B Sampling via Random Oracles

Let H = {Hλ}λ be a family of hash functions where each h ∈ Hλ takes 2λ bits as input, and
outputs λ-bits of output.

PrimeSeqH(1λ)→ samp. It samples a hash function h← Hλ, and sets samp = h.

PrimeSampH(samp = h,m)→ em. It proceeds as follows:

1. Set count := 0, flag := false.

2. While flag = false:

(a) Let y := h(m || count) where m || count is interpreted as a 2λ length bit string.
(b) Run PrimalityTest to check if 2λ + y is a prime. If it is a prime, set flag := true and

em := 2λ + y. Otherwise, set count := count + 1.

47

Output em.

Theorem B.1 (Efficient and Adaptive Programmable Enumeration in ROM). If Hλ is modeled
as a random oracle, then (PrimeSeqH,PrimeSampH) satisfies the following properties:

Efficient Sampling. For every λ ∈ N, m ∈ {0, 1}λ, the prime sampling algorithm PrimeSampH

runs in expected polynomial time, where the probability is taken over the coins of setup
algorithm PrimeSeqH.

Adaptive Non-Colliding Prime Enumeration. For any PPT adversary A, there exists a neg-
ligible function negl(·), such that for all λ ∈ N, we have that

Pr[PrimeSampH(samp,m1) = PrimeSampH(samp,m2) ∧m1 6= m2 :

samp← PrimeSeqH(1λ)

(m1,m2)← A(1λ, samp)

]
≤ negl(λ)

Programmable Prime Enumeration. PrimeSampH behaves as a programmable random prime
oracle.

Proof. The proof of this theorem is similar to that of Theorem 5.1 with the modification that now
since Hλ is modeled as a random oracle, thus the resulting prime sequence enumerator can be
modeled as a “programmable" random prime oracle. Note that the adaptive non-colliding prime
enumeration property simply follows from collision resistance of the hash function, and we do not
need to model the hash function as a random oracle for that.

Remark B.2 (Efficiency of Sampling). We would like to point out that for our above samplers we
only prove efficiency in the average case, thus the running time of sampler could be exponential in
the worst case. However, we could prove worst case running time to be polynomial as well if we
assume the well-known prime gap conjectures such as Cramér’s conjecture [Cra36], or even weaker
variants of those conjectures which state that the prime gaps are bounded poly-logarithmically in
the prime value. Thus, by relying on such prime gap conjectures, we get that worst case running
time of sampling will also be polynomial. In order to complete the argument, we would need
to make minor edit to the sampling procedure where instead of now evaluating the function on
m || 0,m || 1,m || 2, . . . and so on, we would simply evaluate the function on m and then find the
closest prime greater than or equal to the function evaluation onm. Thus, by prime gap conjectures,
this can always be computed in time poly(λ).

48

	Introduction
	Locally Verifiable Aggregate Signatures: Definition and Applications
	Locally Verifiable Aggregate Signatures: Our Results
	Compressing Cryptographic Keys
	Other Related Work

	Technical Overview
	Preliminaries
	Pseudorandom Functions
	Computational Assumptions
	RSA Assumption and Shamir's Trick
	(Bilinear) Diffie-Hellman Inversion Assumption

	Aggregate Cryptosystems with Local Properties
	Aggregate Signatures
	Locally Verifiable Aggregate Signatures

	Aggregate Identity-Based Encryption

	RSA-based Locally Verifiable Aggregate Signatures
	Deterministic Prime Sequence Enumeration
	Prime Sequence Enumerator via Pseudorandom Functions

	Construction
	Correctness, Compactness, and More Properties
	Security

	Pairing-based Locally Verifiable Aggregate Signatures
	Construction
	Correctness, Compactness, and More Properties
	Security

	Pairing-based Aggregate Identity-Based Encryption
	Construction
	Correctness and Compactness
	Security

	Locally Verifiable Multi-Signer Aggregate Signature
	Properties of (Aggregate) Signatures

	Sampling via Random Oracles

