
Improving Differential-Neural Cryptanalysis
with Inception

Liu Zhang1[0000−0001−6106−3767], Zilong Wang1[0000−0002−1525−3356], Baocang
Wang2[0000−0002−2554−4464], and Boyang Wang3[0000−0001−8973−2328]

1 School of Cyber Engineering, Xidian University, Xi’an, China
liuzhang@stu.xidian.edu.cn, zlwang@xidian.edu.cn

2 State Key Laboratory of Integrated Service Networks, Xidian University, Xi’an,
China bcwang79@aliyun.com

3 Department of Electrical Engineering and Computer Science, University of
Cincinnati, Cincinnati, USA

boyang.wang@uc.edu

Abstract. In CRYPTO’19, Gohr proposed a new cryptanalysis method
by building differential-neural distinguishers with neural networks. Gohr
combined a differential-neural distinguisher with a classical differential
path and achieved a 12-round (out of 22) key recovery attack on Speck32/
64. Chen and Yu improved the accuracy of differential-neural distin-
guisher considering derived features from multiple-ciphertext pairs. Bao
et al. enhanced the classical differential path by generalizing the con-
cept of neutral bits, thus launching key recovery attacks for 13-round
Speck32/64 and 16-round (out of 32) Simon32/64.

Our focus is on improving the accuracy of the distinguisher and train-
ing the distinguisher for more rounds using deep learning methods. To
capture more dimensional information, we use multiple parallel convolu-
tional layers with kernels of different sizes placed in front of the Resid-
ual Network to train differential-neural distinguisher inspired by the In-
ception in GoogLeNet. For Speck32/64, we obtain a 9-round differe-
ntial-neural distinguisher and significantly improve the accuracy of dis-
tinguishers on 6-,7-, 8-round. For Simon32/64, we obtain a 12-round
differential-neural distinguisher and significantly improve the accuracy
of the distinguishers on 9-, 10-, and 11-round. In addition, we use neu-
tral bits to solve the same distribution of data required to successfully
launch a key recovery attack when using multiple-ciphertext pairs as the
input of the neural network.

Under the combined effect of multiple improvements, the time complexity
of our 11-, 12-, and 13-round key recovery attacks of Speck32/64 is
decreased. Also, the success rate of our 12-round key recovery attack
reaches 100% in 98 trials. For Simon32/64, we are able to implement
a 17-round key recovery attack using the deep learning method for the
first time. Also, we decrease the time complexity of the 16-round key
recovery attack. 4

4 The source codes are available in https://github.com/CryptAnalystDesigner/

NeuralDistingsuisherWithInception.git.

https://github.com/CryptAnalystDesigner/NeuralDistingsuisherWithInception.git
https://github.com/CryptAnalystDesigner/NeuralDistingsuisherWithInception.git

Keywords: Differential-Neural Distinguisher · Inception · Speck · Si-
mon

1 Introduction

In CRYPTO 2019, Gohr proposed the idea of differential-neural cryptanaly-
sis [8]. The differential-neural distinguisher model, a trained neural network, is
introduced as the underlying distinguisher, and Bayesian search is used to speed
up key recovery attacks compared to the classical differential cryptanalysis. The
differential-neural distinguisher is to distinguish ciphertext from random num-
bers. If the accuracy of the differential-neural distinguisher is greater than 0.5,
it is considered as an effective distinguisher. However, the current differential-
neural distinguisher seems only effective for limited rounds for ciphertext. In
order to increase the number of rounds for key recovery attacks, a short classical
high-probability differential path ∆S → ∆P is prepended before the differential-
neural distinguisher.

Gohr [8] showed that the Residual Network [9] could be trained to capture
the non-randomness of the distribution of output pairs when the input pairs of
round-reduced Speck32/64 meet a specific difference. As a result, differential-
neural distinguishers on 6-, 7-, 8-round were trained, and 11-,12-round key re-
covery attacks for Speck32/64 were achieved by combining 2-round differential
path. There may be two directions to improve the differential-neural cryptanal-
ysis proposed by Gohr [8]. One is to increase the length of the differential path
suspended on top of the differential-neural distinguisher. Bao et al. [2] gener-
alized the concept of neutral bits and searched for (conditional) simultaneous
neutral bit-set with a higher probability for more rounds of the differential path.
Thus, Bao et al. devised a new 13-round and improved the 12-round key recovery
attack for Speck32/64 with the same differential-neural distinguisher proposed
in [8]. Note that the improvement in [2] came from the classical differential
cryptanalysis. The other is to study the effective differential-neural distinguisher
with more rounds. To launch key recovery attacks with more rounds, better
differential-neural distinguishers were also studied recently. Chen and Yu [6]
proposed multiple-ciphertext pairs instead of single-ciphertext pairs (in Gohr’s
work) as the input of the neural network and improved the accuracy of the 6-, 7-
round differential-neural distinguisher of Speck32/64. Bao et al. [2] used Dense
Network [11] and Squeeze-and-Excitation Network [10] with existing deep archi-
tectures to train differential-neural distinguisher, and obtained 9-, 10-, 11-round
differential-neural distinguisher and devised a 16-round key recovery attack for
Simon32/64.

In EUROCRYPT 2021, Benamira [4] indicated that Gohr’s differential-neural
distinguisher builds a good approximation of the differential distribution table
of the cipher during the learning phase and learns additional information. Based
on the principle that the purpose of the differential-neural distinguisher is to
obtain more information from the ciphertext, we train a better differential-neural

2

distinguisher by modifying the network structure. The main improvements for
differential-neural cryptanalysis are listed as follows.

First, we trained a better differential-neural distinguisher. Specifically, we
used multiple-ciphertext pairs as the input of the neural network and added
the Inception composed of the multiple-parallel convolutional layers before the
Residual Network. The purpose of the Inception is to capture more dimensional
information in the ciphertext pairs. Some minor modifications have also been
made according to the round functions of the cipher. As a result, we improved
the accuracy of 6-, 7-, 8-round and trained an effective 9-round differential-neural
distinguisher for Speck32/64. In addition, we improved the accuracy of 9-, 10-,
and 11-round distinguishers and trained an effective 12-round differential-neural
distinguisher for Simon32/64. The result and comparison on differential-neural
distinguisher of Speck32/64 and Simon32/64 are presented in Table 1 and 2,
where N is the number of the training instances and m is the number of the
ciphertext pairs in every instance.

Table 1. Summary of distinguish accuracy on Speck32/64 using N instances

R Gohr [8]
m=2 m=4 m=8 m=16

Chen [6] Sect. 3 Chen [6] Sect. 3 Chen [6] Sect. 3 Chen [6] Sect. 3

6 0.788 0.8613 0.8773 0.931 0.9497 0.9562 0.9895 0.9802 0.9992
7 0.614 0.6393 0.6649 0.6861 0.7283 0.7074 0.8106 0.6694 0.8963
8 0.514 - - - 0.5428 - 0.5562 - 0.5853
9 - - - - - - 0.5024 - 0.5050

Table 2. Summary of distinguish accuracy on Simon32/64 using N instances

R Bao [2]
Sect. 6

m=2 m=4 m=8 m=16

9 0.6532 0.7240 0.8095 0.8958 0.9630
10 0.5629 0.5907 0.6339 0.6900 0.7608
11 0.5173 0.5240 0.5387 0.5591 0.5878
12 - - - 0.5152 0.5225

Second, we use some neutral bits with probability one to generate multiple-
plaintext pairs to launch a key recovery attack successfully. Not all plaintext
pairs that satisfy the differential ∆S follow the differential ∆P after propagating
through the differential path. In order to resolve the requirement of the same
distribution of multiple-ciphertext pairs, inspired by the combined response of
differential-neural distinguisher in Gohr’s work, we use some neutral bit with
probability one to generate multiple-plaintext pairs and then encrypt multiple-
plaintext pairs to get multiple-ciphertext pairs.

3

Third, we successfully implemented several rounds of key recovery attacks
using the new differential-neural distinguisher with a differential path. We im-
proved 11-, 12-, and 13-round key recovery attacks for Speck32/64 and re-
duced the time complexity. Surprisingly, when a 3-round differential path is
combined with our 7-round differential-neural distinguisher, the success rate of
the 12-round key recovery attack launched is 100%. This shows that our 7-
round differential-neural distinguisher can effectively distinguish ciphertext and
random numbers. For Simon32/64, we are able to implement a 17-round key
recovery attack using deep learning methods for the first time. Also, we decrease
the time complexity of the 16-round key recovery attack. Detailed experimental
comparison are shown in Table 3.

The rest of the paper is organized as follows. Section 2 gives the prelimi-
nary on the previous differential-neural distinguisher model, key recovery attack
process, and generalized neutral bits. Section 3 introduces the training method
and accuracy of our differential-neural distinguisher for Speck32/64. we intro-
duce data generation, experimental environment and complexity calculation in
Section 4. Section 5 exhibits the details of our 11-, 12-, 13-round key recovery
attacks for Speck32/64. Section 6 introduces the training method and accuracy
of our differential-neural distinguisher for Simon32/64. Section 7 exhibits the
details of our 16-, 17-round key recovery attacks for Simon32/64. In Section 8,
our results and possible extensions are discussed.

2 Preliminary

2.1 Brief Description of SPECK32/64 and SIMON32/64

Notations. Let n be the word size (i.e., the number of bits of a word), and the
state size can be denoted as 2n bits. Let (xr, yr) be the left and right branches
of a state after the encryption of r rounds, kr the subkey of r rounds. Denote
the bit-wise XOR by ⊕, the addition modulo 2n by ⊞, the bit-wise AND by ·,
the bit-wise right rotation by ≫, the bit-wise left rotation by ≪ .

Speck32/64 and Simon32/64 are members in the lightweight block cipher
family Speck and Simon [3]. The round function of Speck32/64 takes a 16-bit
subkey ki and a state consisting of two 16-bit words (xi, yi) as input. The state
of the next round (xi+1, yi+1) is computed as follows:

xi+1 := ((xi ≫ 7)⊞ yi)⊕ ki, yi+1 := (yi ≪ 2)⊕ xi+1.

The round function is repeated 22 times for Speck32/64.
The round function of Simon32/64 takes a 16-bit subkey ki and a state

consisting of two 16-bit words (xi, yi) as input. The next round state (xi+1, yi+1)
is computed as follows:

xi+1 := (xi ≪ 1) · (xi ≪ 8)⊕ (xi ≪ 2)⊕ yi ⊕ ki, yi+1 := xi.

The round function is repeated 32 times for Simon32/64.

4

Table 3. Summary of key recovery attacks on Speck32/64 and Simon32/64

Target r Dist. Conf. Time Data
Succ.
Rate

Key
Space

Ref.

Speck32/64

11

DD 1+6+4 246 214 − 264 [7]

ND 1+2+7+1 239.62 213.64 52% 264 [8]

ND 1+2+7+1 236.82 215.64 97% 264 Exp. 1

12

DD 1+7+4 251 219 − 264 [7]

ND 1+2+8+1 246.57 222.97 40% 264 [8]

ND 1+2+8+1 246.11 222 86% 264 [2]

ND 1+2+8+1 244.75 222.97 36% 264 Exp. 2

ND 1+3+7+1 244.82 218.58 81% 263 [2]

ND 1+3+7+1 242.32 225 100% 263 Exp. 3

ND 1+3+7+1 241.32 224 − 263 Ideal

13

DD 1+8+4 257 225 − 264 [7]

ND 1+3+8+1 253.97 230 75% 263 [2]

ND 1+3+8+1 253.85 229 61% 263 [2]

ND 1+3+8+1 252.68 231 49% 263 Exp. 4

ND 1+3+8+1 251.68 230 − 263 Ideal

Simon32/64
16

DD 2+12+2 226.48 229.48 62% 264 [1]

ND 1+3+11+1 246.98 221 49% 264 [2]

ND 1+3+11+1 243.19 222 72% 264 Exp. 5

17 ND 1+4+11+1 254.65 228 8% 264 Exp. 6

1. All time complexities of key recovery attack using ND are recalculated using the
new time complexity calculation formula proposed in Sect. 4.2.

2. DD: differential distinguisher; ND: differential-neural distinguisher;
3. −: Not available.
4. Ideal: Assuming two classical differential paths share the same output differences,

the time complexity and data complexity of the attack can be halved.

5

2.2 Overview of Gohr’s and Chen’s Differential-Neural
Distinguisher Model for SPECK32/64

The structure of the neural network in Gohr [8] and Chen [6] is almost identi-
cal except input format. Thus, we introduce these two models uniformly. The
differential-neural distinguisher is a supervised model which distinguishes ci-
phertext and random numbers. Ciphertexts and random numbers was artifi-
cially generated with corresponding labels. Given m plaintext pairs {(Pi,0, Pi,1)
, i ∈ [0,m − 1]} and target cipher Speck32/64, the resulting ciphertext pairs
{(Ci,0, Ci,1), i ∈ [0,m − 1]} is regarded as a instance. Note that m = 1 in [8],
and m ∈ {2, 4, 8, 16} in [6]. Each instance will be attached with a label Y :

Y =

{
1, if Pi,0 ⊕ Pi,1 = ∆, i ∈ [0,m− 1]
0, if Pi,0 ⊕ Pi,1 ̸= ∆, i ∈ [0,m− 1]

where ∆ = (0x0040, 0x0000). If Y is 1, this instance is sampled from the tar-
get distribution and defined as a positive example. Otherwise, this instance is
sampled from a uniform distribution and defined as a negative example. A large
number of instances need to be put into neural network training. If the neu-
ral network can obtain a stable accuracy higher than 0.5 on a test set, it can
effectively distinguish ciphertext and random numbers. The differential-neural
distinguisher model can be described as:

Pr(Y = 1 | X0, . . . , Xm−1) = F (f(X0), . . . , f(Xm−1), φ(f(X0), . . . , f(Xm−1)))
Xi = (Ci,0, Ci,1), i ∈ [0,m− 1]

Pr(Y = 1 | X0, . . . , Xm−1) ∈ [0, 1]

where f(Xi) represents the basic features of a ciphertext pair Xi, and φ(·) is the
derived features, and F (·) is the new posterior probability estimation function.

The network structure contains several modules described in Fig. 1. The input
layer of the neural network consisting of multiple-ciphertext pairs is arranged in
am×ω× 2L

ω array, where L represents the block size of the target cipher, and ω is
the size of a basic unit. For example, L is 32 and ω is 16 for Speck32/64. Module
1 is the initial with-1 convolution layer that intends to make learning simple
bit-sliced functions such as bitwise addition easier. Module 2 is the Residual
Network. Conv stands for one-dimensional convolution Conv1D with Nf filters,
and the size of the convolution kernel is ks × ks. The number of module 2 is
determined by experiment. The prediction head consists of modules 3, 4, and
output layer. FC is a fully-connected layer which has d1 or d2 neurons. BN is
the batch normalization layer. Relu and Sigmoid are two different activation
functions. The output of Sigmoid ranges from 0 to 1.

2.3 Differential-neural cryptanalysis

The master key can be recovered if the last two round subkeys of Speck and
Simon are known according to the key extension algorithm. The differential-
neural cryptanalysis, a chosen-plaintext attack, aims to recover the subkey of

6

Output

Module 4

Module 3

Module 2

Module 2

Module 1

Input

F (·)

f(·)

Input [m,ω, 2L
ω
]

Module 1

Conv, 1× 1, Nf

BN

Relu

Module 2

Conv, ks × ks, Nf

BN

Relu

Conv, ks × ks, Nf

BN

Relu

⊕

Module 3

FC, d1

BN

Relu

Module 4

FC, d2

BN

Relu

Output
FC, 1

Sigmod

Fig. 1. The network structure of Gohr’s and Chen’s model

the last two rounds. We decrypt the ciphertext using guessed subkey and use
the differential-neural distinguisher to estimate the distance between the guessed
subkey and the correct key.

(PT0, PT1)
D
ec

k
ey

=
0

(S0, S1)

S0 ⊕ S1 = ∆S

(P0, P1)

P0 ⊕ P1 = ∆P

︸ ︷︷ ︸
s-round differential path

ND

︸ ︷︷ ︸
r − round distinguisher attack

(CT0, CT1)

1
-ro

u
n
d

k
ey

g
u
essin

g

Fig. 2. (1 + s+ r + 1)-round key recovery attack of differential-neural cryptanalysis

The overall processing of a key recovery attack based on differential-neural
distinguisher is shown in Fig. 2, where ND is the trained differential-neural
distinguisher, (PT0, PT1) is plaintext paris, and (CT0, CT1) is ciphertext paris.
The (1 + s + r + 1)-round key recovery attack employs an r-round main and
(r − 1)-round helper differential-neural distinguisher trained using input pairs
with difference ∆P . A short s-round differential path (∆S → ∆P) with proba-
bility denoted by 2−p is prepended on top of the differential-neural distinguisher
to increase the number of rounds of key recovery attack. In order to ensure the
existence of data pairs satisfying difference ∆P after s-round encryption, about
c · 2p (denoted by ncts) data pairs with difference ∆S are required according to
difference propagation probability, where c is a small constant. Neutral bits of the

7

s-round differential path are used to expand each data pair to a structure of nb

data pairs. The ncts structures of data pairs are decrypted by one round with 0 as
the subkey to get plaintext structures because nonlinear operation happens be-
fore key addition for Speck and Simon. All plaintext structures are encrypted to
obtain the corresponding ciphertext structures. Each ciphertext structure is used
to select a candidate of the subkey by the r-round main differential-neural dis-
tinguisher based on a variant of Bayesian optimization. The usage of ciphertext
structures is also highly selective by using a standard exploration-exploitation
technique, namely Upper Confidence Bounds (UCB). Each ciphertext structure
is assigned with a priority according to the score of the recommended subkeys
and the visited times. Without exhaustively performing trail decryption, the key
search policy depends on the expected response of the differential-neural distin-
guisher upon wrong-key decryption. The wrong key response profile is used to
recommend new candidate values from previous candidate values though mini-
mizing the weighted Euclidean distance in a BayesianKeySearch Algorithm
[8].

2.4 Combined Response and Neutral Bits

As the number of encryption rounds increases, the accuracy of differential-
neural distinguisher decreases. A differential-neural distinguisher with an ac-
curacy higher than 0.5 means some distinguisher advantage over a random dis-
tinguisher. To reduce the impact of the misjudgment of the single prediction of
the distinguisher, Gohr used the combined response of the differential-neural dis-
tinguisher over large amounts of samples of the same distribution, which can be
satisfied by neutral bits [8]. The primary notion of neutral bits can be interpreted
as follows.

Definition 1 (Neutral bits of a differential, NB[5]). Let ∆in → ∆out be a
differential with input difference ∆in and output difference ∆out of an r-round
encryption F r. Let (P, P ′) be the input pair, and (C,C ′ | C = F r(P), C ′ =
F r(P ′)) be the output pair, where P ⊕ P ′ = ∆in. If C ⊕ C ′ = ∆out, (P, P

′) is
said to be conforming the differential ∆in → ∆out. Let e0, e1, . . . , en−1 be the
standard basis of Fn

2 . Let i be an index of a bit (starting from 0). The i-th bit
is a neutral bit for the differential ∆in → ∆out, if (P ⊕ ei, P

′ ⊕ ei) is also a
confirming pair for any confirming pair (P, P ′).

The responses vi,k from the differential-neural distinguisher on ciphertext
pairs in the ciphertext structure (of size nb) are combined using the Formula

sk =
∑nb−1

i=0 log2

(
vi,k

1−vi,k

)
and used as the score of the recommended subkey. The

score sk plays a decisive role in the attack’s execution time and success rate. For a
combined-response-distinguisher built on top of a weak differential-neural distin-
guisher to reach its most potential for distinguishability, the number of samples
of the same distribution should be sufficiently large. In general, neutral bits of
the non-trivial differential path are scarce. Therefore, probabilistic neutral bits
(PNB) are exploited in [8]. Some probabilistic neutral bits with a higher prob-
ability, simultaneous-neutral bit-sets (SNBS), and conditional (simultaneous-)

8

neutral bit(-set)s (CSNBS) was found in [2]. The explicit definitions of PNB,
SNBS, and CSNBS (collectively referred to as generalized neutral bits) refer
to [2].

3 Differential-Neural Distinguishers for Round-Reduced
SPECK32/64

3.1 Network Structure

The overall structure of our neural network for training the differential-neural
distinguisher is shown in Fig. 3. Our neural network consists of four parts: an
input layer consisting of multiple-ciphertext pairs, an initial convolutional layer
consisting of four parallel convolutional layers, a residual tower of multiple two-
layer convolutional neural networks, and a prediction head consisting of multiple
fully connected layers (according to the color to distinguish in the Fig 3).

Output

Module 5

Module 4

Module 3

Module 2

Module 2

Module 1

Input

F (·)

f(·)

Input [m,ω, 3L
ω
]

Module 1

Conv, 1× 1, Nf Conv, 3× 3, Nf Conv, 5× 5, Nf Conv, 7× 7, Nf

Concatenate, 4Nf

BN

Relu

ks = ks + 2

Conv, ks × ks, 4Nf

BN

Relu

Conv, ks × ks, 4Nf

BN

Relu

⊕

Module 2

Module 3

Dropout

FC, d0

BN

Relu

Module 4

FC, d1

BN

Relu

Module 5

FC, d2

BN

Relu

Output
FC, 1

Sigmod

Fig. 3. The network structure of our distinguisher model for Speck32/64

Input Representation. Once the output of the r-th round (C,C ′) = (xr||yr,
x′
r||y′r) is known, one can directly compute (yr−1, y

′
r−1) without knowing the

(r − 1)-th subkey according to the round function of Speck. Thus, the neural
network accept data of the form (xr, x

′
r, yr, y

′
r, yr−1, y

′
r−1). The input layer has

9

m group ciphertext pairs consisting of 3L units likewise arranged in a [m,ω, 3L
ω]

array, where L = 32, ω = 16 for Speck32/64. The detailed data generation
method of the input layer is shown in Fig. 4, where Ci,0 = (xr, yr), Ci,1 =
(x′

r, y
′
r), Ci,2 = (yr−1, y

′
r−1), i ∈ (0,m).

P0,0 P0,1

P1,0 P1,1

· · · · · ·
Pm−2,0 Pm−2,1

Pm−1,0 Pm−1,1

m Block

Cipher

Key C0,0 C0,1 C0,2

C1,0 C1,1 C1,2

· · · · · ·
Cm−2,0 Cm−2,1 Cm−2,2

Cm−1,0 Cm−1,1 Cm−1,2

m

Fig. 4. The format of input data

Initial Convolution. The input layer is connected to the initial convolutional
layer, which comprises four convolutional layers with Nf channels of different
kernel sizes. The four convolution layers are concatenated at the channel dimen-
sion, similar to the Inception [13] in GoogLeNet. Batch normalization is applied
to the output of concatenate layers. Finally, rectifier nonlinearity is applied to
the output of batch normalization, and the resulting [m,ω, 4Nf] matrix is passed
to the convolutional blocks layer. The structure of the initial convolution layer
can be seen in Fig. 5.

Concatenate, 4Nf

BN

Relu

Conv, 1× 1, Nf Conv, 3× 3, Nf Conv, 5× 5, Nf Conv, 7× 7, Nf

Input [m,ω,Nf]

Fig. 5. The initial convolution layer

Convolutional Blocks. Each convolutional block consists of two layers of 4Nf

filters. Each block applies first the convolution with kernel size ks, then a batch
normalization, and finally a rectifier layer. At the end of the convolutional block,
a skip connection is added to the output of the final rectifier layer of the block to
the input of the convolutional block and transfers the result to the next block.

10

After each convolutional block, the kernel size increases by 2. The number of
convolutional blocks is 5 in our model (determined by experiment). The structure
of the convolutional blocks layer can be seen in Fig. 6.

Prediction Head. The prediction head consists of three hidden layers and one
output unit. Before the first hidden layer, we add a dropout layer to prevent
model overfitting. The four fully connected layers comprise 512, 64, 64, and 1
unit, followed by the batch normalization and rectifier layers. The final layer con-
sists of a single output unit using a Sigmoid activation function. The structure
of the prediction head is shown in Fig. 7.

Conv, ks × ks, 4Nf

BN

Relu

⊕

Conv, ks × ks, 4Nf

BN

Relu
ks = ks + 2

Fig. 6. The convolutional blocks

Dropout

FC, d0

BN

Relu

FC, d1

BN

Relu

FC, d2

BN

Relu

FC, 1

Sigmod

Fig. 7. The prediction head

Rationale. First, we modify the format of input data for the model to use more
ciphertext. Given the ciphertext of the last round, the right half of the ciphertext
of the penultimate round can be calculated according to the round function
of Speck32/64 without knowing the (r-1)-th subkey. Second, considering the
circular shift operation in the round function of Speck and some relationship
in the adjacent bits generated by the modular addition operation, we add the
convolution operation of widths 3, 5, and 7 to capture the feature from more
dimensions which is inspired by the Inception [13] in GoogLeNet to capture more
dimensional information. Third, to increase the convolution’s receptive field, the
convolution kernel’s size increases by 2 with the increase of the depth of the
Residual Network. Also, Our network structure has a strong fitting ability, and
it is easy to overfit on the training set, so we add a dropout layer before the fully
connected layer to improve the network’s generalization ability.

3.2 The Training of Differential-Neural Distinguisher

The distinguish accuracy is the most critical indicator which reflects the perfor-
mance of the differential-neural distinguisher. The following training was carried
out to verify the performance of our differential-neural distinguisher.

11

Data Generation. Training and test data were generated by using the Linux
random number generator to obtain uniformly distributed keys Ki and m plain-
text pairs (Pi,0, Pi,1) with the input difference ∆ = (0x0040, 0x0000) as well as
a vector of binary-valued labels Yi. During producing training set or test set for
r-round Speck32/64, the m plaintext pair (Pi,0, Pi,1) was then encrypted for r
rounds if Yi = 1, while otherwise the second plaintext of the pairs was replaced
with a freshly generated random plaintext and then encrypted for r rounds.

Remark 1. We conduct two sets of experiments with different numbers of datasets.
In [8], the training set and test set include N and M instances, which consist of
a ciphertext pair, that is, total N and M ciphertext pairs, respectively. In [6],
the training set and test set include N/m and M/m instances, and each instance
includes m ciphertext pairs; that is, the total numbers of ciphertext pairs used
are N and M . To ensure a fair comparison, We used the same amount of data
as [6] in the first set of experiments. However, Using N/m and M/m instances
as training and test sets may lead to overfitting (See Remark 2 for details). In
order to overcome this problem, we also use N and M instances as training test
and test set in the second set of experiments, which consists of m ciphertext
pair, that is, total N ×m and M ×m ciphertext pairs, respectively.

Basic Training Scheme. We run the training for 20 epochs on the dataset
for N = 107 and M = 106. The batch size processed by the dataset is adjusted
according to the parameter m to maximize GPU performance. Optimization
was performed against mean square error loss plus a small penalty based on L2
weights regularization parameter c = 10−5 using the Adam algorithm [12]. A
cyclic learning rate schedule was applied, setting the learning rate li for epoch i

to li = α+ (n−i) mod (n+1)
n .(β−α) with α = 10−4, β = 2× 10−3 and n = 9. The

networks obtained at the end of each epoch were stored, and the best network
by validation loss was evaluated against a test set.

Training using the Staged Train Method. We use several stages of pre-
training to train an 8-round differential-neural distinguisher for Speck32/64.
First, we use our 7-round distinguisher to recognize 5-round Speck32/64 with
the input difference (0x8000,0x804a) (the most likely difference to appear three
rounds after the input difference (0x0040,0x0000)). The training was done on
107 instances for 20 epochs with cyclic learning rates. Then we trained the dis-
tinguisher obtained to recognize 8-round Speck32/64 with the input difference
(0x0040, 0x0000) by processing 107 freshly generated instances for 10 epochs
with a learning rate of 10−4. Finally, the learning rate was dropped to 10−5

after processing another 107 fresh instances for 10 epochs. For the 9-round dis-
tinguisher, the overall training method is the same as the 8-round distinguisher.
We used an 8-round distinguisher to identify 5-round Speck32/64 with the in-
put difference (0x850a,0x9520) (the most likely difference to appear four rounds
after the input difference (0x0040,0x0000).

12

3.3 Result

Test Accuracy. We summarize the experimental results of 6-, 7-, 8-, 9-round
differential-neural distinguisher in Table 4 compared to [8,6]. The 6-, 7-round dis-
tinguishers were trained using the basic training method, while the 8-, 9-round
distinguishers were trained using the staged training method. The role of the
differential-neural distinguisher is to distinguish between ciphertext and random
numbers, so if the accuracy is greater than 0.5, it is considered effective. The
“N/m” column is the result of accuracy using N/m and M/m instances as the
training and test sets, respectively. The “N” column results from accuracy using
N and M instances as the training and test sets, respectively. From Table 4, the
accuracy of our differential-neural distinguisher was significantly improved both
the “N/m” column and the “N” column compared to [8,6]. Under the two exper-
iments, the accuracy of the distinguisher is almost same except for m = 16. This
exception is caused by model overfitting, see Remark 2 for details. Furthermore,
even using N instance data in [8,6], the improvement in the accuracy of the
distinguisher is very small. Moreover, we obtained a 9-round differential-neural
distinguisher while [8,6] cannot be trained.

Table 4. Summary of distinguish accuracy on Speck32/64 using different number of
instances

R Gohr [8]
m=2 m=4

Chen [6] N/m N Chen [6] N/m N

6 0.788 0.8613 0.8771 0.8773 0.931 0.9468 0.9497
7 0.614 0.6393 0.6663 0.6649 0.6861 0.7194 0.7283
8 0.514 - - - - 0.5347 0.5428

R Gohr [8]
m=8 m=16

Chen [6] N/m N Chen [6] N/m N

6 0.788 0.9562 0.9868 0.9895 0.9802 0.9969 0.9992
7 0.614 0.7074 0.7991 0.8106 0.6694 0.8759 0.8963
8 0.514 - 0.5412 0.5590 - 0.5597 0.5854
9 - - - 0.5024 - - 0.5050

Remark 2. Why do we train a differential-neural distinguisher with two different
numbers of data? For the sake of fairness of comparison, we must use N/m and
M/m instances as training test and test set (refer to Remark 1). From Fig. 8a,
we can see that the difference between training accuracy and test accuracy is
relatively large. Therefore, using N/m and M/m instances as a training and test
sets to train a neural network will suffer from overfitting, especially when the
number of rounds r and the group size m is large. However, training accuracy
and test accuracy are almost equal in Fig. 8b. Therefore, using N and M in-
stances as training set and test set to train the differential-neural distinguisher

13

can avoid overfitting, speed up the model convergence and improve the model
accuracy to a certain extent. Due to the overfitting phenomenon, the accuracy
of the distinguisher will be low, which also affects our training of more rounds of
differential-neural distinguisher. Therefore, we train the differential-neural dis-
tinguisher for various reasons using two different numbers of data.

0 1 2 3 4 5 6 7 8 9 10111213141516171819
0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

r = 7 and m = 2

train acc
test acc

0 1 2 3 4 5 6 7 8 9 10111213141516171819
0.50

0.55

0.60

0.65

0.70

0.75

r = 7 and m = 4
train acc
test acc

0 1 2 3 4 5 6 7 8 9 10111213141516171819
0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85
r = 7 and m = 8

train acc
test acc

0 1 2 3 4 5 6 7 8 9 10111213141516171819
0.5

0.6

0.7

0.8

0.9

r = 7 and m = 16
train acc
test acc

(a) Using N/m instances

0 1 2 3 4 5 6 7 8 9 10111213141516171819
0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

r = 7 and m = 2
train acc
test acc

0 1 2 3 4 5 6 7 8 9 10111213141516171819
0.50

0.55

0.60

0.65

0.70

0.75
r = 7 and m = 4

train acc
test acc

0 1 2 3 4 5 6 7 8 9 10111213141516171819
0.50

0.55

0.60

0.65

0.70

0.75

0.80

r = 7 and m = 8

train acc
test acc

0 1 2 3 4 5 6 7 8 9 10111213141516171819
0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90
r = 7 and m = 16

train acc
test acc

(b) Using N instances

Fig. 8. Overfitting with different number of instances.

Wrong Key Response Profile. In [8], an improved key recovery attack was
presented by using Upper Confidence Bound and Bayesian Optimization. More
specifically, the key search policy depends on an important observation that
the expected response of the differential-neural distinguisher upon wrong-key
decryption will rely on the bitwise difference between the guessed key and the
real key. The wrong key response profile, which can be precomputed, is used to
recommend new candidate values for the key from previous candidate values by
minimizing the weighted Euclidean distance as the criteria in a BayesianKey-
Search Algorithm. It recommends a set of subkeys and provides their scores
without exhaustively performing trial decryption. If the Hamming distance be-
tween the correct and wrong keys is small, the distinguisher will score high; oth-
erwise, the score will be low. From Fig. 9, we know the score of our differential-
neural distinguisher is higher than that of Gohr’s distinguisher when the Ham-
ming distance of key difference is small. When the Hamming distance is large, we
can obtain a lower score. In other words, our distinguisher makes the difference
between the score of the correct key and the wrong key even more significant,
i.e., our differential-neural distinguisher is better.

4 From Differential-Neural Distinguisher to Key
Recovery Attack

4.1 Generation of Same Distributed Data

During the training of the differential-neural distinguisher, we take multiple-
ciphertext pairs as input to the neural network. The data in multiple-ciphertext

14

0 16384 32768 49152 65536
Difference to real key

0.46

0.48

0.50

0.52

M
ea

n
Re

sp
on

se

Gohr

0 16384 32768 49152 65536
Difference to real key

0.35

0.40

0.45

0.50

0.55

0.60

0.65

M
ea

n
Re

sp
on

se

m = 4

0 16384 32768 49152 65536
Difference to real key

0.30

0.40

0.50

0.60

0.70

M
ea

n
Re

sp
on

se

m = 8

0 16384 32768 49152 65536
Difference to real key

0.20

0.30

0.40

0.50

0.60

0.70

0.80

M
ea

n
Re

sp
on

se

m = 16

Fig. 9. Wrong key response profile for 7-round Speck32/64 using N instances

pair has the same distribution, i.e., if it is a positive example, the data in
multiple-ciphertext pair is encrypted by multiple-plaintext pair satisfying a fixed
difference; if it is a negative example, the data in multiple-ciphertext pair is
encrypted by a randomly generated multiple-plaintext pair. After obtaining a
differential-neural distinguisher, we can launch a key recovery attack. To in-
crease the number of rounds for the key recovery attack, we add a differential
path before the differential-neural distinguisher. However, the differential path
is probabilistic. Even if multiple-plaintext pairs have the same difference, after
propagation through the differential path, the difference of output could not
be the same. Therefore, the initial input(multiple-plaintext pairs) cannot be
randomly generated during a key recovery attack. Neutral bits can resolve the
problem of obtaining ciphertext that satisfies the same distribution, ensuring
that we can launch key recovery attacks. We randomly generate a plaintext pair
that meets the initial difference and use log2 m neutral bits to obtain m plaintext
pairs. Moreover, to choose neutral bits with high probability, the optimal choice
is to use neutral bits with probability one. The m ciphertext pairs obtained by
propagation of the m plaintext pairs through the differential path have the same
differential ∆P with a substantial probability. After r rounds of encryption, the
obtained multiple-ciphertext pairs have the same distribution.

15

4.2 Experimental Environment and Complexity Calculation

The Core of the key recovery attack was examined using a server with multiple
GeForce GTX 2080-Ti GPUs. When a fast graphics card is used, the performance
of our implementation is not limited by the speed of neural network evaluation
but by the total number of iterations on the ciphertext structures. We count a
key guess as successful if the subkey of the last round was guessed correctly and
guessed subkey of the second round is at the hamming distance at most two of
the real key.

Data Complexity. The data complexity of the experiment is calculated by the
formula nkg×nb×nct×m×2. During a key recovery attack, the differential path
used may need to satisfy some conditions involving the key. nkg indicates the
number of times to guess the key involved in the condition The data complexity
is calculated as theoretical values. nb = 2|NB|, where |NB| instead of the number
of neutral bits. nct represents the number of ciphertext structures used, and m
is the number of ciphertext pairs in each instance. In the actual experiment,
when the accuracy of the differential-neural distinguisher is high, the key can be
recovered quickly and successfully. Not all the data is used, so the actual data
complexity is lower than the theoretical.

Time Complexity. In [8], a highly optimized implementation of Speck32/64
could perform brute force key search at a speed of about 228 key per second per
core. A correct key guess takes an average of 500 seconds, and the single success
rate of a key recovery attack of 11-round Speck32/64 is 52.1%. Adjusting for
the empirically measured success rate of the key recovery attack, about 1000
seconds is needed to execute the key recovery attack until a correct key is found
on a single core. This yields an estimated computational attack complexity of
228×1000 ≈ 238 Speck32/64 encryptions until a solution is found. The formula
in [8] for calculating the time complexity does not take into account the success
rate of the key recovery attack. To better evaluate the effect of key recovery
attacks, we give a new calculation method and update the previous result ac-
cordingly. To reduce the experimental error, we conduct multiple key recovery at-
tacks, take the average running time rt as the running time of an experiment, and
divide the number of successful key recovery experiments by the total number of
experiments as the success rate sr of a single key recovery attack. We calculate
how many experiments need to be performed to ensure that at least one experi-
ment is successful. When the overall success rate is 99%, we consider the experi-
ment to be successful, and the number of experiments ne is: 1−(1−sr)ne = 0.99,
i.e., log1−sr 0.01. For 11-round Speck32/64 in [8], this yields an estimated com-
putational attack complexity of 228×500×log1−0.52 0.01 ≈ 239.6, and the average
running time is 225s in 300 trials in our equipment. To facilitate comparison, the
time complexity of experiment in [8] is taken as the benchmark for conversion.
The new time complexity calculation formula:

nkg × 228 × rt× 500/225× log1−sr 0.01.

16

5 Key Recovery Attack on Round-Reduced SPECK32/64

This section shows that our differential-neural distinguisher can improve the
performance of key recovery attacks. Our attack follows the same framework
in [8,2], only replacing the differential-neural distinguisher trained using N in-
stances. For a more detailed procedure, refer to Appendix B. We count a key
guess as successful if the last round key was guessed correctly and the second
round key is at the hamming distance at most two of the real key. In the follow-
ing, we significantly decreased the time complexity of 11-, 12-, and 13-round key
recovery attacks for Speck32/64 by employing an improved differential-neural
distinguisher.

5.1 Key Recovery Attack on 11-round SPECK32/64

To demonstrate the superiority of our differential-neural distinguisher, we con-
ducted a comparative experiment with Gohr’s differential-neural distinguisher.
To ensure the fairness of the comparative experiment, except for the difference
of differential-neural distinguisher, other parameters should be the same.

Experiment 1: The components of key recovery attack ASpeck11R of 11-
round Speck32/64 are shown as follows.

1. 2-round differential path (0x0211, 0x0a04)→ (0x0040, 0x0000);
2. neutral bits set NBS are {[20], [21], [22], [14], [15], [23], [7], [30], [0], [8]}; gener-

alized neutral bits of generating multiple-ciphertext pairs: the log2 m neutral
bit with the largest probability from NBS; generalized neutral bits of com-
bined response of differential-neural distinguisher: 6 remaining neutral bits
from NBS (refer to Appendix A.1 Table 7).

3. 7-round differential-neural distinguisher NDSpeck7R under difference (0x0040,
0x0000) and its wrong key response profiles NDSpeck7R ·µ and NDSpeck7R · δ.

4. 6-round differential-neural distinguisher NDSpeck6R under difference (0x0040,
0x0000) and its wrong key response profiles NDSpeck6R ·µ and NDSpeck6R · δ.

The parameters for recovery the last two subkeys are denoted as follows.

1. nkg: the number of possible values for the bits of k0.
2. ncts: the number of ciphertext structures.
3. nb: the number of ciphertext pairs in each ciphertext structures, i.e., 2|NB|.
4. nit: the total number of iterations on the ciphertext structures.
5. c1 and c2: the cutoffs with respect to the scores of the recommended last

subkey and second to last subkey, respectively.
6. nbyit1, ncand1 and nbyit2, ncand2: the number of iterations and number of key

candidates within each iteration in the BayesianKeySearch Algorithm for
guessing each of the last and the second to last subkeys, respectively.

In the experimental verification of the attack ASpeck11R, the 7-round and
6-round differential-neural distinguisher was provided in Sect. 3. Concrete pa-
rameters used in our 11-round key recovery attack ASpeck11R are listed as follows.

17

nb = 26 nct = 100/200 nit = 500
c1 = 8, c2 = 10 nbyit1 = nbyit2 = 5 ncand1 = ncand2 = 32

In Experiment 1, several experiments were done for different values of m
and nct, and the specific experimental results are shown in Table 5. The data
complexity is nb × nct ×m × 2. The core of these attacks were examined in 35
trials. The time complexity is 228 × rt× 500/225× log1−sr 0.01.

Table 5. Experiment result of 11-round key recovery attack

m Conf.

nct = 100 nct = 200

Succ. Run
Data Time

Succ. Run
Data Time

Rate Time Rate Time

Gohr [8] 1

1+2+7+1

52.1% 225 213.64 239.61 80% 194 214.64 238.27

Our

2 57.14% 178 214.64 239.07 97.14% 158 215.64 236.82

4 77.14% 165 215.64 238.16 94.28% 137 216.64 236.93

8 85.71% 234 216.64 238.26 91.43% 243 217.64 237.98

16 77.14% 464 217.64 239.65 94.29% 137 218.64 236.93

From Table 5, we know that the success rate is significantly improved, and
the time complexity is decreased compared to the result in [8]. This phenomenon
shows that our distinguisher can very accurately determine whether the guessed
key is correct, thereby speeding up the process of key recovery attacks. Although
the data complexity of key recovery attacks increases in this case, the time
complexity is generally lower than [8].

In addition, the success rate of the key recovery attack can still be signifi-
cantly improved when nct is 200. Because the probability of 2-round difference
path (0x0211, 0x0a04)→ (0x0040, 0x0000) is 2−6, the average number of correct
ciphertext structures are only 1.56 when nct is 100. Therefore, correct cipher-
text structures maybe not exist, so the success rate of the key recovery attack is
low. Thus, two aspects affect the success rate of key recovery attacks. First, the
accuracy of the differential-neural distinguisher should be higher. Second, there
should be enough plaintext pairs to ensure that after differential propagation, a
certain number of ciphertext pairs still meets the distribution of input data of
the neural network.

5.2 Key Recovery Attack on 12-round SPECK32/64

To verify the performance of our 8-round differential-neural distinguisher, the
following experiments were carried out in this subsection.

Experiment 2: The components of key recovery attack ASpeck12R
I of 12-

round Speck32/64 are shown as follows.

18

1. 2-round differential path (0x0211, 0x0a04)→ (0x0040, 0x0000);
2. generalized neutral bits of generating multiple-ciphertext pairs: {[9, 16], [2, 11,

25], [6, 29]}; generalized neutral bits of combined response of differential-neural
distinguisher:{[20], [21], [22], [14], [15], [23], [30], [7], [0]} (refer to Appendix A.1
Table 8).

3. 8-round differential-neural distinguisher NDSpeck8R under difference (0x0040,
0x0000) and its wrong key response profiles NDSpeck8R ·µ and NDSpeck8R · δ.

4. 7-round differential-neural distinguisher NDSpeck7R under difference (0x0040,
0x0000) and its wrong key response profiles NDSpeck7R ·µ and NDSpeck7R · δ.

In the experimental verification of the attackASpeck12R
I , the 8-round and 7-round

differential-neural distinguisher was provided in Sect. 3. Concrete parameters
used in our 12-round key recovery attack ASpeck12R

I are listed as follows.

m = 8 nb = 29 ncts = 500 nit = 2000
c1 = 3 c2 = 8 nbyit1 = nbyit2 = 5 ncand1 = ncand2 = 32

The data complexity is nb×nct×m×2 = 29×500×8×2 = 222.97 plaintexts.
The core of the attack was examined in 70 trials. There are 25 succeeded trials,
the average run times of every trails in our server is 4785s. Thus, we count the
success rate is 25/70, which is 0.357. The time complexity is 228 × rt× 500/225×
log1−sr 0.01 = 228 × 4785× 500/225× log1−0.357 0.01 = 244.75.

In pursuit of better key recovery attack, we considered combining the 3-round
differential path and the more powerful 7-round differential-neural distinguisher.
But in order for the 3-round differential path to hold, 3 conditions need to be
met (refer to Appendix A.1 Table 9). Because of the extended one round on top
of these 3-round differentials, these conditions cannot be fulfilled by chosen data
without guessing corresponding bits of k0. To make the experimental verification
economic, we tested the core of the attack with the three conditions being fulfilled
only. Because the prepended differential path are valid to keys fulfilling k2[12] ̸=
k2[11], thus we tested for these valid keys only, and the presented attack works
for 263 keys.

Experiment 3: The components of key recovery attack ASpeck12R
II of 12-

round Speck32/64 are shown as follows.

1. 3-round differential path (0x8020, 0x4101)→ (0x0040, 0x0000);
2. generalized neutral bits of generating multiple-ciphertext pairs: {[22], [20],

[13]}; generalized neutral bits of combined response of differential-neural dis-
tinguisher:{[12, 19], [14, 21], [6, 29], [30], [0, 8, 31], [5, 28]} (refer to Appendix A.1
Table 10).

3. 7-round differential-neural distinguisher NDSpeck7R under difference (0x0040,
0x0000) and its wrong key response profiles NDSpeck7R ·µ and NDSpeck7R · δ.

4. 6-round differential-neural distinguisher NDSpeck6R under difference (0x0040,
0x0000) and its wrong key response profiles NDSpeck6R ·µ and NDSpeck6R · δ.

In the experimental verification of the attack ASpeck12R
II , the 8-round and 7-

round differential-neural distinguisher was provided in Sect. 3. At the beginning,
we guess three key bits of k0, that is k0[7], k0[5] ⊕ k0[14], and k0[15] ⊕ k0[8]

19

because the 3-round differential(refer to Appendix A.1 Table 9) and one key bits
k0[12]⊕ k0[5] for employing one conditional neutral bits (refer to Appendix A.1
Table 10). Thus, nkg is 16, and there are 24 loops. Concrete parameters used in
our 12-round key recovery attack ASpeck12R

II are listed as follows.

nkg = 24 m = 8 nb = 26 ncts = 211

nit = 212 c1 = 7, c2 = 10 nbyit1 = nbyit2 = 5 ncand1 = ncand2 = 32

The data complexity is nkg × nb × nct ×m × 2 = 24 × 26 × 211 × 8 × 2 =
225 plaintexts. The core of the attack was examined in 98 trials. There are 98
succeeded trials, the average run times of every trails in our server is 577s. Thus,
we count the success rate is 100%. The time complexity is 228 × rt × 500/225 =
228 × 577× 500/225 = 242.32.

It is the first time that a key recovery attack has a 100 percent success rate.
When we do not use the weak key and modify the ciphertext structure to 212,
the success rate of the key recovery attack is only 51%. The main reason for the
reduced success rate is that no correct ciphertext structures exists. Notably, if
we exclude the absence of the correct ciphertext structure, our success rate is
still 100%. This shows that our differential-neural distinguisher has a powerful
ability to distinguish between ciphertext and random numbers.

5.3 Key Recovery Attack on 13-round SPECK32/64

Combining a 3-round differential path with an 8-round differential-neural distin-
guisher, we examine how far a practical attack can go on 13-round Speck32/64
in this subsection.

Experiment 4: The components of key recovery attack ASpeck13R of 13-
round Speck32/64 are shown as follows.

1. 3-round differential path (0x8020, 0x4101)→ (0x0040, 0x0000);
2. generalized neutral bits of generating multiple-ciphertext pairs: {[22], [20],

[13]}; generalized neutral bits of combined response of differential-neural
distinguisher:{[5, 28], [15, 24], [12, 19], [6, 29], [6, 11, 12, 18], [4, 27, 29], [14, 21], [0,
8, 31], [30]} (refer to Appendix A.1 Table 10).

3. 8-round differential-neural distinguisher NDSpeck8R under difference (0x0040,
0x0000) and its wrong key response profiles NDSpeck8R ·µ and NDSpeck8R · δ.

4. 7-round differential-neural distinguisher NDSpeck7R under difference (0x0040,
0x0000) and its wrong key response profiles NDSpeck7R ·µ and NDSpeck7R · δ.

In the experimental verification of the attack ASpeck13R, the 8-round and 7-
round differential-neural distinguisher was provided in Sect. 3. At the beginning,
we guess three key bits of k0, that is k0[7], k0[5] ⊕ k0[14], and k0[15] ⊕ k0[8]
because the 3-round differential(refer to Appendix A.1 Table 9) and four key bits
k0[12]⊕ k0[5], k0[1], k0[2]⊕ k0[11], k0[11]⊕ k0[4] for employing four conditional
neutral bits (refer to Appendix A.1 Table 10). Thus, nkg is 27, and there are 27

loops. Concrete parameters used in our 13-round key recovery attack ASpeck13R

are listed as follows.

20

nkg = 27 m = 8 nb = 29 ncts = 211

nit = 212 c1 = 5, c2 = −86 nbyit1 = nbyit2 = 5 ncand1 = ncand2 = 32

To make the experimental verification economic, we tested the core of the
attack with the seven conditions being fulfilled only, including three conditions
for confirming the 3-round differential path (refer to Appendix A.1 Table 9) and
four conditions for increasing probability of neutral bits (refer to Appendix A.1
Table 10). Because the prepended differential path is valid when the keys fulfilling
k2[12] ̸= k2[11], we tested for these valid keys only, and the presented attack
works for 263 keys.

The data complexity is nkg × nb × nct ×m × 2 = 27 × 29 × 211 × 8 × 2 =
231 plaintexts. The core of the attack was examined in 35 trials. There are 17
succeeded trials, the average run times of every trails in our server is 13690s.
Thus, we count the success rate is 17/35, which is 0.4857. The time complexity is
nkg×228×rt×500/225×log1−sr 0.01 = 27×228×13690×500/225×log1−0.4857 0.01 =
252.68.

5.4 Using Multiple Differential paths

Bao et al. found that the output of the differential path matters to the differential-
neural distinguisher, but not the input difference. Hence, more than one differen-
tial path can be prepended to a differential-neural distinguisher, as long as they
share the same output difference. Multiple such differential paths can share some
neutral bits. Using such differential paths might enable data reuse, thus slightly
reducing data complexity. Bao launched the R1+3+7+1-round key recovery attack
using four sub-optimal differential paths and the R1+3+8+1-round key recovery
attack using two sub-optimal differential paths (refer to Appendix A.1 Table 9).
However, we only use one differential path in our experiment when we launch
the key recovery attack by the prepended 3-round differential path on top of the
differential-neural distinguisher. When using two sub-optimal differential paths
to generate multiple-ciphertext pairs, we only need to use two conditions. So,
we can halve both the data complexity and the time complexity of the 12-round
and 13-round key recovery attacks in the ideal situation.

6 Differential-Neural Distinguishers on Round-Reduced
SIMON32/64

In CRYPTO’19, Gohr used the Residual Network to train differential-neural
distinguisher for Speck32/64. Bao et al. modified the structure of Gohr’s neural
network using the Dense Network and Squeeze-and-Excitation Network, training
9-, 10-, and 11-round differential-neural distinguishers for Simon32/64 [2]. This
section presents our differential-neural distinguisher on Simon32/64. Compared
to Bao’s results in [2], we improve the accuracy of the 9-, 10-, 11-round and
obtain a 12-round differential-neural distinguishers for Simon32/64.

21

6.1 Network Structure

In Sect. 3, we detailed the network structure of the differential-neural distin-
guisher for the Speck32/64 but found that the trained differential-neural dis-
tinguisher model had a deficiency. In the network structure of Speck32/64, the
prediction head uses four fully connected layers, resulting in too many model pa-
rameters, making the model training time too long and the model file too large.
When designing the network structure of Simon32/64, we solved this problem by
modifying the structure of the prediction head and replacing the fully connected
layer with a GlobalAveragePooling layer. The network structure of Simon32/64
is similar to Speck32/64 overall, with only minor modifications based on the
round function of Simon32/64. The overall framework of our neural network for
training the differential-neural distinguisher for Simon32/64 is shown in Fig 10.

Output

Module 2

Module 2

Module 1

Input

F (·)

f(·)

Input [m,ω, 2.5L
ω

]

Module 1

Conv, 1× 1, Nf Conv, 2× 2, Nf Conv, 8× 8, Nf

Concatenate, 3Nf

BN

Relu

ks = ks + 2

Conv, ks × ks, 3Nf

BN

Relu

Conv, ks × ks, 3Nf

BN

Relu

⊕

Module 2

Output
GlobalAveragePooling

Sigmod

Fig. 10. The network structure of our distinguisher model for Simon32/64

Input Representation. Based on the round function, (yr−1⊕y′r−1) can be got
without knowing the (r−1)-th subkey for Simon32/64. Thus, the neural network
accept data of the form (xr, x

′
r, yr, y

′
r, yr−1⊕y′r−1). The input layer has m group

ciphertext pairs consisting of 2.5L units likewise arranged in a [m,ω, 2.5L
ω] array,

where L = 32, ω = 16 for Simon32/64.

22

Initial Convolution. The input layer is connected to the initial convolutional
layer, which comprises three convolution layers with Nf channels of kernel sizes
1, 2, and 8. The three convolution layers are concatenated at the channel dimen-
sion. Batch normalization is applied to the output of concatenate layers. Finally,
rectifier nonlinearity is applied to the output of batch normalization, and the
resulting [m,ω, 3Nf] matrix is passed to the Convolutional Blocks layer.

Convolutional Blocks. The convolutional blocks layer of the differential-
neural distinguisher model is the same as Speck32/64, except that the shape of
the input is different.

Prediction Head. The prediction head consists of a GlobalAveragePooling
layer and an output unit using a Sigmoid activation function. The structure of
the prediction head is shown in Fig. 11.

GlobalAveragePooling

Sigmod

Fig. 11. The prediction head

6.2 The Training of Differential-Neural Distinguisher

Training using the basic scheme. We used two different numbers of training
and test sets to train the neural network. The first situation of experiments uses
N/m and M/m instances as the training and test set. The second situation of
experiments uses N and M instances as the training set and test set. For training
parameters, refer to the basic training scheme of Speck32/64 in Sect. 3. By
modifying the network structure and using the basic training scheme, we trained
the differential-neural distinguisher to recognize output pairs of 9-, 10-, 11-round
Simon32/64 with the input difference (0x0000, 0x0040).

Training using the Staged Training Method. A 12-round differential-
neural distinguisher of Simon32/64 was trained using several pre-training stages.
First, we use our 11-round distinguisher to recognize 9-round Speck32/64 with
the input difference (0x0440,0x0100) (the most likely difference to appear three
rounds after the input difference (0x0000,0x0040). The training was done on 107

instances for 20 epochs with cyclic learning rates. Then we trained the distin-
guisher so obtained to recognize 12-round Speck32/64 with the input difference
(0x0000, 0x0040) by processing 107 freshly generated instances for ten epochs
with a learning rate of 10−4. Finally, the learning rate was dropped to 10−5

after processing another 107 fresh instances each.

23

6.3 Result

Test Accuracy. We summarize the experimental results of 9-, 10-, 11-,12-round
of the differential-neural distinguisher in Table 6. The 9-, 10-, and 11-round dis-
tinguisher was trained using the basic training method. A 12-round distinguisher
was derived from an 11-round distinguisher using the staged training method.
We also use two different numbers of instances to train the differential-neural dis-
tinguisher for Simon32/64, both for the fair comparison of the experiment and
to solve the problem of overfitting (refer to Appendix C). Compared to Bao’s, the
accuracy of our differential-neural distinguisher was significantly improved when
the group size m took different values. Also, we trained the differential-neural
distinguisher for one more round.

Table 6. Summary accuracy of distinguisher on Simon32/64 using different number
of instances

R Bao [2]
m=2 m=4 m=8 m=16

N/m N N/m N N/m N N/m N

9 0.6532 0.7251 0.7240 0.7991 0.8095 0.8774 0.8958 0.9344 0.9630
10 0.5629 0.5917 0.5907 0.6239 0.6339 0.6716 0.6900 0.7230 0.7608
11 0.5173 0.5193 0.5240 0.5343 0.5387 0.5441 0.5591 0.5339 0.5878
12 - - - - - - 0.5152 - 0.5225

Accuracy fluctuations. The neural network designed for Speck32/64 to train
the differential-neural distinguisher uses multiple fully connected layers as pre-
diction heads, resulting in too many model parameters, making the training
time too long. To address this issue, we use a GlobalAveragePooling layer in-
stead of the fully connected layer as the prediction head in the neural network of
the Simon32/64. Using different prediction heads does not significantly impact
the accuracy of the differential-neural distinguisher, but it will lead to different
fluctuations in the accuracy. In order to study whether the reason for the fluc-
tuation of the accuracy of the distinguisher is the difference in the prediction
heads, we used a different number of instances and prediction heads to conduct
multiple sets of comparative experiments. From Fig. 12a and 12b, when using
N/m instances to train the differential-neural distinguisher, the accuracy of the
distinguisher using the fully connected layer fluctuates less, while the accuracy
of the distinguisher using the GlobalAveragePooling layer fluctuates more. From
Fig. 12c and 12d, when using N instances to train the differential-neural distin-
guisher, as well as using different prediction heads and still observe fluctuations
in accuracy.

Wrong Key Response Profile. The wrong key response profile for our 9-,
10-, 11-, 12-round differential-neural distinguisher is shown in Fig. 13. As we
can see from the figure, when the Hamming Distance between the correct key

24

0 1 2 3 4 5 6 7 8 9 10111213141516171819

0.52

0.54

0.56

0.58

0.60
r = 10 and m = 2

train acc
test acc

0 1 2 3 4 5 6 7 8 9 10111213141516171819
0.56

0.58

0.60

0.62

0.64

0.66

r = 10 and m = 4
train acc
test acc

0 1 2 3 4 5 6 7 8 9 10111213141516171819

0.55

0.60

0.65

0.70

0.75

0.80
r = 10 and m = 8

train acc
test acc

0 1 2 3 4 5 6 7 8 9 10111213141516171819
0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90
r = 10 and m = 16

train acc
test acc

(a) Using N/m instances and
GlobalAveragePooling layer

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0.50

0.55

0.60

0.65

0.70

0.75

r = 10 and m = 8
train acc
test acc

(b) Using N/m instances and
Dense layer0 1 2 3 4 5 6 7 8 9 10111213141516171819

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.60

r = 10 and m = 2

train acc
test acc

0 1 2 3 4 5 6 7 8 9 10111213141516171819
0.58

0.59

0.60

0.61

0.62

0.63

0.64

r = 10 and m = 4

train acc
test acc

0 1 2 3 4 5 6 7 8 9 10111213141516171819
0.525

0.550

0.575

0.600

0.625

0.650

0.675

0.700
r = 10 and m = 8

train acc
test acc

0 1 2 3 4 5 6 7 8 9 10111213141516171819

0.730

0.735

0.740

0.745

0.750

0.755

0.760

0.765

r = 10 and m = 16
train acc
test acc

(c) Using N instances and
GlobalAveragePooling layer

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0.63

0.64

0.65

0.66

0.67

0.68

0.69

r = 10 and m = 8

train acc
test acc

(d) UsingN instances and Dense
layer

Fig. 12. Using different number of instances with different prediction head

and the wrong key is smaller, the score of the differential-neural distinguisher
is higher, and vice versa, it is smaller. This makes it easier to judge how far
the guessed key deviates from the correct key, which shows that our differential-
neural distinguisher can effectively distinguish between ciphertext and random
numbers.

7 Key Recovery Attack on Round-Reduced SIMON32/64

Under a similar framework to the key recovery attack on Speck32/64, the
trained differential-neural distinguishers can be prepended with a differential
path to perform key recovery attacks for Simon32/64. We improved 16-round
and devised the first 17-round differential-neural-distinguisher-based key recov-
ery attacks on Simon32/64. Sadly, due to the low accuracy of the 12-round
differential-neural distinguisher and the lack of a sufficient number of general-
ized neutral bits, we were unable to successfully carry out the 18-round key
recovery attack for Simon32/64.

7.1 Key Recovery Attack on 16-round SIMON32/64

Experiment 5: The components of key recovery attack ASimon16R of 16-round
Simon32/64 are shown as follows.

25

0 16384 32768 49152 65536
Difference to real key

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

M
ea

n
Re

sp
on

se

r = 9

0 16384 32768 49152 65536
Difference to real key

0.4000

0.4500

0.5000

0.5500

0.6000

M
ea

n
Re

sp
on

se

r = 10

0 16384 32768 49152 65536
Difference to real key

0.4950

0.5000

0.5050

0.5100

0.5150

0.5200

0.5250

M
ea

n
Re

sp
on

se

r = 11

0 16384 32768 49152 65536
Difference to real key

0.4985

0.4990

0.4995

0.5000

0.5005

0.5010

0.5015

M
ea

n
Re

sp
on

se

r = 12

Fig. 13. Wrong key response profile for Simon32/64 using N instances where m = 8

1. 3-round differential path (0x0440, 0x1000)→ (0x0000, 0x0040);
2. generalized neutral bits of generating multiple-ciphertext pairs: {[2], [3], [4]};

generalized neutral bits of combined response of differential-neural distinguis-
her:{[6], [8], [9], [10], [18], [22], [0, 24], [12, 26]} (refer to Appendix A.2 Table 11).

3. 11-round differential-neural distinguisher NDSimon11R under difference (0x00
00, 0x0040) and wrong key response profilesNDSimon11R ·µ andNDSimon11R ·δ.

4. 10-round differential-neural distinguisher NDSimon10R under difference (0x00
00, 0x0040) and wrong key response profilesNDSimon10R ·µ andNDSimon10R ·δ.

In the experimental verification of the attack ASimon16R, the 11-round and 10-
round differential-neural distinguisher was provided in Sect. 6. The goal is to
recover the last two subkeys k15 and k14. At the beginning, we guess two key bits
of k0, that is k0[1] and k0[3], because of the 3-round differential, the conditions
for correct pairs are x1[1] = x′

1[1] = 0 and x1[3] = x′
1[3] = 0. Thus, nkg is 22.

Concrete parameters used in our 16-round key recovery attack ASimon16R are
listed as follows.

nkg = 22 m = 8 nb = 28 ncts = 28

nit = 29 c1 = 35, c2 = 70 nbyit1 = nbyit2 = 5 ncand1 = ncand2 = 32

The data complexity is nkg ×m × ncts × nb × 2 = 222 plaintexts. In total,
25 trials are run, and there are 18 successful trials, for which the returned last
two subkeys have a hamming distance to real subkeys of at most two. Thus,
the success rate is computed as 18/25, i.e., 0.72. The average running time of

26

the experiment is 1168.7s in 25 trials. The time complexity is nkg × 228 × rt ×
500/225× log1−sr 0.01 = 22 × 228 × 1168× 500/225× log1−0.72 0.01 = 243.19.

7.2 Key Recovery Attack on 17-round SIMON32/64

Experiment 6: The components of key recovery attack ASimon17R of 17-round
Simon32/64 are shown as follows.

1. 4-round differential path (0x1000, 0x4440)→ (0x0000, 0x0040);
2. generalized neutral bits of generating multiple-ciphertext pairs: {[2], [6], [12,

26]}; generalized neutral bits of combined response of differential-neural dis-
tinguisher:{[10, 14, 28]} and five neutral bits conditioned on x[1, 15], x[15, 13],
x[13, 11], x[11, 9], x[9, 7] (refer to Appendix A.2 Table 12).

3. 11-round differential-neural distinguisher NDSimon11R under difference (0x00
00, 0x0040) and wrong key response profiles NDSimon11R ·µ and NDSimon11R ·δ.

4. 10-round differential-neural distinguisher NDSimon10R under difference (0x00
00, 0x0040) and wrong key response profiles NDSimon10R ·µ and NDSimon10R ·δ.

In the experimental verification of the attack ASimon17R, the 11-round and 10-
round differential-neural distinguisher was provided in Sect. 6. The goal is to
recover the last two subkeys k16 and k15. At the beginning, we guess two key bits
of k0, that is k0[3] and k0[5], because of the 4-round differential, the conditions
for correct pairs are x1[5] = x′

1[5] = 0 and x1[3] = x′
1[3] = 0; and six key bits

k0[1], k0[15], k0[13], k0[11], k0[9], k0[7] for employing five conditional neutral bits
(refer to Appendix A.2 Table 12). Thus, nkg is 22+6. Concrete parameters used
in our 17-round key recovery attack ASimon17R are listed as follows.

nkg = 28 m = 8 nb = 26 ncts = 210

nit = 211 c1 = 15, c2 = 65 nbyit1 = nbyit2 = 5 ncand1 = ncand2 = 32

The data complexity is nkg ×m × ncts × nb × 2 = 228 plaintexts. In total,
50 trials are running, and there are 4 successful trials, for which the returned
last two subkeys have a hamming distance to real subkeys of at most two. Thus,
the success rate is computed as 4/50, i.e., 0.08. The average running time of the
experiment is 3356.4s in 50 trials. The time complexity is nkg×228×rt×500/225×
log1−sr 0.01 = 28 × 228 × 3356× 500/225× log1−0.08 0.01 = 254.65.

8 Conclusion and Discussions

In this paper, we designed a new network structure to train differential-neural
distinguisher, which uses multiple-parallel convolution layers to capture the fea-
tures of different dimensions of cryptographic algorithms. As a result, we im-
proved the accuracy and obtained the distinguisher with more rounds. Focusing
on the problem under the same data distribution, we propose a solution using
neutral bits with probability one to generate multiple-plaintext pairs. A combina-
tion of improvements has increased success rates and decreased time complexity
for key recovery attacks.

27

Limit to More Rounds of Key Recovery Attack. The differential-neural
cryptanalysis mainly consists of the differential path and differential-neural dis-
tinguisher. Generalized neutral bits with higher probabilistic and the same differ-
ential-neural distinguisher was applied in [2], getting an improved result than [8]
on key recovery attack. Now, we have improved the performance of the differential-
neural distinguisher and enhanced the key recovery attack. However, it does not
reach the full potential of differential-neural distinguisher. On the one hand,
for key recovery attacks of 13 rounds Speck32/64, we only used differential-
neural distinguisher when m = 8, where the accuracy of distinguisher is only
55.9%. When m = 16, the accuracy of our 8-round distinguisher reaches 58.53%.
However, we do not have enough generalized neutral bits to launch a key re-
covery attack when m = 16. On the other hand, the accuracy of our 12-round
differential-neural distinguisher of Simon32/64 is lower, and we cannot use it for
a key recovery attack. Therefore, we need to make in-depth use of the nature of
the structure of the cryptographic algorithm and the more effective structure of
the neural network to improve the accuracy of differential-neural distinguisher
and search for more generalized neutral bits. More rounds of key recovery attacks
can be launched by combining the two aspects.

References

1. AlKhzaimi, H., Lauridsen, M.M.: Cryptanalysis of the SIMON family of block
ciphers. IACR Cryptol. ePrint Arch. p. 543 (2013), http://eprint.iacr.org/

2013/543

2. Bao, Z., Guo, J., Liu, M., Ma, L., Tu, Y.: Conditional differential-neural crypt-
analysis. IACR Cryptol. ePrint Arch. p. 719 (2021)

3. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The
SIMON and SPECK families of lightweight block ciphers. IACR Cryptol. ePrint
Arch. p. 404 (2013), http://eprint.iacr.org/2013/404

4. Benamira, A., Gérault, D., Peyrin, T., Tan, Q.Q.: A deeper look at machine
learning-based cryptanalysis. Lecture Notes in Computer Science, vol. 12696, pp.
805–835. Springer (2021). https://doi.org/10.1007/978-3-030-77870-5 28

5. Biham, E., Chen, R.: Near-collisions of SHA-0. In: CRYPTO. Lecture Notes in
Computer Science, vol. 3152, pp. 290–305. Springer (2004)

6. Chen, Y., Yu, H.: A new neural distinguisher model considering derived features
from multiple ciphertext pairs. IACR Cryptol. ePrint Arch. p. 310 (2021), https:
//eprint.iacr.org/2021/310

7. Dinur, I.: Improved differential cryptanalysis of round-reduced speck. In: Selected
Areas in Cryptography. Lecture Notes in Computer Science, vol. 8781, pp. 147–164.
Springer (2014)

8. Gohr, A.: Improving attacks on round-reduced speck32/64 using deep learning.
In: CRYPTO (2). Lecture Notes in Computer Science, vol. 11693, pp. 150–179.
Springer (2019)

9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR. pp. 770–778. IEEE Computer Society (2016)

10. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: 2018 IEEE Confer-
ence on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City,

28

http://eprint.iacr.org/2013/543
http://eprint.iacr.org/2013/543
http://eprint.iacr.org/2013/404
https://doi.org/10.1007/978-3-030-77870-5_28
https://eprint.iacr.org/2021/310
https://eprint.iacr.org/2021/310

UT, USA, June 18-22, 2018. pp. 7132–7141. Computer Vision Foundation / IEEE
Computer Society (2018). https://doi.org/10.1109/CVPR.2018.00745

11. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely con-
nected convolutional networks. pp. 2261–2269. IEEE Computer Society (2017).
https://doi.org/10.1109/CVPR.2017.243

12. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: ICLR
(Poster) (2015)

13. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.E., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. pp. 1–9. IEEE
Computer Society (2015). https://doi.org/10.1109/CVPR.2015.7298594

29

https://doi.org/10.1109/CVPR.2018.00745
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/CVPR.2015.7298594

A Used Generalized Neutral Bit-sets for Key Recovery
Attack

A.1 Generalized Neural Bit-sets for SPECK32/64

Neutral bit-sets (NB) Used in [8] for 2-round Classical Differential: The signal
from distinguisher will rather weak. Gohr boosts it by using |NB| probabilistic
neutral bits to create from each plaintext pair. A plaintext structure consisting
of 2|NB| plaintext pairs that are expected to pass the initial 2 round classical
differential together. Concretely, neutral bits are probabilistically neutral are
summarized as follows.

Table 7. (Probabilistic) single-bit neutral bit for 2-round Classical Differential
(0x0211, 0x0a04) → (0x0040, 0x0000) of Speck32/64 [8]

NB Pr. NB Pr. NB Pr. NB Pr. NB Pr. NB Pr. NB Pr.

[20] 1 [21] 1 [22] 1 [14] 0.965 [15] 0.938 [23] 0.812 [7] 0.806
[30] 0.809 [0] 0.763 [8] 0.664 [24] 0.649 [31] 0.644 [1] 0.574

Simultaneous-neutral bit-sets (SNBS) used in [2] for 2-round classical differ-
ential: for the prepended 2-round differential on top of differential-neural distin-
guisher, Bao et al. [2] can experimentally obtain 3 complete NB and 2 SNBS using
exhaustive search. Concretely, for the 2-round differential(0x0211, 0x0a04) →
(0x0040, 0x0000), bit and bit-sets that are (probabilistically) (simultaneous-
)neutral are summarized in Table 8.

Table 8. (Probabilistic) SNBS for 2-round Classical Differential (0x0211, 0x0a04) →
(0x0040, 0x0000) of Speck32/64 [2]

NB Pr. NB Pr. NB Pr. NB Pr. NB Pr. NB Pr. NB Pr.

[20] 1 [21] 1 [22] 1 [9,16] 1 [2,11,25] 1 [14] 0.965 [15] 0.938
[6,29] 0.91 [23] 0.812 [30] 0.809 [7] 0.806 [0] 0.754 [11,27] 0.736 [8] 0.664

Conditional simultaneous-neutral bit-sets (CSNBS) used in [2] for 3-round
classical differential: Bao et al. found that there are the three sufficient conditions
for a pair (x, y), (x′, y′) to conform the 3-round differential (0x8020, 0x4101)→
(0x0040, 0x0000), summarized in Table 9. Concretely, for the 3-round four sub-
optimal differential, bit and bit-sets that are (probabilistically) conditional simul-
taneous-neutral are summarized in Table 10.

30

Table 9. Three sufficient conditions conform the 3-round sub-optimal differential [2]

(0x8020, 0x4101)
↓

(0x0040, 0x0000)

(0x8060, 0x4101)
↓

(0x0040, 0x0000)

(0x8021, 0x4101)
↓

(0x0040, 0x0000)

(0x8061, 0x4101)
↓

(0x0040, 0x0000)

x[7] = 0
x[5]⊕ y[14] = 1
x[15]⊕ y[8] = 0

x[7] = 0
x[5]⊕ y[14] = 0
x[15]⊕ y[8] = 0

x[7] = 0
x[5]⊕ y[14] = 1
x[15]⊕ y[8] = 1

x[7] = 0
x[5]⊕ y[14] = 0
x[15]⊕ y[8] = 1

Table 10. (Probabilistic) (simultaneous-)neutral bit-sets for 3-round differen-
tial (0x8020, 0x4101) → (0x0040, 0x0000), (0x8060, 0x4101) → (0x0040, 0x0000),
(0x8021, 0x4101) → (0x0040, 0x0000), (0x8061, 0x4101) → (0x0040, 0x0000) of
Speck32/ 64 [2]

(8020,4101) (8060,4101) (8021,4101) (8061,4101)
Bit-set Pre. Post. Pre. Post. Pre. Post. Pre. Post. Condition

[22] 0.995 1.000 0.995 1.000 0.996 1.000 0.997 1.000 -
[20] 0.986 1.000 0.997 1.000 0.996 1.000 0.995 1.000 -
[13] 0.986 1.000 0.989 1.000 0.988 1.000 0.992 1.000 -
[12,19] 0.986 1.000 0.995 1.000 0.993 1.000 0.986 1.000 -
[14,21] 0.855 0.860 0.874 0.871 0.881 0.873 0.881 0.876 -
[6,29] 0.901 0.902 0.898 0.893 0.721 0.706 0.721 0.723 -
[30] 0.803 0.818 0.818 0.860 0.442 0.442 0.412 0.407 -
[0,8,31] 0.855 0.859 0.858 0.881 0.000 0.000 0.000 0.000 -
[5,28] 0.495 1.000 0.495 1.000 0.481 1.000 0.469 1.000 x[12]⊕ y[5] = 1
[15,24] 0.482 1.000 0.542 1.000 0.498 1.000 0.496 1.000 y[1] = 0
[6,11,12,18] 0.445 0.903 0.456 0.906 0.333 0.701 0.382 0.726 x[2]⊕ y[11] = 0
[4,27,29] 0.672 0.916 0.648 0.905 0.535 0.736 0.536 0.718 x[11]⊕ y[4] = 1

A.2 Generalized Neural Bit-sets for SIMON32/64

For an input pair ((x, y), (x′, y′)) to conform the 3-round differential (0x0440, 0x1000)
→ (0x0000, 0x0040), one has conditions that{

x[1] = x′[1] = 0

x[3] = x′[3] = 0

Table 11. NB and SNBS for 3-round Classical Differential (0x0440, 0x1000) →
(0x0000, 0x0040) of Simon32/64 [2]

[2] [3] [4] [6] [8] [9]

[10] [18] [22] [0,24] [12,26]

31

For an input pair ((x, y), (x′, y′)) to conform the 4-round differential (0x1000,
0x4440)→ (0x0000, 0x0040), one has conditions that{

x[5] = x′[5] = 0

x[3] = x′[3] = 0

Table 12. CSNBS for 4-round Classical Differential (0x1000, 0x4440) →
(0x0040, 0x0000) of Simon32/64 [2]

Bit-set C. Bit-set C. Bit-set C. Bit-set C. Bit-set C.

x[1, 15] x[15, 13] x[13, 11] x[11, 9] x[9, 7]

[24,10] 00 [22,8] 00 [20] 00 [18,4] 00 [16,8] 00

[24,10,9] 10 [22,8,7] 10 [20,5] 10 [18,4,3] 10 [16,8,1] 10

[24,10,0] 01 [22,8,14] 01 [20,12] 01 [18,4,10] 01 [16] 01

[24,10,9,0] 11 [22,8,7,14] 11 [20,12,5] 11 [18,4,10] 11 [16,1] 11

C.: Condition on x[i, j], e.g., x[i, j] = 10 means x[i] = 1 and x[j] = 0.

32

B procedure of (1 + s+ r + 1)-round key recovery attack

The attack procedure is as follows.

1. Initialize variables Gbestkey ← (None, None), Gbestscore ← −∞.
2. For each of the nkg guessed key bits, on which the conditions depend,

(a) Generate ncts random data with difference ∆P , and satisfying the con-
ditions being conforming pairs (refer to Appendix A).

(b) Using ncts random data and log2 m neutral bit with probability one to
generate ncts data pairs. Every data pairs have m data.

(c) From the ncts random data pairs, generate ncts structures using nb gen-
eralized neutral bit.

(d) Decrypt one round using zero as the subkey for all data in the structures
and obtain ncts plaintext structure.

(e) Query for the ciphertexts under (1+ s+ r+1)-round Speck or Simon of
the ncts × nb × 2 plaintext structures, thus obtain ncts ciphertext struc-
tures, denoted by {C1, . . . , Cncts}.

(f) Initialize an array ωmax and an array nvisit to record the highest distin-
guisher score obtained so far and the number of visits have received in
the last subkey search for the ciphertext structures.

(g) Initialize variables bestscore ← −∞, bestkey ← (None, None), bestpos ←
None to record the best score, the corresponding best recommended val-
ues for the two subkeys obtained among all ciphertext structures and the
index of this ciphertext structures.

(h) For j from 1 to nit:
i. Compute the priority of each of the ciphertext structures as follows:

si = ωmaxi + α ·
√
log2 j/nvisiti, for i ∈ {1, . . . , ncts}, and α =

√
ncts;

The formula of priority is designed according to a general method
in reinforcement learning for achieving automatic exploitation ver-
sus exploration trade-off based on Upper Confidence Bounds. It is
motivated to focus the key search on the most promising ciphertext
structures [8].

ii. Pick the ciphertext structure with the highest priority score for fur-
ther processing in this j-th iteration, denote it by C, and its index by
idx, nvisitidx ← nvisitidx + 1.

iii. Run BayesianKeySearch Algorithm [8] with C, the r-round diffe-
rential-neural distinguisher NDr and its wrong key response profile
NDr · µ and NDr · σ, ncand1, and nbyit1 as input parameters; obtain
the output, that is a list L1 of nbyit1×ncand1 candidate values for the
last subkey and their scores, i.e., L1 = {(g1i, v1i) : i ∈ {1, . . . , nbyit1×
ncand1}}.

iv. Find the maximum v1max among v1i in L1, if v1max > ωmaxidx,
ωmaxidx ← v1max.

v. For each of recommended last subkey g1i ∈ L1, if the score v1i > c1,
A. Descrypt the ciphertext in C using the g1i by one round and obtain

the ciphertext structures C′ of (1+s+r)-round Speck or Simon.

33

B. Run BayesianKeySearch Algorithm with C′ , the differential-
neural distinguisher NDr−1 and its wrong key response profile
NDr−1 ·µ and NDr−1 ·σ, ncand2, and nbyit2 as input parameters;
obtain the output, that is a list L2 of nbyit2 × ncand2 candidate
values for the last subkey and their scores, i.e., L2 = {(g2i, v2i) :
i ∈ {1, . . . , nbyit2 × ncand2}}.

C. Find the maximum v2i and the corresponding g2i in L2, and de-
note them by v2max and g2max.

D. If v2max > bestscore, update bestscore ← v2max, bestkey ← (g1i, g2max),
bestpos ← idx.

vi. If bestscore > c2, go to Step 2i.
(i) Make a final improvement using VerifierSearch [8] on the value of

bestkey by examining whether the scores of a set of keys obtained by
changing at most 2 bits on top of the incrementally updated bestkey could
be improved recursively until no improvement obtained, update bestscore
to the best score in the final improvement; If bestscore > Gbestscore,
update Gbestscore ← bestscore, Gbestkey ← bestkey.

3. Return Gbestkey, Gbestscore.

34

C Overfitting in training differential-neural distinguisher
with N/m and N instances

C.1 train differential-neural distinguisher for 6-round SPECK32/64

0 1 2 3 4 5 6 7 8 9 10111213141516171819

0.80

0.82

0.84

0.86

0.88

r = 6 and m = 2

train acc
test acc

0 1 2 3 4 5 6 7 8 9 10111213141516171819
0.84

0.86

0.88

0.90

0.92

0.94

0.96

r = 6 and m = 4

train acc
test acc

0 1 2 3 4 5 6 7 8 9 10111213141516171819

0.80

0.85

0.90

0.95

1.00
r = 6 and m = 8

train acc
test acc

0 1 2 3 4 5 6 7 8 9 10111213141516171819
0.5

0.6

0.7

0.8

0.9

1.0
r = 6 and m = 16

train acc
test acc

Fig. 14. Train differential-neural distinguisher with N/m instances for 6-round
Speck32/64

0 1 2 3 4 5 6 7 8 9 10111213141516171819

0.76

0.78

0.80

0.82

0.84

0.86

0.88

r = 6 and m = 2

train acc
test acc

0 1 2 3 4 5 6 7 8 9 10111213141516171819

0.6

0.7

0.8

0.9

r = 6 and m = 4

train acc
test acc

0 1 2 3 4 5 6 7 8 9 10111213141516171819

0.80

0.85

0.90

0.95

1.00
r = 6 and m = 8

train acc
test acc

0 1 2 3 4 5 6 7 8 9 10111213141516171819

0.988

0.990

0.992

0.994

0.996

0.998

r = 6 and m = 16

train acc
test acc

Fig. 15. Train differential-neural distinguisher with N instances for 6-round
Speck32/64

35

C.2 train differential-neural distinguisher for 7-round SPECK32/64

0 1 2 3 4 5 6 7 8 9 10111213141516171819
0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

r = 7 and m = 2

train acc
test acc

0 1 2 3 4 5 6 7 8 9 10111213141516171819
0.50

0.55

0.60

0.65

0.70

0.75

r = 7 and m = 4
train acc
test acc

0 1 2 3 4 5 6 7 8 9 10111213141516171819
0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85
r = 7 and m = 8

train acc
test acc

0 1 2 3 4 5 6 7 8 9 10111213141516171819
0.5

0.6

0.7

0.8

0.9

r = 7 and m = 16
train acc
test acc

Fig. 16. Train differential-neural distinguisher with N/m instances for 7-round
Speck32/64

0 1 2 3 4 5 6 7 8 9 10111213141516171819
0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

r = 7 and m = 2
train acc
test acc

0 1 2 3 4 5 6 7 8 9 10111213141516171819
0.50

0.55

0.60

0.65

0.70

0.75
r = 7 and m = 4

train acc
test acc

0 1 2 3 4 5 6 7 8 9 10111213141516171819
0.50

0.55

0.60

0.65

0.70

0.75

0.80

r = 7 and m = 8

train acc
test acc

0 1 2 3 4 5 6 7 8 9 10111213141516171819
0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90
r = 7 and m = 16

train acc
test acc

Fig. 17. Train differential-neural distinguisher with N instances for 7-round
Speck32/64

36

C.3 train differential-neural distinguisher for 9-round SIMON32/64

0 1 2 3 4 5 6 7 8 9 10111213141516171819

0.68

0.69

0.70

0.71

0.72

0.73

r = 9 and m = 2
train acc
test acc

0 1 2 3 4 5 6 7 8 9 10111213141516171819
0.55

0.60

0.65

0.70

0.75

0.80

0.85
r = 9 and m = 4

train acc
test acc

0 1 2 3 4 5 6 7 8 9 10111213141516171819
0.5

0.6

0.7

0.8

0.9

r = 9 and m = 8

train acc
test acc

0 1 2 3 4 5 6 7 8 9 10111213141516171819
0.5

0.6

0.7

0.8

0.9

1.0
r = 9 and m = 16

train acc
test acc

Fig. 18. Train differential-neural distinguisher with N/m instances for 9-round Si-
mon32/64

0 1 2 3 4 5 6 7 8 9 10111213141516171819
0.58

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74
r = 9 and m = 2

train acc
test acc

0 1 2 3 4 5 6 7 8 9 10111213141516171819

0.625

0.650

0.675

0.700

0.725

0.750

0.775

0.800

0.825
r = 9 and m = 4

train acc
test acc

0 1 2 3 4 5 6 7 8 9 10111213141516171819

0.60

0.65

0.70

0.75

0.80

0.85

0.90
r = 9 and m = 8

train acc
test acc

0 1 2 3 4 5 6 7 8 9 10111213141516171819

0.89

0.90

0.91

0.92

0.93

0.94

0.95

0.96

r = 9 and m = 16

train acc
test acc

Fig. 19. Train differential-neural distinguisher with N instances for 9-round Si-
mon32/64

37

C.4 train differential-neural distinguisher for 10-round SIMON32/64

0 1 2 3 4 5 6 7 8 9 10111213141516171819

0.52

0.54

0.56

0.58

0.60
r = 10 and m = 2

train acc
test acc

0 1 2 3 4 5 6 7 8 9 10111213141516171819
0.56

0.58

0.60

0.62

0.64

0.66

r = 10 and m = 4
train acc
test acc

0 1 2 3 4 5 6 7 8 9 10111213141516171819

0.55

0.60

0.65

0.70

0.75

0.80
r = 10 and m = 8

train acc
test acc

0 1 2 3 4 5 6 7 8 9 10111213141516171819
0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90
r = 10 and m = 16

train acc
test acc

Fig. 20. Train differential-neural distinguisher with N/m instances for 10-round Si-
mon32/64

0 1 2 3 4 5 6 7 8 9 10111213141516171819
0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.60

r = 10 and m = 2

train acc
test acc

0 1 2 3 4 5 6 7 8 9 10111213141516171819
0.58

0.59

0.60

0.61

0.62

0.63

0.64

r = 10 and m = 4

train acc
test acc

0 1 2 3 4 5 6 7 8 9 10111213141516171819
0.525

0.550

0.575

0.600

0.625

0.650

0.675

0.700
r = 10 and m = 8

train acc
test acc

0 1 2 3 4 5 6 7 8 9 10111213141516171819

0.730

0.735

0.740

0.745

0.750

0.755

0.760

0.765

r = 10 and m = 16
train acc
test acc

Fig. 21. Train differential-neural distinguisher with N instances for 10-round Si-
mon32/64

38

C.5 train differential-neural distinguisher for 11-round SIMON32/64

0 1 2 3 4 5 6 7 8 9 10111213141516171819

0.500

0.505

0.510

0.515

0.520

0.525

r = 11 and m = 2
train acc
test acc

0 1 2 3 4 5 6 7 8 9 10111213141516171819
0.500

0.505

0.510

0.515

0.520

0.525

0.530

0.535

0.540

r = 11 and m = 4

train acc
test acc

0 1 2 3 4 5 6 7 8 9 10111213141516171819
0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64
r = 11 and m = 8

train acc
test acc

0 1 2 3 4 5 6 7 8 9 10111213141516171819

0.50

0.55

0.60

0.65

0.70

0.75

r = 11 and m = 16
train acc
test acc

Fig. 22. Train differential-neural distinguisher with N/m instances for 11-round Si-
mon32/64

0 1 2 3 4 5 6 7 8 9 10111213141516171819
0.500

0.505

0.510

0.515

0.520

0.525

0.530
r = 11 and m = 2

train acc
test acc

0 1 2 3 4 5 6 7 8 9 10111213141516171819
0.500

0.505

0.510

0.515

0.520

0.525

0.530

0.535

0.540

r = 11 and m = 4

train acc
test acc

0 1 2 3 4 5 6 7 8 9 10111213141516171819
0.50

0.51

0.52

0.53

0.54

0.55

0.56

r = 11 and m = 8

train acc
test acc

0 1 2 3 4 5 6 7 8 9 10111213141516171819
0.50

0.52

0.54

0.56

0.58

r = 11 and m = 16

train acc
test acc

Fig. 23. Train differential-neural distinguisher with N instances for 11-round Si-
mon32/64

39

	Improving Differential-Neural Cryptanalysis with Inception

