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Abstract. Schemes such as Common Criteria or FIPS 140-3 require
the assessment of cryptographic implementations with respect to side
channels at high security levels. Instead of a “penetration testing” style
approach where specific tests are carried out, FIPS 140-3 relies on non-
specific “leakage assessment” to identify potential side channel leaks in
implementations of symmetric schemes. Leakage assessment, as it is un-
derstood today, is based on a simple leakage detection testing regime.
Leakage assessment to date, provides no evidence whether or not the
potential leakage is exploitable in a concrete attack: if a device fails the
test, (and therefore certification under the FIPS 140-3 scheme) it remains
unclear why it fails.
We propose a novel assessment regime that is based on a different sta-
tistical rational than the existing leakage detection tests. Our statistical
approach enables non-specific detection (i.e. we do not require to specify
intermediate values) whilst simultaneously generating evidence for de-
signing an attack vector that exploits identified leakage. We do this via
an iterative approach, based on building and comparing nested regression
models. We also provide, for the first time, concrete definitions for con-
cepts such as key leakage, exploitable leakage and explainable leakage.
Finally, we illustrate our novel leakage assessment framework in the con-
text of two open source masked software implementations on a processor
that is known to exhibit micro-architectural leakage.

1 Introduction

Security certification schemes such as the Common Criteria (CC) framework [1],
or FIPS 140 [2], mandate the evaluation of cryptographic software and hard-
ware against side channel adversaries at high security levels. The philosophical
approach in CC schemes follows on from penetration testing: an evaluator is
tasked to identify specific side channel vulnerabilities and demonstrate exploits
via attacks. Because this approach is based on specific attacks, it comes at a
huge cost, especially if the leakage is caused by some hidden micro-architectural
effects.

In contrast, the NIST based framework FIPS 140 (now at version 3 [2]) is
based on a derivative of the Test Vector Leakage Assessment (TVLA) [3]— via
referencing to an associated standard ISO 17825 [4]. TVLA includes a “non-
specific” test, and therefore, it can potentially identify arbitrary leaks—a huge



advantage in the case of software implementations where the micro-architecture
of the processor is unknown to the evaluator. TVLA utilises the simple statistical
Welch’s t-test1 to ascertain if observations exhibit characteristics that depend
on either data or key. For the purpose of finding general dependencies, TVLA
suggests the use of a fixed-versus-random input test, which is called non-specific
detection. In a nutshell, two sets of side channel traces are compared (one with
a fixed input and one with randomly chosen inputs): if they are “different” then
the device is said to have data dependent side channel leakage.

TVLA acknowledges the problem of false positives, in particular first and last
round potential “leaks” may not always be exploitable (e.g. plaintext/ciphertext-
based leakage). False positives are detection test outcomes that claim that there
is leakage, although there is none. The common practice is then using the so-
called specific detection tests (which are akin to “known key attacks”) to confirm
or refute the findings from the non-specific test. Importantly, the specific tests do
not benefit from the previous non-specific test outcomes. The knowledge of time
points is helpful to infer a specific test for leakage on an algorithmic level, but
not if the data dependency arises from a micro-architectural component (as it
interacts with data from different steps in an implementation). Thus, not much
has been gained, and perhaps as a consequence, ISO 17825 does not include the
specific testing regime.

1.1 The challenge of interpreting non-specific leakage detection
outcomes

FIPS 140-3 uses a non-specific leakage detection only in the context of test-
ing symmetric cryptographic algorithms. A previous study proposes a hybrid
methodology to connect non-specific outcomes with specific tests [5], however,
the approach requires a priori knowledge of specific intermediate states for set-
ting up the tests. More recently non-specific leakage assessments were developed
further by the introduction of a deep learning framework (DL-LA) [6]: the idea
is that if a network can be trained to distinguish two sets of traces, then the
network could be the “evidence” of leakage. Further sensitivity analysis on the
trained network helps to determine the trace points contributing to the leakage
and thus enables a similar result as TVLA—determining which (if any) trace
points depend on inputs. Hence the same problem persists as before: one has to
set up specific tests to confirm the leakage as exploitable in an actual attack.

There seems to be an unavoidable divide between non-specific and specific
leakage detection tests: non-specific detection (per construction) is not based on
specific intermediate steps in the cryptographic module. The advantage of the
non-specific approach is thus also its biggest drawback: because we do not test
specific intermediates, it is hard to link test results to specific intermediates and
therefore concrete attack vectors.

1 Notice that because the Welch’s t-test only captures the first central moment of a
distribution, complex leakage has to be “forced into” this central moment by means
of pre-processing the observations.

2



The status quo is thus that there is a clear desire for non-specific leakage
detection as part of a leakage assessment framework, but there have been no ideas
so far about how a non-specific method could produce “usefully interpretable
outcomes”. This status quo leads to three interesting research questions:

– What are useful ways of “interpreting” the outcome of a non-specific leakage
detection test?

– How can we capture the idea that something is “exploitable in an attack” in
a leakage detection framework?

– Can we design a leakage assessment procedure that is not only non-specific,
but also delivers results that can be “interpreted” as “exploitable leakage”?

1.2 Our contributions: an informal summary

Our research is situated in the context of the security evaluation of a crypto-
graphic module (as part of a formal certification scheme) that considers side
channel key-recovery attacks for symmetric cryptographic algorithms. The cryp-
tographic module implements a symmetric cryptographic algorithm via a se-
quence of steps, which give rise to side channel observations. The evaluation
seeks to establish if the observable side channel contains information about the
secret key via statistical detection tests. In the context of a certification, the
evaluator is provided with access to the device, and can supply inputs, such as
plaintexts/ciphertexts and keys.

The aim of our work is to establish characteristics of the terms “explainable
outcomes” and “exploitable leakage”, and to map them to a concrete statistical
decision making process for leakage detection that works in a non-specific manner
yet delivers evidence for exploitable leakage.

As part of our contribution, we provide novel definitions for key leakage,
exploitable key leakage, and a explainable detection method, together with a con-
crete statistical test framework. Our novel framework is based on iteratively
building, and comparing, key-dependent nested regression models. The proce-
dure enables us to test for key leakage, then to assess the effort of the inference
step (exploitability), and finally to produce evidence for a concrete attack. We
implement this framework via two algorithms, thereby representing a concrete
instance of an explainable detection method. We demonstrate this framework
on two open source masked software implementations (AES and ASCON) that
run on a microprocessor that is known to have micro-architectural leakage.

We emphasise that our procedure is not yet another attempt to deal with the
“(statistical) false positives problem of TVLA” [7]: instead, our novel framework
goes beyond the original intent of TVLA (a quick and easy way to check for
potential leakage) and proposes a complete method by which an evaluator can
detect arbitrary key dependencies, for each detected key-dependent point to de-
cide if it is exploitable, and if so, deliver a concrete attack vector for specific key
bytes. Consequently, our explainable yet non-specific detection framework en-
ables deeper understanding of observable key leakage, it enables distinguishing
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non-exploitable data dependency from genuine security concerns, and it enables
the better interpretation of the assessment results.

Yap, Benamira and Bhasin et al. proposed a sounds similar but entirely
different concept called “interpretable neural network” [8]: their work starts from
some known specific state (e.g. one Sbox output in AES) and investigates how the
network combines parts on trace (“literals”) to recover this state. Our work, on
the other hand, starts from non-specific detection results and shows how/if they
can be exploited in certain specific attacks (i.e. finds which Sbox/combinations
of Sbox-es can be attacked).

Summarising, the primary goal of our assessment framework is to explain and
confirm whether a detected leak is a genuine security concern (in a non-specific
setup) through demonstrating confirmatory attacks. Such attacks may not be
optimal, but they can facilitate further improvements via advanced attacks (e.g.
deep learning networks).

Outline. After recalling the statistical foundations of the fixed-versus-random
procedure and introducing some basic notation, we explain the essential back-
ground for our novel leakage assessment framework that is based on nested
model building in Section 2. In Section 3 we discuss the novel notions “key
leakage”,“exploitable” and “explainable” and provide concrete definitions. Fol-
lowing on we show the construction of our non-specific detection test in Section 4,
and define an assessment framework that has the desired qualities (i.e. outcomes
which are both explainable and exploitable) in Section 5. We show the assessment
framework in action for an implementation featuring Boolean masking applied
to ASCON, and for an implementation featuring affine masking applied to AES
in Section 7. We discuss our research in Section 8, whereby we consider relations
to existing work, the scope and limitations of our method, and efficiency. We
also briefly point out open problems and give ideas for further research.

2 Preliminaries

For the ease of reading, we recall several basic facts about pertinent statistical
tools and techniques, as well as the relevant assumptions about side channel
observations. We also introduce the notation that we maintain throughout this
paper, and refer to relevant related work. We keep explanations informal when-
ever we refer to relatively well known concepts, and introduce formalism only
where it is required.

2.1 Notation

We typeset random variables by capital letters, and their realisations by lower
case letters; when we write a random variable in a set notation then we refer to
multiple samples of that variable. E.g. X may be a random variable representing
an input, x = 10 is then a realisation of X, and {x(1), x(2), . . . } = {x} refers
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to a set of concrete realisations of X (note that we use subscripts to indicate
different realisations x(i)).

Side channel observations are often multivariate e.g. T = (T 1, T 2, . . . ) refers
to a random variable that represents side channel observation consisting of mul-
tiple elements. Note that we use superscripts to refer to the vector elements.
Thus a set of concrete measurements is then {t}, with t(i) = (t(i)

1, t(i)
2, . . . )

referring to the i-th multivariate observation.
Estimates of quantities are indicated by a hat over the respective quantity,

e.g. E(X) is the expectation of the variable X and Ê(X) is the estimate of that
expectation. We reserve the notation N (0, σ2) to refer to the normal distribution
with zero mean and σ2 variance.

A secret key K is a binary string of a fixed length, which is sampled from
a (uniform) distribution. We need to be able to refer to smaller portions or
chunks of this key (sometimes also called subkeys in the literature) in our work,
so K should also be understood as the concatenation || of such chunks K =
K1||K2|| . . . ||Ks. We assume that all chunks have the same size, and the size of
a chunk will be clear from the context in any concrete example.

2.2 Statistical hypothesis testing

The purpose of a hypothesis test is to decide, based on some gathered data,
if there is enough evidence to refute a particular hypothesis, which is typically
called the “null hypothesis” H0. The alternative hypothesis H1 is considered to
be (possibly) true if the null can be refuted.

To carry out a hypothesis test, a suitable test statistic must be chosen. As-
suming the distribution of the chosen test statistic is known and well understood,
a statistically motivated threshold can be derived that becomes the decision cri-
terion for the null hypothesis. Typically the line of argument is such that if the
test statistic surpasses the threshold, we say that we have enough evidence to
refute the null hypothesis.

2.3 Side channel observations

We assume that an evaluator can sample side channel observations from a cryp-
tographic module. The module operates on some inputs and secret key, as well as
internally generated randomness. In a typical evaluation context, the evaluator
may supply chosen inputs and keys, and they may even control internal random-
ness. Our work does not require any control over the internal randomness.

We denote by LD(P,K)j the family of (unknown) leakage functions of the
cryptographic module. The function family depends on the device state, which
is some unknown function2 of the input P and the key K. Recall that a cryp-
tographic module implements an algorithm as a sequence of steps: each step j

2 Note that this “state” is often not some known state defined by the cipher’s specifi-
cation. In practice, various micro-architectural effects exist that make exhaustively
(specific) testing on all leaking states impossibly difficult.
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may give rise to a different device leakage function LD(P,K)j . Thus side channel
observations consist of a set of side channel traces {t}, whereby a single trace of
this set is a multivariate observation T = (LD(P,K)1 +N (0, σ2), LD(P,K)2 +
N (0, σ2), . . . ). Because in our work the statistical method is applied indepen-
dently to each trace point (i.e. all discussed methods are univariate), we drop
the superscript in the rest of this paper.

Remark 1. Side channel observations are noisy: N (0, σ2) is independent of the
device leakage function LD(P,K)j , and we assume that observations follow a
multivariate normal distribution in expectation — this assumption also under-
pins TVLA, Gaussian templates, linear regression analysis, etc. Despite widely
used in the side-channel community, there are a few techniques that do not
require this assumption, e.g. χ2 [9] or DL-LA [6].

Pre-processing The statistical procedures that we refer to are all univariate. By
the virtue of countermeasures based on secret sharing, a single step during the
computation may not leak directly on any Ks. In this case, trace points must
be combined via [3, 10] in an extra step to enable the application of univariate
methods; also TVLA requires this extra step.

2.4 Side channel attacks (evaluation context)

Previous work [11] proposes a “Detect-Map-Exploit” framework for evaluations,
in which the first step is to identify “leaking trace points” with minimal as-
sumptions. Thereafter one attempts to map these trace points to key-dependent
intermediate steps (of the cryptographic algorithm), and with this knowledge
the evaluator extracts and processes information (aka performs a side channel
attack) from the side channel observations (with or without characterising the
observations). Our method neatly fits this proposal.

The last step of the proposed evaluation framework, which is the informa-
tion extraction, is based on making a statistical inference. The inference is based
on relating model-based predictions and side channel observations, and a large
number of strategies for this step can be found in the academic literature. We
mention two common types of models. If a “standard power model” is known
to be suitable for a device (e.g. the Hamming weight of a value often is a good
predictor for side channel observations stemming from bus transfers in a mi-
crocontroller), then an effective method is to estimate the Pearson correlation
between a set of side channel observations, and a set of (key-dependent) Ham-
ming weight predictions. Normalised correlation estimates are then interpreted
as an a posteriori distribution for the key (chunk). If a “standard power model”
is not suitable, then an evaluator must characterise the statistical distribution
of the side channel observations in order to build a model.

Model based attacks (template attacks). Using a model L as a classi-
fier for the side channel observations t enables to construct so called template
attacks [12].
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1. The non-specific way of model building requires the least information
about the cryptographic module. It works by estimating models L for tuples
of chunks of the input and key: e.g. if both the input (P ) and key (K) can be
divided into 2 chunks((P1, P2) and (K1,K2)), the overall model can always
be written as L(P1,K1, P2,K2), where the estimating complexity (i.e. the
number of all possible models) would be |P1| · |P2| · |K1| · |K2|.

2. The specific way of model building is to include some a priori knowledge
about the cryptographic algorithm and estimate models for an intermediate
X defined by a function F , e.g. if X = F (P1, P2,K1,K2), then we build
models L(X), resulting in |im(F )| models. Most typical attacks, e.g. attack-
ing the AES Sbox output, follow this strategy. Note that leakage can only be
captured if it truly relies on F : otherwise it will be simply discarded, even
in a trivial template attack [13].

3. The specific way of estimating model coefficients is to even include
some knowledge about the device leakage model, e.g. restricting the degree
of the regression model (or the number of classes). This further reduces the
number of distinct models, which leads to more efficient model building.

With a set of models the evaluator then computes the conditional probabili-
ties Pr[{Ki}|t] (by ensuring that the cryptographic module operates on the same
inputs as the learned models, and by exhaustively guessing Ki in the learned
models)3, thereby assigning each key value an a posteriori probability. There are
many ways of estimating models, ranging from parametric Gaussian models [12],
over machine learning models [15], to deep nets [16].

2.5 Regression modelling

Let X be an n-bit discrete variable. In the following X may represent an inter-
mediate step in the computation, or the encryption input and output, or the key.
Given a set of side channel observations, we can estimate the distribution of any
trace point given X. This is because any real valued function of X can be writ-
ten as L(X) =

∑
j βjuj(X). In this expression, the variables uj(X) are called

the explanatory variables. They are monomials of the form
∏n−1

i=0 xji
i , whereby

xi denotes the i-th bit of x and ji denotes the i-th bit of j. The monomial with
the most number of terms defines the degree of the model. Evaluating the re-
gression equation at X = x gives the model prediction for x. The goal of leakage
modelling is to determine a function L that is “close” to the (unknown) device
leakage LD.

Model estimation Estimating a regression model requires estimating the (lin-

ear) coefficients β⃗. The estimated model that describes the distribution of the
side channel observations in dependence of X is now expressed as L̂(X) =∑

j β̂juj(X) (and we evaluate it by setting X = x). Evidently, without any

3 A recent and comprehensive analysis of classifiers of this nature is given in [14].
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restriction on uj , there are exactly 2n parameters to estimate in the regression
equation. A model that includes all 2n terms is called a full model. However, we
could also only allow certain uj (e.g. linear terms where HW (j) = 1 [17, 18]).
This leads to the question of how to compare models in terms of their quality?

Nested models. A special case for model comparison, that is of particular interest
to us, is the case of models that are nested. A restricted model is said to be nested
within a full model if it only contains a subset of the explanatory variables of
the full model.

Toy example. Suppose a target state X contains 2 bits X = (X0||X1). Then
the full model is given by Lf (X) = β0 + β1X0 + β2X1 + β3X0X1 (we note that
the degree of Lf (X) is two). We can define a restricted model (of degree one)
Lr(X \ {X1}) = β0 + β1X0 (where β2 and β3 are restricted to be 0). Then Lf

and Lr are called nested models (i.e. Lr is “nested inside” Lf ).

Collapsing variables. In many real world regression problems, variables are
drawn from large sample spaces, which makes the model building computa-
tionally infeasible. The concept of collapsibility, see [19], is about restricting the
included explanatory variables to a smaller space, without negatively impacting
on the model building. The concept of collapsing was recently used in the side
channel setting as well, see [13], and we will use this trick also in our work.

The function Coll(X) : 2m → 2n restricts an m-bit variable X to an n-bit
space. For instance, if X ∈ {0, . . . , 255} then a collapse function that maps it
to a single bit can be defined as X → 0 : if X0 = 0, and X → 255 : if X0 = 1.
Thus the corresponding collapsed model only needs to fit two coefficients β0 and
β1. Obviously a model that is based on collapsed input variables has a poorer
predictive quality than the same model over the full input range. But in our
work, we do not use models as predictors but as decision making tool about
input dependency. Thus, as long as a collapse mapping preserves some input
dependence, our method works.

Comparing nested models Given two nested estimated models, the F -test
is the suitable solution for comparison [20]. Specifically, with N measurements,
if we are aiming to compare a full model Lf (X) =

∑
j βjuj(X), j ∈ Jf and

a restricted model Lr(X) =
∑

j βjuj(X), j ∈ Jr ⊂ Jf , we can construct the
following hypothesis test:

– H0: {uj |j ∈ Jf \ Jr} have coefficients 0 in Lf (X)
– H1: {uj |j ∈ Jf \ Jr} have non-zero coefficients in Lf (X)

Informally, if the test above rejects H0, we can conclude the missing explanatory
variables have a significant contribution. Denote zr = #{Jr}, zf = #{Jf} and
the number of available measurements as N , we compute the F -statistic as

F =

RSSr−RSSf

zf−zr
RSSf

N−zf

.
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where the residual sum of squares (RSS) is defined as

RSS =

N∑
i=1

(t(i) − L̂(x(i)))
2

where t(i)/x(i) represents the i-th observation/state.
The resulting value F follows the F distribution with (zf−zr, N−zf ) degrees

of freedom. A p-value below a statistically motivated threshold rejects the null
hypothesis (i.e. the two models are equivalent) and hence suggests that at least
one of the removed variables is potentially useful. Throughout this paper, we
always convert the F -statistic to the corresponding p-value, then rejects the
null hypothesis if the p-value is lower than the significance level α (i.e. the false
positive rate). Equivalently, one can also compute a threshold for F from the null
distribution and α (e.g. the 4.5 threshold in TVLA [3]), although such threshold
varies alongside the degrees of freedom (i.e. the number of traces N).

Remark 2. In our work we will be often building models for collapsed input vari-
ables. An inappropriate collapse mapping can be recognised when a full model is
compared with restricted models, because the individual test on the full model
already fails to find any dependency. If input dependency has been reported by
other techniques (e.g. TVLA), users should change the collapsing setup.

Statistical power of nested F-test The confidence in test outcomes is re-
flected in the percentage of false positives α (i.e. how often does the test indicate
leakage although there is none) and the percentage of false negatives βp

4 (i.e.
how often does the test indicate no leakage although there is leakage).

The parameters in any statistical test interact with each other, thus the α, the
1− βp, the difference between the two statistical hypothesis (aka the effect size
f2), and the number of observations N , need to be considered jointly. Luckily,
the F -test statistic is well understood, and there are explicit formulae for the α
and βp [20]. With these it is possible to set the decision threshold Ft for rejecting
the null hypothesis:

Ft = QF (df1, df2, 1− α) ,

where QF is the quantile function of the central F distribution. Considering
the tested full model contains zf estimated parameters, while the null model L0

contains only one parameter, these two degrees of freedom are defined as:

df1 = zf − 1, df2 = N − zf .

The statistical power 1− βp can be computed as

βp = Fnc(Ft, df1, df2, λ),

4 Unfortunately the same β has been used in both statistics and linear regression
models; for clarity, we denote βp as the false positive rate.
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λ = f2 · (df1 + df2 + 1),

where Fnc is the cumulative distribution function of the non-central F distribu-
tion.

3 Characterising Exploitability and Explainability in the
Context of Leakage Detection

We wish to clarify the desirable goals of a leakage assessment framework, by
formalising notions such as “leakage”, “exploitable”, and “explainable”.

3.1 Defining Leakage

The term “leakage” is often overloaded in the side channel literature. Having
“leakage” can refer to having access to side channel observations, or it can refer
to the assertion that some observation contains information about a secret value.
We now provide a definition of the term “leakage” that we will use in this paper.

In the context of side channel evaluations we wish to determine if a cryp-
tographic module’s observable side channel (power, timing, EM) contains infor-
mation about the secret cryptographic key, potentially enabling a key recovery
attack. We consequently understand the term “leakage” as the presence of some
key dependent behaviour in side channel observations. Because we only wish to
consider “efficient adversaries” in concrete security evaluations, we say there is
“key leakage” if we can efficiently5 detect key dependency in a (finite) set of side
channel observations.

Definition 1 (Key Leakage).
We assume that the evaluator has access to a finite set of side channel obser-

vations {t}, which is obtained from a cryptographic module that performs some
action with a secret value K. We set up the two hypotheses:

H0: there is no dependency between {t} and K.
H1: there is some dependency between {t} and K.
We say that there is key leakage if there exists an efficient statistical test

that can refute H0 given {t}.

The existence of key leakage does not yet imply that it is exploitable in a
concrete attack: e.g. the key dependence could be only observable between very
few keys (i.e. leakage-wise weak keys); or equivalently, the adversary has to make
a too large key guess in the inference step.

Remark 3. “Key” represents the most typical side-channel key recoveries against
block ciphers: for other cryptographic primitives or operation modes, depending
on the context, one can expand this definition to other secret-related states.

5 In practice, we expect “efficiency” to be determined by evaluation parameters, i.e.
an given time/data budget.
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3.2 Defining exploitable key leakage

To utilise key dependency in a side channel key recovery attack, an efficient
attack vector must exist. We explained before in Sect. 2 that an attack is based
on making a statistical inference about the key distribution based on a set of
side channel observations.

There are three factors that determine the computational complexity of an
attack:

Trace complexity: In current evaluations, millions of measurements are re-
quired for hardware implementations (short traces), and tens of thousands
of measurements must be obtained from software implementations.

Inference complexity: Often, the size of a key guess for a single inference
is typically 8 bits, but attacks simultaneously guessing 32 bits have been
reported [21].

Enumeration complexity: a side channel attack may not necessarily reveal
the secret key, but it will deliver a (non-uniform) distribution for the key
space, which enables to reveal the key given a plaintext-ciphertext pair.
The best such effort reported in the open literature has managed to search
through a key space of just under 250 keys [22].

The ability to carry out the inference is a necessary condition for all side
channel attacks. The inference step’s complexity is determined by the trace and
the inference complexity.

Thus, we define the property of being “exploitable” (in reference to key leak-
age) as the required effort to carry out the inference step.

Definition 2 (Exploitable key leakage). Given a set of side channel obser-
vations {t} from a cryptographic module that operates on K, we call key leakage
to be b-exploitable if the complexity of the inference step in a concrete attack
is bounded by O(2b).

Remark 4. This definition for exploitable leakage implies that in the context
of a specific evaluation regime the term “concrete attacks” has to be specified.
For instance, in the practical examples that we will present later in this paper,
we will use our method as a “replacement” for the current detection regime in
ISO17825, which only considers differential input attacks (e.g. typical DPA) at
present. Consequently, we will define b-exploitable in relation to DPA style
attacks. Restricting attacks to DPA style attacks is perhaps a limitation of the
current version of this standard, and our methodology works with it. Attacks
that go beyond DPA style attacks include horizontal attacks [23], which always
require knowledge of specific intermediate values. Depending on the application
context, the most suitable list of specific intermediate values can be hard to
find, due to restrictions on profiling (i.e. no access to random shares), hidden
micro-architectural effects (i.e. software implementations) or complex hardware
behaviour (e.g. all gate-level interaction within an Sbox). Thus discovering how
to exploit a detected leak is still necessary, and once this has been achieved, it
can potentially be incorporated into a more powerful attack vector.
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3.3 Defining explainable key-leakage detection

The ultimate goal of an evaluator is to construct at least one practical attack
vector. Thus we require a non-specific method that also delivers outcomes that
can be “interpreted by the evaluator” so that they can derive a practical attack
vector. This requirement links our research with the wider context of interpreting
the outcomes of machine learning models, and a widely cited recent contribution
by [24] discusses and analyses notions for “interpretable” methods such as

understandable: it is clear “what” the method achieves,
transparent: it is clear “how” the method works mathematically,
comprehensible: the output of the method can be understood by a human,
explainable: the method produces some form of evidence that enables a causal

explanation for the subsequent decision making.

All notions but the last are clearly fulfilled when working with regression
models assuming that evaluators have sound mathematical and computer sci-
ence skills. The last notion of “explainability” requires more consideration. It
challenges us to consider what is “evidence” and what is a “causal explanation”.
In our use case, the final goal is to produce outcomes/evidence that can be di-
rectly used to construct at least one key-recovery attack vector. If such an attack
vector exists, then a device should fail an evaluation: the attack vector is the
causal explanation that enables an evaluator to fail a device in an evaluation.
We explained in Sect. 2.4 the concept of model-based attacks: the models are
estimated based on (leaking) variables (depending on both key and plaintext
bytes) in certain trace points.

Definition 3 (Explainable detection). We call a leakage detection method
explainable if it produces a list of leaking variables as evidence, alongside the
associated trace points that exhibit exploitable key-leakage, both of which enable
the construction of at least one concrete key-recovery attack vector.

4 Detecting Key-Dependency via Non-Specific Models

We are now ready to detail the mathematical basis for the novel approach that
underpins our proposal for explainable leakage assessment. The main question is
how should a non-specific detection test be configured to ensure that the found
dependencies are also explainable (and therefore exploitable) without relying
on some a priori specific intermediate states? The perhaps initially surprising
answer, to this question, is to build and compare key-dependent nested models.

4.1 Detecting key leakage

Starting from our definition in Section 2, any observed leakage in leakage as-
sessment is a function of the inputs P and the key K. To create key dependent
models, we now fix the plaintext to be a constant, and thus consider a regression
model for L(K)(from now on we drop P as P is a constant).
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Definition 4 (Key-dependent non-specific model). Let K be an n-bit (full)
secret key, we call the function

L(K) =
∑
j

βjuj(K), j ∈ J

a key-dependent non-specific leakage model for K.

If |J | = |K| = 2n (all terms of K are included, we have a degree 2n model)
then we call the corresponding model the full model, and denote this with the
subscript f , i.e. Lf (K) (we introduced these concepts already in Section. 2). As
the leakage function L in Section 3 is deterministic, with a fixed plaintext, one
can easily verify that Lf (K) expresses any possible key-dependent leakage. The
naive model L0(K) is the model that only depends on the term β0. The naive
model is independent of the key. Leakage detection can then be framed as a
hypothesis test that compares a full (i.e. “key leakage”) and a restricted model
(“no key leakage”) using the F -test statistic (introduced in Section. 2). If the
naive model can explain the side channel observations as well as the full model,
then clearly, because the naive model is completely independent of the key, there
can be no information about the key in the side channel observations.

It is apparent that contemporary key sizes make building such a full model
computationally infeasible, and thus we use the idea to “collapse” a full model
to a smaller space whilst retaining some “salient” characteristics [13]. This is
done by defining a suitable function Coll that maps every j ∈ J to a jc ∈ Jc,
whereby |Jc| << |J |, Coll(j) = jc ∈ Jc.

This leaves the question if working with a collapsed model is meaningful in the
context of testing nested models. This question was already answered positively
in [13]: if in a hypothesis test the null is rejected for a collapsed model, then it
would also be rejected for the corresponding full model. Consequently we define
a non-specific leakage detection test as follows.

Definition 5 (Model based Detection). Let Lcf (K) =
∑

j βjuj(K) de-
note the collapsed full model, and L0(K) = β0 denote the naive model (with
K ∈ [0, 2n), j ∈ coll(J), βj ∈ R as before), and select a statistically motivated
threshold th, together with a confidence level 0 < α < 1 ∈ R, a statistical power
0 < 1 − βp < 1 ∈ R, an assumed effect size f2 ∈ R and a finite set of N ∈ N
side channel observations.

The null hypothesis is defined to correspond to “no leakage”, in the sense
that L0(K) explains the side channel observations. The alternative hypothesis
corresponds to “leakage” in the sense that Lcf (K) is required to explain the side
channel observations.

H0 : L0(K) = Lcf (K), the observations can be explained by the naive model

H1 : L0(K) ̸= Lcf (K), the observations cannot be explained by the naive model

We reject H0 if the F -test statistic is higher than the threshold th with confidence
α, power 1− βp given the set of N side channel observations.
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Definition 5 is the basis for our novel leakage assessment framework. It en-
ables the detection of key dependencies in a set of side channel observations.
We will refine this technique in the next section so that it satisfies the notions
of exhibiting exploitable leakage, and we will embed it in an algorithm that
identifies the leaking key chunks (i.e. an explainable method). Before this, we
discuss important details pertaining the choice of statistical parameters and the
collapsing function.

4.2 Concrete parameter selection in an evaluation setting

In the setting that is described in FIPS 140-3 (by reference to ISO17825), the
security level defines the number of side channel observations that are available
for leakage detection testing, e.g. N = 10, 000 for FIPS Level 3 or N = 100, 000
for FIPS Level 4. More traces, e.g. N = 1, 000, 000 for a higher level of security,
would be aimed for in CC [1]. The effect size is typically unknown (unless some
prior characterisation has taken place, which is not how the test is used in FIPS
140-3), and therefore an assumption must be made. Furthermore, when examin-
ing an implementation with a countermeasure such as masking, the traces must
be processed prior to any statistical evaluation, by the so-called centred product
combining technique [25] (multivariate case) or centred moment technique [10]
(univariate case). This additional step does not change our discussion of the se-
lection of the statistical parameters, it however reduces the expected effect size
f2. It is therefore very important to assume f2 to be potentially small to capture
many real world leaks.

Example 1 (Parameters for a byte-oriented implementation with 128 bit key
length.). Assume that we set up a detection test for a key K = |2128| =
K1||K2| . . . ||K16. We set up the collapse function so that we represent each byte
of the key with a single bit, thus the collapsed key space is of size 216. In our test
we compare the collapsed full model and the null model, where df1 = 216 − 1
and df2 = N − 216. For a small effect size f2 = 0.2 [20] with N = 655360,
α = 10−6, we have 1− βp ≈ 1, which implies that test with this configuration is
very powerful [7].

5 A Novel Leakage Assessment Framework

The novel model-based leakage detection test that we formalised in Def. 5 is
able to detect key leakage (as defined in Def. 1). In this section, we explain how
the repeated use of model-based detection enables to determine if identified key
leakage is exploitable in differential attacks, and we provide an algorithm for
explainable detection by a structured manipulation of the model configuration.
For easier comprehension, we provide toy examples after each step: these exam-
ples come from an eye-to-eye adoption of our proposal in a Boolean masked AES
implementation. Interested readers can find more details in Appendix B.
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5.1 Detecting exploitable leakage

Model-based leakage detection reveals key dependent trace points by comparing
a full model (i.e. a model that incorporates the entire key) and a naive model.
It is likely though that an identified trace point does not depend on the entire
key, but just a part of it. We can change the restricted model in Def. 5 from the
naive model to some richer (but still restricted) model to determine how much
key information is required to detect a trace point as leaky. More specifically,
we can parametrise the restricted models to include terms of degree at most d.
Recall that the degree d is the number of terms in the largest monomial of the
model, whereby the terms represent the key chunks. Thus, the degree d gives an
upper bound for relevant key chunks in the inference step of a differential attack.

We configure the test defined in Def. 5 using Lcf and a Lcr,d by fixing a
d (the test is repeated multiple times for different values of d). If a degree-d
restricted model Lcr,d is “as good as” the full model Lcf , then the side channel
observations can potentially be exploited in a divide-and-conquer attack using
no more than |Ki|d bits of the key. With this we immediately have the following
corollary.

Corollary 1. Let H0 represents the hypothesis where the restricted degree-d
model Lcr,d(K) can explain the leakage, whereas H1 stands for the leakage can
only be fully explained by the full model Lcf (K). With a suitable collapse function
coll(J) and

Lcr,d(K) =
∑
j

βjuj(K); j ∈ coll(J), deg(uj(K) ≤ d),

Lcf (K) =
∑
j

βjuj(K); j ∈ coll(J)).

We can perform a model based detection per Def. 5. If H0 is not rejected, and
2d log |K0| ≤ b, then the identified key leakage is b-exploitable.

Proof. If the restricted model of degree d is not rejected, then we know that
a combination of at most d key chunks suffices to describe the leakage. Recall
that we assume that all chunks of the input and keys are of equal size, thus
|K0| = |K1| = |P0| = . . . . We can set up a non-specific model-based attack: we
can build models for tuples of the form ((P0,K0), (P1,K1), . . . , (Pd−1,Kd−1)) for
the inference step. The computational cost for building these tuples is |K0|2d.
The computational cost for using the tuples in the inference step is |K0|d. Thus
the overall computational cost is bounded by O(|K0|2d) = O(22d log |K0|). If
2d log |K0| ≤ b, then the identified leakage is b-exploitable.

A repeated application of Corollary 1 leads to Algorithm 1, which finds the
model of the lowest degree that is not rejected. It does so by working down from
a given maximum degree dm (determined by the evaluator’s time/data budget),
and checking for each lower degree if or not the respective restricted model is
rejected. As soon as it finds a restricted model that is rejected, it returns the
degree of the previous model.
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Algorithm 1 Exploitable leakage detection: identify leakage degree

Require: K = K0||K1|| . . . ||Ks−1, coll(J), {t}, dm
1: Test Lcf (K) vs. L0(K)
2: if Not Reject then ▷ Check if key dependent
3: return “not a leak”
4: else ▷ Lcf (K) represents key leakage
5: for i = dm to 1 do
6: Test L{cf,i}(K) vs. Lcf (K)
7: if Reject then return d = i+ 1 ▷ Return degree d
8: end if
9: end for
10: return d = 1
11: end if

Example 2. Assume that a cryptographic module implements a byte-wise im-
plementation of AES-128. The evaluator “collapses” each key byte to 1 bit. As
dm ≤ s = 16, H0 : Lcf (K) contains 216 terms. If H1 : Lcr,2(K) is not rejected,
then at most two bytes of the key suffice to exploit the leakage. Therefore the
complexity of a divide-and-conquer attack is upper-bounded by O(24×8).

5.2 An explainable detection method

We now explain an algorithm that determines which key chunks are contributing
to the detected leakage. We do this by narrowing down our model via placing
further constraints on the restricted model. More precisely, we simultaneously
restrict the degree and exclude specific terms. Algorithm 2 provides a generic
description for identifying specific exploitable key chunks. It consists of two steps.

The first step is carried out in the first for loop, which removes a single
chunk Ki from the key, and then checks if the corresponding restricted model
is rejected. If not, then the key chunk is not important for the side channel
observations, thus removed from the key. As a result of this first step, we now
have a new key set K ′, which only consists of key chunks that are known to be
relevant6.

The second step is carried out in the while loop and it extracts each individual
term from the remaining terms of K that has degree smaller than d (which
is provided by Alg. 1) and it checks whether it individually explains the side
channel observations better than the naive model. If so, then an attack can be
constructed based on this individual term, and the term is returned.

Example 3. Following our previous example, with the side-channel observations
t and d = 2, we run the first loop (lines 1-7) in Algorithm 2. Starting from the
first key byte K0, line 3 tests if the restricted model with K ′ = K1||...||K15 (215

6 Recall that we apply this process independently to all trace points. Consequently,
we expect that different trace points will lead to different models because different
trace points correspond to different intermediate steps.
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Algorithm 2 Subkey identification

Require: K = K0||K1|| . . . ||Ks−1, coll(J), {t}, d
Ensure: The jointly leaking group represented by j (i.e. {Ki|ji = 1})
1: for i = 0 to s− 1 do ▷ Check for not contributing subkeys
2: K′ = K − {Ki}
3: Test L(K′) vs. L(K)
4: if Not Reject then
5: K = K′

6: end if
7: end for
8: l = |K|
9: J = [0, 1, ..., 2l − 1], J ′ = ∅
10: Sort J with the ascending order of the Hamming Weight of j ∈ J
11: Delete any j from J if HW (j) > d ▷ Restrict order to d
12: while J is not empty do
13: j = J [0], construct uj(K)
14: Test L(uj(K)) vs. L0

15: if Not Reject then
16: Delete j from J
17: else
18: Add j to J ′ ▷ uj(K) leaks
19: end if
20: end while
21: return J ′

terms) can pass the F -test comparing with the full model Lf (K) (216 terms). If
so, K0 can be discarded, as it does not contribute to the observed leakage. At
the end of the loop, we have deleted all K4 to K15, which leaves l = 4 in line 8.

In theory, the observed leakage can be expressed by a function of the left
16 terms. However, since we already know the leakage only contains interaction
from at most 2 key bytes, the relevant terms now are (sorted from 1 key bytes
to 2 bytes, i.e. the Hamming weight of j from 1 to 2):

{K0,K1,K2,K3,K0K1,K0K2,K0K3,K1K2,K1K3,K2K3}.

Lines 12-18 search through this list and reports the terms that leak.

5.3 A framework for detection

Definition 5, Corollary 1, and Alg. 1 and 2 are all based on the same conceptual
idea of testing/comparing key-dependent models, but with increasing levels of
sophistication and effort.

Definition 5 enables to test for “any” key dependency. As such it can be used
as a replacement of the detection method in TVLA/ISO 17825. The computa-
tional effort for the model-based detection is comparable with that of TVLA/ISO
17825. But the application of Corollary 1 within Alg. 1 and 2 leads to a frame-
work that is qualitatively different to what any existing non-specific detection
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method can achieve. We are in a position to argue which of the potential leakage
points are b-exploitable, and how they can be exploited.

Thus when executed in sequence, we have a framework that enables to effi-
ciently gather increasingly sophisticated evidence regarding the behaviour of a
cryptographic module: all together our methods provide a framework for the full
leakage assessment of a cryptographic module. In the next sections we apply this
framework to two practical examples of (open source) masked implementations.

6 Application: A masked 32-bit ASCON implementation

Dietrich, Dobraunig and Mendel et al. provide a masked ASCON software im-
plementation that “can be used as a starting point to generate device specific
C/ASM implementations”7. Although the target platform is an ARM Cortex-
M4 core (STM32F4) on ChipWhisperer CW308, the used assembly instructions
are also supported by our platform 8. We work on an ARM M3 core (NXP LPC
1313) which is running at 12 MHz. The trace set is recorded by a Picoscope
2205A running at 25 MSa/s, contains 8000 samples that covering the initial per-
mutation (i.e. pa(IV ||K||N)) The authors provide a two share and a three share
implementation, and they remark that for the two share implementation, extra
“clearing” instructions (MOV rd, #0 ) are necessary to remove leaks that are
found by TVLA.

6.1 Leakage detection, and why to dig deep

We ported their implementation to our device, and run TVLA (with a fixed key,
and fixed as well as varying plaintexts and nonce values) on their implementation
without using clearing instructions. Figure 1 (left panel) shows that without the
clearing instruction, TVLA reports leaks at the beginning of the encryption
process (which is consistent with the authors’ experiment).

Recall that TVLA in its’ fixed-versus-random input (= varying plaintext and
nonce, fixed key) setting is prone to finding plaintext-only leaks at the start of
encryption processes. In the case of ASCON, the encryption starts by applying
the pa permutation to the concatenation of a (fixed) IV value, the secret key K,
and the nonce N : IV ||K||N . Thus, purely based on the TVLA outcome, and
knowing that TVLA picks up also leakage that does not depend on the key, it
would be tempting to conclude that the identified leak is an artefact that relates

7 https://github.com/ascon/simpleserial-ascon
8 The authors provided various compile macros within their masked ASCON soft-
ware implementation. One important option is whether the “bit-interleave” trick is
applied (aka “ASCON EXTERN BI”). Our experiments in this section is captured
when “ASCON EXTERN BI” is set. Note that this is not the default version: our
experiments on the default version shows the same leakage can be found in a latter
time point, yet related to a few different key bits (caused by the bit-interleave trick).
More details can be found in Appendix E.
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Fig. 1. TVLA vs. Model-based detection

just the leakage of the nonce N (indeed strictly following the TVLA document,
the initial 1/3 points could be disregarded [4, 3]).

We now configure our model-based detection: ASCON is based on 64-bit
words, and the implementation is based on 128-bit plaintext and key. Thus
we choose to collapse the two 64-bit key words into single bits, and we fix all
other inputs to some constant. As a consequence, our model-based key-leakage
detection achieves high statistical power with only 20k traces. Figure 1 (right
panel) shows our detection finds the same leak as TVLA (the red aster), while
reporting a few extra leaks at beginning of the encryption.

The outcome of the model-based detection implies that the TVLA results
are not due to N alone. We can now be certain that there is key leakage. This
result creates the non-trivial challenge of finding an attack vector, which we can
do elegantly leveraging our novel framework.

6.2 Assessing key leakage: degree analyses

We focus on the highest leaking point (indicated in red) in Figure 1. Following
our framework, the next step is to analyse the degree of the leakage in this point.
Because there are two 64-bit key words in our collapsed model, the degree of the
largest monomial in our initial model is two. Figure 2 shows the degree for all
trace points. The degree of the most leaky point is in fact one, which implies that
this point should lead to an attack where only one of the key words is involved.

We next use Algorithm 2 to identify which 64-bit key word contributes to
the leakage in the selected point. Within each experiment, we set α = 0.01 and
reject any −log10(p− value) > 2 (i.e. observed key dependency). As we can see
in Table 1, the leakage depends on only the first collapsed key word K0, i.e.
the first 64 bit within the secret key. This key word becomes the basis for our
subsequent analysis.
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Fig. 2. Degree analysis with Collapsed model 1 (aka output from Alg. 1)

Table 1. Leaking key words from Algorithm 2 (masked Ascon, d = 1)

Key word −log10(p− value)

K0 66.62

K1 1.67

6.3 Fine-grained analysis

Although our analysis above finds useful information, attacking a 64-bit word
remains challenging in most realistic contexts. In the following, we iterate our
analysis in Section 5 with various collapsing setups, in order to gain more fine-
grained understanding of the detected leakage.

Identifying the leakage source within the first 64-bit word Within the
first 64-bit word, we further refine our analysis with a more fine-grained model.
Although we know ASCON is not a byte-wise cipher, we still use a byte-wise
collapsing strategy to determine if interactions between small chunks of a key
word are involved in the observed leakage. The choice of byte-wise collapsing is
not the only possible next step: we could also collapse to 16-bit chunks, or to
32-bit chunks, or to 4-bit chunks. Our choice is simply a trade-off between the
profiling effort and the type of model that we can build.

The collapsing strategy implies that the key word K0 can take 28 different
values, and the key word K1 is set to zero. As a consequence, we can stick with
the parameters for configuring the test that we derived in the previous examples,
and proceed with a data set containing only 20k traces. We re-run the initial
detection (and identify once more the same leaky point as before, see the left
panel of Figure 3), and we also re-run the degree analysis. This time, because we
represent our key word as eight bytes, the degree of the largest possible monomial
is eight. Figure 3 shows the result of the degree analysis: our target point has
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Fig. 3. Degree analysis (byte level)

Table 2. Leaking key bytes from Algorithm 2 (masked ASCON)

Key bytes −log10(p− value)

K0,0 3.82

K0,1 4.67

K0,2 4.97

K0,3 4.62

K0,4 1.12

K0,5 0.76

K0,6 0.61

K0,7 0.48

degree d = 1. This means that the leakage in this point does not depend on the
interaction between key bytes; key bytes contribute independently to the leakage.
This information enables us to conclude that we have b-exploitable leakage for
a very realistic values of b.

We run Algorithm 2 once more, which leads to Table 2. Clearly, in Table 2,
the lower four bytes significantly contribute to the leakage (they lead to p-values
lower than α = 0.01). This fits neatly to the 32-bit architecture of the processor.

Identifying the leakage source within the first byte We now refine the
model further in order to determine how a single byte of the key contributes
exactly to the leakage. We pick the first key byte for the analysis: we do not
collapse this byte, but allow all possible values to occur; we fix all other inputs
to zero, and collect another trace set. Because we do not use any collapsing
on the first byte, we now need a larger trace set (200k traces, adapting the
analysis in Section 4.2). We confirm that the leakage is still detected (first step
of the framework), and we perform the degree analysis for the bit level model. It
shows that the degree is still one, which implies that the key bits are contributing
independently to the leakage. We only show the output of Algorithm 2 in Table 3,
which shows that the lowest key bits have the higher contributions. This gives
us enough to construct a concrete attack vector.
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Table 3. Leaking key bits from Algorithm 2 (masked ASCON)

Key bits −log10(p− value)

k0 3.16

k1 5.71

k2 2.23

k3 1.23

k4 0.81

k5 1.77

k6 1.97

k7 1.70

6.4 Constructing a concrete attack vector

We wish to demonstrate a differential attack (DPA style), and thus we need
to confirm that the key also interacts with the nonce (the nonce provides the
differential input). Following our previous discussion, our goal is now to find out
if the lowest four key bits interact with any part of the nonce. Mindful of space,
we cut to the chase: we collapse the lowest 4-bit chunk of the key to a single
bit, and set the remaining key to zero. We consider the nonce to consist of 4-bit
chunks and collapse each chunk in the first nonce word to a single bit, and set
the second nonce word to zero.

We perform key-leakage detection (which is successful in the same point as
before), re-run the degree analysis, and then we perform Algorithm 2 to find
out how key and nonce contribute to the leakage. Table 4 shows that the joint
leakage between nonce and key leads to considerably higher test results than
just the key itself. The fact that there is joint leakage between (a small part of)
the nonce and (a small part of) the key enables the construction of a differential
attack, with a very small inference complexity.

Table 4. Significant key and nonce interactions as determined by Algorithm 2 (masked
ASCON)

(key, nonce) −log10(p− value)

K0,0..3 6.35

(K0,0..3, N0,0..3) 15.76

(K0,0..3, N0,4..7) 10.72

(K0,0..3, N0,8..11) 10.08

(K0,0..3, N0,12..15) 20.62

(K0,0..3, N0,20..23) 26.64

(K0,0..3, N0,24..31) 28.99

For the concrete attack we choose the pair (K0,0..3, N0,0..3) as our attack
target (other choices are possible). Thus we assume the attacker attempts to
recover the lowest four key bits, using the fact that the adversary has knowledge

22



of the nonce values. The attacker thus builds non-specific templates for all values
of (K0,0..3, N0,0..3) (thus there are 256 templates that need to be built; the time
point for profiling is known from the leakage detection step). In the attack, the
adversary does a standard template-based attack to recover the lowest four key
bits. Figure 4 shows how the rank of the correct key decreases as the number of
attack traces increases. The correct key guess can be found within 600k attack
traces (600k traces were used for training).

Fig. 4. Evolution of the key rank for attack on ASCON

Remark 5. We attempted a range of “natural attack vectors” arising directly
from the algorithmic description and the Assembly code: targeting e.g. interme-
diate steps after the first round, but none of these targets lead to a successful
attack. This is in fact consistent with the authors’ patch: MOV rd, #0 merely
“clears” some micro-architecture, which suggests the leakage must arise from the
micro-architecture.

7 Application: An Affine masked 32-bit AES
implementation

We now analyse the affine masking implementation from ANSSI [26]. We run
this implementation on the same ARM M3 core (NXP LPC 1313). The target
core is running at 12 MHz. The trace set is recorded by a Picoscope 2205A
running at 100 MSa/s, and we directly focus on (a part of) the first round Sbox
computations, which leads to about 1500 points per trace. We turn off shuffling
in their implementation: shuffling only scales the effort of an attack, but it does
not change the nature of the attack strategy. Confirming the analysis of ANSSI,
we did not find any leak with 1st order TVLA on the raw traces (i.e. no 1st
order univariate leak). This implies we must apply preprocessing on the trace
set (see Sect. 2.3 for a brief reminder on preprocessing).
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Fig. 5. Model degree analysis for affine masking

Remark 6. Our cryptographic module features a three stage pipeline. Conse-
quently, each trace point in a side channel observation depends on three instruc-
tions which are simultaneously “in flight”. The parallel nature of the processor
implies that masked values and masks might be simultaneously computed on.
Thus there could be key leakage due to parallel computations, and there could
be key leakage due to sequential computations. We study both situations in turn
using the canonical trace preprocessing functions, which are also used in TVLA.

7.1 Assessing key leakage due to parallelism

We preprocesses the traces by computing tj
′
=

(
tj − t̄j

)2
(t̄j stands for the

mean value of the observations at time j). Because the implementation is byte
oriented, we use the same collapsing parameters and strategy as Sect. 4.2 and 5.

We initially perform a test for key leakage and identify multiple leaking points
in the preprocessed trace set; the outcomes are akin to those obtained from
TVLA. In contrast to TVLA, and its adoption in ISO17825, our framework now
offers the ability to further analyse the identified points and ultimately construct
(without undue overhead) an attack vector.

To do so we proceed as follows. For each point on the preprocessed trace, we
adapt the full model from Def. 5 to find the maximum degree of the potential key
leakage (we perform a leakage degree analysis). Figure 5 (upper half) shows that
most leaking points have leakage degree two (d = 2). Because we represent the
key as independent bytes, this analysis implies that the leakage points depend on
d = 2 key bytes. This implies that there is 32−exploitable key leakage (b = 32)
(remember that this is an upper bound, and we will reveal an attack vector with
a lower complexity).

We further pick one of these points (index 360, red asterisk in Fig. 5) and run
Alg. 2 to identify the exact key byte combination, which leads to the outcomes
in Table 5. As we are focusing on one single point, we simply set α = 0.01 and
reject any −log10(p− value) > 2.
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Table 5. Leaking key pairs of bytes from Algorithm 2 (affine masking, parallel leakage)

Key bytes −log10(p− value)

(K0,K1) 20.29

(K0,K2) 4.62

(K1,K2) 14.41

(K0,K3) 31.09

(K1,K3) 6.26

(K2,K3) 8.59

Table 6. Leaking key pairs from Algorithm 2, sequential leakage of affine masking.

Key bytes −log10(p− value)

(K0,K4) 46.23

(K1,K4) 6.61

(K2,K4) 4.15

(K3,K4) 5.18

(K0,K5) 10.62

(K0,K6) 10.60

(K0,K7) 10.52

Table 5 shows that there are a number of good candidates. The pair that
has the highest −log(p − value) is the pair (K0,K3). This key pair leads to a
concrete attack vector that has been reported in previous work [13], where the
authors stated there is a collision attack on this particular implementation (left
plot, Fig. 2 in [13]).

7.2 Assessing key leakage due to sequential processing

The sequential processing of shares can be “undone” by creating joint distribu-
tions via the multiplication of trace points. The canonical preprocessing method
is then based on computing t′r =

(
ti − t̄i

) (
tj − t̄j

)
. We select the point at index

(j = 1428) and run our leakage detection method to reveal key leakage for the
entire trace (from i = 0 to i = 1499). The outcomes are akin to running TVLA,
but we can proceed within our framework to determine a concrete attack vector.
To do so, we determine the leakage degree for each of the (preprocessed) trace
points.

Figure 5 (lower half) shows a combination of two key bytes suffices to describe
most points on trace. This implies that the inference step is below O(232) bound,
and thus we conclude that this is 32−exploitable key leakage (b = 32).

We then select point 364 (blue asterisk in Fig. 5) as our target (i = 364),
use Alg. 2 to identify the key bytes that can describe the leakage, which leads to
Table 6. Similar to the parallel case, we set α = 0.01 here. The table shows that
the key pair (K0,K4) is the best candidate for constructing a concrete attack
vector. Like in the parallel case, this attack vector has been reported before
in [13] (i.e. Section 4, Figure 2).
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8 Discussion

8.1 Applications to other types of implementations

We provide two detailed application use cases for our technique, which show
how to adapt the analysis to suit different ciphers and their resulting imple-
mentations. The two ciphers follow different construction principles and lead to
different types of implementations even on the same platform. The AES cipher
is byte-oriented and leads to a fully byte oriented implementation on our 32-bit
platform. The ASCON cipher is word oriented, but the non-linear component
is a 5-bit function. Thus some part of the ASCON cipher are mapped to the
native 32-bit instructions of the processor, and some are implemented in a more
bit wise fashion. These architectural differences have no impact on the principle
of our analysis, they only guide the choices that we make to collapse the inputs
in order to facilitate trace efficiency. The analysis of hardware implementations
is akin to those of software implementations: the architecture of the implemen-
tation will guide analysis, and we expect that only the number of traces must
increase. This will impact the effect size f2 and thus the configuration of the
test, we advice considering [7] to determine which (normalised) effect size to use.
Our work thus provides evidence that implementations of similar byte oriented
ciphers, or ciphers based on permutations are compatible with our detection
framework.

8.2 Importance of explainability in leakage assessment.

Although rarely prioritised in the academic literature, explainability plays a
critical role in adopting evaluation schemes like FIPS 140-3/ISO 17825. For
instance, any fixed-versus-random plaintext test will report trace points that
depend only on the plaintext. But the plaintext contains no information about
the secret key. Thus, both TVLA [3] and ISO 17825 [4] have an exemption
clause: only the middle 1

3 of the side-channel trace is considered. The hope is,
the plaintext dependent leakage will vanish in the middle part of the trace. As
a result all leaks in the beginning rounds will be excluded, even if they are
potentially exploitable, as we demonstrate in our ASCON example.

Our approach does not need such an “exemption clause” because all detected
leaks are key dependent and our framework produces evidence that enables to
reason about exploitability and explainability.

We also wish to emphasise that other existing specific tests/attacks (e.g.
NICV [27] or ρ [28]) are unlikely to find the leaks from our examples either. This
is because we identify leaks that are based on combinations of key and plaintext
that are likely due to the micro-architecture. They cannot be explained based on
(architectural states) that arise from the algorithmic description itself, not even
from an Assembly representation. Even worse, micro-architectural effects do not
neatly carry over from one version of a micro-processor to another (not even for
similar models from the same manufacturer, see [29]), and therefore an evaluator
is unlikely to know which effects are present in advance. Our new framework is
currently the only method to systematically and effectively identify such leaks.
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8.3 Complexity of our approach.

Data complexity. The largest model to build is Lcf , which suggests the data
complexity (i.e. the number of available traces) should be at least O (2s) (where
s is the number of collapsed key chunks). Our analyses in Section 7 uses 216 ∗ 10
traces, which is around the same level of TVLA for hardware masking N =
106. Our analysis of ASCON is based on differently sized models, ranging from
two to eight explanatory variables, all over a collapsed space, leading to trace
requirements between 20k to 200k traces; which are clearly below what TVLA
requires.

Time complexity. The largest computational effort comes from the application
of Corollary 1, where our analysis attempts to determine the degree d through
comparing different regression models. Assuming N traces were recorded for
an implementation with s collapsed key chunks, building a model with degree
d takes O(C2N) elementary arithmetic operations (C =

(
s
d

)
). In our AES ex-

periments, we set s = 16 and d = 4, which gives C = 1820. This means the
complexity for regression models is bounded by 241. If the underlying cipher has
higher key size (e.g. AES-256) or smaller key chunks, one can always iteratively
build more fine-grained models like our ASCON example in Section 6: as the
regression models never exceed 256 terms (s = 8), the time complexity is around
231.

8.4 Extension to other model building methods and inherently
multivariate methods.

Our work heavily uses existing statistical machinery for comparing nested regres-
sion models. The reason for this is that for such models an adequate comparison
method exists: i.e. a formal statistical test exists, that can be correctly configured
by an evaluator, so that the evaluator can derive the necessary number of side
channel observation that they must gather. Such a comparison method currently
only exists for nested regression models, and thus for now we must leave it as an
open research question to extend our idea beyond nested regression models (e.g.
machine learning or deep learning models). This implies that also the extension
to inherently multivariate technique remains an open problem.

8.5 Optimal vs. confirmatory attack vectors.

Our method can reveal multiple attack vectors, with different data/time com-
plexity. Since our primary goal is verifying a detected leak is exploitable in
attacks, the “optimality” of the recovered attack vectors becomes out of our
scope. However, once the attack vectors are known, it is possible to turn them
into a more (trace) efficient attack. For instance, better profiling techniques can
be incorporated into the very final step when an attack is carried out. It may
also be possible to incorporate identified micro-architectural leakage into some
horizontal attack vector. Both of these possibilities are interesting questions for
further research.
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24. Arrieta, A.B., Rodŕıguez, N.D., Ser, J.D., Bennetot, A., Tabik, S., Barbado, A.,
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A Application: Simulated AES

For clarity, we illustrate our methodology using simulated leaks at first. The sim-
ulation corresponds to two rounds of AES (with a key size of 128 bits). We record
six leakage points across the two rounds. Unlike the experiments on a real device,
we know exactly how each simulated trace point is generated. Consequently, this
enables to test (and also demonstrate) our novel leakage assessment process.

A.1 Simulation setup

Our simulation consists of two rounds of AES. An AES round consists of the
execution of four intermediate steps (AddRoundKey, SubBytes, ShiftRows, and
MixColumns), and we create from these intermediate steps six leakage points,
using the Hamming weight (HW) as a leakage function, as detailed in the list
below. The selection of leakage points is meant to enable an interesting analy-
sis: thus we choose intermediate states and leakage functions that are of some
practical interest (any indices though where chosen arbitrarily and they have no
impact on the actual analysis). Note that in a real world leakage evaluation, the
evaluator does not know the exact correspondence between leaking intermediate
variables and trace points (which is the very reason for needing an additional
analysis after leakage detection).

– l0 = HW (Plain[0 : 3]): this trace point is the leakage from the plaintext
input. We consider a modern 32-bit processor, thus we return Hamming
weight of the 32-bit word.

– l1 = HW (Rkey[0 : 3]): similarly, this trace point is the leakage from the first
word of the first round key (i.e. the master key for AES)

– l2 = HW (Sout[4]): this sample represents a typical target for a side channel
attack, i.e. the leakage from the output of one specific S-box (the index here
is irrelevant, and was selected at random).

– l3 = HD(Sout[6], Sout[10]): this trace point is an example of typical Ham-
ming Distance (HD) leakage on the memory bus (between two randomly
selected SubBytes results). This type of leakage often exists in modern pro-
cessors, and it is often not trivial to determine in practice which two values
are involved in generating it (i.e. compiler specified ordering, register alloca-
tion etc.).

– l4 = HW (MCout[8]): this trace point represents the leakage of the Mix-
Columns output. It represents exploitable leakage that requires a large key
guess.

– l5 = HW (MCout[12]): l5 also relates to a MixColumns output, but from
the second round.

Some independent Gaussian noise is added to each sample, drawn from
N (0, σ2) where σ2 = 16. Our goal here is to demonstrate how our technique
reveals the relevant key bytes for each sample. For the typical 8-bit HW leakage
samples (i.e. l2, l3, l4 and l5), the Signal-to-Noise-Ratio (SNR) is 2/16 = 0.125
(this corresponds to what is observed in modern microprocessors).
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To emulate a typical leakage detection scenario within a “high stakes” eval-
uation (such as CC) we assume that we can sample 1.000.000 traces.

A.2 Applying TVLA

Since the AES implementation is unprotected, no trace processing is necessary
prior to the application of TVLA. Using the conventional plaintext-based fixed-
versus-random t-test, all the samples are reported as “leaky” (see the “TVLA”
column in 7), except for l1. This result is entirely expected: anything related to
computations on the round keys cannot be detected by varying plaintexts. Since
the correspondence between trace points and intermediate states is missing, no
conclusion beyond “there is potentially some leakage” can be drawn.

Table 7. Example: Simulated AES

Samples \Tests TV LA
Key-Dependent Model-Based Leakage Assessment
Non-spec. Detect Degree Key Bytes Specific

l0 = HW (Plain[0 : 3]) ✓ - - -

l1 = HW (Rk0[0 : 3]) ✓ 1 k0, k1, k2, k3 k0
l2 = HW (Sout[4]) ✓ ✓ 1 k4 k4

l3 = HD(Sout[6], Sout[10]) ✓ ✓ 2 k6, k10 (k6, k10)

l4 = HW (MCout[8]) ✓ ✓ 4 k2, k7, k8, k13 (k2, k7, k8)

l5 = HW (MCout[12]) ✓ ✓ > 4 all n.a.

A.3 Leakage assessment via key dependent models

We now demonstrate our assessment framework by following the statistical anal-
yses laid out in Sections 5.

Non-specific detection. Since our simulation is unprotected, all key-dependent
trace points li can be written as functions of K.

A key challenge for performing such analysis is the size of K and thus we
use the collapsing trick explained in Section 5: we use a single bit (e.g. the
least significant bit) to represent one byte. Applying the same restriction on all
16 bytes, the entire 128-bit key space can be represented by a 16-bit collapsed
key state Kc. In this collapsed model, Lf (Kc) represents all possible leakage,
yet only requires the number of traces N to be several times of 216. For our
simulation experiments in this section, we stick with the same setting as TVLA
(i.e. N = 106).

We want to emphasise at this point that there are multiple options of how
to collapse the full key space, and one has to be familiar with the cryptographic
scheme that is implemented. For instance, because the AES round function
mainly works on the byte-level (except for the xtime function in MixColumns),
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using one bit to represent each byte is a natural choice. As consequence, some
intra-byte leakage cannot be detected this way, e.g. the bit-interaction leakage
within a software processor [30]. For such cases (or bit oriented block ciphers),
a single byte should be represented by two bits, enabling the detection of inter-
actions within a byte.

In addition, the actual values of the collapsed representation affect the effi-
ciency of the test. For instance we can choose the values 0 and 1 to represent
a byte, but the leakage may be harder to exploit than when choosing 0 and
255 (aka all bits are set to one). For AES-128, 00...0 and 11...1 usually produce
signifiant leakage before the S-box; however, after the S-box, these values are
mapped to the values 0x63 and 0x16, which only have only 5 bits difference.
Considering MixColumns intensively mixes various bytes, in the following we
use one-bit to represents each key byte ki as 0x52 or 0x7d: by sacrificing some
power before the S-box, we gain full power after the S-box as each byte becomes
0 or 255.

We can now set up the leakage detection test as:

Lf (Kc) =
∑
j

βjuj(K), j ∈ [0, 216]

Lr(K) = β0

The third column in Table 7 shows the analysis results of our simulated
traces. All samples are determined as true “leaks”, except for l0, which indeed
does not depend on the key.

Remark. There is a difference between our overall F -test here and individually
testing all 16 key bytes ki. For instance, l3 in Table 7 jointly depends on k6 and
k10, but it does not depend on any single key byte.

Degree analysis. We now limit the degree of the regression function to d and
test the resulting reduced model:

Lf (Kc) =
∑
j

βjuj(Kc), j ∈ [0, 216)

Lr(Kc) =
∑
j

βjuj(Kc), j ∈ [0, 216), deg(uj(Kc)) ≤ d

If the null hypothesis is rejected, we can conclude the tested trace point
contains some leakage that requires deg(uj(Kc)) > d. In our collapsed model,
this implies the leakage jointly depends on more than d key bytes. Although it
is possible to test any d ∈ [1, 15], we argued before that based on knowledge
for the encryption scheme, effort can be saved. Thus, within the context of this
example, we test d = 1, 2, 4: d = 1 represents the unprotected value before the
MixColumns, d = 2 often occurs when transition leakage appears between two
individual bytes, while d = 4 represents the first MixColumns output as well as
the attack enumeration complexity (232) which we are willing to accept.
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The fourth column (labelled “Degree”) gives the results on our simulated
traces. Both l1 and l2 are marked with degree 1. This is because although l1
does involve 4 key bytes, they do not interact with each other and therefore the
attacker can directly recover k0 and ignore the other 3 (i.e. treat as noise). The
trace point l3 has d = 2 (which is correct because it jointly depends on both
k6 and k10). After the first round MixColumns, each state byte depends on 4
key bytes, therefore l4 shows degree 4. After the second round, the degree of l5
lies between 5 to 16, where we did not further explore as it is unlikely l5 can be
easily exploited.

Subkey Identification The degree of the key-dependent model already enables
to judge if a leakage point can be exploited in practice. We can now use our
statistical methodology again to determine which key bytes contribute to the
leakage.

We do this by further restricting Lr(Kc) in order to find the minimal set
of uj(K) that is “enough” to explain the leakage. For instance, we can simply
delete one key byte ki from the 16-bit state Kc and construct

Lr(K
′
c) =

∑
j

βjuj(K
′
c), j ∈ [0, 215),K ′

c = Kc − {ki}

If Lr(K
′
c) is not rejected, we conclude this key byte is irrelevant for the

observed leakage. The second-to-last column (labelled “Key Bytes”) shows the
results of this analysis. For instance, we identify correctly that the key bytes
k2, k7, k8, k13 contribute to the degree four leakage of l4: the other 12 key bytes
are rejected by our test, therefore irrelevant for l4.

Deriving specific attacks. At this point we know the dependency between
each trace point and the key bytes. With this information, and a further trace set
that has variable inputs, we can now build templates for the identified leaking
points. Whilst template attacks are information theoretically optimal, templates
that require four or more key bytes are perhaps not achievable for general ad-
versaries. In this case attacks based on standard power models, or simplified
templates, could be attempted.

The final column in Table 7 shows the lowest degree model that was identified
by Alg. 2. These serve as the basis for confirmatory attacks (if desirable). For
instance for l0 we identify k0 is a candidate for a specific attack: this means
that an attack involving a plaintext byte that interacts with this key byte is
highly likely to succeed; for l3 we identify that the leakage can be explained only
by involving two plaintext bytes that interact with an intermediate value that
jointly depends on (k6, k10).

Confirmation must happen in the uncollapsed setting. A suspicious result in Ta-
ble 7 is that our analysis claims l4 can be exploited with the joint distribution of
(k2, k7, k8). This could be generally possible due to some implementation choice
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in MixColumns, but our implementation only leaks on the MixColumns output.
Similar to the discussion in [13], for some collapsing parameters, the reported
leak (in the collapsed setting) can be a degenerated version of the correspond-
ing leak in uncollapsed setting (i.e. requiring only part of the relevant subkey,
as some vanish in the collapsing procedure). Consequently we know that the
identification of the least leaking term that we do in the collapsed setting has
produced a too optimistic outcome, and an actual attack would require four key
bytes. One can mitigate this issue with a different set of collapsing parameters
(e.g. more bits for each byte). Nonetheless, we recommend to always run a con-
firmatory attack in an uncollapsed setting, for any specific attack derived from
our framework.

B Application: A Boolean masked 32-bit AES
implementation

We now assess a software implementation of AES that utilises a well known
Boolean masking scheme [31]. The original code was written by Ermin Sa-
kic [32] and published on GitHub. It was then re-written by the Secure Em-
bedded Systems Research group at Virginia Tech as a more general C-based
implementation [33]. The entire AES encryption uses 6 bytes of randomness:
a pair of (input/output) masks for masking the S-box input/output, while the
other 4 protect the MixColumns as suggested by [31]. The masked S-box is pre-
computed before each encryption according to the pair of input/output masks,
then all S-box look-up(-s) use exactly the same mask. In theory, no “first order
attack” (i.e. attacks on raw traces, without pre-processing) should work for this
implementation.

We port this implementation on an ARM M3 core (NXP LPC 1313), which
is now our cryptographic module. The target core is running at 12 MHz, so
each cycle takes approximately 83 ns. In order to capture the entire round, we
adjusted the sampling rate to 12.5 MSa/s, i.e. close to one sample per cycle. The
10 rounds’ masked encryption (excluding initialisation and key schedule) takes
around 556 µs. As a consequence, our scope (Picoscope 5243D) captures 7000
samples per trace, and all traces are of equal length.

B.1 Key leakage detection

In order to detect key leakage, we apply the test from Sect. 4 to our cryptographic
module. This requires to collect traces for the model-based detection, which in
turn requires to consider how to collapse the key space. The implementation is a
very classical byte oriented AES implementation, and therefore the natural way
to collapse the key is to define a collapse function for each key byte:

– Each key byte collapses to a single variable that can take two different values.
– The two different values that a key byte can take are chosen to be 0x52 and

0x7d, which ensures after the S-box we get the values 0x00 and 0xff (we
fix the plaintext to be the all zero vector).
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These choices reflect minimal knowledge about the implementation: we do
not make any assumption about the specifics of the masking scheme, and we
make no specific assumptions about the device leakage function. However, we do
assume that values are manipulated byte-wise. The collapsing function ensures
that we can capture interactions between key bytes in the model.

Figure 6 shows the result, when applying the model-based detection test to
a trace set of 216 × 10 traces. Recall that we apply the test independently to all
trace points (i.e. we extract the 1st, 2nd, 3rd, etc point across all side channel
traces and apply the test to the j-th points); thus our result is again a trace of
the same length as the original observations. The red dashed line indicates our
rejection threshold, any value above indicates that there is enough evidence to
reject H0(i.e. “no leakage”in the sense of Def. 5). The red asterisk marks a trace
point which we will discuss in the next sections.
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Fig. 6. Model-based detection

Why are there so many leaking points? Achieving just first-order security on
a processor such as the NXP LPC 1313 is in fact not straightforward without
the effort from side-channel experts. Proofs and security arguments can effec-
tively protect the “masking scheme”: however, in realistic implementations, vari-
ous micro-architectural elements (e.g. buffers) contribute alongside architectural
registers to the observed side channel. These contributions are not accounted
in the proofs. Besides, many leaking points appear because of the transitions
between the current and previous architectural states: these can completely un-
dermine the security of any masking scheme. The recent paper by Marshall et
al [29] shows many types of (unexpected) micro-architectural effects. The exis-
tence of such unexpected leakage is in fact well documented: already Balasch
et al. reasoned back in 2014 that without handcrafted code from experts, one
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should expect a second order scheme to be only first order secure in practice [34].
A recent study shows this remains relevant for many provably secured software
masking schemes today [35].

B.2 Exploitable and explainable leakage

We now use the methodology from Sect. 5 to hunt for exploitable leakage using
Alg. 1, and then demonstrate our explainable method using Alg. 2.

Detecting exploitable key leakage. In a byte oriented implementation, the
interaction between key bytes will determine the complexity of the inference step
(Section 3). Using the same collapse function as before, we can further analyse
how many key bytes are necessary to explain the side channel observations, using
Alg. 1, which leads to Fig. 7. In the first encryption round, we can see that either
two bytes or four bytes of the key are required to describe the observations.

Afterwards, the full key is required to describe the observations. We can
now conclude on b-exploitable leakage: because we have degree two leakage,
i.e. two key bytes suffice to describe the side channel observations, we have
b = 32-exploitable leakage, which is definitely practical. In fact, the example in
Section 5.1 demonstrates this procedure for any degree-2 point in Fig. 7.
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Fig. 7. Analysing the degree of the leakage function in a collapsed model

From Fig. 7, we can make two interesting observations:

– Even before the first round S-box, there are some trace points that depend
on 2 key bytes: a plausible explanation is those are leaks caused by the micro-
architecture register/bus bit-flips, where the random masks are accidentally
cancelled out. No specific single-byte test, like [28, 27], can exploit this leak-
age: therefore, an evaluator would falsely conclude that the flagged trace
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point is a false positive in the TVLA framework. However in our framework,
an evaluator would recognise these points as exploitable.

– We found some trace points which depend on two key bytes according to our
test, but also have a leakage component that only depends on a single key
byte, e.g. L(K) = β0 + β1K0 + β2K0K1. Such points can be analysed with
specific detection methods that use the component β1K0 but these methods
would fail to use/notice the component β2K0K1. As a result, attempts to
“repair the code” based on the incomplete understanding of the true nature
of the key leakage are prone to fail. This illustrates again, that single-byte
specific tests would fail to deliver meaningful results, but our framework
would guide an evaluator/implementer correctly.

Explainable key leakage detection. We now pick the point 213 (the red
asterisk in Fig. 6 and 7) to illustrate how to produce concrete evidence that
leads to an attack. According to Figure 6 and 7, the leakage on this sample can
be expressed with a model that includes the interaction of no more than two key
bytes. Thus, we follow the steps in Section 5.1 (i.e. Algorithm 2) to determine
the exact key byte combinations. In fact, the example in Section 5.1 explains
how Alg. 2 works on this exact point.

We set α = 0.01 and reject any −log10(p − value) > 2. If the p − value
exceeds the precision of our computation script (we use numpy), we simply
denote them as > 324 (the maxima logarithm returned by numpy) in Table 8.
Table 8 documents all the combinations of two bytes that statistically contribute
to this leakage point. Perhaps surprisingly, all 6 2-byte combinations contribute
to the trace point, which suggests it is unlikely this leak is caused by one register
transition.

Table 8. Potential pairs of key bytes from Algorithm 2

Key bytes −log10(p− value)

(K0,K1) 14.93

(K0,K2) > 324

(K1,K2) > 324

(K0,K3) 140.26

(K1,K3) 93.12

(K2,K3) > 324

The pair (K0,K2) has the highest significance level, and we proceed with
this pair for demonstrating a specific attack for trace point 213. This requires
us to take a further set of measurements, with a fixed key and varying inputs.
Based on this new set, we create models/templates for this trace point.

Demonstrating an attack. To reduce the noise, we take advantage of our
ability to choose plaintexts and set all plaintext bytes that are not relevant for
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Fig. 8. Specific Attack Vectors

the attacks to 0. Varying then the values for P0, P2 we acquire a profiling set
consisting of 650k traces, from which we randomly pick 65k traces as the attack
set (i.e. 590k for profiling, 65k for attack).

We discussed the different options of model building in Sect. 2.4. We now
show attack vectors for the option where we build specific models but we stick to
incorporating only high level information about how AES works: from Fig. 7, we
know that we must be dealing with some intermediate step prior to MixColumns.
Thus we can build templates for the pair (K0⊕P0,K2⊕P2), and so the inference
step requires simultaneously guessing 216 keys. We can build more specific models
assuming that the intermediate occurs after the SubBytes step. Thus we estimate
templates for S(K0 ⊕ P0) ⊕ S(K2 ⊕ P2) for point 213 as well. The cost for the
templating step for this attack vector is lower than the cost for the previous
attack vector: we only estimate templates for 256 values. The cost of the inference
step is however the same as before (216).

The outcomes in terms of key rank are given in Figure 8, and both plots show
clearly that both attack vectors are efficient. The right panel of Figure 8 confirms
that this attack vector is even more efficient than the somewhat more “generic
one” in reducing the average key rank: the maximum rank here is 216, the more
generic attack on the key pair reaches a rank of around 500 after 65k traces. The
more specific attack on the SubBytes output reveals the pair after 10k traces.
We note that both attacks only use a single trace point, thus are univariate (and
no pre-processing of traces was necessary in this particular case).

Both attack vectors may appear simple, but finding them without our frame-
work would require to try out combinations of intermediate values. In the worst
case all combinations of two bytes would have to be analysed — our framework
is rather efficient in comparison.

C Non-specific leakage detection via the
fixed-versus-random principle

The TVLA document [3] suggests using a “fixed-versus-random” methodology
as a non-specific detection tool. We explain the methodology in a fixed-versus-
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random plaintext mode, which works as follows. The evaluator supplies a fixed
secret key, and then collects two trace sets. One trace set corresponds to a fixed
plaintext input; the other corresponds to randomly chosen plaintext inputs9.

The logic underpinning the non-specific leakage detection test is as follows.
Suppose that there is no data dependency, then the two sets must have the same
distribution. Otherwise, if the two sets can be distinguished, it implies that the
observations are somehow dependent on the input data (i.e. plaintext). This idea
translates neatly into a statistical hypothesis test as follows.

We define the null hypothesis H0 to correspond to the situation that there
is no data dependency. Then the alternative hypothesis H1 implies that there
is some data dependency. We select a (suitable) statistical procedure to check
H0. TVLA prescribes to use the Welch’s t-test [36] statistic for this purpose,
which is a well known (univariate) test statistic for the difference between two
sample means. TVLA also prescribes a statistically motivated threshold: if the
test statistic exceeds this threshold, we can refuteH0 (i.e. find data dependency).

Since the popularisation of the non-specific leakage detection approach in
TVLA, several papers have appeared that discuss and aim to improve the sta-
tistical approach, often focussing on statistical shortcomings/properties of the
non-specific detection test in TVLA, e.g. [7, 37, 9, 6], or by looking at tweaks
to the fixed-versus-random strategy leading to the fixed-versus-fixed strategy or
moving towards more specific tests/attacks [28, 38].

Although the TVLA framework includes the option of a “fixed-versus-random
key” test alongside the “fixed-versus-random plaintext” test, all papers, and also
the testing method included in [4] use the “fixed-versus-random plaintext” test.
As a result, the test cannot detect any dependency that only comes from the
secret key. Consequently, the key schedule cannot be analysed with the technique,
and dependencies that are due to the plaintext only must be expected. Even if
a “fixed-versus-random key” test is deployed, the reported leaks might still be
too hard to exploit, e.g. the ciphertext-dependent leakage cannot be exploited
since otherwise there will be an attack on the cipher itself.

D Comparison with TVLA

D.1 TVLA and Key leakage

Assume that a cryptographic module implements a function f(p, k). The eval-
uator may sample traces while choosing a fixed input P and two key constants
K = c1 and K = c2 where c1 ̸= c2. They may repeat this experiment multiple
times.

The evaluator defines H0 (no leakage) as “the sets exhibit the same statistical
distribution”. This is the hypothesis that they seek to refute: if some statistical
difference between sets can be asserted, then they conclude upon “key leakage”.

9 The sampling process needs to be controlled in specific ways to avoid unintended
dependencies, and the process is fully specified in [3].
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The evaluator collects all traces that correspond to K = c1 into a set {t1}
and similarly all traces with K = c2 into {t2}. Because of the assumption of
Gaussian noise, the evaluator elects to use a test for the equality of distribution
means. Because both sets are of equal size, they decide upon the student t-test,
and set up H0 : µ̂({t1})− µ̂({t2}) = 0 vs. H1 : µ̂({t1})− µ̂({t2}) ̸= 0. They also
select a threshold based on their desired false rejection and false acceptance rates.
They find that the test rejects the null hypothesis for their selected threshold.

Because they used a finite set of samples, and defined an efficient statistical
test to refute H0, they can conclude on the existence of “key leakage” (i.e. Def.
1 ).

The process above corresponds to a conceivable use case which is sometimes
referred to as a “fixed-versus-fixed” technique [39], albeit as “fixed-versus-fixed
key” rather than the most common “fixed-versus-fixed plaintext” setting [3]. If
H0 can be refuted, we know the observed side channel has a key dependent
distribution. In other words, if the evaluator has access to both the plaintext
and key, such key-based TVLA can correctly conclude of the existence of key
leakage.

D.2 TVLA and Exploitable/Explainable

Although key-based TVLA can conclude on key leakage, further explaining its
reported leaks is far from trivial. A typical counter-example is the ciphertext-
dependent leakage: following our definition, such leak point is 128-exploitable,
which is side-channel-wise useless. Nevertheless, within the “fixed-versus-fixed/random”
principle, there is no further support for more fine-grained analysis. Thus, from
TVLA results, we cannot simply conclude on whether the detected leak is ex-
ploitable/explainable.

D.3 Comparison of TVLA and model-based detection

For comparison, we demonstrate the results of the non-specific fixed-versus-
random plaintext TVLA, from another experiment involving a Boolean masking
scheme implemented for AES. The upper half of Figure 9 shows the correspond-
ing TVLA results: the red dashed line is the threshold (appropriate for the TVLA
test statistic) at which we refute the null hypothesis (no leakage).

Both tests reject a large number of points: in the TVLA result it is however
unclear which of these points are plaintext-dependent only, and which points
also depend on the key. In contrast, our test is certain to exhibit key leakage.
Both tests flag many points at the beginning of the trace as leakage: but our test
flags many more points as exhibiting key leakage in the first round than TVLA.

The fact that both tests find more in the first round (i.e. the beginning of
the trace) than the later rounds (the rest of the trace contains the remaining
nine rounds of AES) should not be surprising because we configured both tests
with fixed inputs that lead to a nice “separation of intermediate values” after
the first application of the SubBytes function. Thus we maximised the effect
size for the first round, at the expense of later rounds. This is not a problem in
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Fig. 9. TVLA vs. Model-based detection
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software implementations, where all rounds typically use the same code (thus
fixing problems in the first round will fix problems also in later rounds), but this
can be changed so that the effect size in later rounds is maximised.

E Masked Ascon: bit-interleaved setup

It worth to mention though, Dietrich, Dobraunig and Mendel et al. provided
various compile macros within their masked ASCON software implementation.
Among these, one important option is whether the “bit-interleave” trick is ap-
plied (aka “ASCON EXTERN BI”). When “ASCON EXTERN BI” is set to
zero, the device will reshuffles one 64-bit input word and stores as two 32-bit
words for the odd and even bits respectively. Alternatively, one can also reshuffle
the unshared input instead (i.e. before sending to the device), where the device
does not have to further interleave the bit order.

Our experiments in Section 6 represent latter case: in other words, although
we describe our attack on the lowest key/nonce nibble, they represents the low-
est 4 even bits. In this section, we switch back to the default setup that consist
with STM32F4 + ChipWhisperer CW308: the “bit-interleaving” is applied on
device so that the unshared key/nonce data were recorded in the trivial bit order.
Technically speaking, our result here should be exactly the same as Section 6, al-
though the leakage might occur in a latter time sample (because bit-interleaving
takes some execution time).

Leakage detection & 64-bit words Figure 10 (left panel) shows that without
the clearing instruction, TVLA still reports leaks, but in a later position than
Section 6 (1311 vs. 586). The same leak can be identified within 20k traces in
our 64-bit collapsed model. Unlike our previous analysis, we can observe from
Table 9 that, for time point 1311, both 64-bit words are relevant, yet the former
dominates the contribution. Thus, we follow the same route as Section 6 and
further refine our model on K0.

Fig. 10. TVLA vs. Model-based detection
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Table 9. Leaking key words from Algorithm 2 (masked Ascon, d = 1)

Key word −log10(p− value)

K0 103.29

K1 10.21

Relevant bytes within a 64-word Moving on to the byte-wise collapsed model
within K0, with 200k traces, Table 10 shows nearly all bytes contribute to
such leakage, despite some bytes leaks more. Nevertheless, considering the bit-
interleaving technique spread even and odd bits to different 32-bit words, if we
were right in Table 2 saying the leakage lies in the lower 32-bit, it is expected
such leakage should spread to all 8 bytes.

Within the first byte The impact of bit-interleaving becomes clear when focusing
on one specific key byte. It is not hard to see from Table 11 (with 800k traces),
that even bits contribute much more to the leakage.

Constructing a concrete attack vector Considering we have already described
the procedure for finding the relevant nonce bits when targeting the 4 bits in
Table 11, here we omit further details and directly presents an attack vector
based the 4 lowest even key bits plus 4 lowest even nonce bits. The attacker still
builds non-specific templates for all 256 values. Similar to Figure 4, the correct
key guess can be found within 600k attack traces.

One can of course argue this is hardly surprising: following our analysis above,
it is very likely we observe once again the same leakage as Section 6, just im-
plemented in a different bit order. Nevertheless, being able to spot such leakage
and deriving the same attack is reassuring: our technique is sound and stable
with realistic power measurements on some state-of-the-art software platforms
(e.g. ARM Cortex-M3).

Table 10. Leaking key bytes within the lowest 64 bits

Key bytes −log10(p− value)

K0,0 31.66

K0,1 22.73

K0,2 18.61

K0,3 17.72

K0,4 24.86

K0,5 7.39

K0,6 7.98

K0,7 13.40
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Table 11. Leaking key bits within the lowest byte

Key bits −log10(p− value)

k0 2.67

k1 0.70

k2 9.39

k3 0.36

k4 5.32

k5 0.20

k6 5.12

k7 0.10

Fig. 11. Evolution of the key rank for attack on ASCON
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