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Abstract. In CRYPTO’19, Gohr proposed a new cryptanalysis strategy
using machine learning algorithms. Combining the neural distinguisher
with a differential path and integrating the advanced key recovery pro-
cedure, Gohr achieved a 12-round key recovery attack on Speck32/64.
Chen and Yu improved accuracy of neural distinguisher considering de-
rived features from multiple-ciphertext pairs instead of single-ciphertext
pairs. Bao et al. presented the concept of generalized neutral bits, im-
proved 12-round, and devised a practical 13-round key recovery attack
on Speck32/64 by enhancing the differential path prepended on the top
of neural distinguisher.
To capture more dimensional information, inspired by the Inception
Blocks in GoogLeNet, we use multiple parallel convolutional layers as the
core of the network structure to train neural distinguisher. For Speck32/
64, we improve the accuracy of (5-8)-round neural distinguisher and train
a new 9-round neural distinguisher. For Simon32/64, we improve the ac-
curacy of (7-11)-round neural distinguisher and train a new 12-round
neural distinguisher. In addition, we extend the idea of neutral bits in
Gohr’s work to solve the requirement of the same distribution of multiple-
plaintext pairs in key recovery attack.
Under the combined effect of multiple improvements, the time complex-
ity of our (11-13)-round key recovery attacks for Speck32/64 has been
reduced to a certain extent. Surprisingly, the success rate of our 12-
round key recovery attack can reach 100%. For Simon32/64, we increase
the success rate and decrease the time complexity of 16-round key re-
covery attack. Also, we successfully implement a 17-round key recovery
attack. Sadly, because the accuracy of 9-round neural distinguisher of
Speck32/64 and 12-round neural distinguisher of Simon32/64 is lower,
they can’t be used for more rounds key recovery attack. 3

Keywords: Neural Distinguisher · Neural-Differential Cryptanalysis ·
Inception Blocks · Speck · Simon

3 The source codes are available in https://drive.google.com/drive/folders/17A

WYupor_bX2rEe000tPuppdNH4dlmHm?usp=sharing.

https://drive.google.com/drive/folders/17AWYupor_bX2rEe000tPuppdNH4dlmHm?usp=sharing
https://drive.google.com/drive/folders/17AWYupor_bX2rEe000tPuppdNH4dlmHm?usp=sharing


1 Introduction

The idea of differential-neural cryptanalysis was proposed by Gohr [8] in CRYPTO
2019, where the neural distinguisher trained by neural network is introduced as
the underlying distinguisher, and Bayesian search is used to speed up key recov-
ery attack, compared to the traditional differential cryptanalysis. The function
of the neural distinguisher is to distinguish ciphertext from random numbers. If
the accuracy of the neural distinguisher is greater than 0.5, it is considered to
be an effective distinguisher. However, current neural distinguisher seems only
effective for limited rounds for key recovery attack. In order to increase the num-
ber of rounds, a short traditional high-probability differential path ∆S → ∆P
is prepended before the neural distinguisher. To make sure the differential path
and neural distinguisher work together (i.e. essentially form a long differential
path), the output difference of differential path has to match the expected input
difference of input data used to train neural distinguisher.

Gohr [8] showed that the Residual Network (ResNet) [9] (previously applied
in image recognition) could be trained to capture the non-randomness of the
distribution of values of output pairs when the input pairs of round-reduced
Speck32/64 are of specific difference. As a result, (5-8)-round (effective) neu-
ral distinguisher, and (11-12)-round key recovery attacks for Speck32/64 was
achieved by combining 2 rounds of differential path. Note that neutral bits intro-
duced in [8] group the conforming pairs of the differential path prepended on top
of neural distinguisher. There may be two directions to improve the differential-
neural cryptanalysis proposed by Gohr [8]. One is to improve the process of
key recovery attacks with neural distinguisher by traditional differential crypt-
analysis, the other is to study effective underlying neural distinguisher of more
rounds.

Bao et al. [2] generalized the concept of neutral bits, and searched for (con-
ditional) simultaneous neutral bit-set with higher probability for more rounds
of differential path. Thus, Bao et al. improved the 12-round and devised a new
13-round key recovery attack for Speck32/64 with the same neural distinguisher
proposed in [8]. Note that the idea [2] came from the traditional cryptanalysis.

In order to launch more rounds key recovery attack, better neural distinguish-
ers were also studied recently. Chen and Yu [6] proposed multiple-ciphertext
pairs instead of single-ciphertext pairs (in Gohr’s work) as the input of neural
network, and improved the accuracy of the (5-7)-round neural distinguisher of
Speck32/64 to a certain extent. Bao et al. [2] used Dense Network (DenseNet) [11]
and Squeeze-and-Excitation Network (SENet) [10] with existing deep architec-
tures to train neural distinguisher, and obtained (7-11)-round neural distin-
guisher and devised a 16-round key recovery attack for Simon32/64.

In EUROCRYPT 2021, Benamira [4] indicated that Gohr’s neural distin-
guisher builds a good approximation of the differential distribution table of the
cipher during the learning phase and learns additional information in EURO-
CRYPT 2021. Based on the principle that the purpose of the neural distinguisher
is to obtain the difference information in the ciphertext, we have done some ten-
tative work to train a better neural distinguisher by modifying the network struc-
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ture in this paper. The main improvements for differential-neural cryptanalysis
are listed as follows.

First, we proposed a better neural distinguisher. Specifically, we use multiple-
ciphertext pairs as the input of the neural network, and added the Inception
block composed of the multiple-parallel convolutional layers before the residual
network. The propose of the inception block is to capture more dimensional
information in the ciphertext pairs. Some minor modifications have also been
made according to the round functions of the cipher. As a result, we improved
the accuracy of (5-8)-round and trained an effective 9-round neural distinguisher
for Speck32/64. In addition, we improved the accuracy of (7-11)-round and
trained an effective 12-round neural distinguisher for Simon32/64. The results
on neural distinguisher of Speck32/64 and Simon32/64 are presented in Table 1
and Table 2, where m is the group size of the multiple-ciphertext pairs.

Table 1. accuracy of neural distinguisher for (5-9)-round Speck32/64

R Gohr [8]
m=2 m=4 m=8 m=16

Chen [6] Sect. 3 Chen [6] Sect. 3 Chen [6] Sect. 3 Chen [6] Sect. 3

5 0.929 0.9738 0.9803 0.991 0.9977 0.9992 0.9997 0.9999 0.9999
6 0.788 0.8613 0.8773 0.931 0.9497 0.9562 0.9895 0.9802 0.9992
7 0.614 0.6393 0.6649 0.6861 0.7283 0.7074 0.8106 0.6694 0.8963
8 0.514 - - - 0.5428 - 0.5562 - 0.5853
9 - - - - - - 0.5024 - 0.5050

Table 2. accuracy of neural distinguisher for (7-12)-round Simon32/64

R Bao [2]
Sect. 6

m=2 m=4 m=8 m=16

7 0.9802 0.9995 0.9999 0.9999 1.0000
8 0.8148 0.9295 0.9842 0.9989 0.9999
9 0.6532 0.7240 0.8095 0.8958 0.9630
10 0.5629 0.5907 0.6339 0.6900 0.7608
11 0.5173 0.5240 0.5387 0.5591 0.5878
12 - - - 0.5152 0.5225

Second, we use neutral bit with a probability of one to generate multiple-
plaintext pairs. Similar to the single-plaintext pairs, not all plaintext pairs that
satisfy the differential ∆S follow the differential ∆P after being propagated
through the differential path. In order to resolve the requirement that the same
difference of multiple-ciphertext parameter, inspired by the combined response
of neural distinguisher in Gohr’s work, we use neutral bit with probability one
to generate multiple-plaintext pairs, and then encrypt multiple-plaintext pairs
to get multiple-ciphertext pairs.
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Third, we successfully implemented several rounds of key recovery attacks us-
ing the new neural distinguisher combined with differential path. We improved
(11-13)-round key recovery attacks for Speck32/64 and reduced the time com-
plexity to a certain extent. Surprisingly , when a 3-round differential path com-
bined with our 7-round neural distinguisher, the success rate of the 12-round key
recovery attack launched is 100%. For Simon32/64, we improved 16-round and
devised a new 17-round key recovery attacks. Detailed experimental comparison
results are shown in Table 3.

The rest of the paper is organized as follows. Section 2 gives the preliminary
on previous neural distinguisher model, key recovery attack process, and neutral
bits. Section 3 introduces the training method and accuracy of our neural distin-
guisher for Speck32/64. Some preparations from the distinguisher model to the
key recovery attack are introduced in Section 4. Section 5 exhibits the details
of our (11-13)-round key recovery attacks for Speck32/64. Section 6 introduces
the training method and accuracy of our neural distinguisher for Simon32/64.
Section 7 exhibits the details of our (16-17)-round key recovery attacks for Si-
mon32/64. In Section 8 discuss our results and possible extensions of this work.

2 Preliminary

2.1 Brief Description of Speck32/64 and Simon32/64

Notations. Let n be the word size (i.e., the number of bits of a word), the state
size can be denoted as 2n bits. Let (xr, yr) be the left and right branches of a
state after the encryption of r rounds. Denotes by ⊕ the bit-wise XOR, � the
addition modulo 2n,· the bit-wise AND, � the bit-wise right rotation , � the
bit-wise left rotation, kr the subkey of the encryption of r rounds.

Speck32/64 and Simon32/64 are small members in the lightweight block
cipher family Speckand Simon [3]designed by researchers from the National
Security Agency (NSA). The round function of Speck32/64 takes a 16-bit sub-
key kr and a cipher state consisting of two 16-bit words (xi, yi) as input. The
state of the next round (xi+1, yi+1) is computed as follows:

xi+1 := ((xi � 7) � yi)⊕ kr, yi+1 := (yi � 2)⊕ xi+1.

The round function is repeated 22 times for Speck32/64. The 16-bit subkeys
are generated based on a 64-bit master key by the non-linear key schedule using
the same round function for Speck32/64.

The round function of Simon32/64 takes a 16-bit subkey kr and a cipher state
consisting of two 16-bit words (xi, yi) as input. The next round state (xi+1, yi+1)
is computed as follows:

xi+1 := (xi � 1) · (xi � 8)⊕ (xi � 2)⊕ yi ⊕ kr, yi+1 := xi.

The round function is repeated 32 times for Simon32/64. The subkeys of 16-bit
for each round are generated from a master key of 64-bit by linear functions of
simple rotation and XOR for Simon32/64.
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Table 3. summary of key recovery attacks on Speck32/64 and Simon32/64

Target #R Dist. Conf. Time Data
Succ. Key

Ref.
Rate Space

Speck32/64

11

DD 1+6+4 246 214 − 264 [7]

ND 1+2+7+1 236.96� 213.64 52% 264 [8]

ND 1+2+7+1 239.62 213.64 52% 264 [8]

ND 1+2+7+1 236.82 215.64 97% 264 Exp. 1

12

DD 1+7+4 251 219 − 264 [7]

ND 1+2+8+1 243.40� 222.97 40% 264 [8]

ND 1+2+8+1 246.57 222.97 40% 264 [8]

ND 1+2+8+1 246.11† 222 86% 264 [2]

ND 1+2+8+1 244.75 222.97 36% 264 Exp. 2

ND 1+3+7+1 244.82† 218.58 81% 263 [2]

ND 1+3+7+1 245.38‡ 218.58 32% 264 [2]

ND 1+3+7+1 242.32 225 100% 263 Exp. 3

ND 1+3+7+1 241.32 224 − 263 Ideal

13

DD 1+8+4 257 225 − 264 [7]

ND 1+3+8+1 253.97† 230 75% 263 [2]

ND 1+3+8+1 253.85† 229 61% 263 [2]

ND 1+3+8+1 252.49‡ 229 21% 264 [2]

ND 1+3+8+1 252.68 231 49% 263 Exp. 4

ND 1+3+8+1 251.68 230 − 263 Ideal

Simon32/64
16

DD 2+12+2 226.48 229.48 62% 264 [1]

ND 1+3+11+1 246.98 221 49% 264 [2]

ND 1+3+11+1 243.19 222 72% 264 Exp. 5

17 ND 1+4+11+1 254.65 228 8% 264 Exp. 6

−: Not available.
�: Without considering the success rate, calculate the time complexity based on the
average running time in Gohr’s work.
†: The earlier version of Bao’s results
‡: The latest version of Bao’s results
Ideal: Assuming two classical differentials share the same output differences, the
time complexity and data complexity of the attack can be halved.
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2.2 Overview of Gohr’s and Chen’s Neural Distinguisher Model For
Speck32/64

The neural network used by Gohr and Chen to train the neural distinguisher
is identical except for the input. Chen’s model is more like a generalization of
Gohr’s model on the input. Thus, we introduce the two models uniformly.

The neural distinguisher model is a supervised model. The purpose of a
neural distinguisher is to distinguish ciphertext and random numbers. Therefore,
it is necessary to construct ciphertext and random numbers artificially, thereby
assigning corresponding labels. Given m plaintext pairs {(Pi,0, Pi,1), i ∈ [0,m−
1]} and target cipher Speck32/64, the resulting ciphertext pairs {(Ci,0, Ci,1)
, i ∈ [0,m− 1]} is regarded as a sample. Each sample will be attached a label Y :

Y =

{
1, if Pj,0 ⊕ Pj,1 = ∆, j ∈ [0,m− 1]
0, if Pj,0 ⊕ Pj,1 6= ∆, j ∈ [0,m− 1]

where ∆ = (0x0040, 0x0000). If Y is 1, it means this sample is sampled from
the target distribution and defined as a positive example. Otherwise, this sample
is sampled from a uniform distribution and defined as a negative example. To
guarantee the accuracy of distinguisher prediction, a large amount of samples
need to be put into neural network training. If the neural network can obtain
a stable distinguishing accuracy higher than 0.5 on a test set, it can effectively
distinguish ciphertext and random numbers. The neural distinguisher model can
be described as:

Pr(Y = 1 | X0, · · · , Xm−1) = F (f(X0), · · · , f(Xm−1), ϕ(f(X0), · · · , f(Xm−1)))
Xi = (Ci,0, Ci,1), i ∈ [0,m− 1]

Pr(Y = 1 | X0, · · · , Xm−1) ∈ [0, 1]

where f(Xi) represents the basic features of a ciphertext pair Xi and ϕ(·) is the
derived features and F (·) is the new posterior probability estimation function.
In Gohr’s model, the value of m is 1 [8]. In Chen’s model, the value of m is
{2, 4, 8, 16} [6].

The network architecture contains several modules that are described in Fig-
ure 1 (This Figure is from [6]). The input layer of neutral network consisting of
multiple-ciphertext pairs is arranged in a m× ω × 2L

ω array, where L represents
the block size of the target cipher, and ω is the size of a basic unit. For example,
L is 32 and ω is 16 for Speck32/64. The module 1 is the initial with-1 convolu-
tion layer that intend to make the learning of simple bit-sliced functions such as
bitwise addition easier. The module 2 is the structure of ResNet. Conv stands
for a convolutional layer with Nf filters. The size of each filter is ks × ks. The
amount of module 2 is determined by experiment. The prediction head consists
of module 3, module 4, and output layer. FC is a fully-connected layer which
has d1 or d2 neurons. BN is batch normalization. Relu and Sigmoid are two
different activation functions. The output of Sigmoid ranges from 0 to 1.
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Module4
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Input [m,ω, 2L
ω
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Module1

Conv, 1× 1, Nf

BN

Relu

Module2
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BN

Relu
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BN

Relu

⊕

Module3

FC, d1

BN

Relu

Module4
FC, d2

Relu

Output
FC, 1

Sigmod

Fig. 1. The network architecture of Gohr’s and Chen’s model

2.3 Differential-neural cryptanalysis

The differential-neural cryptanalysis, which is a chosen-plaintext attack, aims
at recovering the subkey of the last two rounds. The idea of differential-neural
cryptanalysis is similar to the traditional differential key recovery attack. By
guessing the subkey of the last round, we decrypt the ciphertext obtained by
encrypting the specific plaintext structure and use the neural distinguisher to
determine whether the decrypted ciphertext is correct for the differential char-
acteristic. If the score of neural distinguisher exceeds a certain threshold, the
guessed key is used as the candidate key. Repeat the above steps for the candi-
date key to obtaining another round of candidate keys, the key recovery attack
is successful. Figure 2 shows the overall flow of a key recovery attack based on
neural distinguisher, where ND is the trained neural distinguishers.
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Fig. 2. (1 + s+ r + 1)-round key recovery attack based on neural distinguisher
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The (1+s+r+1)-round key recovery attack employs an r-round main and (r−
1)-round helper neural distinguisher trained by input pairs with difference ∆P .
When using the guessed subkey to decrypt the (1 + s+ r+ 1)-round ciphertext,
if the subkey guessed correctly, the (1+s+r)-round ciphertext will be obtained,
so the score of neural distinguisher will be greater than 0.5. If the guess of the
subkey is wrong, it is equivalent to encrypting the ciphertext for another round.
The randomness of the data will be enhanced, resulting in the score of neural
distinguisher being less than 0.5. If the Hamming distance between the guessed
subkey and the correct subkey is small, we put the data obtained after decrypting
the ciphertext with the guessed subkey into neural distinguisher, and the score
of neural distinguisher will have a greater probability of being greater than 0.5,
otherwise it will be less than 0.5.

A short s-round differential path (∆S → ∆P ) with probability denoted by
2−p is prepend-ed on top of the neural distinguisher to increase the number of
rounds of key recovery attack. In order to ensure the existence of data pairs
satisfying difference ∆P after s-round encryption, about c · 2p (denoted by ncts)
data pairs with difference ∆S are required according to difference propagation
probability, where c is a small constant. The ncts structures of data pairs are
decrypted by one round with 0 as the subkey to get plaintext structures because
of nonlinear operation before key addition for Speck and Simon. All plaintext
structures are queried to obtain the corresponding ciphertext structures.

Each ciphertext structure is used to select a candidate of the last subkey by
the r-round main neural distinguisher with a highly selective key search policy
based on a variant of Bayesian optimization. The usage of ciphertext structures
is also highly selective by using a standard exploration-exploitation technique,
namely Upper Confidence Bounds (UCB). Each ciphertext structure is assigned
with a priority according to the score of the recommended subkeys and the visited
times. Without exhaustively performing trail decryption, the key search policy
depends on the expected response of the neural distinguisher upon wrong-key
decryption. This wrong key response profile is used to recommend new candidate
values for the key from previous candidate values with minimizing the weighted
Euclidean distance as the criteria in a BayesianKeySearch Algorithm [8].

In general, the more rounds the neural distinguisher covers, the lower its ac-
curacy will be. A neural distinguisher with an accuracy higher than 0.5 means
some distinguisher advantage over a random distinguisher. However, if the accu-
racy is marginally higher than 0.5, it can be hardly used in practical key recovery
attack since the single prediction of the neural distinguisher may misjudge. Thus,
Gohr in [8] used the combined response of the neural distinguisher over large
amounts of samples of the same distribution, which can be satisfied by neutral
bits. The primary notion of neutral bits can be interpreted as follows.

Definition 1 (Neutral bits of a differential, NB[5]). Let ∆in → ∆out be a
differential with input difference ∆in and output difference ∆out of an r-round
encryption F r. Let (P, P ′) be the input pair, and (C,C ′ | C = F r(P ), C ′ =
F r(P ′)) be the output pair, where P ⊕ P ′ = ∆in. If C ⊕ C ′ = ∆out, (P, P ′) is
said to be conforming the differential ∆in → ∆out. Let e0, e1, . . . , en−1 be the
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standard basis of Fn
2 . Let i be an index of a bit (starting from 0). The i-th bit

is a neutral bit for the differential ∆in → ∆out, if (P ⊕ ei, P ′ ⊕ ei) is also a
confirming pair for any confirming pair (P, P ′).

The responses vi,k from the neural distinguisher on ciphertext pairs in the
ciphertext structure (of size nb, i.e., the number of neutral bits) are combined

using the Formula sk =
∑nb−1

i=0 log2

(
vi,k

1−vi,k

)
and used as the score sk of the

recommended subkey. The score plays a decisive role in the execution time and
success rate of the attack. Bao et al. presented the following conjecture[2] that
the required number of samples is closely related to the bias of the accuracy of
the neural distinguisher.

Conjecture 1 ([2]). For a combined-score-distinguisher derived from a neural
distinguisher with accuracy lager than 0.5 and of bias ε to be successfully used in
the improved attack using Upper Confidence Bound and BayesianKeySearch
Algorithm, the size of samples from the same distribution should be about c ×
1/ (2ε)

2
, where c is a small constant.

In general, neutral bits of non-trivial differential path are scarce. In [8], prob-
abilistic neutral bits (PNB) are exploited. Bao et al. [2] found some probabilistic
neutral bits with a higher probability and simultaneous-neutral bit-sets (SNBS).
Also, they proposed the concept of conditional (simultaneous-) neutral bit(-set)s
(CSNBS). The explicit definitions of PNB, SNBS, and CSNBS (collectively re-
ferred to as generalized neutral bits) refer to [2]. For details about the generalized
neutral bits and key recovery attack procedure, see [8] and [6].

3 Neural Distinguishers for Reduced-Round Speck32/64

3.1 Network Structure

The overall framework of our neural network for training the neural distinguisher
is similar as that of Gohr’s and Chen’s model shown in Figure 1. Our best neural
network consists of four parts: an input layer consisting of multiple-ciphertext
pairs, an initial convolutional layer consisting of four parallel convolutional lay-
ers, a residual tower of multiple two-layer convolutional neural networks, and a
prediction head consisting of multiple fully connected layers.

Input Representation. Once the output of the r-th round (C,C ′) = (xr||yr,
x′r||y′r) is known, one can directly compute (yr−1, y

′
r−1) without knowing the

(r − 1)-th subkey according to the round function of Speck. Thus, the neural
network accept data of the form (xr, x

′
r, yr, y

′
r, yr−1, y

′
r−1). The input layer has

m group ciphertext pairs consisting of 3L units likewise arranged in a [m,ω, 3Lω ]
array, where L = 32, ω = 16 for Speck32/64. The detail data structure of the
input layer is shown in Figure 3, where Ci,0 = (xr, yr), Ci,1 = (x′r, y

′
r), Ci,2 =

(yr−1, y
′
r−1), i ∈ (0,m).
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P0,0 P0,1

P1,0 P1,1

· · · · · ·
Pm−2,0 Pm−2,1

Pm−1,0 Pm−1,1

m Block

Cipher

Key C0,0 C0,1 C0,2

C1,0 C1,1 C1,2

· · · · · ·
Cm−2,0 Cm−2,1 Cm−2,2

Cm−1,0 Cm−1,1 Cm−1,2

m

Fig. 3. The format of input data

Initial Convolution. The input layer is connected to the initial convolutional
layer, which comprises four convolution layers with Nf channels of different ker-
nel sizes. The four convolution layers are concatenated at the channel dimension,
similar to the Inception module [13] in GoogLeNet. Batch normalization is ap-
plied to the output of concatenate layers. Finally, rectifier nonlinearity is applied
to the output of batch normalization, and the resulting [m,ω, 4Nf ] matrix is
passed to the convolutional blocks layer. The structure of the initial convolution
layer can be seen in Figure 4.

Concatenate, 4Nf

BN

Relu

Conv, 1× 1, Nf Conv, 3× 3, Nf Conv, 5× 5, Nf Conv, 7× 7, Nf

Input [m,ω,Nf ]

Fig. 4. The initial convolution layer

Convolutional Blocks. Each convolutional block consists of two layers of 4Nf

filters. Each block applies first the convolution of kernel size ks, then a batch
normalization, and finally a rectifier layer. At the end of the convolutional block,
a skip connection is added to the output of the final rectifier layer of the block
to the input of the convolutional block, and passes the result to the next block.
After each convolutional block, the kernel size increases by 2. The amount of
convolutional blocks is determined by experiment. The structure of convolutional
blocks layer can be seen in Figure 5(a).

Prediction Head. The prediction head consists of two hidden layers and one
output unit. To prevent model overfitting, we add a dropout layer before the first
hidden layer. The three fully connected layers comprise 512, 64, and 1 units. The
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three fully connected layers are followed by the batch normalization layer and
rectifier layer. The final layers consist of a single output unit using a Sigmoid
activation function instead of Relu function. The structure of the prediction
head is shown in Figure 5(b).

Conv, ks × ks, 4Nf

BN

Relu

⊕

Conv, ks × ks, 4Nf

BN

Relu
ks = ks + 2

(a) The convolutional blocks

Module3

Dropout

FC, d1

BN

Relu

Module4

FC, d2

BN

Relu

Output

FC, 1

BN

Sigmod

(b) The prediction head

Improvement Ideas. First, the input data of Gohr’s model only contains the
ciphertext pair of the last round. Given the ciphertext of the last round, the right
half of the ciphertext pair of the penultimate round can be calculated accord-
ing to the round function of Speck32/64 without knowing the (r-1)-th subkey.
We increase the amount of input data to the model to obtain more informa-
tion about the cryptographic algorithm. Second, according to Chen’s method,
using multiple-ciphertext pairs with the same distribution as the input of the
neural network can significantly reduce the influence of a single misjudgment
on the whole result. Third, in Gohr’s model, using the initial width-1 convolu-
tional layer is intended to make learning simple bit-sliced functions easier such
as bitwise addition. However, we think this is not enough to capture the fea-
tures of the internal structure of the cryptographic algorithm. Thus, we add
the convolution operation of widths 3, 5, and 7 to capture features under dif-
ferent dimensions, considering the circular shift operation in the round function
of Speck and some relationship in the adjacent bits generated by the modu-
lar addition operation. This improvement was mainly inspired by the Inception
module [13] in GoogLeNet to capture more dimensional information. Also, to
capture information in a larger dimension, we modify the size of the residual
network convolution kernel in Gohr’s model to keep it incrementing 2. Other
components in the neural network are basically the same as those in Gohr’s
neural network. The essence of using a deep residual network to construct a
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differential distinguisher is to treat the cipher with a nonlinear round function
as a complex function and use multiple residual blocks to fit the function.

3.2 The Training of Neural Distinguisher

The distinguisher accuracy is the most critical indicator which reflects the per-
formance of neural distinguisher. The following training was carried out to verify
the performance of our neural distinguisher.

Data Generation. Training and test data were generated by using the Linux
random number generator to obtain uniformly distributed keys Ki and plaintext
pairs Pi with the input difference ∆ = (0x0040, 0x0000) as well as a vector of
binary-valued real/random labels Yi. During produce training or test data for
r-round Speck32/64, the plaintext pair Pi was then encrypted for r rounds
if Yi = 1, while otherwise the second plaintext of the pairs was replaced with
a freshly generated random plaintext and then encrypted for r rounds. A key
parameter of our neural distinguisher is number of ciphertext pairs: the group
size m, which has four options {2, 4, 8, 16}. In this way, training data set N = 107

and test data set M = 106 samples were generated for training and testing. The
total amounts of data required are N ×m and M ×m for training and testing
separately.

Basic Training Scheme. We run the training for 20 epochs on the dataset of
size 107. To maximize GPU performance, the batch size processed by the dataset
is adjusted according to the parameter m. The last 106 sample was withheld for
the test. Optimization was performed against mean square error loss plus a small
penalty based on L2 weights regularization parameter c = 10−5 using the Adam
algorithm [12]. A cyclic learning rate schedule was used, setting the learning rate

li for epoch i to li = α + (n−i) mod (n+1)
n .(β − α) with α = 10−4, β = 10−3 and

n = 9. The networks obtained at the end of each epoch were stored, and the
best network by validation loss was evaluated against a test set.

Training (8-9)-round Distinguishers Using Staged Train Method. For
8 rounds, the basic training scheme described above fails, i.e., the model does
not learn to approximate any helpful function. We still succeeded in training
an 8-round neural distinguisher superior to the 8-round neural distinguisher of
Speck32/64 in [8] by using several stages of pre-training. First, we use our 7-
round distinguisher to recognize 5-round Speck32/64 with the input difference
(0x8000,0x804a) (the most likely difference to appear three rounds after the input
difference (0x0040,0x0000)). The training was done on 107 samples for 20 epochs
with cyclic learning rates. Then we trained the distinguisher so obtained to rec-
ognize 8-round Speck32/64 with the input difference (0x0040, 0x0000) by pro-
cessing 107 freshly generated samples for 10 epochs with a learning rate of 10−4.
Finally, the learning rate was dropped to 10−5 after processing another 107 fresh
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samples for 10 epochs. During the staged training, the batch size was changed
according to the value of parameter m, to match the computing performance of
the GPU equipment. For the 9-round distinguisher, the overall training method
is the same. The only difference is the use of an 8-round distinguisher to identify
5-round Speck32/64 with the input difference (0x850a,0x9520) (the most likely
difference to appear four rounds after the input difference (0x0040,0x0000).

3.3 Result

Test Set Accuracy. We summarize the experimental results of (5-9)-round of
the neural distinguisher. The (5-7)-round distinguishers was trained using the
basic training method. An 8-round distinguisher was derived from a 7-round
distinguisher using the staged training method. The training method of the 9-
round distinguisher is the same as that of the 8-round distinguisher.

The function of the neural distinguisher is to distinguish between ciphertext
and random numbers, so the accuracy rate is greater than 0.5, that is, it is
considered effective. However, with the increase of the number of encryption
rounds, the randomness of the ciphertext is getting better and better, and it
is more difficult to distinguish it from the random number, so the accuracy
of the distinguisher decreases with the increase of the number of rounds. From
Table 4, as the number of ciphertext pairs m increases, the accuracy of the neural
distinguisher also increases. The comparison results of our neural distinguisher
accuracy with Gohr’s and Chen’s are shown Table 1. Compared to Gohr’s and
Chen’s, the accuracy of our neural distinguisher was significantly improved when
the group size m takes different values.

Table 4. accuarcy of neural distinguisher for (5-9)-round Speck32/64

R m=2 m=4 m=8 m=16

5 0.9803 0.9977 0.9997 0.9999
6 0.8773 0.9497 0.9895 0.9992
7 0.6649 0.7283 0.8106 0.8963
8 - 0.5428 0.5562 0.5853
9 - - 0.5024 0.5050

Remark 1. First, the number of training samples for Gohr’s neural distinguisher
is N . In Chen’s model, N/m samples are generated as training data sets, and
each sample contains m ciphertext pairs. Therefore, it uses N data as training
data. However, the total amount of data required is N × m in our model. To
ensure the fairness of the comparison of experimental results, we also used N
samples to train a 7-round neural distinguisher, and the accuracy obtained is
79.44%, when m = 8. Compared with the training results of the N ×m samples,
the accuracy of neural distinguisher was only reduced by 1.62%, which has little
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effect on the overall results. Also, the training data is randomly generated and
relatively easy to obtain. Second, in Gohr’s work, the epoch is set to 200, but
we set it to 20. At this time, our distinguisher has already achieved very high
accuracy. This shows that our neural network is more effective due to a faster
convergence rate. Also, further increasing epoch will not significantly increase
the accuracy of neural distinguisher. To save training time, the epoch is finally
set to 20.

Wrong Key Response Profile. Gohr presented an improved key recovery
attack using Upper Confidence Bound and Bayesian Optimization [8]. More
specifically, the key search policy depends on an important observation that the
expected response of the neural distinguisher upon wrong-key decryption will
rely on the bitwise difference between the trial key and the real key. This wrong
key response profile, which can be precomputed, is used to recommend new
candidate values for the key from previous candidate values by minimizing the
weighted Euclidean distance as the criteria in a BayesianKeySearch Algorithm.
It recommends a set of subkeys and provides their scores without exhaustively
performing trial decryption. We expect a higher score for neural distinguisher
when the hamming distance between the correct and wrong keys is small, and a
lower score for neural distinguisher when the Hamming distance is large. With
the increase of Hamming distance, the more the score decreases, the better. From
Figure 5 and Figure 6, we know the score of our neural distinguisher is higher
than that of Gohr’s distinguisher when the Hamming distance of key difference
is small. When the Hamming distance is large, we can obtain a lower score. Our
distinguisher makes the difference between the score of the correct key and the
score of the wrong key even more significant, i.e., our neural distinguisher is
better.

4 From Neural Distinguisher to Key Recovery Attack

4.1 Generation of Same Distributed Data

Like Chen’s neural distinguisher, the data complexity of our neural distinguisher
is also m times that of Gohr’s model. To solve this problem, Chen and Yu [6]
proposed a data reuse strategy that randomly selects m ciphertext pairs from
N ciphertext pairs to generate N ciphertext pair group. There are a total of
Cm

N options which is much larger than N . However, Chen did not obtain good
results about the key recovery attack. We think that the main reason is that the
demand for the same distribution of data has not been met.

The input of the neural network is obtained by encrypting plaintext pairs that
satisfy the same difference. In the process of key recovery, the initial plaintext
propagated through the differential path also needs to have the same difference
when entering the neural distinguisher. But the differential path is probabilis-
tic. Even if multiple initial inputs have the same difference, after propagation
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Fig. 5. Wrong key response profile for 7-round Speck32/64
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Fig. 6. Wrong key response profile for 8-round Speck32/64
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through the differential path, the output difference is not the same. Therefore,
the initial input during a key recovery attack cannot be randomly generated.

In the work of Gohr, the accuracy of the neural distinguisher is low, so the
single prediction of the neural distinguisher is prone to misjudgment. To solve
this problem, Gohr combined the multiple predictions of the neural distinguisher
as the final score. This also requires the data entering the neural distinguisher
to have the same distribution, and Gohr solved this problem using neutral bits.
Inspired by Gohr’s method, we randomly generate a plaintext pair that meets
the initial difference and use log2m neutral bits to obtain m plaintext pairs.
And to choose neutral bits with high probability, the optimal choice is to use
neutral bits with probability 1. Therefore, multiple-plaintext pairs entering to
neural network have the same difference, i.e., multiple-ciphertext pairs entering
the neural distinguisher have the same distribution.

4.2 Experimental Environment and Complexity Calculation

The Core of the key recovery attack was examined using a server with multiple
GeForce GTX 2080-Ti GPUs. When a fast graphics card is used, the performance
of our implementation is not limited by the speed of neural network evaluation
but by the total number of iterations on the ciphertext structures. We count a
key guess as successful if the subkey of last round was guessed correctly and if
the second round key is at the hamming distance at most two of the real key.

The data complexity of the experiment is calculated by the formula nkg×nb×
nct ×m× 2. During a key recovery attack, the differential path used may need
to satisfy some conditions involving the key. nkg indicates the number of times
to guess the key involved in the condition The data complexity is calculated as
theoretical values. nb = 2NB, where NB instead of the number of neutral bit.
nct represents the number of ciphertext structures used, and m is the number
of multiple-ciphertext pairs. In the actual experiment, when the accuracy of the
neural distinguisher is high, the key can be recovered quickly and successfully,
and not all the data is used, so the actual data complexity is lower than the
theoretical data complexity.

In [8], Gohr estimated that a highly optimized implementation of Speck32/64
could perform brute force key search at a speed of about 228 key per second per
core. A correct key guess takes an average of 500 seconds, and the single success
rate of a key recovery attack of 11-round Speck32/64 is 52.1%. Adjusting for the
empirically measured success rate of key recovery attack, Gohr expected to need
about 1000 seconds average to execute the key recovery attack on a single core.
This yields an estimated computational attack complexity of 238 Speck32/64
encryptions until a solution is found. Gohr didn’t give a formula for calculating
the time complexity. In order to better evaluate the effect of key recovery attack,
we give a new calculation method and update Gohr’s result accordingly. To re-
duce the experimental error, we conduct multiple key recovery recovery attacks,
take the average running time as the running time of an experiment, and divide
the number of successful key recovery experiments by the total number of exper-
iments as the success rate of a single key recovery attack. In order to calculate
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the time complexity of the experiment, it is necessary to consider two indicators,
the average run time and the success rate of key recovery attack. Assuming that
the success rate of single experiment is sr, calculate how many experiments need
to be performed to ensure that at least one experiment is successful. When the
overall success rate is 99%, we consider the experiment to be successful, and the
calculation formula for the number of experiments ne is: 1− (1− sr)ne = 0.99,
i.e., ne = log1−sr 0.01. This yields an estimated computational attack complexity
of 228 × 500 × log1−0.52 0.01 ≈ 239.6 for Gohr’s key recovery attack of 11-round
Speck32/64. In our experiment to reproduce Gohr’s experiment, the average
running time is 225s in 300 trials. To facilitate comparison, the time complexity
of Gohr’s experiment is taken as the benchmark for conversion. The new time
complexity calculation formula: nkg × 228 × rt× 500/225× log1−sr 0.01, where rt
is the average run time of key recovery attack.

5 Key Recovery Attack on Reduced-Round Speck32/64

This section shows that the capabilities of neural distinguisher for key recovery
attack can be improved. In the following, we improve (11-13)-round key recovery
attacks by employing improved neural distinguisher. Our attacks follow the same
framework in [8] The key guessing procedure applies a simple reinforcement
learning procedure UCB. The last subkey and the second to last subkey are to
be recovered without exhaustively using all candidate values to do one-round
decryption. Instead, a Bayesian key search employing the wrong key response
profile is used. We count a key guess as successful if the sum of the hamming
weights of the differences between the returned last two subkeys and the real two
subkeys is at most two. Since Chen’s attack has a little improvement compared to
the result of Gohr, we don’t compare it with Chen’s result. To better compare
with the results of Gohr and Bao et al., we conducted multiple comparison
experiments.

5.1 Key Recovery Attack on 11-round Speck32/64

To demonstrate the superiority of our neural distinguisher, we conducted a com-
parative experiment with Gohr’s neural distinguisher. To ensure the fairness of
the comparative experiment, except for the difference of neural distinguisher,
other parameters should be the same as far as possible.

Experiment 1: The components of key recovery attack ASpeck11R of 11-
round Speck32/64 are as follows.

1. a 2-round differential path (0x0211, 0x0a04)→ (0x0040, 0x0000);
2. generalized neutral bits of generating multiple-ciphertext pairs; generalized

neutral bits of combined response of neural distinguisher: {[20], [22], [21], [9,
16], [2, 11, 25], [14]} (refer to Appendix A.1 Table 13).

3. a 7-round neural distinguisher NDSpeck7R under difference (0x0040, 0x0000)
and its wrong key response profiles NDSpeck7R · µ and NDSpeck7R · δ.
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4. a 6-round neural distinguisher NDSpeck6R under difference (0x0040, 0x0000)
and its wrong key response profiles NDSpeck6R · µ and NDSpeck6R · δ.

In the experimental verification of the attackASpeck11R, the 7-round and 6-round
neural distinguisher provided in Sect. 3. Due to too many control experiments,
refer to the source code for the specific use value of generalized neutral bits.
Concrete parameters and the complexity that our 11-round key recovery attack
ASpeck11R used are listed.

nb = 26 nct = 100/200 nit = 500
c1 = 8, c2 = 10 nbyit1 = nbyit1 = 5 ncand1 = ncand1 = 32

In Experiment 1, several experiments were done for different values of m
and nct, and the specific experimental results are shown in Table 5. The data
complexity is nb × nct ×m × 2. The core of these attacks were examined in 35
trials. The time complexity is 228 × rt× 500/225× log1−sr 0.01.

Table 5. experiment result of 11-round key recovery attack

m Conf.
nct = 100 nct = 200

Succ. Run
Data Time

Succ. Run
Data Time

Rate Time Rate Time

Gohr [8]

1+2+7+1

52.1% 225 213.64 239.61 - - - -

Our

2 57.14% 178 214.64 239.07 97.14% 158 215.64 236.82

4 77.14% 165 215.64 238.16 94.28% 137 216.64 236.93

8 85.71% 234 216.64 238.26 91.43% 243 217.64 237.98

16 77.14% 464 217.64 239.65 94.29% 137 218.64 236.93

From Table 5, we know the success rate of our key recovery attacks is sig-
nificantly improved, and the time complexity is decrease. So, our neural distin-
guisher has better performance than Gohr’s neural distinguisher. To improve
performance, we pay the price of increased data complexity. When using differ-
ent group size m, the data complexity is corresponding m times that of Gohr. In
addition, when nct is 200, the success rate of the key recovery attack can still be
significantly improved compared with that when nct is 100. Although the data
complexity of key recovery attacks increases in this case, the time complexity is
generally lower than that of Gohr.

Because the probability of 2-round difference path (0x0211, 0x0a04)→ (0x00
40, 0x0000) is 2−6, the average number of correct ciphertext structures only are
1.56 when nct is 100. Therefore, no correct ciphertext structures may exist, so
the key cannot be recovered successfully, and the success rate of the key recovery
attack is low. Thus, two aspects affect the success rate of key recovery attack.
First, there should be enough plaintext pairs to ensure that after differential
propagation, a certain amount of data still meets the difference of input data of
neural network. On the other hand, the performance of neural distinguisher is
strong enough.
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5.2 Key Recovery Attack on 12-round Speck32/64

To verify the performance of our 8-round neural distinguisher, the following
experiments were carried out.

Experiment 2: The components of key recovery attack ASpeck12R
I of 12-

round Speck32/64 are as follows.

1. a 2-round differential path (0x0211, 0x0a04)→ (0x0040, 0x0000);
2. generalized neutral bits of generating multiple-ciphertext pairs: {[9, 16], [2, 11,

25], [6, 29]}; generalized neutral bits of combined response of neural distin-
guisher:{[20], [21], [22], [14], [15], [23], [30], [7], [0]} (refer to Appendix A.1 Ta-
ble 13).

3. a 8-round neural distinguisher NDSpeck8R under difference (0x0040, 0x0000)
and its wrong key response profiles NDSpeck8R · µ and NDSpeck8R · δ.

4. a 7-round neural distinguisher NDSpeck7R under difference (0x0040, 0x0000)
and its wrong key response profiles NDSpeck7R · µ and NDSpeck7R · δ.

In the experimental verification of the attackASpeck12R
I , the 8-round and 7-round

neural distinguisher provided in Sect. 3. Concrete parameters and the complexity
that our 12-round key recovery attack ASpeck12R

I used are listed.

m = 8 nb = 29 ncts = 500 nit = 2000
c1 = 3 c2 = 8 nbyit1 = nbyit1 = 5 ncand1 = ncand1 = 32

The data complexity is nb × nct × m × 2, that is, 29 × 500 × 8 × 2, i.e.,
222.97 plaintexts. The core of the attack was examined in 70 trials. There are
25 succeeded trials, the average run times of every trails in our server is 4785s.
Thus, we count the success rate is 25/70, which is 0.357. The time complexity is
228× rt× 500/225× log1−sr 0.01, that is 228× 4785× 500/225× log1−0.357 0.01, i.e.,
244.75. For more detailed comparison results, see Table 6.

Table 6. experiment result of 12-round key recovery attack using 2-round differential
path

Conf.
Succ. Run

Data Time
Rate Time

Gohr [8]
1+2+8+1

40% - 222.97 242.98

Bao [2] 86% - 222 246.11

Our 35.7% 4785 222.97 244.75

When group size m is greater than 8, we do not get better results. The
possible reason is that when m increases, the probability of the newly used
neutral bit is not high enough, or the performance of neural distinguisher is not
good enough.

In pursuit of better key recovery attack, we considered combining the 3-
round differential path and the more powerful 7-round neural distinguisher. In
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this case, unconditional SNBS are enough for our 7-round neural distinguisher.
Bao found 12 CSNBS for 3-round differential path (0x8020, 0x4101) → (0x00
40, 0x0000). But in order for the 3-round differential path to hold, 3 conditions
need to be met (refer to Appendix A.1 Table 14). Because of the extended one
round on top of these 3-round differentials, these conditions cannot be fulfilled by
chosen data without guessing corresponding bits of k0. To make the experimental
verification economic, we tested the core of the attack with the three conditions
being fulfilled only. Because the prepended differential path are valid when the
keys fulfilling k2[12] 6= k2[11], thus we tested for these valid keys only, and the
presented attack works for 263 keys.

Experiment 3: The components of key recovery attack ASpeck12R
II of 12-

round Speck32/64 are as follows.

1. a 3-round differential path (0x8020, 0x4101)→ (0x0040, 0x0000);
2. generalized neutral bits of generating multiple-ciphertext pairs: {[22], [20],

[13]}; generalized neutral bits of combined response of neural distinguisher:
{[12, 19], [14, 21], [6, 29], [30], [0, 8, 31], [5, 28]} (refer to Appendix A.1 Table 15).

3. a 7-round neural distinguisher NDSpeck7R under difference (0x0040, 0x0000)
and its wrong key response profiles NDSpeck7R · µ and NDSpeck7R · δ.

4. a 6-round neural distinguisher NDSpeck6R under difference (0x0040, 0x0000)
and its wrong key response profiles NDSpeck6R · µ and NDSpeck6R · δ.

In the experimental verification of the attackASpeck12R
II , the 8-round and 7-round

neural distinguisher provided in Sect. 3. Concrete parameters and the complexity
that our 12-round key recovery attack ASpeck12R

II used are listed.

nkg = 24 m = 8 nb = 26 ncts = 211

nit = 212 c1 = 7, c2 = 10 nbyit1 = nbyit1 = 5 ncand1 = ncand1 = 32

The data complexity is nkg × nb× nct×m× 2, that is, 24× 26× 211× 8× 2,
i.e., 225 plaintexts. The core of the attack was examined in 35 trials. There are
35 succeeded trials, the average run times of every trails in our server is 577s.
Thus, we count the success rate is 1. The time complexity is 228 × rt × 500/225,
that is 228 × 577× 500/225, i.e., 242.32. For more detailed comparison results, see
Table 7.

Table 7. experiment result of 12-round key recovery attack using 3-round differential
path

Conf.
Succ. Run

Data Time
Rate Time

Bao [2]
1+3+7+1

81% - 218.58 244.82

Our 100% 577 225 242.32

It is the first time that a key recovery attack has a 100 percent success rate.
When we don’t use the weak key and modify the ciphertext structure to 212, the
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success rate of key recovery attack is only 51%. The main reason for the reduced
success rate is that no correct ciphertext structures exists. Notably if we exclude
the absence of the correct ciphertext structure, our success rate is still 100%.
This shows that our neural distinguisher has a very strong ability to distinguish
between ciphertext and random numbers.

5.3 Key Recovery Attack on 13-round Speck32/64

Combining 3-round differential path with an 8-round neural distinguisher, we
examine how far a practical attack can go on 13-round Speck32/64.

Experiment 4: The components of key recovery attack ASpeck13R of 13-
round Speck32/64 are as follows.

1. a 3-round differential path (0x8020, 0x4101)→ (0x0040, 0x0000);

2. generalized neutral bits of generating multiple-ciphertext pairs: {[22], [20],
[13]}; generalized neutral bits of combined response of neural distinguisher:
{[5, 28], [15, 24], [12, 19], [6, 29], [6, 11, 12, 18], [4, 27, 29], [14, 21], [0, 8, 31], [30]}
(refer to Appendix A.1 Table 15).

3. a 8-round neural distinguisher NDSpeck8R under difference (0x0040, 0x0000)
and its wrong key response profiles NDSpeck8R · µ and NDSpeck8R · δ.

4. a 7-round neural distinguisher NDSpeck7R under difference (0x0040, 0x0000)
and its wrong key response profiles NDSpeck7R · µ and NDSpeck7R · δ.

In the experimental verification of the attackASpeck13R, the 8-round and 7-round
neural distinguisher provided in Sect. 3. Concrete parameters and the complexity
that our 13-round key recovery attack ASpeck13R used are listed.

nkg = 27 m = 8 nb = 29 ncts = 211

nit = 212 c1 = 5, c2 = −86 nbyit1 = nbyit1 = 5 ncand1 = ncand1 = 32

To make the experimental verification economic, we tested the core of the
attack with the seven conditions being fulfilled only, including three conditions
for confirming the 3-round differential path (refer to Appendix A.1 Table 14) and
four conditions for increasing probability of neutral bits (refer to Appendix A.1
Table 15). Because the prepended differential path are valid when the keys ful-
filling k2[12] 6= k2[11], we tested for these valid keys only, and the presented
attack works for 263 keys.

The data complexity is nkg × nb× nct×m× 2, that is, 27× 29× 211× 8× 2,
i.e., 231 plaintexts. The core of the attack was examined in 35 trials. There are
17 succeeded trials, the average run times of every trails in our server is 13690s.
Thus, we count the success rate is 17/35, which is 0.4857. The time complexity
is nkg × 228 × rt × 500/225 × log1−sr 0.01, that is 27 × 228 × 13690 × 500/225 ×
log1−0.4857 0.01, i.e., 252.68. For more detailed comparison results, see Table 8.
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Table 8. experiment result of 13-round key recovery attack

Conf.
Succ. Run

Data Time
Rate Time

Bao [2]
1+3+8+1

61% - 229 253.85

Our 48.57% 13690 231 252.68

5.4 Using Multiple Differential paths

Bao et al. found that the output difference path matters to neural distinguisher,
but not the input difference. Hence, more than one differential paths can be
prepended to neural distinguisher, as long as they share the same output differ-
ence. Multiple such differential paths can share some neutral bits. Using such
differential paths might enable data reuse, thus slightly reducing data complex-
ity. Also, there are three sufficient (linear) conditions to conform to the 3-round
differentials (refer to Appendix A.1 Table 14). Bao launched the R1+3+7+1-round
key recovery attack using four sub-optimal differential paths and the R1+3+8+1-
round key recovery attack using two sub-optimal differential paths. However, we
only use one differential path in our experiment when we launch the key recovery
attack by the prepended 3-round differential path on top of neural distinguisher.
When using two sub-optimal differential path to generate multiple-ciphertext
pairs, we only need to use two conditions to conform to the two 3-round sub-
optimal differential path. So, in the ideal situation, we are able to halve both
the data complexity and the time complexity of the 12-round and 13-round key
recovery attacks.

6 Neural Distinguishers on Reduced-Round Simon32/64

In CRYPTO’19, Gohr used the Residual Network (ResNet) to train neural dis-
tinguisher for Speck32/64. Considering that the Dense Network (DenseNet) [11]
and the Squeeze-and-Excitation Network (SENet) [10] show advantages in spe-
cific tasks than ResNet, Bao et al. modified the structure of Gohr’s neural net-
work using DenseNet and SeNet and obtained (7-11)-round neural distinguishers
for Simon32/64. This section presents our neural distinguisher on Simon32/64.
Comparied to Bao’s results in [2], we improve the accuracy of the 11-round neural
distinguisher and train a new 12-round neural distinguisher for Simon32/64.

6.1 Network Structure

In Sect. 3, we detailed the network structure of neural distinguisher for the
Speck32/64, but found that the trained neural distinguisher model had a defi-
ciency. In the network structure of the neural distinguisher, the prediction head
uses three fully connected layers, resulting in too many model parameters, which
makes the model training time too long and the model file too large. When de-
signing the network structure of the neural distribution for Simon32/64, we
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solved this problem by modifying the structure of the prediction head and re-
placing the fully connected layer with a GlobalAveragePooling layer. The net-
work structure of neural distinguisher for Simon32/64 is similar to Speck32/64
overall, with only minor modifications based on round function of Simon32/64.

Input Representation. In the round function of Speck32/64, we can directly
compute (yr−1, y

′
r−1) without knowing the (r − 1)-th subkey. However, we only

get (yr−1⊕y′r−1) without knowing the (r−1)-th subkey for Simon32/64 because
of the different of round function. Thus, the neural network accept data of the
form (xr, x

′
r, yr, y

′
r, yr−1 ⊕ y′r−1). So, the input layer has m group ciphertext

pairs consisting of 2.5L units likewise arranged in a [m,ω, 2.5Lω ] array, where
L = 32, ω = 16 for Simon32/64.

Initial Convolution. In the initial convolution of Speck32/64, the Inception
consists of four convolutional layers whose convolutional kernel size is set accord-
ing to the cyclic shift operation in the round function of Speck32/64. There are
three convolutional layers in the Inception for Simon32/64, and the size of the
convolutional kernels is 1, 2, and 8. The input layer is connected to the initial
convolutional layer, which comprises three convolution layers with Nf channels
of different kernel sizes. The three convolution layers are concatenated at the
channel dimension. Batch normalization is applied to the output of concatenate
layers. Finally, rectifier nonlinearity is applied to the output of batch normaliza-
tion, and the resulting [m,ω, 3Nf ] matrix is passed to the Convolutional Blocks
layer. The structure of the initial convolutional layer for Simon32/64 can be
seen in Figure 7.

Concatenate, 3Nf

BN

Relu

Conv, 1× 1, Nf Conv, 2× 2, Nf Conv, 8× 8, Nf

Input [m,ω,Nf ]

Fig. 7. The initial convolution layer

Convolutional Blocks. For Simon32/64, the convolutional blocks layer of the
neural distinguisher model are the same as Speck32/64, except for the shape of
the input is different. The structure of convolutional blocks layer can be seen in
Figure 8(a).
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Prediction Head. For Simon32/64, we replaced the fully connected layer with
a GlobalAveragePooling layer, which effectively reduced the number of parame-
ters in the model training process, thereby reducing the training time and model
file size. Sadly, the accuracy of the model has decreased slightly. The predic-
tion head consists of a GlobalAveragePooling layer and an output unit using a
Sigmoid activation function. The structure of the prediction head is shown in
Figure 8(b).

Conv, ks × ks, 3Nf

BN

Relu

⊕

Conv, ks × ks, 3Nf

BN

Relu
ks = ks + 2

(a) The convolutional blocks

GlobalAveragePooling

Sigmod

(b) The prediction head

6.2 The Training of Neural Distinguisher

Training using the basic scheme. In [2], Bao et al. obtained the (7-9)-round
neural distinguisher using the basic training scheme and trained the (10-11)-
round neural distinguisher using the KeyAveraing algorithm and the staged
training method separately. Also, the accuracy of the 11-round neural distin-
guisher trained by Bao is 51.73%. For training parameters, refer to basic training
scheme of Speck32/64 in Sect. 3. By modifying the network structure and using
the basic training scheme, we trained the neural distinguisher to recognize output
pairs of (7-11)-round Simon32/64 with the input difference (0x0000, 0x0040).
The accuracy of our 11-round neural distinguisher is significantly higher than
Bao’s when the group size m takes a different value. Summaries are presented
in Table 2 for detailed result.

Training using the Staged Training Method. For 12 rounds, the training
scheme described above fails, i.e., the model does not learn to approximate any
helpful function. We still succeeded in training a 12-round neural distinguisher
of Simon32/64 by using several stages of pre-training. First, we use our 11-
round distinguisher to recognize 9-round Speck32/64 with the input difference
(0x0440,0x0100) (the most likely difference to appear three rounds after the input
difference (0x0000,0x0040). The training was done on 107 samples for twenty
epochs with cyclic learning rates. Then we trained the distinguisher so obtained
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to recognize 12-round Speck32/64 with the input difference (0x0000, 0x0040)
by processing 107 freshly generated samples for ten epochs with a learning rate
of 10−4. Finally, the learning rate was dropped to 10−5 after processing another
107 fresh samples each. During the staged training, the batch size was changed
according to the value of parameter m, to match the computing performance of
the equipment.

6.3 Result

Test Set Accuracy and Wrong Key Response Profile. We summarize the
experimental results of (7-12)-round of the neural distinguisher model. The (7-
11)-round distinguisher was trained using the basic training method. Using the
staged training method, a 12-round distinguisher was derived from an 11-round
distinguisher.

In Table 9, it shown the accuracy of (7-12)-round neural distinguisher. As the
number of ciphertext pairs m increases, the accuracy of the neural distinguisher
also increases. However, when the value of m is too large, the demand for neutral
bits will increase, thereby increasing the data complexity of key recovery attack.
Therefore, an appropriate value of m should be selected for key recovery attack.
The comparison results with the accuracy of the neural distinguisher of Bao are
presented in Table 2. Compared to Bao’s, the accuracy of our neural distinguisher
was significantly improved when the group size m takes different values. Figure 8
shows the wrong key response profile for our (9-12)-round neural distinguisher.
As we can see from the figure, when the Hamming Distance between the correct
key and the wrong key is smaller, the score of the neural distinguisher is higher,
and vice versa, it is smaller. This makes it easier to judge how far the guess
key deviates from the correct key, which shows that our neural distinguisher can
effectively distinguish between ciphertext and random numbers.

Table 9. accuacy of neural distinguisher for (7-12)-round Simon32/64

R m=2 m=4 m=8 m=16

7 0.9995 0.9999 0.9999 1.0000
8 0.9295 0.9842 0.9989 0.9999
9 0.7240 0.8095 0.8958 0.9630
10 0.5907 0.6339 0.6900 0.7608
11 0.5240 0.5387 0.5591 0.5878
12 - - 0.5152 0.5225

7 Key Recovery Attack on Reduced-Round Simon32/64

Under a similar framework to the key recovery attack on Speck32/64, the
trained neural distinguishers can be prepended with a differential path to per-
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Fig. 8. Wrong key response profile for (9-12)-round Simon32/64 where m = 8

form key recovery attack. This article only list the experimental procedure and
results of a key recovery attack where group size m = 8. We improved 16-round
and devised the first 17-round neural-distinguisher-based key recovery attacks on
Simon32/64. Sadly, due to the low accuracy of the 12-round neural distinguisher
and the lack of a sufficient number of generalized neutral bits, we were unable
to successfully carry out the 18-round key recovery attack for Simon32/64.

7.1 Key Recovery Attack on 16-round Simon32/64

Experiment 5: The components of key recovery attack ASimon16R of 16-round
Simon32/64 are as follows.

1. a 3-round differential path (0x0440, 0x1000)→ (0x0000, 0x0040);
2. generalized neutral bits of generating multiple-ciphertext pairs: {[2], [3], [4]};

generalized neutral bits of combined response of neural distinguisher:{[6], [8],
[9], [10], [18], [22], [0, 24], [12, 26]} (refer to Appendix A.2 Table 16).

3. a 11-round neural distinguisherNDSimon11R under difference (0x0000, 0x0040)
and its wrong key response profiles NDSimon11R · µ and NDSimon11R · δ.

4. a 10-round neural distinguisherNDSimon10R under difference (0x0000, 0x0040)
and its wrong key response profiles NDSimon10R · µ and NDSimon10R · δ.

In the experimental verification of the attack ASimon16R, the 11-round and 10-
round neural distinguisher provided in Sect. 6. The goal is to recover the last
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two subkeys k15 and k14. At the beginning, we guess two key bits of k0, that is
k0[1] and k0[3], because for the 3-round differential, the conditions for correct
pairs are x1[1] = x′1[1] = 0 and x1[3] = x′1[3] = 0. Thus, nkg is 2, and there
are 22 loops. The concrete parameter of the attack are as follows. The accuracy
of NDSimon11R is 0.5591 (note that (2 × (0.5591 − 0.5))−2 ≈ 2−6.13). Thus, by
Conjecture 1, nb = 28 should be enough.

nkg = 22 m = 8 nb = 28 ncts = 28

nit = 29 c1 = 35, c2 = 70 nbyit1 = nbyit1 = 5 ncand1 = ncand1 = 32

The data complexity is nkg ×m × ncts × nb × 2, that is, 222 plaintexts. To
examine the performance of the attack, experiments are done using 5 threads on
the same GPU server. In total 25 trials are run, there are 18 success trials, for
which the returned last two subkeys have a Hamming distance to real subkeys of
at most two. Thus, the success rate is computed as 18/25, i.e., 0.72. The average
running time of the experiment is 1168.7s in 25 trials. The time complexity is
nkg×228×rt×500/225×log1−sr 0.01, that is 22×228×1168×500/225×log1−0.72 0.01,
i.e., 243.19. For more detailed comparison results, see Table 10.

Table 10. experiment result of 16-round key recovery attack

Conf.
Succ. Run

Data Time
Rate Time

Bao [2]
1+3+11+1

49% - 221 246.98

Our 72% 1168 222 243.19

7.2 Key Recovery Attack on 17-round Simon32/64

Experiment 6: The components of key recovery attack ASimon17R of 17-round
Simon32/64 are as follows.

1. a 4-round differential path (0x1000, 0x4440)→ (0x0000, 0x0040);
2. generalized neutral bits of generating multiple-ciphertext pairs: {[2], [6], [12,

26]}; generalized neutral bits of combined response of neural distinguisher:
{[10, 14, 28]} and five neutral bits conditioned on x[1, 15], x[15, 13], x[13, 11],
x[11, 9], x[9, 7] (refer to Appendix A.2 Table 17).

3. a 11-round neural distinguisherNDSimon11R under difference (0x0000, 0x0040)
and its wrong key response profiles NDSimon11R · µ and NDSimon11R · δ.

4. a 10-round neural distinguisherNDSimon10R under difference (0x0000, 0x0040)
and its wrong key response profiles NDSimon10R · µ and NDSimon10R · δ.

In the experimental verification of the attack ASimon17R, the 11-round and 10-
round neural distinguisher provided in Sect. 6. The goal is to recover the last
two subkeys k16 and k15. At the beginning, we guess two key bits of k0, that
is k0[3] and k0[5], because for the 4-round differential, the conditions for cor-
rect pairs are x1[5] = x′1[5] = 0 and x1[3] = x′1[3] = 0; and six key bits
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k0[1], k0[15], k0[13], k0[11], k0[9], k0[7] for employing five conditional neutral bits
(refer to Appendix A.2 Table 17). For different values of the chosen data pairs,
with guessed values of the six key bits, we choose different neutral bit-sets to
generate the structure. Thus, nkg is 2+6, and there are 28 loops. The concrete

parameter of the attack are as follows. The accuracy of NDSimon11R is 0.5591
(note that (2× (0.5591−0.5))−2 ≈ 2−6.13). However, we only have 6 generalized
neutral bits, which makes the success rate of key recovery attacks low.

nkg = 28 m = 8 nb = 26 ncts = 210

nit = 211 c1 = 15, c2 = 65 nbyit1 = nbyit1 = 5 ncand1 = ncand1 = 32

The data complexity is nkg ×m × ncts × nb × 2, that is, 228 plaintexts. To
examine the performance of the attack, experiments are done using 5 threads on
the same GPU server. In total 50 trials are running, there are 4 success trials, for
which the returned last two subkeys have a Hamming distance to real subkeys of
at most two. Thus, the success rate is computed as 4/50, i.e., 0.08. The average
running time of the experiment is 3356.4s in 50 trials. The time complexity is
nkg×228×rt×500/225×log1−sr 0.01, that is 28×228×3356×500/225×log1−0.08 0.01,
i.e., 254.65. For more detailed comparison results, see Table 11.

Table 11. experiment result of 17-round key recovery attack

Conf.
Succ. Run

Data Time
Rate Time

our 1+4+11+1 0.08% 3356.4 228 254.65

8 Conclusion and Discussions

In this article, we present a new network structure to train neural distinguisher,
which takes multiple-ciphertext pairs as the input of neural distinguisher model
and uses multiple-parallel convolution layers to capture the features of different
dimensions of cryptographic algorithms, thus improving the accuracy of neural
distinguisher and obtained more rounds neutral distinguisher. Focusing on the
problem of the same distribution of data left by Chen’s work, we propose a so-
lution using neutral bits to generate multiple-plaintext pairs, thus significantly
improve the success rate and decrease the time complexity of key recovery at-
tacks.

Limit to More Rounds of Key Recovery Attack . The differential-neural
cryptanalysis mainly consists of two parts: differential path and neural distin-
guisher. Bao et al. use a higher probabilistic neutral bits and the same neural
distinguisher used in the 11-round and 12-round attacks on Speck32/64 in [8],
getting a significantly result than Gohr. Now, we have greatly improved the per-
formance of neural distinguisher and enhanced the key recovery attack. However,
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we are not satisfied with the current results because it does not reach the full
potential of neural distinguisher. On the one hand, for key recovery attacks of 13
rounds Speck32/64, we only used neural distinguisher with group size m = 8,
where the accuracy of neural distinguisher only is 55.9%. When the group size m
is equal to 16, the accuracy of our 8-round neural distinguisher reaches 58.53%.
However, we need more generalized neutral bits when m = 16 to launch a key
recovery attack. Thus, the number of generalized neutral bits limits the ability
of our neural distinguisher to reach their full potential. On the other hand, the
accuracy of our 12-round neural distinguisher of Simon32/64 is lower, we cannot
use it for key recovery attack. Therefore, we need to make in-depth use of the
nature of the structure of the cryptographic algorithm and the more effective
structure of the neural network to improve the accuracy of 12-round neural dis-
tinguisher for Simon32/64. We need to search for more generalized neutral bits
and improve the accuracy of neural distinguisher to launch more rounds of key
recovery attack with the joint efforts of the two components.
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A Used Generalized Neural Bit-sets for Key Recovery
Attack

A.1 Generalized Neural Bit-sets for Speck32/64

Neutral bit-sets (NB) Used in [8] for 2-round Classical Differential: The signal
from distinguisher will rather weak. Gohr boosts it by using NB probabilistic
neutral bits to create from each plaintext pair. A plaintext structure consisting
of 2NB plaintext pairs that are expected to pass the initial 2 round classical
differential together. Concretely, neutral bits are probabilistically neutral are
summarized as follows.

Table 12. (Probabilistic) single-bit neutral bit for 2-round Classical Differential
(0x0211, 0x0a04)→ (0x0040, 0x0000) of Speck32/64 [8]

NB Pr. NB Pr. NB Pr. NB Pr. NB Pr. NB Pr. NB Pr.

[20] 1 [21] 1 [22] 1 [14] 0.965 [15] 0.938 [23] 0.812 [7] 0.806
[30] 0.809 [0] 0.763 [8] 0.664 [24] 0.649 [31] 0.644 [1] 0.574

Simultaneous-neutral bit-sets (SNBS) used in [2] for 2-round classical differ-
ential: for the prepended 2-round differential on top of neural distinguisher,
Bao et al. [2] can experimentally obtain 3 complete NB and 2 SNBS using
exhaustive search. Concretely, for the 2-round differential(0x0211, 0x0a04) →
(0x0040, 0x0000), bit and bit-sets that are (probabilistically) (simultaneous-
)neutral are summarized in Table 13.

Table 13. (Probabilistic) SNBS for 2-round Classical Differential (0x0211, 0x0a04)→
(0x0040, 0x0000) of Speck32/64 [2]

NB Pr. NB Pr. NB Pr. NB Pr. NB Pr. NB Pr. NB Pr.

[20] 1 [21] 1 [22] 1 [9,16] 1 [2,11,25] 1 [14] 0.965 [15] 0.938
[6,29] 0.91 [23] 0.812 [30] 0.809 [7] 0.806 [0] 0.754 [11,27] 0.736 [8] 0.664

Conditional simultaneous-neutral bit-sets (CSNBS) used in [2] for 3-round
classical differential: Bao et al. found that there are the three sufficient conditions
for a pair (x, y), (x′, y′) to conform the 3-round differential (0x8020, 0x4101)→
(0x0040, 0x0000), summarized in Table 14. Concretely, for the 3-round four
sub-optimal differential, bit and bit-sets that are (probabilistically) conditional
simultaneous-neutral are summarized in Table 15.
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Table 14. Three sufficient conditions conform the 3-round sub-optimal differential [2]

(0x8020, 0x4101)
↓

(0x0040, 0x0000)

(0x8060, 0x4101)
↓

(0x0040, 0x0000)

(0x8021, 0x4101)
↓

(0x0040, 0x0000)

(0x8061, 0x4101)
↓

(0x0040, 0x0000)

x[7] = 0
x[5]⊕ y[14] = 1
x[15]⊕ y[8] = 0

x[7] = 0
x[5]⊕ y[14] = 0
x[15]⊕ y[8] = 0

x[7] = 0
x[5]⊕ y[14] = 1
x[15]⊕ y[8] = 1

x[7] = 0
x[5]⊕ y[14] = 0
x[15]⊕ y[8] = 1

Table 15. (Probabilistic) (simultaneous-)neutral bit-sets for 3-round differen-
tial (0x8020, 0x4101) → (0x0040, 0x0000), (0x8060, 0x4101) → (0x0040, 0x0000),
(0x8021, 0x4101) → (0x0040, 0x0000), (0x8061, 0x4101) → (0x0040, 0x0000) of
Speck32/ 64 [2]

(8020,4101) (8060,4101) (8021,4101) (8061,4101)
Bit-set Pre. Post. Pre. Post. Pre. Post. Pre. Post. Condition

[22] 0.995 1.000 0.995 1.000 0.996 1.000 0.997 1.000 -
[20] 0.986 1.000 0.997 1.000 0.996 1.000 0.995 1.000 -
[13] 0.986 1.000 0.989 1.000 0.988 1.000 0.992 1.000 -
[12,19] 0.986 1.000 0.995 1.000 0.993 1.000 0.986 1.000 -
[14,21] 0.855 0.860 0.874 0.871 0.881 0.873 0.881 0.876 -
[6,29] 0.901 0.902 0.898 0.893 0.721 0.706 0.721 0.723 -
[30] 0.803 0.818 0.818 0.860 0.442 0.442 0.412 0.407 -
[0,8,31] 0.855 0.859 0.858 0.881 0.000 0.000 0.000 0.000 -
[5,28] 0.495 1.000 0.495 1.000 0.481 1.000 0.469 1.000 x[12]⊕ y[5] = 1
[15,24] 0.482 1.000 0.542 1.000 0.498 1.000 0.496 1.000 y[1] = 0
[6,11,12,18] 0.445 0.903 0.456 0.906 0.333 0.701 0.382 0.726 x[2]⊕ y[11] = 0
[4,27,29] 0.672 0.916 0.648 0.905 0.535 0.736 0.536 0.718 x[11]⊕ y[4] = 1

A.2 Generalized Neural Bit-sets for Simon32/64

For an input pair ((x, y), (x′, y′)) to conform the 3-round differential (0x0440, 0x1000)
→ (0x0000, 0x0040), one has conditions that{

x[1] = x′[1] = 0

x[3] = x′[3] = 0

Table 16. NB and SNBS for 3-round Classical Differential (0x0440, 0x1000) →
(0x0000, 0x0040) of Simon32/64 [2]

[2] [3] [4] [6] [8] [9]

[10] [18] [22] [0,24] [12,26]
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For an input pair ((x, y), (x′, y′)) to conform the 4-round differential (0x1000, 0x4440)
→ (0x0000, 0x0040), one has conditions that{

x[5] = x′[5] = 0

x[3] = x′[3] = 0

Table 17. CSNBS for 4-round Classical Differential (0x1000, 0x4440) →
(0x0040, 0x0000) of Simon32/64 [2]

Bit-set C. Bit-set C. Bit-set C. Bit-set C. Bit-set C.

x[1, 15] x[15, 13] x[13, 11] x[11, 9] x[9, 7]

[24,10] 00 [22,8] 00 [20] 00 [18,4] 00 [16,8] 00

[24,10,9] 10 [22,8,7] 10 [20,5] 10 [18,4,3] 10 [16,8,1] 10

[24,10,0] 01 [22,8,14] 01 [20,12] 01 [18,4,10] 01 [16] 01

[24,10,9,0] 11 [22,8,7,14] 11 [20,12,5] 11 [18,4,10] 11 [16,1] 11

C.: Condition on x[i, j], e.g., x[i, j] = 10 means x[i] = 1 and x[j] = 0.
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