
Towards Case-Optimized Hybrid Homomorphic
Encryption

Featuring the Elisabeth Stream Cipher

Orel Cosseron12?, Clément Hoffmann3 , Pierrick Méaux4 , François-Xavier
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Abstract. Hybrid Homomorphic Encryption (HHE) reduces the amount of com-
putation client-side and bandwidth usage in a Fully Homomorphic Encryption
(FHE) framework. HHE requires the usage of specific symmetric schemes that
can be evaluated homomorphically efficiently. In this paper, we introduce the
paradigm of Group Filter Permutator (GFP) as a generalization of the Improved
Filter Permutator paradigm introduced by Méaux et al. From this paradigm, we
specify Elisabeth , a family of stream cipher and give an instance: Elisabeth-4 .
After asserting the security of this scheme, we provide a Rust implementation
of it and ensure its performance is comparable to state-of-the-art HHE. The true
strength of Elisabeth lies in the available operations server-side: while the best
HHE applications were limited to a few multiplications server-side, we used data
sent through Elisabeth-4 to homomorphically evaluate a neural network infer-
ence. Finally, we discuss the improvement and loss between the HHE and the
FHE framework and give ideas to build more efficient schemes from the Elisa-
beth family.

1 Introduction

State-of-the-art. Hybrid Homomorphic Encryption (HHE) is a powerful solution to
limit the performance overheads and ciphertext expansion that a direct application of
Fully Homomorphic Encryption (FHE) on private data causes. Rather than directly en-
crypting private data homomorphically, its high-level idea is to encrypt a symmetric
key with the (expensive) FHE scheme and send it to the server. Next, a client can send
private data encrypted with the symmetric cipher to the server, which will homomorphi-
cally carry out symmetric decryption before performing the private computations [36].

While HHE can in principle be instantiated with any symmetric cipher, it was
rapidly observed that standard ciphers like the AES may not be the best for this pur-
pose [23,16]. Researchers therefore started to investigate the improved performances
that specialized ciphers (e.g. with limited multiplicative complexity and/or depth) can
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lead to. Popular examples of such ciphers include LowMC [2,3], Kreyvium [5], FLIP&
FiLIP [35,34] or RASTA& DASTA [19,29].

As a first step, these ciphers have been optimized towards making their homo-
morphic decryption as efficient and low-noise as possible, independent of the applica-
tions. Recent benchmarks like [20] exhibit that parallel ciphers (e.g. LowMC , RASTA ,
or DASTA ) can reach slightly better throughputs than serial ciphers (e.g. Kreyvium ,
FLIP or FiLIP ) at the cost of higher latency. Yet, while all these ciphers lead to practi-
cal performances for their homomorphic decryption, it remains that they are specified
in F2 which, despite being convenient for symmetric cryptography, is not ideal when
considering the global optimization goal of performing signal processing on encrypted
data. For example, standard machine learning (e.g. classification) algorithms operate on
reals or integers, which can then be quantized in Zq with preferably large q’s. Hence,
applying HHE with ciphers specified in F2 requires expensive conversions from F2 to
Zq .

Contributions. Building on this state-of-the-art, the general goal of this paper is to
show that the optimization of HHE can benefit from considering the full toolchain going
from the symmetric cipher to the data processing to perform homomorphically. For this
purpose, we first aim to design a symmetric encryption scheme that not only allows
efficient (stand-alone) homomorphic decryption but is also well suited for practically-
relevant applications such as classification with machine learning algorithms. We next
aim to put forward the tradeoff between the HHE performances and the constraints that
it implies for machine learning classification.

We first generalize the filter permutator design approach used by the FLIP and
FiLIP stream ciphers to arbitrary groups and instantiate this new construction by spec-
ifying the Elisabeth stream cipher family. Besides the goal of enabling homomorphic
computations in Zq without expensive conversions, this new design approach is driven
by the recent work of Chillotti et al. [11], which generalizes the TFHE scheme from [10]
in order to enable efficient Programmable BootStrapping (PBS). PBS is pushing for ci-
phers that combine (negacyclic) Look Up Tables (LUTs) and additions in Zq with q
a power of 2. We select q = 24 for our first instance of Elisabeth , hence denoted
Elisabeth-4 , by analyzing the current cost of a PBS as a function of the LUT sizes.
Overall, Elisabeth-4 only requires two levels of PBS and a few additions in Zq , there-
fore enabling a very efficient homomorphic decryption. We study the security of the
group filter permutator approach and our proposed instantiations. We also show that
the (still stand-alone) performances of Elisabeth-4 compare well with (and sometimes
improve) the aforementioned state-of-the-art ciphers optimized for FHE.

Next, we discuss the application of HHE to a classification based on a simple neu-
ral network. As a first step in this direction, we use the Fashion-MNIST dataset for
this purpose [40]. It contains 28x28 grayscale images of 70,000 fashion products from
10 categories. This case study allows us to benchmark a full protocol, including the
(one-time) key exchange, the homomorphic (symmetric) decryption, the homomorphic
classification, and the result decryption. It confirms the interest in the HHE approach
compared to the direct application of FHE and the interest of Elisabeth-4 over binary
ciphers (in particular FLIP and FiLIPwhich share a similar design approach). It also
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emphasizes the tradeoff between the accuracy of the machine learning classification
and the HHE performances.

We conclude the paper with a critical discussion of its limitations, which allows
us to identify important directions for further research. In particular, we put forward
(i) how improving TFHE to enable efficient PBS for larger LUTs could improve the
accuracy of machine learning classifications with larger instances of Elisabeth , and
(ii) how public preprocessing and other optimizations could improve the efficiency of
homomorphic classification.

Related works. The observation that non-binary ciphers could be beneficial to HHE
has also been made in other recent works. In [27], the authors describe MASTA a vari-
ant of RASTA adapted to Zq where q = 216 + 1. In [13], the authors describe the cipher
HERAwhich is defined over Zq with q > 216. In [28], the authors describe the RU-
BATO cipher, adapted to Zq where q ≈ 225. In [20], the authors describe the family of
ciphers PASTAwhich is defined over Fp with p a 16-bit prime. They also discuss how it
can be combined with the homomorphic computation of a 5x5 matrix-vector multipli-
cation. Their main difference with our proposal is the need for a larger modulus, which
is not compatible with the efficient PBS of the generalized TFHE scheme we target. As
a result, they are not ideal for application to our machine learning classification problem
with this scheme.

We insist that we make no claim regarding the possibility to adapt HERA , PASTA ,
or other FHE-friendly ciphers to our case study. In particular, some specific choices of
parameters such as the selection of q = 24, are motivated by current technological con-
straints (which also motivates the group generalization of filter permutators). Instances
of Elisabethwith larger q’s (discussed in conclusion) or HERA -like & PASTA -like
ciphers with smaller moduli will admittedly look more and more similar, and it is an
interesting long-term problem to determine which cipher to use for which range of
applications. By contrast, our claim is that taking into account the data processing nec-
essary to perform homomorphic operations when designing an FHE-friendly cipher
can lead to improved global performances, as the comparison between Elisabeth-4 and
FiLIP showcases. In this respect, we believe focusing on machine learning algorithms
is a relevant direction since they typically raise important privacy concerns [37]. Yet,
since the comparative performances of HHE schemes may be application-dependent,
our results also suggest the identification of relevant case studies for benchmarking as
an interesting topic of discussion for the FHE research community.

2 Background

General notations. We use [n] to denote {1, . . . , n} and more generally [a, b] for the
set of integers c such that a ≤ c ≤ b. We will use the notation G to denote a group with
operation +, 0 for its neutral element, and − to denote the inverse. For a vector a ∈ Gn
we denote wH(a) its Hamming weight: wH(a) = |{ai 6= 0, i ∈ [n]}|. For two vectors
a, b ∈ Gn we denote dH(a) their Hamming distance: dH(a, b) = wH(a− b). log refers
to the base-2 logarithm.

3



2.1 TFHE

By definition, a fully homomorphic encryption scheme can evaluate any arbitrary oper-
ation on its ciphertexts. While this is technically true, depending on the FHE scheme,
some operations will be way easier to compute than others. The efficiency of an HHE
scheme therefore deeply relies on how the symmetric cipher can use the efficient oper-
ations of the FHE scheme.

The Elisabeth stream cipher family has been conceived to take advantage of the ef-
ficient operations of the FHE scheme TFHE [10] and implemented using the operations
available in the Concrete library [9].

In this section, we recall the core concepts of TFHE needed to understand our con-
tributions, for a detailed explanation of TFHE operations we refer the reader to [9],
from which we took most of the notations.

Encryption and decryption. The encryption scheme at the core of TFHE5 is based
on Learning With Error (LWE). A variant relying on the General Learning With Error
(GLWE) assumption introduced in [4] is used to perform some homomorphic opera-
tions. The generality of GLWE allows encompassing constructions relying on LWE [38],
Ring LWE (RLWE) [32] or trade-offs between both under the same structure [31].

Let B be the set {0, 1}, q = 2p, ∆ = 2δ and N = 2d be three powers of two. We
note BN [X] := B[X]/〈XN + 1〉 and Zq,N [X] := Zq[X]/〈XN + 1〉 .

Definition 1 (GLWE ciphertexts [4]). An encryption c of a message µ ∈ Zq/∆,N [X]

under secret key s := (s1(X), . . . ,sk(X)) ∈ BN [X]k is given by c ∈ (Zq,N [X])
k+1

such that:

c :=

(
a1(X), . . . ,ak(X), b(X) :=

k∑
i=1

ai(X) · si(X) +∆ · µ(X) + ε(X)

)

where the coefficients of the ai are uniformly sampled over Zq and the ones of ε are
sampled from a small discretized Gaussian noise.

We call a := (a1, . . . ,an) the mask and b the body of the ciphertext. Given a
ciphertext c and the secret key s, one decrypts c by computing µ∗(X) := b(X) −∑k
i=1 ai(X) · si(X) = ∆ · µ(X) + ε(X).
By choosing ∆ such that ∆ > ||ε||∞, one can recover µ from µ∗ by dividing each

coefficient by ∆ (which is equivalent to shifting each coefficient δ bits to the right).
This means that the value of δ fixes the noise budget, that is the maximal number of
bits one allows the coefficients of ε to be written on. So, for a given value of q, a bigger
noise budget means a smaller message size.

In the following of the paper, we refer to LWE for a GLWE ciphertext with N = 1
and to RLWE for a GLWE ciphertext with k = 1. The LWE ciphertexts are the core of
the TFHE scheme, whereas the other GLWE ciphertexts only play a role in the product
and bootstrapping.

5 i.e. Regev’s encryption scheme [38]
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Addition and multiplication. GLWE ciphertexts encrypted under the same secret key
can be added coefficient-wise, the result of which gives an encryption of the sum of
the plaintexts in Zq,N [X]. By iterating, it is then possible to multiply a ciphertext by a
plain scalar. Note that, in both cases, the noises increase, resulting in linear growth of
the noise inside the ciphertext.

To perform the multiplication of a GLWE ciphertext by an encrypted (polynomial)
constant while managing the noise growth, TFHE uses another kind of ciphertext. These
ciphertexts are the generalization of the GSW scheme [24] corresponding to GLWE,
hence dubbed General GSW ciphertexts. Then, an external product between GGSW
and GLWE ciphertexts allows the multiplication between encrypted plaintexts.

Definition 2 (GGSW Ciphertexts). Let B = 2b ∈ N and ` ∈ N. A GGSW ciphertext
C of a message m ∈ Zq,N [X] under secret key s := (s1, . . . ,sk) ∈ BN [X]k is defined
as:

C =
(
GLWEs(−si qBj m)

)
(i,j)∈[k+1]×[`]

∈ (Zq,N [X])`(k+1)×(k+1),

with sk+1 = −1.

We call B the basis and ` the number of levels of the ciphertext C. A GSW (resp.
RGSW) ciphertext is a GGSW ciphertext made from LWE (resp. RLWE).

External Product. The external product between GGSW and GLWE ciphertexts gives
a GLWE ciphertext of the product of the input plaintexts. The external product of a
GGSW ciphertext C and a GLWE ciphertext c is defined as C� c = Decomp(c) ·C,
where Decomp is a transformation that flattens a vector of k + 1 polynomials into a
vector of `(k + 1) polynomials with coefficients in [−B/2;B/2].

Programmable boostrapping. Most of the homomorphic operations make the noise
grow. In order to achieve fully homomorphic encryption, it is necessary to have an
operation to decrease the noise. This is what bootstrapping is used for, by resetting the
noise to a level independent of the noise level in the input ciphertext. In addition to noise
control, TFHE’s bootstrapping on LWE ciphertexts, also noted PBS for Programmable
BootStrapping, allows the evaluation of a negacyclic look-up table L. Instead of giving
a ciphertext of µ, it directly gives a bootstrapped ciphertext of L[µ̄], where µ̄ is a noisy
rescaling of µ on [0, 2N − 1] and N is determined by the GLWE scheme used. More
information on PBS can be found in Appendix A.

Definition 3 (Negacyclic Look-Up Table (NLUT)). A negacyclic look-up table over
a group G is a look-up table L of length 2N that verifies the following property:

∀i ∈ [0, N − 1], L[i+N ] = −L[i] ∈ G,

where = and − denote equivalence and inverse defined on G.

5



Keyswitch. The ciphertext output by the bootstrapping might be encrypted under a
different, possibly larger, key than the input ciphertext. The keyswitching operation
allows to convert a ciphertext encrypted under sin into a ciphertext encrypted under
sout thanks to a keyswitching key K. K is a GGSW encryption of 1, up to two details:

1. The last ` rows of the matrix are cropped;
2. The ciphertexts composing each line are encrypted under sout rather than sin.

The keyswitching of c = (a, b) is then computed as (0, b)−Decomp(a) ·K. It allows
switching back to the scheme with the first key.

2.2 Boolean functions and cryptographic criteria

In this part, we introduce Boolean functions and relevant cryptographic criteria (taken
from [6]) that we will use to study the security of the main stream-cipher construction
we propose in this article. Then we generalize the classic cryptographic criteria on
Boolean functions to functions from Gn to G where G is a group.

Definition 4 ((Vectorial) Boolean function). An (n,m) vectorial Boolean function F
is a function from Fn2 to Fm2 . When m = 1 the (n, 1) vectorial Boolean function is sim-
ply referred to as a Boolean function and we denote the space of n-variable Boolean
function as Bn. We call coordinate functions of F the m Boolean functions fi associat-
ing for each x ∈ Fn2 the i-th binary output of F (x). We call component functions of F
the 2m − 1 non-trivial linear combinations of the coordinate functions of F .

Definition 5 (Algebraic Normal Form (ANF) and degree). We call Algebraic Nor-
mal Form of a Boolean function f its n-variable polynomial representation over F2

(i.e. belonging to F2[x1, . . . , xn]/(x2
1 + x1, . . . , x

2
n + xn)):

f(x) =
∑
I⊆[n]

aI

(∏
i∈I

xi

)
=
∑
I⊆[n]

aIx
I ,

where aI ∈ F2. The algebraic degree of f equals the global degree of its ANF: deg(f) =
max{I | aI=1} |I| (with the convention that deg(0) = −∞).

Definition 6 (Algebraic Immunity). The algebraic immunity of a Boolean function
f ∈ Bn, denoted as AI(f), is defined as:

AI(f) = min
g 6=0
{deg(g) | fg = 0 or (f ⊕ 1)g = 0},

where deg(g) is the algebraic degree of g. The function g is called an annihilator of f
(or f ⊕ 1).

Definition 7 (Balancedness and Resiliency). A Boolean function f ∈ Bn is said to be
balanced if its output is uniformly distributed, that is: |{x | f(x) = 0}| = |{x | f(x) =
1}|.

A Boolean function f is called be m-resilient if any of its restrictions obtained by
fixing at most m of its coordinates is balanced. We denote by res(f) the maximum
resiliency (also called resiliency order) m of f and set res(f) = −1 if f is unbalanced.
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Definition 8 (Nonlinearity). The nonlinearity NL of an n-variable Boolean function
f , where n is a positive integer, is the minimum Hamming distance between f and all
the affine functions in Bn:

NL(f) = min
g, deg(g)≤1

{dH(f, g)},

with dH(f, g) = #{x ∈ Fn2 | f(x) 6= g(x)} the Hamming distance between f and g;
and with g(x) = a · x + ε, a ∈ Fn2 , ε ∈ F2 (where · is some inner product in Fn2 ; any
choice of an inner product will give the same definition).

Additionally, we denote NLd the order-d nonlinearity of f , the minimum Hamming
distance between f , and all the functions of degree at most d.

Definition 9 (Direct Sum). Let f be a Boolean function of n variables and g a Boolean
function of m variables, f and g depending on distinct variables, the direct sum h of f
and g is defined by:

h(x, y) = DS(f, g) = f(x)⊕ g(y), where x ∈ Fn2 and y ∈ Fm2 .

Additionally we denote DSt(f) when is the direct sum of t times the function f .

Extending to groups. The notions defined above on Boolean functions can easily be
extended to functions from Gn to G, we denote these extended notions by the subscript
G.

Definition 10 (Cryptographic criteria over G). For a function f from Gn to G we
denote:

– degG(f) the degree over G. It corresponds to the minimum degree over the poly-
nomial representations of f in the polynomial ring (G, ·)[x1, . . . , xn] when such
representations exist.

– resG(f) the resiliency order over G. f is balanced if and only if:

∀a ∈ G : |{x | f(x) = a}| = |G|n−1.

f is m-resilient if all the sub-functions obtained by fixing up to m variables are
balanced.

– NLG(f) the nonlinearity over G. The nonlinearity is taken as the minimum Ham-
ming distance between f and the affine functions: a0 +

∑n
i=1 aixi where the ai

describe Gn+1. Additionally, NLdG(f) denotes the order-d nonlinearity over G.

We also denote DSG(f, g) the direct sum f(x) + g(y) where x ∈ Gn and y ∈ Gm
and f and g are two n-variable and m-variable functions defined on distinct variables.

3 Group filter permutator & Elisabeth-4

The improved filter permutator (IFP) paradigm [34] led to binary stream ciphers effi-
cient for HHE [35,34,30] where the homomorphic evaluation (of the stream cipher de-
cryption) is reduced to the evaluation of a unique filtering function. Its connection with
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Goldreich’s pseudorandom generator [25], the different security analyses [35,15,34]
and cryptanalysis studies [21,8], built confidence in the soundness of this design. They
make it a natural starting point to design HHE with a non-binary symmetric scheme.

Section 3.1 introduces the group filter permutator which generalizes the IFP paradigm
over F2 to any group. We then move towards the instantiation of group filter permuta-
tors. For this purpose, we observe that concrete choices of parameters are driven by
technological constraints (e.g., operations that are efficient in TFHE (C) ). Section 3.2
discusses these choices and explains how future advances in the Concrete implementation
could benefit the stream cipher. The discussion leads to the design of the stream ci-
pher family Elisabeth and an instantiation in Section 3.3 (full algorithm are detailed in
Appendix B.2). Finally, the performances of the transciphering alone are provided in
Section 3.4.

3.1 Design and stream cipher families

The group filter permutator is defined by a group G with operation noted +, a forward
secure PRNG, a key size N , a subset size n, and a filtering function f from Gn to G.
To encrypt m elements of G under a secret key K ∈ GN , the public parameters of the
PRNG are chosen and then the following process is executed for each key-stream si
(for i ∈ [m]):

– The PRNG is updated, its output determines a subset, a permutation, and a length-n
vector of G.

– the subset Si is chosen, as a subset of n elements over N ,
– the permutation Pi (a re-ordering) from n to n elements is chosen,
– the vector, called whitening and denoted by wi, from Gn is chosen,
– the key-stream element si is computed as si = f(Pi(Si(K)) + wi), where +

denotes the element-wise addition of G.

The GFP, depicted in Figure 1, is a generalization of the improved filter permuta-
tor [34] where G = F2. The XOR is replaced by the addition of G and the Boolean
function by a function from Gn to G.

3.2 Look-up tables specifications

In order to be efficiently evaluated homomorphically, Elisabethfilters should rely on the
most native TFHE homomorphic functions, which are modular additions and NLUTs
(see Definition 3) evaluation. The use of NLUTs leads to some non-standard constraints
for the design of Elisabeth . In particular, they are entirely determined by the first half
of their values and cannot be bijective. Indeed, 0 can only have an even number of
antecedents: given a 2n size NLUTL, for each i ∈ [0, 2n−1 − 1] such that L[i] = 0,
we also have L[i + 2n−1] = −L[i] = 0. As will be shown next, those peculiarities do
not raise fundamental problems for the security of the cipher and it is possible to reach
the necessary cryptographic criteria to ensure 128 bits of security with a cipher based
on NLUTs and modular additions.
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Fig. 1: The group filter permutator design

On the choice of the NLUTs size. The choice of the size of the NLUTs is driven by
several conflicting arguments: on the one hand, smaller NLUTs increase the amount
of NLUTs that needs to be evaluated to reach a given level of security, which there-
fore slows down the evaluation of the circuit. On the other hand, bigger NLUTs lead
to heavier computation: indeed, the NLUTs are homomorphically computed through
a PBS, which is essentially a sequence of polynomial multiplications. The bigger the
NLUT, the bigger the polynomials involved in the PBS. Since the cost of a polynomial
multiplication is of O(N logN), where N is the polynomial degree, there is a clear
interest in taking smaller NLUTs. That being said, Elisabeth’s final goal is to ensure
the evaluation of neural networks over the output of the transciphering. This goal is
more easily achieved if the output ciphertext contains bigger chunks of data. To find
out where the trade-off between smaller polynomials and bigger chunks of data lies,
we designed Table 1 which gives the minimal size of polynomial needed to evaluate
a NLUT of given size for different LWE dimensions in TFHE. These values are hard
minimums computed before any specific choice of design for the encryption scheme,
i.e. if we wanted to evaluate a NLUT on a ciphertext that contains just enough noise
to ensure 128 bits of security. Every operation in the scheme performed before a PBS
could increase the noise in the ciphertext up to a point where bigger polynomials are
needed for the same NLUT size. Considering all the previous arguments, we found that
NLUTs of 4 bits would be the best trade-off as it relaxes as much as possible the con-
straint on polynomial sizes while keeping enough bits of message in a single ciphertext.
We chose not to use bigger messages for several reasons: first, this guarantees that once
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the specifics of our design have been set, the polynomial degree should remain small.
Second, this ensures that Elisabeth-4 will require a smaller noise budget to be evaluated
than any computation that could be performed afterward. By doing so, one ensures that
transciphering will not be the noisiest part of the evaluation server-side, and thus can
be computed with exactly the same parameters as the following circuit. In a nutshell,
in the vast majority of usecases, adding Elisabeth-4 before the evaluation of a circuit
will not require new parameters to be computed. With the current limitations of TFHE,
using a bigger length for the NLUTs could not only multiply the transciphering time
by more than two but also slow down the whole evaluation server-side. Nevertheless,
the generality of the design enables it to adapt easily to powers of two of the same order
once future improvement of TFHE regarding big(ger) integer computation would make
it worthwhile to use bigger NLUTs.

LWE dimension
NLUT length

512 630 650 688 710 750 800 830 1024 2048 4096

16 512 512 512 512 512 512 512 512 512 1024 1024

32 1024 1024 1024 1024 1024 1024 1024 1024 1024 2048 2048

64 2048 2048 2048 2048 2048 2048 2048 2048 2048 4096 4096

128 4096 4096 4096 4096 4096 4096 4096 4096 4096 8192 8192

256 8192 8192 8192 8192 8192 8192 8192 8192 8192 16384 16384

Table 1: Polynomial degrees required to evaluate NLUTs containing bigger elements,
in function of the LWE dimension. The LWE dimension is the number of elements
in the mask of a ciphertext. The NLUT length is both the number of elements in the
NLUT and the size of the group G over which the NLUT is defined.

3.3 Elisabeth-4

In order to benefit from Concrete [9] efficient operations, the design of Elisabeth is a
GFP defined over G = Z2` where the filtering function f is composed by additions
over G = Z2` and NLUTs that could be evaluated in parallel. A simple way to follow
these guidelines and allow a simpler security analysis is to make the filter f rely on the
direct sum construction: f is the addition (over G) of functions acting on independent
variables. To be even simpler, each sub-function of f can be chosen to be the same
function, which gives a highly parallelizable design. Accordingly, splitting n in t parts
of m (different) variables, Elisabeth’s filters have the following shape:

f(x1, . . . , xn) = DStG(g(x1, . . . , xm)).

The general idea of Elisabeth ’s filters design is to use the fewest levels possible of
NLUT, in order to parallelize computation efficiently.

At the moment, as explained in Section 3.2, Concrete’s implementation leads to fix
G = Z16. Only one level of NLUTs of this size would not guarantee a secure scheme
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for 128-bit security6. Hence, for this NLUT size we propose a filter with two levels of
NLUTs, following the 5-to-1 construction depicted in Figure 2. The high-level idea of
this construction is to mix 4 variables to get strong enough algebraic properties and to
use the fifth one to balance the output.

It gives the following instantiation of Elisabeth-4 : G = Z16,N = 256, n = 60, t =
12,m = 5, and g is the 5-to-1 function. As will be shown in Section 4, a random choice
of NLUTs has a high probability to lead to secure instances of Elisabeth . Therefore,
and to mitigate the possibility of trapdoor the design by targeting particular relations
over G, we selected the 8 NLUTs required for g by hashing the sentence “Welcome to
Elisabeth, heir of FiLIP!”, using the following process7:

– The sentence is encoded in UTF-8 and the 256 bits hash is computed using SHA-2.
Those 256 bits are then split into 8 blocks of 32 bits. Each NLUT Si is determined
using the i-th block.

– The 32 bits are themselves split in 8 blocks of 4 bits, which directly gives the 8-th
first coefficients of the size-16 NLUT, which determines entirely the NLUT.

All the NLUTs obtained with this process are explicitly given in Appendix B.1. We
analyze this particular choice of NLUTs in Section 4.

x1

x2x3

x4

x1 x2 x5 x3 x4

S1

S2

S3

S4

S5 S6 S7 S8

Fig. 2: Elisabeth-4 ’s 5 to 1 inner function.

6 Based on the analysis in Section 4, an adversary could retrieve the key by solving an algebraic
system of degree at most 4 over F2

7 A python implementation of this protocol can be found here: https://github.com/princess-
elisabeth/sboxes generation
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3.4 Implementation and performances

Implementation. We implemented Elisabeth-4 over TFHE’s library Concrete [9]8.
The symmetric key used by Elisabeth-4 is encrypted under an LWE key sin of length n,
and the PBSs are performed under an RLWE key of length k and a polynomial degree
N . Since a side effect of the PBS is to switch the secret key under which a message is
encrypted from sin to sout, a KeySwitch is needed after each PBS9. This KeySwitch
can either happen right after the PBS, or after several operations. Since a KeySwitch
is a rather noisy operation, the preferred approach was to perform it as close to the next
PBS as possible. KeySwitches from sout to sin were thus computed after the sum of the
output of 2 NLUTs and before an input ciphertext was added to this sum. The reason
why this input ciphertext is summed after rather than before the KeySwitch is that it is
encrypted under the secret key sin. For the same reason, a KeySwitch is needed at the
final step of the inner function, where we sum the fresh ciphertext of x5 with the rest
of the inner function. This KeySwitch can either be performed on x5, from sin to sout
with another KeySwitching key, or on every other part of the final sum, with the same
KeySwitching key than earlier. The first approach allows faster computation, since this
KeySwitch can be performed in parallel to the rest of the evaluation of the inner func-
tion, but increases the amount of data sent to the server before transciphering and has
for side-effect that the output ciphertext and the symmetric key are not encrypted un-
der the same LWE key. See Figure 3 for an illustration of the KeySwitches integration
inside Elisabeth-4 ’s circuit.

Parameters. Depending on the positioning of the KeySwitches, two sets of homomor-
phic parameters have been chosen for Elisabeth-4 , specified in Table 2. These param-
eters have been selected to ensure 128 bits of security and 4 bits of message integrity
while optimizing evaluation time and key sizes. The integrity of the message has been
controlled using the noise formulas given in [12] and the security is estimated based on
the LWE security estimator [1].

TFHE Parameters

Mode n k N log(σLWE) log(σGLWE)
PBS KeySwitch inverse KeySwitch

log(B) ` log(B) ` log(B) `

two KS 784
3 512

−18.6658 −38.4997 19 1
6

2
19 1

single KS 863 −20.7494 7 - -
Table 2: Set of recommended FHE parameters for Elisabeth-4 .

8 https://www.github.com/princess-elisabeth/Elisabeth
9 Or, more precisely, between two PBS
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(a) Two KeySwitch keys.
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(b) Single KeySwitch key.

Fig. 3: Elisabeth-4 ’s homomorphic circuit. A gray edge represents operations under
secret key sin while black edges represent operations under sout. Yellow boxes are oper-
ations that take inputs encrypted under sin and output ciphertexts encrypted under sout
and orange boxes represent the opposite.

Benchmark. Since Elisabeth-4 has been designed for server usage, it has been tested
on a 64-core computer equipped with AMD Ryzen Threadripper 3990X 64-Core Pro-
cessor10. Results are in Table 3.

Timings
Cipher Time per ciphertext (ms) Time per bit (ms)
Elisabeth-4 (two KS) 91.143 22.786
Elisabeth-4 (single KS) 103.810 25.953
Elisabeth-4 (two KS, monothreaded) 1485.0 371.25
Elisabeth-4 (single KS, monothreaded) 1648.6 412.15

Table 3: Comparison of running time of different versions of Elisabeth-4 .

As Elisabeth-4 has been designed for TFHE, it will mainly be compared to FiLIP ,
which has had its own specific implementation for TFHE [30]. In order to make our
comparisons more relevant, FiLIP has been reimplemented over Concrete 11, with the
same parameters as described in [30]. For completeness, we also provide a rough com-
parison of Elisabeth-4 with other state of the art encryption schemes for transciphering,

10 Note that this particular design is initially optimized for 48 cores.
11 https://github.com/princess-elisabeth/FiLIP
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namely LowMC [2], Kreyvium [5], RASTA [19], FiLIP [34], DASTA [29], MASTA [27]
and PASTA [20], all of which have been benchmarked with the tools provided by [20],
and HERA [14], on the same machine used for benchmarking Elisabeth-4 . Table 4
collects the results of these benchmarks.

Note that since these symmetric schemes have been designed with different FHE
cryptosystems in mind, comparisons between their performances must be considered
with care. For example, some homomorphic schemes are very efficient at packing, that
is storing many cleartexts inside one ciphertext, but depending on the usecase follow-
ing the transciphering, unpacking these cleartexts can be pretty costly. From a high-level
perspective, these results confirm that ciphers that are more serial are also more interest-
ing for latency, whereas the ones more parallel are better suited for throughput. But they
are not indicative of any real-world performance in a specific usecase, which motivates
the investigations of Section 5.

Cipher Homomorphic library Time per ciphertext (s) Time per bit (ms)
LowMC TFHE (C) 4283.678 16733
Kreyvium TFHE (C) 208.255 208255
RASTA 6 TFHE (C) 2424.503 6907
FiLIP 144 Concrete 0.134 134
FiLIP 1216 Concrete 0.586 586
FiLIP 1280 Concrete 0.627 627
DASTA 6 TFHE (C) 2387.674 6802
Elisabeth-4 (two KS) Concrete 0.091 22.75
Elisabeth-4 (single KS) Concrete 0.104 26

LowMC HELib 853.302 3333.21
Kreyvium HELib 8.222 8222
RASTA 6 HELib 163.131 464.76
DASTA 6 HELib 156.935 447.11
MASTA 5 HELib 22.096 20.31
PASTA 4 HELib 9.827 18.06

HERA CKKS 14.747 0.01

Table 4: Comparison of running time of different 128-bit security HHE, using either
TFHE (TFHE (C) or Concrete ), BFV (HELib ) or CKKS (CKKS ). The parameters
used are the ones recommended by their original papers for 128 bits of security.

Note also that the seemingly less efficient performances of some cryptosystems used
in combination with TFHE (C) are explained by a trade-off on the homomorphically en-
crypted key size: in order to make the ciphertexts used smaller, most of their operations
are performed through gate bootstrapping, which significantly slow down the compu-
tation. FiLIP , which does not rely on this approach, runs much faster but needs way
bigger keys. Table 5 gives a comparison of these sizes with Elisabeth-4 , when transci-
phering towards TFHE (C) . In the case of Elisabeth-4 , we also included in this value
the size of the KeySwitch and PBS keys needed to evaluate the transciphering algo-
rithm. Data that would have been sent even without transciphering are not taken into
account. Also note that rather than sending or storing a full GLWE or GGSW cipher-
text, it is always possible to send only the body part of the ciphertext along with the
seed used to generate its mask. When several ordered ciphertexts are sent, a single seed
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can be provided for all of them. It is supposed in Table 5 that such compressions are
used whenever possible.

Cipher Key sizes (kB)
FiLIP 144 1610613
FiLIP 1216 402653
FiLIP 1280 1610613
Elisabeth-4 (two KS) 20
Elisabeth-4 (single KS) 8

Table 5: Comparison of public key sizes of FiLIP and Elisabeth-4when used in combi-
nation with TFHE.

Tables 4 & 5 show that Elisabeth-4 gives a reduction of the data overhead compared
to FiLIP by a factor 20000 to 200000, for a speedup of a factor 5 to 27.5 per bit. More-
over, Elisabeth-4 outputs are 4-bits integer, which FiLIP could only achieve through a
costly series of PBS. Indeed, to reconstruct a multi-bit message, every bit but the most
significant one transciphered by FiLIP must be shifted to the right as needed before
being summed together. Each shift being performed through a PBS, a 4-bits message
would thus cost an additional 3 PBS to be transciphered. The capacity to output multi-
bit messages will prove useful in actual usecases.

4 Security analysis

4.1 Security of the group filter permutator

The group filter permutator generalizes the IFP paradigm over F2 [34] to any group.
Accordingly, for the security analysis, we consider how the attacks known on IFP apply
in the general case, and we discuss new attacks arising from the group. The security of
IFP is discussed in [34], it is built on top of former analyses on filter permutator [35]
(FP) and the connection with Goldreich’s pseudorandom generator [25]. The main dif-
ferences between the FP paradigm and the IFP paradigm are the addition of a subset
selection before the permutation and a whitening. These modifications allow to mitigate
the impact of guess and determine attacks on FP [21] and restricted inputs cryptanaly-
sis [8]. The security analyses on IFP consider that no additional weakness arises from
the PRNG which is chosen forward secure to avoid malleability. The subsets, permuta-
tions, and whitening are derived with no bias, hence the pseudorandom system obtained
is not chosen in an adversarial way and the attacks applying on IFP are the ones target-
ing the filtering functions. These attacks are adaptations from the one applying on the
filtered register, regrouped in [34] as algebraic-like attacks, correlation-like attacks, and
guess and determine strategies.

The complexity of the different attacks on IFP is derived from parameters of the
filtering function f . In the IFP case, f is a Boolean function and the significant crypto-
graphic criteria of Boolean functions have been studied over the last decades for filtered
registers. We argue that if the GFP is defined over a field, such as Fq , the natural gener-
alizations of such Boolean cryptographic criteria over Fq would give a strong basis for
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the security analysis. Since GFP is defined over G we analyze the security based on the
properties over G and over a field allowing a polynomial representation of f . At a high
level since the ”+” operation is linear in G the first view angle aims at verifying the filter
breaks the linearity enough. The goal of the second perspective (over G′) is to prevent
attacks arising from a cryptographic weakness of the function f in another representa-
tion easy to obtain for an adversary. We consider the attacks in the single-key setting, in
the known plaintext-ciphertext pairs model, focusing on key-recovery attacks. We make
the standard assumption that an adversary is limited by a data complexity of 2

λ
2 = 264.

For Elisabeth-4 since G = Z16 we study the properties of the filter f as a function
from Gn to G. Fixing the representation of each element of G as an element of G′ = F4

2

based on its binary decomposition fixes a vectorial Boolean function F from F4n
2 to

F4
2. We study F by analyzing the properties of its 15 non-null component Boolean

functions, the 15 functions from F4n
2 to F2.

Algebraic attacks. The general principle of algebraic attacks is to consider an alge-
braic system of equations derived for the key-stream: an attacker knowing plaintext-
ciphertext pairs can rewrite key-stream outputs as multivariate polynomials in the se-
cret key elements, and solve the system to recover the key. Various techniques can be
used to solve such an algebraic system, as simple as linearization (considering each
monomial as a new variable) followed by Gaussian elimination and as complex as ap-
proaches using Grobner bases (such as [22]). For the security estimation, we will use
the approaches using linearization, as they allow to have a good estimation of the at-
tack complexity from the algebraic degree of the system and the number of variables,
whereas the complexity of more complex attacks is often difficult to assess or interpo-
late from toy examples. For a system of equations of degree d with N unknowns the
attack has complexity O(D)ω , where D is the number of monomials of degree lower
or equal to d, and ω is the exponent from the Gaussian elimination (fixed to log(7) for
our estimations).

Analyzing the security of Elisabeth-4 over G = Z16, an adversary could target a
system of equations in the polynomial ring K[x1, . . . , xN ] = (G, ·)[x1, . . . , xN ] where
· denotes the usual product in G. In this case where G = Z16,K is a ring but not a field,
hence not all the functions from Kn to K have a polynomial representation. When
f does not correspond to a polynomial over K[x1, . . . , xN ] we consider no algebraic
attack applies on the representation over G. Considering K[x], since for all x ∈ G
it holds x8 = x4, any polynomial in the univariate representation is equivalent to a
polynomial of degree at most 7, hence there are at most 168 polynomial evaluations.
In comparison, there are 1616 evaluations from G to G. Accordingly, we assume that
with high probability the function f used for the filter does not admit a polynomial
representation over K[x1, . . . , xn], which avoids this attack, and experimentally we
verify that the function does not correspond to a low degree polynomial.

Over F2 more specific attacks have been exhibited. The algebraic attack of Courtois-
Meier [18] on filtered LFSR applies to the GFP: instead of considering a system of
equations given by a filtering function f (in our case one of the non-null component
functions of F ) the attacker finds low-degree functions g and h such that fg = h
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and derive a system of degree AI(f) = max (deg(g), deg(h)) which has the same
solutions as the initial system. Unlike the algebraic degree that can be up to n for an n-
variable Boolean function, it has been shown in [18] that the algebraic immunity (AI) is
at most d(n+ 1)/2e. Targeting this algebraic system of lower degree the corresponding
algebraic-attack has a complexity ofO(D)ω whereD =

∑AI(f)
i=1

(
N
i

)
. The fast algebraic

attack [17] is a variant of the previous attack where the adversary considers functions g
and h such that fg = h as before with g and h still of low degree but with h of degree
potentially higher than AI(f). This attack can be more efficient than the previous one
when the relations between the consecutive key-stream equations allow eliminating the
monomials of degree between deg(g) and deg(h) in the system. In the case of filtered
LFSR, the linear relation given by the LFSR allows to eliminate the monomials of
degree larger than deg(g) using the Berlekamp-Massey algorithm, hence it gives a better
attack than the standard algebraic one. The permutations used in the GFP do not provide
such linear relations for consecutive key-stream equations, hence the elimination step
would be more costly in this context. On a filtered LFSR the security estimation is
O(D log2(D) + ED log(D) + Eω) where D =

∑deg(h)
i=1

(
N
i

)
and E =

∑deg(g)
i=1

(
N
i

)
.

This estimation will be used as an indicator rather than a sharp limit, considering that
the complexity of the best attack of the algebraic kind would lie between this (too low)
bound and the (too high) one given by the algebraic attack of Courtois-Meier.

Correlation attacks. Two kinds of correlation attacks are considered on IFP, the first
one uses the bias of the output (or a sub-part of the output) from uniform to mount a
distinguishing attack, the second one consists in approximating the key-stream equa-
tions by low-degree equations and in retrieving the key by solving a noisy linear system
such as a Learning Parity with Noise (LPN) instance. Two main criteria permit to es-
timate the impact of such attacks. The first one is the number of key elements to fix
before having a non-uniform output, often referred to as resiliency order for Boolean
functions. Generalizing the concept to any group G, a resiliency order of k means that
the output of a function from Gn to G remains uniformly distributed in G even fixing
up to k variables, and there exists an affectation of k+1 variables such that the output is
not uniform. The second criterion is the quality of the approximation (equivalently the
importance of the bias), it measures the Hamming distance between f and a low-degree
function. In particular, the distance to affine functions, the nonlinearity, often leads to
the best attacks in this context. For l the best affine approximation of f , the nonlinear-
ity NLG corresponds to dH(f, l) and an adversary can consider the system of equation
given by f as a noisy linear system given by l with noise parameter NLG/(|G|n). Since
affine non-constant functions are well distributed (each element appears exactly |G|n−1

times), if the best affine approximation is not a constant function then the nonlinearity
gives a bound on the bias from uniform. Consequently, both for the perspective from G
and from G′ we will ensure a non-trivial resiliency order to prevent these attacks, and
we will consider the following rationals for the attack based on low-degree approxima-
tion. For an approximation of degree d over G:

– D is the number of monomials of degree up to d,
– m is a positive integer lower than or equal to the number of equations available to

the adversary,
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– NLdG is the Hamming distance between f and its best degree d approximation,
– PD,m is the probability of having at least D equations over m with no error (Com-

puted from a binomial law with error parameter NLdG/(|G|n)),

We will ensure that
(
m
D

)
P−1
D,mD

ω > 2λ, since this complexity bound matches the one
of an attack consisting in solving a linearized system with enough noiseless equations.

In particular for Elisabeth-4 , over Z16 we will ensure a nontrivial resiliency and a
sufficient distance to degree-1 and degree-2 functions. Over F2 we will ensure a non-
trivial resiliency and a sufficient nonlinearity. We assume that considering higher de-
gree approximations will lead to less efficient attacks since the gain in approximating
the function is lost by the increasing number of monomials.

Guess and determine attacks. The cryptanalysis of [21] on an instance of FP showed
the strength of guess and determine attacks on this design when too simple filters are
used. The principle of the attack is to guess some elements of the key and attack the
resulting system with one of the previously described attacks. Guess and determine
attacks perform better than the former ones when the cost of guessing elements (try
the attack for the |G|` possibilities) is compensated by the simplicity of the remaining
system. As for IFP, in the GFP the subset selection and whitening decrease the inter-
est of guess and determine attacks since only a sub-part of the fixed elements of the
key area in the selected subset for each equation, and the whitening randomizes which
sub-function is obtained. In [35] the complexity of the guess and determine attacks is
estimated based on the cryptographic parameter of the weakest function that can be
obtained by fixing ` variables. In [34] an involved algorithm is used to compute the
complexity of the attack targeting sub-functions with parameters lower than a threshold
and leverage it by the probability of obtaining such sub-functions by fixing ` bits. Since
this algorithm is practical only for bit-fixing stable families of functions (see [7]), we
will use the simpler approach of [35]. For the different attacks listed above, the attack
complexity is derived from the value of a filter’s parameter, hence we will consider the
attacks obtained with weaker values taking into account the minimal number of guesses
needed to reach this value. Hence, the complexity estimation is |G|`C(k) where C(k)
is the complexity for a parameter with value k and ` the minimal number of guesses to
obtain a sub-function with this parameter value.

4.2 Security of Elisabeth-4

As described in Section 3.3 the design of Elisabeth relies on the use of direct sums,
repeating the same basis function in a few variables. In this part we show how to de-
rive the security estimations for Elisabeth-4 from the parameters of its basis function,
analyzing it over Z16 and over F2.

Analysis over Z16. Over Z16 the filtering function can be written as:

f(x1, . . . , xn) = DSG(DS12
G (h),DS12

G (xi)),
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where h is the function from G4 to G given by the combinations of the 8 NLUTs
given in Section 3.3 before adding x5. We experimentally compute the resiliency, NLG
and NL2

G of h and the sub-functions obtained from h by fixing 1 and 2 inputs, and
list the results in Table 6. Then, the following proposition (Proposition 1) enables to
bound the parameters of a direct sum over G and it is used to bound the parameters
of the 60-variable filter f and its sub-functions obtained by guessing a limited number
of inputs. Finally, we summarize the bounds on f parameters and the associated attack
complexity in Table 7 following the analysis of Section 4.1. Additionally, we provide a
primary analysis on the polynomials and functions over G which studies how selecting
random NLUTs benefits the security over G.

Proposition 1 (G-direct sum properties). Let h = DS(f, g) be the direct sum of f and
g with n and mG-variables respectively. Then DSG(f, g) has the following properties:

1. Resiliency: resG(h) ≥ resG(f) + resG(g) + 1.
2. Nonlinearity: NLG(h) ≥ max(|G|nNLG(g), |G|mNLG(f)).
3. Order-2 nonlinearity: NL2

G(h) ≥ max(|G|nNL2
G(g), |G|mNL2

G(f)).

Proof. We begin with the result on resG(h). For all t ∈ N∪−1 such that t ≤ resG(f)+
resG(g) + 1, all choice of t variables corresponds to t1 variables of f and t2 of g such
that t = t1 + t2. If t1 ≤ resG(f) the corresponding (n − t1)-variable sub-function
f ′ of f is balanced hence the direct sum f ′ + g′ is also balanced. If t1 > resG(f)
then t2 ≤ resG(g), therefore the corresponding (m − t2)-variable sub-function g′ of
g is balanced hence the direct sum f ′ + g′ is also balanced. It allows us to conclude
resG(h) ≥ t.

For the nonlinearity, an n+m affine function can be written as:

`a,b = a0 +

n∑
i=1

aixi +

m∑
j=1

bjyj ,

where the xi (resp. yj) denote the variables from the f part (resp. g). Then:

dH(h, `a,b) =
∑
v∈Gm

dH(f + g(v), `a + b · v) ≥ |G|mNLG(f).

Since f and g play similar roles, the same arguments lead to dH(h, `a,b) ≥ |G|nNLG(g),
giving the final result.

Finally, the result for the order-2 nonlinearity can be directly adapted from the proof
for the nonlinearity. When the m variables of g are fixed, on one side h equals f plus a
constant, and on the other side any n+m degree-at-most-2 function equals a degree-at-
most-2 function depending only in the variables of f . Hence, the order-2 nonlinearity
can be written as the sum of |G|m distances (between f and a degree-at-most-2 func-
tion), each one greater than or equal to NL2

G(f). Noting that f and g play a similar role
allows us to conclude.

The results from Table 7 show that the attacks considered on G, correlation attacks
using approximations of degree 1 or 2, are impracticable with the chosen filter.
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Number of fixed variables ` 0 1 2
Resiliency resG −1 −1 −1

Nonlinearity NLG ≥ 55296 ≥ 3456 216

Order-2 nonlinearity NL2
G ≥ 53248 ≥ 3328 208

Table 6: Minimum G-cryptographic parameters for h after fixing up to ` inputs. For 0
and 1 guess NLG(h) and NL2

G(h) are bounded using the worst value obtained with 2
guesses. Number of guesses ` 0 [1, 12] [13, 23] [24, 35]

Resiliency 11 11− ` −1 −1
NLG/|G|n−` ≥ 0.84 ≥ 0.84 ≥ 0.84 0.84

Correlation attack complexity (bits) >> 128 >> 128 >> 128 >> 128

NL2
G/|G|n−` ≥ 0.81 ≥ 0.81 ≥ 0.81 0.81

Order-2 Correlation attack complexity (bits) >> 128 >> 128 >> 128 >> 128

Table 7: Elisabeth-4 , minimal parameter bounds up to ` fixed inputs and complexity
estimations for a key size N = 256 (1024 bits). The parameter bounds come from ap-
plying Proposition 1 with the values from Table 6 and the complexity estimations come
from Section 4.1. We write”>> 128” when the complexity estimation overreaches sev-
eral hundreds.

Polynomials and functions from G4 to G.
As explained in Section 4.1, not all functions from GN to G can be mapped to

polynomials in the polynomial ring K[x1, . . . , xN ] = (G, ·)[x1, . . . , xN ]. With the
same arguments, not all functions from G4 to G admit a polynomial representation
in K[x1, . . . , x4], and we show that in particular h does not correspond to a polynomial
using a simple necessary condition to be a polynomial. Moreover, we show that most of
the functions from this space are far in Hamming distance from the polynomials. More
precisely, the probability of a random function to agree with a polynomial on at least
half of the inputs is lower than 2−128.

Proposition 2. Let f a function from G4 to G. If f(8, 8, 8, 8) − f(0, 0, 0, 0) 6∈ {0, 8}
then f is not a polynomial of (G, ·)[x1, . . . , x4].

Proof. All monomial of (G, ·)[x1, . . . , x4] have the form xi11 xi22 xi33 xi44 where i1 to i4
are positive integers. In (0, 0, 0, 0) all non-trivial monomial gives 0 and in (8, 8, 8, 8) if
one exponent is greater than 1 or more than one exponent is not null a monomial gives 0,
the remaining non trivial monomials give 8. Let p be a polynomial of (G, ·)[x1, . . . , x4]:

p(x1, x2, x3, x4) =
∑

i1,i2,i3,i4∈N
ai1,i2,i3,i4x

i1
1 x

i2
2 x

i3
3 x

i4
4 ,

where ai1,i2,i3,i4 ∈ G. Then, p(0, 0, 0, 0) = a0,0,0,0 and p(8, 8, 8, 8) = a0,0,0,0 +
8(a1,0,0,0 + a0,1,0,0 + a0,0,1,0 + a0,0,0,1) hence p(8, 8, 8, 8) − p(0, 0, 0, 0) ∈ {0, 8},
allowing to conclude.

Proposition 3. Let G be the space of functions from G4 to G, the probability that a func-
tion f taken uniformly at random in G agrees with a polynomial of (G, ·)[x1, x2, x3, x4]
on at least half of the inputs is lower than 2−128.
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Proof. For this proof we use the formalization of error correcting codes. Each function
in G can be uniquely represented by its vector of outputs in G164

, and the polynomials of
(G, ·)[x1, x2, x3, x4] form a linear code of the vector-space (G, ·)164

with parameter [n,
k, d]. First, we determine an upper bound on the number of polynomials with different
evaluations (which corresponds to an upper bound on the code dimension k). Then we
determine an upper bound on the number of elements of G164

at Hamming distance
lower than n/2 + 1. Finally, we compare the last bound with the number of functions
in G to conclude.

For x ∈ G the value of x4 is 0 if x is even and 1 if x is odd, since x8 has the same
property, all polynomial of (G, ·)[x] has a representative of degree at most 7. Thereafter,
for the polynomial ring (G, ·)[x1, x2, x3, x4] all monomial xi11 x

i2
2 x

i3
3 x

i4
4 with exponents

i1, i2, i3, i4 ∈ N has a representative with i1, i2, i3, i4 ∈ [0, 7]. Since it gives at most
84 = 212 monomials (that is k ≤ 212), there are at most 16212

= 2214

different polyno-
mial representations.

Then, we use the standard packing/covering bound to determine the maximum num-
ber of elements covered by the union of Hamming balls of radius n/2 centered around
the code elements (here the polynomials). Each ball contains B =

∑n/2
i=0(|G| − 1)i

(
n
i

)
elements, giving a total number of 2214

B elements: the upper bound reached if no ball
intersect.

Finally, since there are (16)164

= 2218

elements in G we can compute the proportion
p of functions coinciding on a least half of there inputs with a polynomial:

p ≤ 2214

B

2218 =

∑215

i=0 15i
(

216

i

)
215·214 ≈ 2−215.67

< 2−128.

Proposition 3 shows that most of the functions from G4 to G cannot be well approx-
imated by a polynomial. The same idea extends to functions from Gn to G, therefore it
makes the attack consisting in solving a noisy polynomial system over G very unreal-
istic when the filter is a random function. Since h is not taken at random from G, and
neither is f , we cannot directly use this argument. This is why we additionally provide
bounds for the nonlinearity and distance from degree-2 polynomials.

Analysis over F2 To perform the analysis over F2 we introduce Beth-4 , a variation of
Elisabeth-4 . The variation consists in replacing some additions over Z16 by coordinate-
wise XOR, it gives a scheme which security is easier to analyze and conjectured at most
as secure as Elisabeth-4 .

Formally, Beth-4 is a stream cipher following the GFP paradigm with G′ = F4
2

where the operation is the addition modulo 2 coordinate-wise. The addition of the
whitening and the addition of the key-stream with the plaintext are considered in G′,
only the additions inside the 5-to-1 function remain in G. More precisely, the filtering
function F from (F4

2)n to F4
2 is computed as DSG′(H(x20i−19, · · · , x20i), i ∈ [4n/5])

where H is determined by the truth table obtained by considering the canonical em-
bedding of G over G′ on the inputs and outputs of the (G5 to G) function g defined in
Section 3.3.
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Since the design of Beth-4 uses direct sums and 20-variable Boolean functions its
security can be analyzed easily following the approach on IFP [34]. Seen over G′ = F4

2,
the addition in G corresponds to the addition (in F4

2) more nonlinear combinations of the
coordinate functions due to caries. Therefore, the algebraic system given by Elisabeth-
4 is more complex over F2 than the one of Beth-4 , and we assume that Elisabeth-4 is
at least as secure as Beth-4 for the different attacks we consider. Accordingly, in the
following part, we determine the parameters of the 20-variable component functions of
the basis function of Beth-4 . Then, we bound the significant cryptographic parameters
of the 4n-variable component Boolean functions. Finally, we give the complexity esti-
mations for the security of Beth-4 , we consider these values as lower bounds for the
complexity estimations on the security of Elisabeth-4 .

Over F4
2 the filtering function can be written as F (x1, . . . , x4n) = DS12

G′(H), where
H is the function from F20

2 to F4
2 given by the NLUTs and addition in G illustrated in

Section 3.3. We experimentally compute the parameters of H and give them in Table 8.
Then, the following lemmas allow to determine the cryptographic parameters of the
function F , with or without guessed bits. The structure of direct sum of F component
functions is preserved even guessing bits, hence Lemma 1 on the cryptographic prop-
erties of direct sums enables to bound the parameters (degree, nonlinearity, resiliency)
of the obtained functions from the parameters of H . Lemma 2 gives a lower bound on
the AI of a direct sum based on the degree of its sub-parts, it allows us to bound the
AI of the obtained functions from the degree of the components of H (with or without
guessing bits). Finally, the bounds on F ’s parameters are given in Table 9, together with
the complexity estimations following the analysis of Section 4.1.

` 0 1 2 3
deg 12 10 9 8
res 0 -1 -1 -1
NL 509440 249216 120768 57920

Table 8: Minimum Boolean cryptographic parameters overH’s components after fixing
up to ` binary inputs.

Lemma 1 (Boolean direct sum properties (e.g. [35] Lemma 3)). Let h = DS(f, g)
be the direct sum of f and g n and m-variable Boolean functions respectively. Then
DS(f, g) has the following cryptographic properties:

1. Degree: deg(h) = max(deg(f), deg(g)).
2. Algebraic immunity: max(AI(f),AI(g)) ≤ AI(h) ≤ AI(f) + AI(g).
3. Resiliency: res(h) = res(f) + res(g) + 1.
4. Nonlinearity: NL(h) = 2mNL(f) + 2nNL(g)− 2NL(f)NL(g).

Lemma 2 ([33] Lemma 6). Let t ∈ N∗, and f1, . . . , ft be t Boolean functions, if for
r ∈ [t] there exists r different indexes i1, · · · , ir of [t] such that ∀j ∈ [r], deg(fij ) ≥ j
then AI(DS(f1, . . . , ft)) ≥ r.
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Number of guesses ` 0 [1, 10] 11 [12, 23] [24, 35]
Resiliency 11 11− ` 0 −1 −1
NL/24n−` 0.49 ≥ 0.48 ≥ 0.48 ≥ 0.47 ≥ 0.46

Correlation attack complexity (bits) >> 128 >> 128 >> 128 >> 128 >> 128
Algebraic immunity 12 12 11 10 9

AA complexity (bits) 4N = 1024 229 230 222 205 198
AA complexity (bits) 4N = 4096 288 289 276 254 242
FAA complexity (bits) 4N = 1024 110 111 114 108 113
FAA complexity (bits) 4N = 4096 136 137 139 131 134

Table 9: Beth-4 , minimal parameter bounds up to ` fixed binary inputs and complexity
estimations (in bits) for key sizes N = 256 (1024 bits) and N = 1024 (4096 bits). The
complexity estimations come from Section 4.1, when ` lies in an interval the complexity
given is the minimal one for this interval of guesses. AA refers to the algebraic attack
and FAA to the fast algebraic attack. The complexity of the fast algebraic attack is
computed taking deg(g) = 1 and deg(h) = AI(f) + 1.

The results on the security of Beth-4 in Table 9 show that the correlation attacks
are impracticable with the chosen filter, which goes in the same direction as the anal-
ysis over G. Regarding the attacks on the algebraic kind, the estimations for the fast
algebraic attacks (FAA) are slightly below the threshold of 128 bits of security when
we consider a key size corresponding to 1024 bits. The last row of the table shows that
taking a bigger key (equivalent to 4096 bits) is sufficient to reach the threshold of 128
bits for this attack, and for the cipher instance since the FAA gives by far the lower
attack complexity. Since as explained in Section 4.1 the complexity of FAA is under-
estimated on GFP, and the level of security of Elisabeth-4 is assumed higher than the
one of Beth-4 , we consider that the key size of 1024 bits is an adequate choice for a
security level of 128 bits, and an interesting starting point for further cryptanalyses.

5 Case study

Homomorphic encryption is useful to prevent privacy issues and transciphering will typ-
ically be used on personal data in a real-world scenario. Nowadays, algorithms handling
personal data, and already running server-side, are mainly neural networks. Therefore,
we next present a neural network evaluation with HHE. The homomorphic evaluation of
neural networks (i.e., the inference part) using TFHE has already been studied in [11].
To the best of our knowledge, our following investigations are the first to evaluate the
combination of such a complex FHE computation with a transciphering, which will
allow us to discuss the interest of HHE in more general terms.

We decided to evaluate a neural network over the standard dataset Fashion MNIST
(FMNIST)12. The neural network performs classification on 28 × 28 pixels grayscale
clothes pictures. This dataset has been created to provide a more challenging problem
12 https://github.com/zalandoresearch/fashion-mnist
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than MNIST, which is a handwritten text recognition dataset. We note that this dataset
itself does not pose privacy concerns and an even more relevant usecase would be to
classify medical data streams (e.g. monitored by a smartwatch). Yet, it is a standard
and well-documented one and serves as an interesting first step for benchmarking. The
challenges raised by more complex data sets are discussed in the conclusions.

5.1 Network design under FHE constraints

To make the homomorphic evaluation of the network as fast as possible as well as
taking into account the fact that Elisabeth-4 outputs 4-bit messages, the model has to be
designed with some constraints in mind.

TFHE for Machine Learning. As presented in section 2.1, TFHE is efficient for per-
forming modular additions, multiplications with public scalars, and evaluation of ho-
momorphic NLUTs. While most functions are not negacyclic, it is actually possible to
evaluate them through a PBS thanks to a small trick: any arbitrary LUT of length N
can be transformed into a negacyclic one of length 2N by appending its negation to it.
When evaluating this lookup table, the user is only interested in the value written in the
first half of the table, that is the slots 0 toN−1 = 2d−1−1. These are the slots for which
the most significant bit is set to 0, so to ensure that the value retrieved from the table is
in the first half, one must guarantee that the MSB of the message is 0. This is done by
adding a bit of padding in the MSB of the plaintext. Since by design Elisabeth-4 does
not require this bit of padding, it has been decided to encrypt it along with the message,
leaving 3 effective bits for the actual message. Note that a recent work from Chillotti et
al. [12] suggests that bits of padding inside a PBS can be avoided and could become
obsolete in the future. The ability to compute arbitrary functions, especially non-linear
ones, through a PBS gives the possibility to efficiently evaluate the activation function
of a neural network. Every other operation in between two activation functions is linear
and can be efficiently computed with TFHE. The reader can also refer to [11] for more
details on the homomorphic evaluation of neural networks.

Neural Network. In order to classify FMNIST pictures, the Convolutional Neural Net-
work (CNN) [26] relies on a convolutional layer to extract features, then on linear layers
in order to perform the classification. Since the homomorphic inference is performed
on 3-bit data (instead of originally 8 bits), the CNN has been trained on unencrypted
quantized data using Weight Decay [26] to prevent overfitting. The reader will find be-
low a picture of a grayscale picture from the FMNIST dataset, which is degraded from
8 bits to 3 bits of quantization in the right part.

We use a sigmoid function on our data at the entrance of the neural network. This
(non-standard) operation is performed for 2 reasons:

– The sigmoid bounds the norm of the data we manipulate. Having smaller-norm data
reduce the noise growth during the homomorphic operation.

– We are impelled to perform a PBS between Elisabeth-4 and the CNN, for the rea-
sons developed in the previous subsection 5.1 (mainly in order to add a bit of
padding). While doing it, we can evaluate the sigmoid without any additional cost.
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(a) Original data (8 bits shades) (b) Quantized data (3 bits shades)

Fig. 4: 784-pixels Fashion MNIST pictures

In order to perform homomorphic inference, the CNN expects a bootstrapped LWE
ciphertext encrypted under the input key sin. This implies that Elisabeth is used with the
single KeySwitch parameters in order to save a KeySwitch at the exit of Elisabeth-4 ’s
evaluation. The scalar weights inside the linear layers are given in clear so that these
layers are evaluated efficiently with TFHE. Still, for noise management reasons, these
weights ought to remain small (inside a magnitude of 20 for the FMNIST implementa-
tion). The CNN does not output normalized probability nor use a softmax function, as
those operations would be costly when performed homomorphically.

As detailed in the next subsection, not using these tools does not have a big im-
pact on the resulting accuracy, which remains high when we evaluate the adapted-for-
homomorphic CNN with unencrypted data.

5.2 Performance

In order to reduce the amount of data sent to the server, we chose to use a single PBS
key and a single KeySwitch key for the whole circuit, rather than different keys for
the transciphering and the homomorphic inference. The parameters chosen with these
constraints are given in table 10. In clear, the trained network gave 84.37% accuracy
over 10,000 randomized inputs. When tested over the same inputs, encrypted this time,
the network kept a pretty similar accuracy of 84.18%. The loss of accuracy in an homo-
morphized network is studied in [11].

One homomorphic inference took 427.23 seconds on average over 100 samples,
versus 5.74 seconds per homomorphic inference without transciphering. This means
that the transciphering took 537.62 ms per 4-bit message (with 282 = 784 messages).
This increase in transciphering time is explained by the constraints put by the neural
network on the PBS and KeySwitch keys it shares with Elisabeth-4 . This is expected
since Elisabeth-4 was designed so that its parameters would be less restrictive than
most usecases, in order to make sure that transciphering would neither require its own
set of public keys nor slow down the rest of the computation. Note that we chose here
to minimize bandwidth consumption, but computation time could be further improved
by sending Elisabeth’s optimal PBS and KeySwitch keys along with the one used
by the neural network. That way, Elisabeth could run in optimal time, reducing the
transciphering time to 28× 28× 0.091143 = 71.46 seconds. The initial data overload
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on the bandwidth would thus be higher and longer to compensate, but the inference time
would be greatly reduced. More details on this are given in Figure 6. Also note that the
transciphering algorithm13 can be performed offline even before the client starts sending
their inputs, thus saving time during the online phase.

Evaluating 1000 inferences of this model with Elisabeth-4 requires sending 400 MB
over the network, against 5, 337 GB if LWE ciphertexts were sent directly without com-
pression, and 6, 272 MB if only LWE bodies and their corresponding seed were sent.
This represents a saving of at least 93.62% of bandwidth. Figure 5 compares the band-
width saved by Elisabeth-4 and FiLIP over seeded LWE ciphertexts. It both confirms
the interest of the HHE framework in general, and the significant gains that Elisabeth-4
provides over FiLIP for our usecase.

TFHE Parameters
n k N log(σLWE) log(σGLWE) PBS KeySwitch

log(B) ` log(B) `
754 1 2048 -17.8745 -52.0036 7 6 2 8

Table 10: Set of FHE parameters used for Elisabeth-4 combined with a neural network.
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Seeded LWE Ciphertexts
Elisabeth-4

Fig. 5: Data sent per inference with different methods of compression. Elisabeth-4 has a
better usage of bandwidth if more than two inferences are performed. On the other side,
FiLIP needs 67366 or 269424 inferences (depending on the version) to become cheaper
in bandwidth usage than seeded ciphertexts.

Our implementation is available at:

https://github.com/princess-elisabeth/elisabeth_usecase.
13 Up to the point of summing with the ciphertext.
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Fig. 6: Using Elisabeth-4 with its optimal parameters implies an overhead on band-
width usage since another PBS and KeySwitch have to be sent to the server. That
being the case, this overhead is compensated compared to seed-compression in only
2185 inferences. Note also that these inferences would take roughly 47 hours to com-
pute, whereas less than 400 inferences could be computed in the same amount of time
using the same keys for both Elisabeth-4 and the neural network.

6 Conclusion

Our results show that HHE can highly benefit from the optimization of a symmetric
encryption scheme depending on the operations to be performed homomorphically. We
introduced the family of stream ciphers Elisabeth for this purpose and instantiated it
with 4-bit components, motivated by current constraints of the TFHE Concrete library.
While the stand-alone homomorphic evaluation of Elisabeth-4 only brings similar per-
formances to state-of-the-art competitors, its combination with the homomorphic clas-
sification of grayscale images from the Fashion MNIST dataset leads to significant
improvements. In particular, the transciphering does not impact the accuracy of the in-
ference (compared to the direct homomorphic processing of fresh ciphertexts) and it
enables large gains in terms of bandwidth.

These results lead to several challenging open problems. First, they are based on
an admittedly simple usecase, where the quantization of the images in 3 bits does
not significantly affect its accuracy. It is expected that more challenging case studies
(e.g. medical data, where fine-grain details can be essential for the classification) may
require either more granular data (which would be calling for larger NLUTs) or more
complex models (which may change the cost balance between the transciphering and
the homomorphic inference). Considering larger instances of Elisabeth is an interesting
direction regarding the first concern. Optimizing machine learning for homomorphic
computations and leveraging transformations that would reduce the load of homomor-
phic computations to perform are interesting directions regarding the second concern.
For example, the application of a Principal Component Analysis (PCA) [39], could be
used to reduce the number of dimensions of the Fashion MNIST images from 28× 28
down to 10, however with a penalty on the accuracy of approximately 10%. PCA there-
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fore enables to choose a compromise between the amount of data sent and the accuracy.
Other types of features selection would certainly deserve further investigation.

Another possible improvement client-side would be the encryption time. Even though
Elisabeth-4 encryption algorithm is reasonably fast, the generation of its permutations
and whitening values could be optimized and would represent an interesting develop-
ment.

Finally, studying how to apply other FHE-friendly symmetric encryption and FHE
schemes to practical-relevant case studies will be important, in order to better assess
which combination works best in which context. Besides, and independent of the inter-
est of the HHE framework, improving the loss of accuracy that homomorphic imple-
mentations may imply, as observed with TFHE and the Concrete library for example,
is a critical optimization goal to further incentivize the application of FHE in contexts
where privacy requires it. We believe having a first (and more) benchmark(s) is an es-
sential seed to drive research towards achieving these important goals.
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Supplementary material



A Details on the Programmable Bootstrapping

In this part, we detail how works the PBS to apply an NLUT and bootstrap a LWE
ciphertext at the same time. First, we recall the definition of a cryptographic multiplexer,
and then we explain how the computation of a length-2N NLUT is incorporated inside
the bootstrapping.

Definition 11 (CMux). A Cryptographic Multiplexer (CMux in short) is an operator
that, given two GLWE ciphertexts c0 and c1 of µ0 and µ1 respectively and a GGSW
encryption B of a bit b, outputs a reencryption of µb. This can be done in a single
external product by computing B� (c1 − c0) + c0.

Given L(X) =
∑N
i=0 liX

i ∈ Zq,N [X], one can see that the constant term of
X−(i+N)L(X) = −X−iL(X) is −li, meaning that a negacyclic look-up table of
length 2N can be represented as a polynomial of Zq,N [X]: accessing the i-th value of
the look-up table is equivalent to multiplying the polynomial by X−i then keeping the
constant term.

Let cL be a GLWE encryption of such a polynomial14 and c be a LWE encryp-
tion of a message µ. The goal of bootstrapping is to secretly select a value of L based
on the value of µ. Since there are 2N slots in L and since µ can take q different val-
ues, one first needs to rescale µ from [0, q] to [0, 2N ], an operation known as Modulus
Switching. This is simply done by multiplying each coefficient of c by 2N/q, then
by rounding to the closest integer. Let call (ā1, . . . , ān, b̄) the scaled coefficients ob-
tained, and µ̄ the value of µ rescaled. One now has to select the µ̄-th slot of the NLUT.
This can be done approximately by multiplying the polynomial L by X−b̄+

∑
āisi =

X−µ̄−ε̄, where the āi and b̄ are publicly known. Thus, computing ACC ← cL · X−b̄
can be done immediatly. Multiplying by X

∑
āisi is done iteratively thanks to a se-

ries of CMuxes: by using GGSW encryption Si of the bits of the LWE secret key
s1 to sn, one computes ACC ← CMux(Si, X

āi ACC,ACC) = ACC ·X āisi . This
yields an encryption of a polynomial which constant coefficient is L[µ̄∗]. Since it is
not possible to directly compute the rounding of µ̄∗ = µ̄ + ε̄ homomorphically to
recover L[µ̄], the only alternative is to introduce redundancy in L, so that L[µ̄∗] =
L[µ̄] for small enough values of ε̄. The actual number of values that the lookup ta-
ble can hold thus depends on both the degree of the polynomial and the maximal
size ε̄ can take: the bigger the polynomial the more redundancy can be introduced,
the smaller ε and the lesser redundancy is needed. Now, given a GLWE encryption
(a, b) of

∑
µiX

i under the secret key s = (
∑
s1,iX

i, . . . ,
∑
sk,iX

i) with a =
(
∑
a1,iX

i, . . . ,
∑
ak,iX

i) and b =
∑
biX

i, one can build an LWE encryption of µ0

under the secret key (s1,0, . . . , s1,N−1, . . . , sk,0, . . . , sk,N−1) as:

(a1,0,−a1,N−1, . . . ,−a1,1, . . . , ak,0,−ak,N−1, . . . ,−ak,1, b0)

This operation is called sample extraction and does not increase the noise in the ci-
phertext. A complete bootstrap cycle then consists of these three operations: modulus

14 Note that it is always possible to build a trivial encryption of L by appending it to a vector of
zeros.
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switching, blind rotation of the negacyclic look-up table, and sample extraction. The
output noise of the bootstrapped ciphertext is independent of the input ciphertext and
depends only on the number of CMuxes that has been performed, which in turn de-
pends on the length of the LWE key. The noise caused by each CMux depends on the
degreeN of the polynomials as well as on the basis and number of levels of the GGSW
used.

B Elisabeth-4 specifications

This appendix describes the details of Elisabeth-4 ’s implementation.

B.1 NLUTs table

We specify the Negacyclic Look-Up Tables used for Elisabeth-4 implementation. Re-
member that the second half of each NLUT’s value is entirely determined by the first.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S1 3 2 6 12 10 0 1 11 13 14 10 4 6 0 15 5
S2 4 11 4 4 4 15 9 12 12 5 12 12 12 1 7 4
S3 11 10 12 2 2 11 13 14 5 6 4 14 14 5 3 2
S4 5 9 13 2 11 10 12 5 11 7 3 14 5 6 4 11
S5 3 0 11 8 13 14 13 11 13 0 5 8 3 2 3 5
S6 8 13 12 12 3 15 12 7 8 3 4 4 13 1 4 9
S7 4 2 9 13 10 12 10 7 12 14 7 3 6 4 6 9
S8 10 2 5 5 3 13 15 1 6 14 11 11 13 3 1 15

B.2 Elisabeth-4 algorithms

In this specification, notations from the article are used. For the reader’s comfort, let us
remind here a few of them:

– G = Z16.
– Si denotes the NLUTs.
– Addition (+) between two vectors of Gk denotes the adddition coefficient by coef-

ficient and substraction (−) denotes the inverse of the addition.

We define the Elisabeth-4 encryption scheme as its key generation, encryption and
decryption algorithm. Both encryption and decryption use the keystream algorithm.
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Algorithm 1: Elisabeth-4 .KeyGen()

output: Secret key sk ∈ G256

begin
sk

$←− G256

return sk

Algorithm 2: Elisabeth-4 .KeyStream(sk)

input : Secret key sk ∈ G256

Integer k ∈ N
output: Stream stream ∈ Gk
begin

for i in range(k) do
// aborted Knuth shuffling

for j in range(60) do
r = random int(j, 256)

// Use a forward-secure PRG as described in [34]

w = random int(0, 16) // Random element of G
swap(s[j], s[r])
s[j] = (s[j] + w)%16 // Whitening

Acc = 0
for b in range(12) do

for j in range(5) do
xj = s5b+j

for j in range(4) do
yj = Sj

[
xj + x(j+1)%4

]
r = 0
for j in range(4) do

r += S4+j

[
xj + y(j+1)%4 + y(j+2)%4

]
r += x4

Acc += r
streami = Acc

return stream

Algorithm 3: Elisabeth-4 .Enc(m, sk)

input : Message m ∈ Gk
Secrek key sk ∈ G256

output: Ciphertext c ∈ Gk
begin

s = Elisabeth-4 .KeyStream(sk)
c = m+ s
return c
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Algorithm 4: Elisabeth-4 .Dec(c, sk)

input : Ciphertext c ∈ Gk
Secrek key sk ∈ G256

output: Message m ∈ Gk
begin

s = Elisabeth-4 .KeyStream(sk)
m = c− s
return m
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