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Abstract. In CRYPTO’19, Gohr proposed a new cryptanalysis method9

by building the differential-neural distinguisher with a neural network.10

Gohr combined a differential-neural distinguisher with a classical differ-11

ential, achieving a 12-round (out of 22) key recovery attack on Speck32/12

64. Bao et al. improved the classical differential by generalizing the13

concept of neutral bits, leading to key recovery attacks for 13-round14

Speck32/64 and 16-round (out of 32) Simon32/64.15

Our primary objective is to enhance the differential-neural distinguisher’s16

capabilities by applying deep learning techniques, focusing on handling17

more rounds and improving accuracy. We adopt a design inspired by the18

Inception Block in GoogLeNet to effectively capture information across19

multiple dimensions, employing multiple parallel convolutional layers20

with different kernel sizes positioned before the Residual Network. In the21

case of Speck32/64, our efforts yield accuracy improvements in rounds 6,22

7, and 8, enabling the successful training of a 9-round differential-neural23

distinguisher. As for Simon32/64, we develop a differential-neural distin-24

guisher capable of effectively handling 12 rounds while achieving note-25

worthy accuracy enhancements in rounds 9, 10, and 11. Additionally, we26

utilize neutral bits to ensure the required data distribution for launching27

a successful key recovery attack using multiple-ciphertext pairs as input28

for the neural network.29

Combining these various advancements allows us to considerably re-30

duce the time and data complexity of key recovery attacks on 13-round31

Speck32/64. In particular, we achieve a successful 14-round key recovery32

attack by exhaustively guessing a 1-round subkey, marking a significant33

milestone in differential-neural cryptanalysis. In the case of Simon32/64,34

we accomplish a groundbreaking 17-round key recovery attack for the35

first time and reduce the time complexity of the 16-round key recovery36

attack.37

Keywords: Differential-Neural Distinguisher · Inception · Speck · Si-38

mon· Key Recovery Attack39
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1 Introduction40

In CRYPTO 2019, Gohr [12] proposed the idea of differential-neural cryptanaly-41

sis. The differential-neural distinguisher, trained by the neural network, is intro-42

duced as the underlying distinguisher. Bayesian search speeds up key recovery43

attacks compared to classical differential cryptanalysis. The differential-neural44

distinguisher can distinguish whether ciphertexts are encrypted by plaintexts45

that satisfy a specific input difference or by random numbers. However, the cur-46

rent differential-neural distinguisher seems only effective for limited rounds of47

ciphertext. Therefore, a short high-probability classical differential ∆S → ∆P48

is prepended before the differential-neural distinguisher to increase the number49

of rounds for key recovery attacks.50

Gohr [12] showed that the Residual Network [14] could capture the non-51

randomness of the distribution of output pairs when the input pairs of round-52

reduced Speck32/64 meet a specific difference. As a result, 6, 7, and 8-round53

differential-neural distinguishers were trained, and 11, 12-round key recovery54

attacks for Speck32/64 were achieved by combining a 2-round classical differ-55

ential. There may be two directions to improve differential-neural cryptanalysis.56

One is to use a longer classical differential prepended on top of the differential-57

neural distinguisher. Bao et al. [3] generalized the concept of neutral bits and58

searched for (conditional) simultaneous neutral bit-set with a higher probabil-59

ity for more rounds of the classical differential. Thus, Bao et al. devised a new60

13-round key recovery attack for Speck32/64 with the same differential-neural61

distinguisher proposed in [12]. The other is to study the effective differential-62

neural distinguisher with more rounds. Chen et al. [9] and Benamira [5] et al.63

almost simultaneously proposed the method of using multiple-ciphertext pairs64

instead of single-ciphertext pairs (in Gohr’s work) as input of the neural network,65

both improved the accuracy of the 6, 7-round differential-neural distinguisher of66

Speck32/64. Bao et al. [3] used the Dense Network [16] and the Squeeze-and-67

Excitation Network [15] to train differential-neural distinguisher, obtained 9, 10,68

and 11-round differential-neural distinguisher and devised a 16-round key recov-69

ery attack for Simon32/64. To obtain more information from the ciphertext, we70

made some improvements for differential-neural cryptanalysis, as listed below.71

Our contribution. The contributions of this work include the following:72

- We have developed an enhanced differential-neural distinguisher by modifying73

the network architecture. To achieve this, we have introduced an Inception74

module composed of multiple-parallel convolutional layers before the Residual75

Network. Incorporating the Inception module is to capture a broader range76

of information across various dimensions within the ciphertext pairs. We have77

also made some adjustments to the convolutional kernel size according to the78

round functions of the cipher. As a result of these improvements, we have79

observed enhanced accuracy in the 6, 7, and 8-round differential-neural distin-80

guishers, and we have trained a new 9-round differential-neural distinguisher81

for Speck32/64. Similarly, we have improved the accuracy of the 9, 10, and 11-82
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round distinguishers and developed a new 12-round differential-neural distin-83

guisher for Simon32/64. Tables 2 and 5 present the results of the differential-84

neural distinguisher for Speck32/64 and Simon32/64, respectively.85

- To execute a key recovery attack successfully, each ciphertext pair in multiple-86

ciphertext pairs acquired through classical differentials must exhibit the same87

difference. Taking inspiration from Gohr’s work on the combined response of88

the differential-neural distinguisher, we leverage neutral bits with a probabil-89

ity of one to generate multiple-plaintext pairs. Subsequently, we encrypt these90

multiple-plaintext pairs, resulting in the generation of multiple-ciphertext pairs.91

92

- We successfully implemented several key recovery attacks using the improved93

differential-neural distinguisher with a classical differential. We reduce the time94

and data complexity of the key recovery attack for the 13-round Speck32/64.95

In particular, we successfully implemented a 14-round key recovery attack96

by exhaustively guessing a 1-round subkey, marking the first instance of a 14-97

round key recovery attack in differential-neural cryptanalysis. For Simon32/64,98

we can implement a 17-round key recovery attack using deep learning methods99

for the first time. In addition, we reduce the time complexity of the 16-round100

key recovery attack. Detailed experimental comparisons are shown in Table 1.101

Source codes are available in https://github.com/CryptAnalystDesigner/102

NeuralDistingsuisherWithInception.git.103

Organization. Section 2 gives the preliminary on the distinguisher model, the104

key recovery attack process, and generalized neutral bits. Section 3 introduces the105

training method and the result for Speck32/64. We introduce data generation,106

experimental environment, and complexity calculation in Section 4. Section 5107

presents the details of our 13, 14-round key recovery attacks for Speck32/64.108

Section 6 introduces the training method and the result for Simon32/64. Section109

7 exhibits the details of our 16, 17-round key recovery attacks for Simon32/64.110

We conclude the paper in Section 8.111

2 Preliminary112

2.1 Brief Description of Speck32/64 and Simon32/64113

Let ω be the word size (the number of bits of a word), and the block size can be114

denoted as L bits, where L = 2ω. Let (xr, yr) be the left and right branches of a115

state after encryption of r rounds, ki the subkey of i rounds. Denote the bitwise116

XOR by ⊕, the addition modulo 2ω by ⊞, the bitwise AND by ·, the bitwise117

right rotation by ≫, and the bitwise left rotation by ≪.118

Speck32/64 and Simon32/64 are members in the lightweight block cipher
family Speck and Simon [4]. The round function (out of 22) of Speck32/64
takes a 16-bit subkey ki and a state consisting of two 16-bit words (xi, yi) as

https://github.com/CryptAnalystDesigner/NeuralDistingsuisherWithInception.git
https://github.com/CryptAnalystDesigner/NeuralDistingsuisherWithInception.git
https://github.com/CryptAnalystDesigner/NeuralDistingsuisherWithInception.git
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Table 1. Summary of key recovery attacks on Speck32/64 and Simon32/64

Target r Dist. Conf. Time Data Succ.
Rate

Key
Space Ref.

Speck
32/64

13

DD 1+8+4 257 225 − 264 [10]
DD 1+8+2+2 250.16 231.13 63% 264 [8]
DD 2+8+3 255.58 224.26 − 264 [11]
ND 1+3+8+1 248.67+2.4⋆ 229 82% 263 [3]

ND 1+3+8+1 246.05+2.92/241.44+2.92† 227 21% 263 Sect.5.2

14

DD 1+9+4 262.47 230.47 − 264 [18]
DD 1+9+2+2 260.99 231.75 63% 264 [8]
DD 2+9+3 260.58 230.26 76% 264 [11]

ND 1+3+8+1+1 262.05+2.92/257.44+2.92† 227 21% 263 Sect.5.3

Simon
32/64

16
DD 2+12+2 226.48 229.48 62% 264 [2]
ND 1+3+11+1 241.81+2.4⋆ 221 49% 264 [3]

ND 1+3+11+1 240.12+2.92/233.60+2.92† 222 80% 264 Sect.7.1

17 ND 1+4+11+1 247.25+2.92/240.64+2.92† 228 9% 264 Sect.7.2

18 DD 1+13+4 246.00 231.2 63% 264 [1]
19 DD 2+13+4 234.00 231.5 - 264 [7]
21 DD 4+13+4 255.25 231.0 - 264 [20]

1. DD: differential distinguisher; ND: differential-neural distinguisher; −: Not avail-
able;

2. ⋆: 2.4 is the ratio of the time required for key recovery attacks using CPU and
GPU in [3]; †: 2.92 is the ratio in our device.

3. We list two values of time complexity, TND and TDD. The TND is compared with
ND; the TDD is compared with DD. For the reason for using two values of time
complexity, please refer to Section 4.3.

input. The state of the next round (xi+1, yi+1) is computed as follows:

xi+1 := ((xi ≫ 7)⊞ yi)⊕ ki, yi+1 := (yi ≪ 2)⊕ xi+1.

The round function (out of 32) of Simon32/64 takes a 16-bit subkey ki and
a state consisting of two 16-bit words (xi, yi) as input. The next round state
(xi+1, yi+1) is computed as follows:

xi+1 := (xi ≪ 1) · (xi ≪ 8)⊕ (xi ≪ 2)⊕ yi ⊕ ki, yi+1 := xi.

2.2 The Model of Differential-Neural Distinguisher for Speck32/64119

The model of differential-neural distinguisher in [12,5,9] is almost identical ex-120

cept for the input. Thus, we introduce these models collectively. The differential-121

neural distinguisher is a supervised model that distinguishes whether ciphertexts122
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are encrypted by plaintexts that satisfy a specific input difference or by random123

numbers. Given m plaintext pairs {(Pi,0, Pi,1), i ∈ [0,m− 1]} and target cipher124

Speck32/64, the resulting ciphertext pairs {(Ci,0, Ci,1), i ∈ [0,m − 1]} are re-125

garded as an instance. Note that m = 1 in [12], m ∈ {1, 5, 10, 50, 100} in [5], and126

m ∈ {2, 4, 8, 16} in [9]. Each instance will be attached with a label Y :127

Y =

{
1, if Pi,0 ⊕ Pi,1 = ∆, i ∈ [0,m− 1]
0, if Pi,0 ⊕ Pi,1 ̸= ∆, i ∈ [0,m− 1]

where ∆ = (0x0040, 0x0000). If Y is 1, this instance is sampled from the tar-128

get distribution and defined as a positive example. Otherwise, this instance is129

sampled from a uniform distribution and defined as a negative example. A large130

number of instances need to be trained in neural networks. when the neural131

network can obtain a stable accuracy higher than 0.5 on a test set, it can effec-132

tively distinguish whether ciphertexts are encrypted by plaintexts that satisfy a133

specific input difference or by random numbers. The model of differential-neural134

distinguisher can be described as:135

Pr(Y = 1 | X0, . . . , Xm−1) = F (f(X0), · · · , f(Xm−1), φ(f(X0), · · · , f(Xm−1)))
Xi = (Ci,0, Ci,1), i ∈ [0,m− 1]

Pr(Y = 1 | X0, · · · , Xm−1) ∈ [0, 1]

where f(Xi) represents the basic features of a ciphertext pair Xi, and φ(·) is the136

derived features, and F (·) is the new posterior probability estimation function.137

The network architecture for training differential-neural distinguisher con-138

tains several modules described in Fig. 1. The input layer of the neural network139

consisting of multiple-ciphertext pairs is arranged in a [m,ω, 2L
ω ] array, where140

L represents the block size of the target cipher, and ω is the size of a basic141

unit. For example, L is 32 and ω is 16 for Speck32/64. Module 1 is the initial142

with-1 convolution layer that intends to make learning bit-sliced functions such143

as bitwise addition. Module 2 is the Residual Network. Conv stands for one-144

dimensional convolution Conv1D with Nf = 32 filters, and ks = 3 is the size145

of the convolution kernel. The number of module 2 is determined by the exper-146

iment. The prediction head comprises modules 3, 4, and the output layer. FC147

is a fully connected layer that has d1 = 64 or d2 = 64 neurons. BN is the batch148

normalization layer. Relu and Sigmoid are two different activation functions.149

2.3 Inception Network150

Generally speaking, the safest way to improve network performance is to increase151

the width and depth of the network, which also has side effects. First, a deeper152

and wider network often means many parameters. When the amount of data is153

small, the trained network is easy to overfit, and when the depth of the network154

is deep, it is difficult to train and easy to cause greater errors. The two side155

effects of disappearance restrict the development of deep and wide convolutional156

neural networks, and the Inception network solves these two problems very well.157
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Output

Module 4

Module 3

Module 2

Module 2

Module 1

Input

F (·)

f(·)
Module 1

Conv, 1, Nf

BN

Relu

Module 2

Conv, ks, Nf

BN

Relu

Conv, ks, Nf

BN

Relu

⊕

Module 3

FC, d1

BN

Relu

Module 4

FC, d2

BN

Relu

Output

FC, 1

Sigmod

Fig. 1. The network architecture for training differential-neural distinguisher

Previous layer

1×1 convolutions 3×3 convolutions 5×5 convolutions 3×3 max pooling

Filter Concatenation

Fig. 2. Inception Module

One of the modules in the Inception network architecture is as follows in158

Fig. 2: in the same layer, there are 1×1, 3×3, 5×5 convolution and pooling159

layers, respectively, and the convolution operation and the pooling layer are160

pooled using filters. Padding is used in all operations to ensure that the output161

is the same size and the output results are all integrated after these operations.162

The feature of this module is that in the same layer, different features of the163

input of the previous layer are collected by using the above-mentioned filters of164

different sizes and performing pooling operations. This increases the width of the165

network and uses these different-sized filters and pooling operations to extract166

different features from the previous layer.167
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2.4 Differential-neural Cryptanalysis168

Gohr [12] proposed a framework for differential neural cryptanalysis dedicated to169

recovering the last two rounds of subkeys for Speck. We decrypt the ciphertext170

using guessed subkey and use the differential-neural distinguisher to estimate171

the distance between the guessed subkey and the real key.172

(PT0, PT1)

D
ec

k
ey

=
0

(S0, S1)

S0 ⊕ S1 = ∆S

(P0, P1)

P0 ⊕ P1 = ∆P

︸ ︷︷ ︸
s-round classical differential

ND

︸︷︷︸(r − 1)-round distinguisher attack

ND

︸ ︷︷ ︸
r-round distinguisher attack

1-round

key
guessing

(CT0, CT1)

1-round

key
guessing

Fig. 3. (1 + s+ r + 1)-round key recovery attack of differential-neural cryptanalysis

The overall processing of a key recovery attack based on the differential-173

neural distinguisher is shown in Fig. 3, where ND is the trained differential-174

neural distinguisher, (PT0, PT1) is plaintext pairs and (CT0, CT1) is ciphertext175

pairs. The (1 + s + r + 1)-round key recovery attack employs a r-round main176

and (r − 1)-round helper differential-neural distinguisher trained using input177

pairs with difference ∆P . A short s-round classical differential (∆S → ∆P )178

with probability denoted by 2−p is prepended on top of the differential-neural179

distinguisher to increase the number of the rounds of key recovery attack. To180

ensure the existence of data pairs satisfying the difference ∆P after s-round181

encryption, about c · 2p (denoted by ncts) data pairs with the difference ∆S182

are required according to the probability of difference propagation, where c is183

a small constant. Neutral bits of the s-round classical differential is used to ex-184

pand each data pair to a structure of nb data pairs. The ncts structures of the185

data pairs are decrypted in one round with 0 as the subkey to get the plain-186

text structures because the nonlinear operation occurs before the addition of187

keys for Speck and Simon. All plaintext structures are encrypted to obtain the188

corresponding ciphertext structures. Each ciphertext structure is used to select189

a candidate of the subkey by the r-round main differential-neural distinguisher190

based on a variant of Bayesian optimization. The usage of ciphertext structures191

is also highly selective by using a standard exploration-exploitation technique,192

namely Upper Confidence Bounds. Each ciphertext structure is assigned a pri-193

ority according to the score of the recommended subkeys and the visited times.194

Without exhaustively performing trail decryption, the key search policy depends195

on the expected response of the differential-neural distinguisher upon wrong-key196

decryption. The wrong key response profile is to recommend new candidate val-197

ues from previous candidate values while minimizing the weighted Euclidean198

distance in a BayesianKeySearch Algorithm [12].199
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2.5 Combined Response and Neutral Bits200

As the number of encryption rounds increases, the accuracy of the differential-201

neural distinguisher decreases. To reduce the impact of the misjudgment of the202

single prediction of the distinguisher, Gohr used the combined response of the203

differential-neural distinguisher in ciphertext structure with the same distribu-204

tion, which can be satisfied by neutral bits [12]. The primary notion of neutral205

bits can be interpreted as follows.206

Definition 1 (Neutral bits of a differential, NB[6]). Let ∆in → ∆out be207

a differential with input difference ∆in and output difference ∆out of a r-round208

encryption F r. Let (P, P ′) be the input pair and (C,C ′ | C = F r(P ), C ′ =209

F r(P ′)) be the output pair, where P ⊕ P ′ = ∆in. If C ⊕ C ′ = ∆out, (P, P ′) is210

said to be conforming the differential ∆in → ∆out. Let e0, e1, . . . , en−1 be the211

standard basis of Fn
2 . Let i be an index of a bit (starting from 0). The i-th bit212

is a neutral bit for the differential ∆in → ∆out, if (P ⊕ ei, P
′ ⊕ ei) is also a213

confirming pair for any confirming pair (P, P ′).214

The responses vi,k from the differential-neural distinguisher on ciphertext215

pairs in the ciphertext structure (of size nb) are combined using the Formula216

sk =
∑nb−1

i=0 log2

(
vi,k

1−vi,k

)
and sk is used as the score of a recommended sub-217

key. The score sk plays a decisive role in the execution time and success rate of218

the attack. The number of instances with the same distribution should be suffi-219

ciently large to enhance the distinguishing ability of the low-accuracy differential-220

neural distinguisher. However, neutral bits of the nontrivial classical differential221

are scarce. Therefore, probabilistic neutral bits (PNB) are exploited in [12].222

Some probabilistic neutral bits, simultaneous-neutral bit-sets (SNBS), condi-223

tional (simultaneous-) neutral bit(-set)s (CSNBS), and switching bits for adjoin-224

ing differentials (SBfADs) were found in [3] (refer to Appendix A).225

3 Differential-Neural Distinguishers for Round-Reduced226

Speck32/64227

3.1 Network Architecture228

The overall structure of our neural network for training the differential-neural229

distinguisher is depicted in Figure 4. Our neural network comprises four main230

components: an input layer that incorporates multiple ciphertext pairs, an initial231

convolutional layer consisting of four parallel convolutional layers, a residual232

tower that consists of multiple convolutional neural networks with two layers233

each, and a prediction head that comprises multiple fully connected layers.234

Input Representation. When we have the output of the r-th round denoted as235

(C,C ′) = (xr||yr, x′
r||y′r), it can directly computes (yr−1, y

′
r−1) without knowl-236

edge of the (r− 1)-th subkey, using the round function of Speck. Consequently,237

the neural network can process data in the format of (xr, x
′
r, yr, y

′
r, yr−1, y

′
r−1).238
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Fig. 4. The network architecture of our distinguisher for Speck32/64

To accommodate this data format, the input layer of the neural network com-239

prises m ciphertext pairs, where each pair consists of 3L units arranged in a240

[m,ω, 3L
ω ] array. For Speck32/64, the values of L and ω are set as 32 and 16241

respectively.242

Initial Convolution (Module 1). The input layer is linked to the initial convo-243

lutional layer, which consists of four convolutional layers with Nf = 32 channels244

using various kernel sizes. Similar to GoogLeNet’s Inception [19], the outputs245

of the four convolutional layers are concatenated along the channel dimension.246

Batch normalization is applied to the concatenated outputs. Afterward, rectifier247

nonlinearity is applied to the batch normalized outputs, and the resulting matrix248

[m,ω, 4Nf ] is then forwarded to the convolutional blocks layer.249

Convolutional Blocks (Module 2). Each convolutional block consists of two250

layers of 4Nf filters. Each block applies first the convolution with kernel size251

ks = 3, then a batch normalization, and finally a rectifier layer. At the end252

of the convolutional block, a skip connection is added to the output of the final253

rectifier layer of the block to the input of the convolutional block. It transfers the254

result to the next block. After each convolutional block, the kernel size increases255

by 2. The number of convolutional blocks is 5 in our model (determined by256

experiment).257

Prediction Head (Module 3 and Output). The prediction head consists258

of three hidden layers and one output unit. Before the first hidden layer, we259

add a dropout layer to prevent model overfitting. The three fully connected260
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layers comprise d0 = 512, d1 = 64, and d2 = 64 units, followed by the batch261

normalization and rectifier layers. The final layer consists of a single output unit262

using the activation function Sigmoid.263

Rationale. Firstly, we make adjustments to the model’s input data format. By264

utilizing the ciphertext from the last round, we can calculate the right half of265

the penultimate round’s ciphertext without knowledge of the (r-1)-th subkey,266

using the round function of Speck32/64. Second, considering the cyclic shift267

operation and modulo addition in the round function, we introduce convolution268

operations with widths of 3, 5, and 7 to try to capture the information that may269

exist in adjacent bits. This allows us to capture multidimensional features, tak-270

ing inspiration from the Inception block in GoogLeNet[19]. Thirdly, to enhance271

the receptive field of the convolutions, we increase the size of the convolutional272

kernels by 2 as the Residual Network’s depth grows. The size of the convolution273

kernel is increased by 2 each time to ensure that the size of the convolution layer274

is an odd number. Additionally, we incorporate a dropout layer before the fully275

connected layer to enhance the network’s generalization ability.276

3.2 The Training of Differential-Neural Distinguisher277

The accuracy serves as the paramount metric to evaluate the performance of278

the differential-neural distinguisher. Subsequently, the subsequent training pro-279

cedure was conducted to validate the efficacy of our network architecture.280

Data Generation. Training and test sets were generated using the Linux ran-281

dom number generator to obtain uniformly distributed keys Ki and multiple-282

plaintext pairs {(Pi,j,0, Pi,j,1), j ∈ [0,m − 1]} with the input difference ∆ =283

(0x0040, 0x0000) and a vector of binary-valued labels Yi. During the production284

of training or test sets for r-round Speck32/64, the multiple-plaintext pairs285

were then encrypted for r rounds if Yi = 1, while otherwise, the second plaintext286

of the pairs was replaced with a freshly generated random plaintext and then287

encrypted for r rounds.288

Remark 1. We use two different numbers of datasets to train differential-neural289

distinguisher. In [12], the training and test sets include N and M instances,290

consisting of a ciphertext pair in an instance, total N and M ciphertext pairs,291

respectively. In [9], the training set and test set include N/m and M/m instances,292

and each instance includes m ciphertext pairs; that is, the total numbers of293

ciphertext pairs used are N and M . To ensure a fair comparison, we used N/m294

and M/m instances as training and test sets. However, it may lead to overfitting295

(see Remark 2 for details). To overcome this problem, we also use N and M296

instances as training test and test set, which consists of m ciphertext pair, that297

is, total N ×m and M ×m ciphertext pairs, respectively.298

Basic Training Scheme. We conducted the training for 20 epochs in the299

dataset for N = 107 and M = 106. The batch size processed by the dataset300
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is adjusted according to the parameter m to maximize GPU performance. Op-301

timization was performed against mean square error loss plus a small penalty302

based on L2 weights regularization parameter c = 10−5 using the Adam algo-303

rithm [17]. A cyclic learning rate schedule was applied, setting the learning rate304

li for epoch i to li = α+ (n−i) mod (n+1)
n · (β − α) with α = 10−4, β = 2× 10−3

305

and n = 9. The networks obtained at the end of each epoch were stored, and306

the best network by validation loss was evaluated against a test set.307

Training (8-9)-round Distinguishers Using Staged Train Method. We308

use several stages of pretraining to train an 8-round differential-neural distin-309

guisher for Speck32/64. First, we use our 7-round distinguisher to recognize310

5-round Speck32/64 with the input difference (0x8000, 0x804a) (the most likely311

difference to appear three rounds after the input difference (0x0040, 0x0000)).312

The training was done in 107 instances for 20 epochs with a learning rate of313

10−4. Then we trained the distinguisher to recognize 8-round Speck32/64 with314

the input difference (0x0040, 0x0000) by processing 107 freshly generated in-315

stances for 10 epochs with a learning rate of 10−4. Finally, the learning rate316

was reduced to 10−5 after processing another 107 new instances for 10 epochs.317

For the 9-round distinguisher, the overall training method is the same. The only318

difference is the use of an 8-round distinguisher to identify 5-round Speck32/64319

with the input difference (0x850a,0x9520) (the most likely difference to appear320

four rounds after the input difference (0x0040,0x0000).321

3.3 Result322

Test Accuracy. We summarize the accuracy of 6, 7, 8-, and 9-round differential-323

neural distinguisher compared to [12,9,5] in Table 2. Also, we list the accuracy324

(Acc), the true positive rate (TPR), and the true negative rate (TNR) tested on325

newly generated data in Table 3. The 6, and 7-round distinguishers were trained326

using the basic training method, while the 8, and 9-round distinguishers were327

trained using the staged training method. If the accuracy is greater than 0.5,328

it is considered effective. The “N/m” column results in accuracy using N/m and329

M/m instances as training and test sets, respectively. The “N ” column results330

from accuracy using N and M instances as the training and test sets, respec-331

tively. From Table 2, the accuracy of our differential-neural distinguisher was332

significantly improved in both the “N/m” column and the “N ” column compared333

to [13,9,5]. There are some differences in accuracy under the two experiments334

caused by overfitting of the model; see Remark 2 for details.335

In Table 2, except for Benamira’s result [5], other results are directly trained336

by the neural network. In [5], the value of m is {1, 5, 10, 50, 100}. But in order337

to facilitate the key recovery attack, we set the value of m at the power of338

2, that is, {2, 4, 8, 16}. When m = 1, the case of Benamira and Gohr is the339

same. In [5], they use two ways to train and evaluate the differential-neural340

distinguisher with multiple ciphertext pairs. The straightforward one (Averaging341

Method) is to evaluate the neural distinguisher score for each element of the342
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Table 2. Summary accuracy of distinguisher on Speck32/64 using different number
of instances

r
m=2 m=4 m=5

[9] [13]⋆ N/m N [9] [13]⋆ N/m N [5] N/m N

6 0.8613 0.877 0.8771 0.8773 0.931 0.950 0.9468 0.9497 0.9541 0.9623 0.965
7 0.6393 0.663 0.6663 0.6649 0.6861 0.725 0.7194 0.7283 0.735 0.7436 0.7491
8 - 0.521 - - - 0.530 0.5329 0.5428 - - -

r
m=8 m=10 m=16

[9] [13]⋆ N/m N [5] N/m N [9] [13]⋆ N/m N

6 0.9562 0.990 0.9868 0.9895 0.99 0.9915 0.9939 0.9802 1.000 0.9969 0.9992
7 0.7074 0.801 0.7991 0.8106 0.808 0.8243 0.8341 0.6694 0.883 0.8759 0.8963
8 - 0.543 0.5347 0.5590 - - - 0.560 0.5566 0.5854
9 - - 0.5024 - - - - - 0.5050

1. ⋆: combining the scores of multiple distinguishers trained by using single-ciphertext
pair under independence assumption.

Table 3. Acc, TPR, TNR of distinguisher on Speck32/64 using N instances

m r Acc TPR TNR m r Acc TPR TNR

2

6 0.8768 0.8448 0.9087

4

6 0.9495 0.9429 0.9559

7 0.6635 0.6240 0.7029 7 0.7291 0.7048 0.7532

8 - - - 8 0.5428 0.5318 0.5537

8

6 0.9897 0.9862 0.9931

16

6 0.9992 0.9988 0.9996

7 0.8103 0.8024 0.8184 7 0.8958 0.8906 0.9009

8 0.5562 0.5434 0.5690 8 0.5853 0.5704 0.6002

9 0.5016 0.2122 0.7915 9 0.5045 0.5175 0.4915

multiple ciphertext pairs and then take the results’ median. The second (2D-343

CNN Method) is to consider the whole multiple ciphertext pairs as a single344

input for a neural network. These two methods are theoretically equivalent,345

but the second method to train the differential-neural distinguisher will have346

lower accuracy. Benamira use two methods to get the accuracy of the 6-round347

distinguisher. When m = 5, the accuracy of the two methods is 0.9541 and348

0.9327, respectively; When m = 10, the accuracy of the two methods is 0.99349

and 0.977, respectively, in [5]. We can see that the accuracy of the distinguisher350

obtained by the second method is lower than that of the first method. However,351

the accuracy of the 7-round distinguisher is obtained by the first method in [5].352

This means the accuracy obtained should be even lower if the distinguisher is353

trained directly using a neural network.354
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Remark 2. Why do we train a differential-neural distinguisher with two different355

numbers of data? For the sake of fairness of comparison, we must use N/m and356

M/m instances as training and test sets (see Remark 1 ). However, from Fig. 5a,357

we can see that the difference between training and test accuracy is relatively358

significant. In other words, using N/m and M/m instances as training and test359

set to train a neural network will suffer overfitting, especially when the number360

of rounds r and m is large. For more overfitting phenomena, please refer to361

Appendix C. However, the training and test accuracy are almost equal in Fig. 5b.362

Therefore, using N and M instances as the training set and a test set to train363

the differential-neural distinguisher can avoid overfitting, speed up the model364

convergence, and improve the model accuracy to a certain extent. Due to the365

overfitting phenomenon, the accuracy of the distinguisher will be low, which also366

affects our training of more rounds of differential-neural distinguisher.367
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Fig. 5. Overfitting with the different number of instances.

Wrong Key Response Profile. The key search policy depends on an impor-368

tant observation that the expected response of the distinguisher upon wrong-key369

decryption will rely on the bitwise difference between the guessed subkey and the370

real subkey. The wrong key response profile, which is precomputed by using 3000371

ciphertext pairs for each guessed subkey, is used to recommend new candidate372

values for the key from previous candidate values by minimizing the weighted373

Euclidean distance as the criteria in a BayesianKeySearch Algorithm. It rec-374

ommends a set of subkeys and provides their scores without exhaustively per-375

forming the trial decryption. The µ and δ represent the empirical mean and376

standard deviation of the distinguisher score over these 3000 ciphertext pairs.377

The abscissa in Fig. 6 and 7 is the difference between the guessed subkey and378

the real subkey, and the ordinate is the score obtained by putting the ciphertext379

pairs obtained after decrypting multiple ciphertext pairs (encrypted with the380

same key) with the guessed subkey into the differential-neural distinguisher. If381

the Hamming weight of the difference between guessed and real subkey is small,382

the distinguisher will score high; otherwise, the score will be low. From Fig. 6383
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and 7, we can see that when the Hamming weight of the key difference is small,384

our differential-neural distinguisher scores higher than that of the Gohr’s distin-385

guisher in the same abscissa. We can get lower scores when the Hamming weight386

is larger. In other words, our distinguisher is better able to judge the Hamming387

distance between the real subkey and the guessed subkey, thus recommending388

candidate subkeys that are closer to the real subkey.389

Moreover, it can be observed that the score of the distinguisher is higher when390

the difference between the guessed key and the real key belongs to {16384, 32768,391

49152}, where the vertical coordinates of "*" correspond to these positions. This392

means that when the 14th and 15th bits of the subkey are guessed incorrectly,393

it has little effect on the score of the distinguisher. Therefore, it is possible to394

reduce the key guessing space by not guessing these two bits, and this feature is395

also used in [12] to accelerate the key recovery attack.396
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Fig. 6. Wrong key response profile for 7-round Speck32/64 using N instances
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Fig. 7. Wrong key response profile for 8-round Speck32/64 using N instances

4 From Differential-Neural Distinguisher to Key397

Recovery Attack398

4.1 Generation of Same Distributed Data399

During the training of the differential-neural distinguisher, we take multiple ci-400

phertext pairs as an instance and then put the instance into the neural network.401

In the positive example, we require multiple ciphertext pairs of an instance to402

be obtained by encrypting multiple plaintext pairs satisfying the same difference403

∆P .404

After obtaining a differential-neural distinguisher, we add a classical differen-405

tial ∆S → ∆P before the differential-neural distinguisher to increase the number406

of rounds for the key recovery attack. However, the classical differential is proba-407

bilistic. During the key recovery attack, even if multiple plaintext pairs have the408

same difference ∆S of an instance, the difference between multiple ciphertext409

pairs of an instance may not be the same after propagation through the classical410

differential. We need to take certain measures to make the multiple ciphertext411

pairs of an instance have the same difference after the classical difference prop-412

agation.413

Neutral bits can solve the problem of obtaining multiple ciphertext pair that414

satisfies the same difference after propagation through the classical differential,415

ensuring we can launch key recovery attacks. We randomly generate a plaintext416

pair satisfying the initial difference ∆S and flip the ciphertext bits correspond-417

ing to log2 m neutral bits to obtain m plaintext pairs. The m ciphertext pairs418

obtained by the propagation of the m plaintext pairs through the classical dif-419

ferential have the same difference.420
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4.2 Experimental Environment and Data Complexity421

Following to the settings in [12], we count a key guess as successful if the last422

round key was guessed correctly and the second round key is at the hamming423

distance at most two of the real key. The experiment is conducted by Python424

3.7.15 and Tensorflow 2.5.0 in Ubuntu 20.04. The device information is Intel(R)425

Xeon(R) Gold 6226R*2 with 2.90GHz, 256GB RAM, and NVIDIA RTX2080Ti426

12GB*5. In our implementation, the performance is not constrained by the speed427

of neural network evaluation when using a high-performance graphics card. In-428

stead, the total number of iterations on the ciphertext structures determines429

the limiting factor. The experimental parameters for key recovery attacks are430

denoted below.431

1. nkg: the number of times to guess the subkey kr involved in the condition.432

2. ncts: the number of ciphertext structure.433

3. nb: the number of ciphertext pairs in each ciphertext structure, that is, 2|NB|.434

4. nit: the total number of iterations on the ciphertext structures.435

5. c1 and c2: the cutoffs with respect to the scores of the recommended last436

subkey and second to last subkey, respectively.437

6. nbyit1, ncand1 and nbyit2, ncand2: the number of iterations and the number of438

key candidates within each iteration in the BayesianKeySearch Algorithm439

to guess each of the last and the second to last subkeys, respectively.440

Theoretical Data Complexity. During a key recovery attack, the classical441

differential or neutral bits used may need to satisfy some conditions involving442

the key. The data complexity of the experiment is calculated using the formula443

nkg×nb×nct×m×2. The data complexity is calculated as theoretical values. In444

the actual experiment, when the accuracy of the differential-neural distinguisher445

is high, the key can be recovered quickly and successfully. Not all the data is446

used, so the actual data complexity is lower than the theoretical.447

4.3 Experimental Time Complexity.448

How to reasonably calculate the time complexity and compare it fairly with449

previous work has always been a difficult task.450

- In classical differential cryptanalysis, researchers usually calculate the number451

of full encryption (the number of rounds of attack) required to perform a key452

recovery attack as the time complexity of the attack [10,1,7,11,8].453

- In differential-neural cryptanalysis, Gohr[12] uses GPU to train differential-454

neural distinguisher but uses CPU to implement key recovery attacks. There-455

fore, he estimates that a highly optimized, fully SIMD-parallelized implemen-456

tation of Speck32/64 could perform brute force key search at a speed of about457

228 keys per second per core. Later, Bao [3] et al. used GPU to accelerate key458

recovery attacks for 13-round Speck32/64. For a fair comparison with previous459
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work, they also used 228 as the benchmark for encryption speed and estimated460

the ratio (Ratiocpu/gpu) of the time required for key recovery attacks using461

CPU and GPU, where Ratio = 22.4 in [3].462

To ensure a fair comparison, we conduct multiple key recovery attacks and463

determine the average running time (rt) as the representative time for each464

experiment. Additionally, we compute the success rate (sr) of the key recovery465

attack by dividing the number of successful experiments by the total number of466

experiments conducted. In addition, classical differential cryptanalysis methods467

all use the CPU to execute key recovery attack programs. Part of the program of468

the key recovery attack of differential-neural cryptanalysis needs to be executed469

by GPU. For a fairer comparison, we conducted several experiments to calculate470

the ratio of the time required to perform key recovery attacks using CPU and471

GPU in our device. The specific results are shown in Table 4.472

Table 4. Calculate the ratio of time required for key recovery attack using CPU and
GPU

R Conf. c1 c2 ncts nit Ne Device rt Ratiocpu/gpu sr Ref.

11 1+2+7+1 5 10 100 500 100
CPU 299.26

20.39
53% [12]

GPU 227.05 51% [12]

12 1+3+7+1 7 10 211 212 40
CPU 4272.91

22.92
100% This work

GPU 564.67 100% This work

From Table 4, we can see that the ratio of the time required for the key473

recovery attack on 11 rounds of speck32/64 using the distinguisher trained by474

Gohr [12] on the CPU and GPU is 20.39. When performing a key recovery at-475

tack on 12-round speck32/64 using our trained distinguisher, the ratio is 22.92.476

We choose the maximum value of the two ratios 22.92 as the final value of477

Ratiocpu/gpu. According to different attack methods, we give two different time478

complexity calculation methods.479

- Comparison with Differential-neural Cryptanalysis: We follow the set-480

ting of Gohr [12] and Bao [3] et al. to calculate the time complexity of the key481

recovery attack. we used 228 as the benchmark for encryption speed. Then the482

calculation formula of time complexity TND is nkg × rt× 228 × 22.92.483

- Comparison with Classical Differential Cryptanalysis: we utilize a 232484

plaintext to evaluate our device’s encryption speed Es. For Speck32/64, each485

core can execute approximately 227.09 1-round encryption per second, i.e., Es =486

227.09; For Simon32/64, each core can execute approximately 225.48 1-round487

encryption per second, i.e., Es = 225.48. Then the calculation formula of time488

complexity TDD is nkg × rt× Es

R × 22.92, where R is the number of rounds for489

key recovery attack.490
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5 Key Recovery Attack on Round-Reduced Speck32/64491

In this section, we demonstrate the effectiveness of our differential-neural distin-492

guisher in enhancing the performance of key recovery attacks. We adopt a similar493

framework as described in previous works [12,3], with the key difference being494

the utilization of the differential-neural distinguisher trained on N instances.495

For a more complete key recovery attack procedure, please refer to Appendix B.496

We have successfully reduced the time and data complexity of 13-round key497

recovery attacks for Speck32/64 by employing an improved differential-neural498

distinguisher. Moreover, we leverage the outcomes of the 13-round key recovery499

attack to estimate the complexity involved in a 14-round key recovery attack.500

5.1 Key Recovery Attack on 13-round Speck32/64501

Combining a 3-round classical differential with an 8-round differential-neural dis-502

tinguisher, we examine how far a practical attack can go on 13-round Speck32/64503

in this subsection.504

Experiment 1: The components of key recovery attack ASpeck13R
I of 13-505

round Speck32/64 are shown as follows.506

1. 3-round classical differential (0x8020, 0x4101)→ (0x0040, 0x0000);507

2. generalized neutral bits of generating multiple-ciphertext pairs: {[22], [20],508

[13]}; generalized neutral bits of combined response of differential-neural dis-509

tinguisher:{[5, 28], [15, 24], [12, 19], [6, 29], [6, 11, 12, 18], [4, 27, 29], [14, 21], [0, 8,510

31], [30]} (refer to Table 10).511

3. 8-round differential-neural distinguisher NDSpeck8r under difference (0x0040,512

0x0000) and its wrong key response profiles NDSpeck8r ·µ and NDSpeck8r · δ.513

4. 7-round differential-neural distinguisher NDSpeck7r under difference (0x0040,514

0x0000) and its wrong key response profiles NDSpeck7r ·µ and NDSpeck7r · δ.515

In the beginning, we guess three key bits of k0, that is k0[7], k0[5] ⊕ k0[14],516

and k0[15] ⊕ k0[8] because of the 3-round differential (refer to Table 9) and517

four key bits k0[12] ⊕ k0[5], k0[1], k0[2] ⊕ k0[11], k0[11] ⊕ k0[4] to employ four518

conditional neutral bits (refer to Table 10). Thus, nkg is 27. However, to make519

the experimental verification economic, we tested the core of the attack with520

the seven conditions being fulfilled only. The concrete parameters used in our521

13-round key recovery attack ASpeck13R are listed below.522

nkg = 27 m = 8 nb = 29 ncts = 211

nit = 212 c1 = 5, c2 = −86 nbyit1 = nbyit2 = 5 ncand1 = ncand2 = 32
523

Because the prepended classical differential is valid when the keys fulfil524

k2[12] ̸= k2[11], we tested only for these valid keys, and the presented at-525

tack works for 263 keys. The data complexity is 27 × 29 × 211 × 8 × 2 = 231526

plaintexts. The core of the attack was examined in 100 trials; there are 41 suc-527

cessful trials, that is, sr = 41%. The average run time of every trail in our528

server is 15223.20s. Thus, the time complexity TND = nkg × rt × 228 × 22.92 =529

27 × 15223.21 × 228 × 22.92 = 248.89+2.92; TDD = nkg × rt × Es

R × 22.92 =530

27 × 15223.21× 227.09

13 × 22.92 = 244.28+2.92.531



Improving Differential-Neural Cryptanalysis with Inception 19

5.2 Using Two Classical Differentials and SBfADs for 13-round532

Speck32/64533

Bao et al. found that the output of the classical differential matters to the534

differential-neural distinguisher but not the input difference. Hence, more than535

one differential can be prepended to a differential-neural distinguisher if they536

share the same output difference. Multiple such classical differentials can share537

some neutral bits. Using such classical differentials might enable data reuse, thus538

slightly reducing data complexity. Also, they employ SBfADs to save one guessed539

key bit and reduce time and data complexity by half compared to the CSNBS. To540

further exploit the capabilities of our differential-neural distinguisher, we again541

implement a 13-round key recovery attack using two classical differentials and542

SBfADs.543

Experiment 2: The components of key recovery attack ASpeck13R
II of 13-544

round Speck32/64 are shown as follows.545

1. 3-round classical differentials (0x8020, 0x4101)→ (0x0040, 0x0000) and (0x80546

60, 0x4101) → (0x0040, 0x0000) ;547

2. generalized neutral bits of generating multiple-ciphertext pairs: {[20], [13], [12,548

19]}; generalized neutral bits of combined response of differential-neural distin549

guisher:{[22], [14, 21], [6, 29], [30], [0, 8, 31], [5, 28], [15, 24], [4, 27, 29]} (refer to550

Table 10 and one SBfADs [21]).551

3. 8-round differential-neural distinguisher NDSpeck8r under difference (0x0040,552

0x0000) and its wrong key response profiles NDSpeck8r ·µ and NDSpeck8r · δ.553

4. 7-round differential-neural distinguisher NDSpeck7r under difference (0x0040,554

0x0000) and its wrong key response profiles NDSpeck7r ·µ and NDSpeck7r · δ.555

In the beginning, we only guess two key bits of k0, that is, k0[7] and k0[15]⊕k0[8]556

because of two 3-round classical differentials and two key bits k0[12]⊕k0[5], k0[1]557

to employ two CSNBS (refer to Table 10). Because we use two classical differ-558

entials (0x8020, 0x4101) → (0x0040, 0x0000) and (0x8060, 0x4101) → (0x0040,559

0x0000), the condition k0[5] ⊕ k0[14] is unnecessary (refer to Table 9). Besides,560

we use SBfADs [21] instead of CSNBS [6, 11, 12, 18], the key bit k0[2] ⊕ k0[11]561

does not need to be guessed. Note that although we used SNBS [4, 27, 29], we562

did not use key condition k0[11]⊕k0[4] to increase its probability, because 0.672563

is already high enough. Thus, nkg = 24. However, to make the experimental564

verification economic, we tested the core of the attack with the four conditions565

being fulfilled only. The concrete parameters used in our 13-round key recovery566

attack ASpeck13R
II are listed below.567

nkg = 24 m = 8 nb = 28+1 ncts = 211

nit = 212 c1 = 8, c2 = −500 nbyit1 = nbyit2 = 5 ncand1 = ncand2 = 32
568

Because the prepended classical differential is valid when the keys fulfill569

k2[12] ̸= k2[11], we tested only for these valid keys, and the presented attack570

works for 263 keys. The data complexity is 24×29×211×8×2/2 = 227 plaintexts.571

Note that the data complexity is divided by 2 because if we use two classical dif-572

ferences, one can generate half of the required data pairs for free. The core of the573
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attack was examined in 100 trials; there are 21 successful trials, that is, sr = 21%.574

The average run time of every trail in our server is 17011.22s. Thus, the time575

complexity TND = nkg×rt×228×22.92 = 24×17011.22×228×22.92 = 246.05+2.92;576

TDD = nkg × rt× Es

R × 22.92 = 24 × 17011.22× 227.09

13 × 22.92 = 241.44+2.92.577

5.3 Brute Force Guessing of 1-round Subkey for 14-round578

Speck32/64579

Under the current framework, there are two ways to increase the number of580

rounds of key recovery attacks. One is to increase the length of the classical581

differential, and the other is to increase the length of the difference-neural dis-582

tinguisher, but it seems that these two paths are not feasible under the current583

results.584

- Increase the Length of the Classical Differential. In the 13-round key585

recovery attack, the probability of the 3-round sub-optimal classical differ-586

entials we use is 2−12, and the complexity of the core attack is about 242.07.587

We use the MILP model to search for 4-round optimal classical differential588

path (0x1488, 0x1008)→ (0x0040, 0x0000) with a probability of 2−17. When589

we use a 4-round classical differential to implement a 14-round key recovery590

attack, the time complexity of the core attack will exceed 247 under ideal591

circumstances, which is beyond our current computing equipment. Also, the592

4-round classical differential doesn’t have enough neutral bits to use for key593

recovery attacks.594

- Increase the Length of the Differential-neural Distinguisher. Al-595

though we trained a 9-round differential-neural distinguisher, its accuracy596

was too low, and we can not implement a 14-round key recovery attack.597

According to our calculations, the accuracy of DDT should be 0.5089 and598

0.5138 in the case of m = 8 and m = 16, respectively. In addition, it has599

been proved that the differential-neural distinguisher can learn more features600

than DDT, so the accuracy of the differential-neural distinguisher should be601

higher than that of DDT. Suppose we can further improve the accuracy of602

the 9-round differential-neural distinguisher. In that case, it will be possible603

to directly implement a 14-round key recovery attack, which we will continue604

to study.605

Fortunately, we can estimate the time complexity of a 14-round key recovery606

attack. Notably, the time complexity for our 13-round key recovery attack is suf-607

ficiently low. By employing a brute force approach to guess one round of subkey,608

we can subsequently execute a 14-round key recovery attack. The time complex-609

ity of the 14-round attack is determined by multiplying the time complexity of610

the 13-round attack by 216. According to two different complexity calculation611

formulas, we can give the time complexity of the 14-round key recovery attack.612

1. The time complexity TND = 216×nkg×rt×228×22.92 = 216×24×17011.22×613

228×22.92 = 262.05+2.92. Note that this time complexity exceeds that of brute614

force key search.615
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2. The time complexity TDD = 216×nkg×rt× Es

R ×2
2.92 = 216×24×17011.22×616

227.09

13 × 22.92 = 257.44+2.92.617

6 Differential-Neural Distinguishers on Round-Reduced618

Simon32/64619

In ASIACRYPT 2022, Bao et al. used the Dense Network and Squeeze-and-620

Excitation Network to train 9, 10, and 11-round differential-neural distinguish-621

ers for Simon32/64 [3]. We give the accuracy of the 9, 10, 11, and 12-round622

differential-neural distinguisher for Simon32/64 using modified network archi-623

tecture in case of multiple ciphertext pairs.624

6.1 Network Architecture625

The network architecture of the differential-neural distinguisher used to train626

Simon32/64 is generally similar to that of Speck32/64. Based on the round627

function of Simon32/64, we modify the number of convolutional layers and the628

size of the convolutional kernel in the Inception module and use a GlobalAver-629

agePooling layer instead of three fully connected layers. The overall architecture630

is shown in Fig 8.631
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Module 1

Input

F (·)

f(·)
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Conv, 2, Nf
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BN
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ks = ks + 2

Conv, ks, 3Nf

BN

Relu

Conv, ks, 3Nf

BN

Relu

⊕
Output

GlobalAveragePooling

Sigmod

Fig. 8. The network architecture of our distinguisher for Simon32/64
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Input Representation. Based on the round function, (yr−1 ⊕ y′r−1) can be632

obtained without knowing the (r−1)-th subkey for Simon32/64. Thus, the neural633

network accepts data of the form (xr, x
′
r, yr, y

′
r, yr−1⊕y′r−1). The input layer has634

m ciphertext pairs consisting of 2.5L units likewise arranged in a [m,ω, 2.5L
ω ]635

array, where L = 32, ω = 16 for Simon32/64.636

Initial Convolution (Module 1). The input layer is connected to the initial637

convolutional layer, which comprises three convolution layers with Nf = 32638

channels of kernel sizes 1, 2, and 8. The three convolution layers are concatenated639

at the channel dimension. Batch normalization is applied to the output of the640

concatenate layers. Finally, rectifier nonlinearity is applied to the output of batch641

normalization, and the resulting [m,ω, 3Nf ] matrix is passed to the convolutional642

blocks layer.643

Convolutional Blocks (Module 2). The convolutional blocks layer of the644

differential-neural distinguisher model is the same as Speck32/64, except that645

the shape of the input is different.646

Prediction Head (Output). The prediction head consists of a GlobalAver-647

agePooling layer and an output unit using a Sigmoid activation function.648

Rationale. The network architecture for training differential-neural differentia-649

tors for Speck32/64 and Simon32/64 is essentially the same, except for the650

prediction head. Using multiple fully connected layers can lead to an overload of651

model parameters and increase the model training time. Therefore, an attempt652

is made to use a GlobalAveragePooling layer instead of multiple fully connected653

layers.654

6.2 The Training of Differential-Neural Distinguisher655

Training Using the Basic Scheme. We used two different numbers of training656

and test sets to train the neural network. The first situation of experiments657

uses N/m and M/m instances as training and test sets. The second situation of658

experiments uses N and M instances as the training and test sets. Refer to659

the basic training scheme of Speck32/64 in Sect. 3 for training parameters.660

By modifying the network architecture and using the basic training scheme, we661

trained the differential-neural distinguisher to recognize the output pairs of 9,662

10, and 11-round Simon32/64 with the input difference (0x0000, 0x0040).663

Training Using the Staged Training Method. A 12-round differential-664

neural distinguisher of Simon32/64 was trained using several pre-training stages.665

First, we use our 11-round distinguisher to recognize a 9-round Speck32/64 with666

the input difference (0x0440, 0x0100) (the most likely difference to appear three667

rounds after the input difference (0x0000, 0x0040)). The training was done in668

107 instances for 20 epochs with a learning rate of 10−4. Then we trained the dis-669

tinguisher to recognize 12-round Speck32/64 with the input difference (0x0000,670
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0x0040) by processing 107 freshly generated instances for 10 epochs with a learn-671

ing rate of 10−4. Finally, the learning rate was dropped to 10−5 after processing672

another 107 new instances each.673

6.3 Result674

Test Accuracy. We summarize the accuracy of 9, 10, 11, and 12-round differential-675

neural distinguisher in Table 5. In addition, we list Acc, TPR, and TNR tested676

on newly generated data in Table 6. The 9, 10, and 11-round distinguisher was677

trained using the basic training method. Using the staged training method, a678

12-round distinguisher was derived from an 11-round distinguisher. We also use679

two different numbers of instances to train the differential-neural distinguisher680

for Simon32/64, both for the fair comparison of the experiment and to solve the681

problem of overfitting (refer to Appendix C). Compared to gohr’s work [13], the682

length of the distinguisher was increased by 1 round, although the accuracy of683

the differential-neural distinguisher was not improved.684

Table 5. Summary accuracy of the distinguisher on Simon32/64 using different number
of instances

r
m=1 m=2 m=4

[3] [13]⋆ [13]⋆ N/m N [13]⋆ N/m N

9 0.6532 0.661 0.730 0.7251 0.7240 0.811 0.7991 0.8095
10 0.5629 0.567 0.598 0.5917 0.5907 0.637 0.6239 0.6339
11 0.5173 0.520 0.529 0.5193 0.5240 0.543 0.5343 0.5387
12 - - - - - - - -

r
m=8 m=16

[13]⋆ N/m N [13]⋆ N/m N

9 0.896 0.8774 0.8958 0.963 0.9344 0.9630
10 0.692 0.6716 0.6900 0.761 0.7230 0.7608
11 0.563 0.5441 0.5591 0.589 0.5339 0.5878
12 - - 0.5152 - - 0.5225

1. ⋆: combining the scores of multiple distinguishers trained by using single-ciphertext
pair under independence assumption.

2. The combination method used in [13] is the same as that in [5], which evaluates
the distinguisher score of each element in multiple ciphertext pairs, and then takes
the median of the results. When the distinguisher is directly trained with multiple
ciphertext pairs, the accuracy of the distinguisher will be reduced. For details, see
Sect.3.3

Accuracy Fluctuations. The neural network designed for Speck32/64 to train685

the differential-neural distinguisher uses multiple fully connected layers as pre-686

diction heads, resulting in too many model parameters, making training time687
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Table 6. Acc, TPR, TNR of distinguisher on Simon32/64 using N instances

m r Acc TPR TNR m r Acc TPR TNR

2

9 0.7234 0.7022 0.7446

4

9 0.8101 0.7821 0.8382

10 0.5902 0.4779 0.7022 10 0.6347 0.5570 0.7124

11 0.5155 0.8618 0.1663 11 0.5344 0.7139 0.3550

12 - - - 12 - - -

8

9 0.8956 0.8811 0.9101

16

9 0.9630 0.9595 0.9664

10 0.6908 0.6846 0.6953 10 0.7619 0.7207 0.8030

11 0.5592 0.5946 0.5239 11 0.5871 0.5338 0.6406

12 0.5159 0.5324 0.4995 12 0.5218 0.5445 0.4991

too long. To address this issue, we use a GlobalAveragePooling layer instead688

of the fully connected layer as the prediction head in the neural network of689

Simon32/64. From Fig. 9a and 9b, it can be seen that using the GlobalAver-690

agePooling layer will cause relatively large fluctuations in the accuracy, but the691

accuracy has almost no effect.692
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Fig. 9. Using different number of instances with different prediction head

Wrong Key Response Profile. The wrong key response profile for our 9, 10,693

11, and 12-round differential-neural distinguisher is shown in Fig. 10. As we can694

see from the figure when the Hamming Distance between the real key and the695

guessed key is smaller, the score of the differential-neural distinguisher is higher,696

and vice versa, it is smaller. Judging how far the guessed key deviates from697

the real key is easy. This shows that our differential-neural distinguisher can698

effectively distinguish between ciphertext and random numbers. In addition, it699

can be observed that the score of the distinguisher is higher when the difference700

between the guessed key and the real key belongs to {8192, 16384, 24576, 32768,701
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40960, 49152, 57344}, where r = 10 and 11, the vertical coordinates of "*"702

correspond to these positions. This means that when the 13th, 14th, and 15th703

bits of the subkey are guessed incorrectly, it has little effect on the score of the704

distinguisher. Therefore, reducing the key guessing space by not guessing these705

three bits and accelerating the key recovery attack is possible.

0 8192 16384 24576 32768 40960 49152 57344 65536
Difference to real key

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

M
ea

n 
Re

sp
on

se

r = 9

0 8192 16384 24576 32768 40960 49152 57344 65536
Difference to real key

0.4000

0.4500

0.5000

0.5500

0.6000

M
ea

n 
Re

sp
on

se

r = 10

0 8192 16384 24576 32768 40960 49152 57344 65536
Difference to real key

0.4950

0.5000

0.5050

0.5100

0.5150

0.5200

0.5250

M
ea

n 
Re

sp
on

se

r = 11

0 8192 16384 24576 32768 40960 49152 57344 65536
Difference to real key

0.4985

0.4990

0.4995

0.5000

0.5005

0.5010

0.5015

M
ea

n 
Re

sp
on

se

r = 12

Fig. 10. Wrong key response profile for Simon32/64 using N instances where m = 8

706

7 Key Recovery Attack on Round-Reduced Simon32/64707

Under a similar procedure to the key recovery attack on Speck32/64, trained708

differential-neural distinguishers can be prepended with a classical differential to709

perform key recovery attacks for Simon32/64. We improved the 16-round and710

devised the first 17-round differential-neural-distinguisher-based key recovery at-711

tacks on Simon32/64. Note that based on the features found from the wrong key712

response profile, we did not guess the 14th and 15th bits of the subkey in the713

key recovery attack for 16-round Simon32/64, and 13th, 14th, and 15th of the714

subkey in the key recovery attack for 17-round Simon32/64. Sadly, we could not715

successfully perform the 18-round key recovery attack for Simon32/64 due to716

the lack of a sufficient number of generalized neutral bits.717

7.1 Key Recovery Attack on 16-round Simon32/64718

To verify the performance of our 11-round differential-neural distinguisher, the719

following experiments were carried out in this subsection.720
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Experiment 3: The components of the key recovery attack ASimon16R of721

the 16-round Simon32/64 are shown below.722

1. 3-round classical differential (0x0440, 0x1000)→(0x0000, 0x0040);723

2. generalized neutral bits of generating multiple-ciphertext pairs: {[2], [3], [4]};724

generalized neutral bits of combined response of differential-neural distinguis-725

her:{[6], [8], [9], [10], [18], [22], [0, 24], [12, 26]} (refer to Table 11).726

3. 11-round differential-neural distinguisherNDSimon11r under difference (0x0000,727

0x0040) and its wrong key response profilesNDSimon11r ·µ andNDSimon11r ·δ.728

4. 10-round differential-neural distinguisherNDSimon10r under difference (0x0000,729

0x0040) and its wrong key response profilesNDSimon10r ·µ andNDSimon10r ·δ.730

In the beginning, we guess two key bits of k0, that is, k0[1] and k0[3], because731

of the 3-round differential, the conditions for correct pairs are x1[1] = x′
1[1] = 0732

and x1[3] = x′
1[3] = 0. Thus, nkg is 22. However, to make the experimental733

verification economic, we tested the core of the attack with the two conditions734

being fulfilled only. The concrete parameters used in our 16-round key recovery735

attack ASimon16R are listed below.736

nkg = 22 m = 8 nb = 28 ncts = 28

nit = 29 c1 = 37, c2 = 70 nbyit1 = nbyit2 = 5 ncand1 = ncand2 = 32
737

The data complexity is 22 × 28 × 28 × 8 × 2 = 222 plaintexts. In total,738

100 trials are running, and there are 80 successful trials, that is, sr = 80%.739

The average run time of the experiment is 1115.42s. Thus, the time complexity740

TND = nkg × rt× 228 × 22.92 = 22 × 1115.42× 228 × 22.92 = 240.12+2.92; TDD =741

nkg × rt× Es

R × 22.92 = 22 × 1115.42× 225.48

16 × 22.92 = 233.60+2.92.742

7.2 Key Recovery Attack on 17-round Simon32/64743

Combining a 4-round classical differential with an 11-round differential-neural744

distinguisher, we examine how far a practical attack can go on 17-round Si-745

mon32/64 in this subsection.746

Experiment 4: The components of the key recovery attack ASimon17R of747

the 17-round Simon32/64 are shown below.748

1. 4-round classical differential (0x1000, 0x4440)→ (0x0000, 0x0040);749

2. generalized neutral bits of generate multiple-ciphertext pairs: {[2], [6], [12,750

26]} (refer to Table 12); generalized neutral bits of combined response of751

differential-neural distinguisher:{[10, 14, 28]} and five neutral bits conditioned752

on x[1, 15], x[15, 13], x[13, 11], x[11, 9], x[9, 7] (refer to Table 13).753

3. 11-round differential-neural distinguisherNDSimon11r under difference (0x0000,754

0x0040) and its wrong key response profiles NDSimon11r ·µ and NDSimon11r ·δ.755

4. 10-round differential-neural distinguisherNDSimon10r under difference (0x0000,756

0x0040) and its wrong key response profiles NDSimon10r ·µ and NDSimon10r ·δ.757
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In the beginning, we guess two key bits of k0, that is, k0[3] and k0[5], because758

of the 4-round differential, the conditions for correct pairs are x1[5] = x′
1[5] = 0759

and x1[3] = x′
1[3] = 0; and six key bits k0[1], k0[15], k0[13], k0[11], k0[9], k0[7]760

for employing five conditional neutral bits (refer to Table 13). Thus, nkg is 28.761

However, to make the experimental verification economic, we tested the core of762

the attack with the eight conditions being fulfilled only. The concrete parameters763

used in our 17-round key recovery attack ASimon17R are listed below.764

nkg = 28 m = 8 nb = 26 ncts = 211

nit = 212 c1 = 15, c2 = 65 nbyit1 = nbyit2 = 5 ncand1 = ncand2 = 32
765

The data complexity is 28 × 26 × 211 × 8 × 2 = 229 plaintexts. In total, 100766

trials are running, and 9 successful trials, that is sr = 9%. The average running767

time of the experiment is 2435.63s. Thus, the time complexity TND = nkg×rt×768

228×22.92 = 28×2435.63×228×22.92 = 247.25+2.92; TDD = nkg×rt× Es

R ×2
2.92 =769

28 × 2435.63× 225.48

17 × 22.92 = 240.64+2.92.770

8 Conclusion771

In this paper, we designed a new network architecture to train differential-neural772

distinguisher, which uses multiple-parallel convolution layers to capture the fea-773

tures of different dimensions of cryptographic algorithms. As a result, we im-774

proved the accuracy and obtained the distinguisher with more rounds. Focusing775

on the problem under the same data distribution, we propose a solution using776

neutral bits with probability one to generate multiple-plaintext pairs. The com-777

bination of multiple improvements reduces the time complexity and increases778

the number of rounds of the key recovery attack.779
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A Used Generalized Neutral Bit-sets for Key Recovery833

Attack834

A.1 Generalized Neural Bit-sets for SPECK32/64 [3]835

Neutral bit-sets (NB) Used in [12] for 2-round Classical Differential: The signal836

from the distinguisher will rather be weak. Gohr boosts it by using |NB| prob-837

abilistic neutral bits to create from each plaintext pair. A plaintext structure838

consisting of 2|NB| plaintext pairs that are expected to pass the initial 2-round839

classical differential together. Concretely, neutral bits that are probabilistically840

neutral are summarized as follows.

Table 7. (Probabilistic) single-bit neutral bit for 2-round Classical Differential (0x0211,
0x0a04)→ (0x0040, 0x0000) of Speck32/64 [12]

NB Pr. NB Pr. NB Pr. NB Pr. NB Pr. NB Pr. NB Pr.

[20] 1 [21] 1 [22] 1 [14] 0.965 [15] 0.938 [23] 0.812 [7] 0.806
[30] 0.809 [0] 0.763 [8] 0.664 [24] 0.649 [31] 0.644 [1] 0.574

841

Simultaneous-neutral bit-sets (SNBS) used in [3] for 2-round classical differ-842

ential: for the prepended 2-round differential on top of differential-neural distin-843

guisher, Bao et al. [3] can experimentally obtain 3 complete NB and 2 SNBS using844

an exhaustive search. Concretely, for the 2-round differential (0x0211, 0x0a04)→845

(0x0040, 0x0000), bit and bit-sets that are (probabilistically) (simultaneous-846

)neutral are summarized in Table 8.

Table 8. (Probabilistic) SNBS for 2-round Classical Differential (0x0211, 0x0a04)→
(0x0040, 0x0000) of Speck32/64 [3]

NB Pr. NB Pr. NB Pr. NB Pr. NB Pr. NB Pr. NB Pr.

[20] 1 [21] 1 [22] 1 [9,16] 1 [2,11,25] 1 [14] 0.965 [15] 0.938
[6,29] 0.91 [23] 0.812 [30] 0.809 [7] 0.806 [0] 0.754 [11,27] 0.736 [8] 0.664

847

Conditional simultaneous-neutral bit-sets (CSNBS) used in [3] for 3-round848

classical differential: Bao et al. found that there are three sufficient conditions849

for a pair (x, y), (x′, y′) to conform to the 3-round differential (0x8020, 0x4101)→850

(0x0040, 0x0000), summarized in Table 9. Concretely, for the 3-round four sub-851

optimal differential, bit and bit-sets that are (probabilistically) conditional simul-852

taneous-neutral are summarized in Table 10.853
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Table 9. Three sufficient conditions conform the 3-round sub-optimal differential [3]

(0x8020, 0x4101)
↓

(0x0040, 0x0000)

(0x8060, 0x4101)
↓

(0x0040, 0x0000)

(0x8021, 0x4101)
↓

(0x0040, 0x0000)

(0x8061, 0x4101)
↓

(0x0040, 0x0000)

x[7] = 0
x[5]⊕ y[14] = 1
x[15]⊕ y[8] = 0

x[7] = 0
x[5]⊕ y[14] = 0
x[15]⊕ y[8] = 0

x[7] = 0
x[5]⊕ y[14] = 1
x[15]⊕ y[8] = 1

x[7] = 0
x[5]⊕ y[14] = 0
x[15]⊕ y[8] = 1

Table 10. (Probabilistic) (simultaneous-)neutral bit-sets for 3-round differen-
tial (0x8020, 0x4101) → (0x0040, 0x0000), (0x8060, 0x4101) → (0x0040, 0x0000),
(0x8021, 0x4101) → (0x0040, 0x0000), (0x8061, 0x4101) → (0x0040, 0x0000) of
Speck32/64 [3]

(8020, 4101) (8060, 4101) (8021, 4101) (8061, 4101)
Bit-set Pre. Post. Pre. Post. Pre. Post. Pre. Post. Condition

[22] 0.995 1.000 0.995 1.000 0.996 1.000 0.997 1.000 -
[20] 0.986 1.000 0.997 1.000 0.996 1.000 0.995 1.000 -
[13] 0.986 1.000 0.989 1.000 0.988 1.000 0.992 1.000 -
[12,19] 0.986 1.000 0.995 1.000 0.993 1.000 0.986 1.000 -
[14,21] 0.855 0.860 0.874 0.871 0.881 0.873 0.881 0.876 -
[6,29] 0.901 0.902 0.898 0.893 0.721 0.706 0.721 0.723 -
[30] 0.803 0.818 0.818 0.860 0.442 0.442 0.412 0.407 -
[0,8,31] 0.855 0.859 0.858 0.881 0.000 0.000 0.000 0.000 -
[5,28] 0.495 1.000 0.495 1.000 0.481 1.000 0.469 1.000 x[12]⊕ y[5] = 1
[15,24] 0.482 1.000 0.542 1.000 0.498 1.000 0.496 1.000 y[1] = 0
[4,27,29] 0.672 0.916 0.648 0.905 0.535 0.736 0.536 0.718 x[11]⊕ y[4] = 1
[6,11,12,18] 0.445 0.903 0.456 0.906 0.333 0.701 0.382 0.726 x[2]⊕ y[11] = 0

Among the two 3-round differentials (0x8020,0x4101)→ (0x0040,0x0000) and854

(0x8060,0x4101) → (0x0040,0x0000) are adjoining differentials. The bit 5 of x855

(the bit 21 of x∥y) is the SBfADs of both pairs. An SBfADs plays the same role856

as a deterministic unconditional NB, thus is better to be used than probabilistic857

and conditional NBs. Specifically, employing SBfADs saves one guessed key bit858

and reduces both time and data complexity by half compared to employing the859

CSNBS.860

A.2 Generalized Neural Bit-sets for SIMON32/64 [3]861

For an input pair ((x, y), (x′, y′)) to conform to the 3-round differential (0x0440,
0x1000) → (0x0000, 0x0040), one has conditions that{

x[1] = x′[1] = 0

x[3] = x′[3] = 0
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Table 11. NB and SNBS for 3-round Classical Differential (0x0440, 0x1000)→
(0x0000, 0x0040) of Simon32/64 [3]

[2] [3] [4] [6] [8] [9]
[10] [18] [22] [0,24] [12,26]

862

For an input pair ((x, y), (x′, y′)) to conform to the 4-round differential (0x1000,
0x4440)→(0x0000, 0x0040), one has conditions that{

x[5] = x′[5] = 0

x[3] = x′[3] = 0

Table 12. NB and SNBS for 4-round Classical Differential (0x1000, 0x4440)→
(0x0040, 0x0000) of Simon32/64 [3]

[2] [6] [12,26] [10,14,28]

Table 13. CSNBS for 4-round Classical Differential (0x1000, 0x4440)→ (0x0040,
0x0000) of Simon32/64 [3]

Bit-set C. Bit-set C. Bit-set C. Bit-set C. Bit-set C.

x[1, 15] x[15, 13] x[13, 11] x[11, 9] x[9, 7]

[24,10] 00 [22,8] 00 [20] 00 [18,4] 00 [16,8] 00
[24,10,9] 10 [22,8,7] 10 [20,5] 10 [18,4,3] 10 [16,8,1] 10
[24,10,0] 01 [22,8,14] 01 [20,12] 01 [18,4,10] 01 [16] 01
[24,10,9,0] 11 [22,8,7,14] 11 [20,12,5] 11 [18,4,3,10] 11 [16,1] 11

C.: Condition on x[i, j], e.g., x[i, j] = 10 means x[i] = 1 and x[j] = 0.

B Procedure of (1 + s+ r + 1)-round key recovery attack863

The attack procedure is as follows.864

1. Initialize variables Gbestkey ← (None, None), Gbestscore ← −∞.865

2. For each of the nkg guessed key bits, on which the conditions depend,866

(a) Generate ncts random data with difference ∆P , and satisfying the con-867

ditions being conforming pairs (refer to Appendix A).868
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(b) Using ncts random data and log2 m neutral bit with probability one to869

generate ncts data pairs. Every data pairs have m data.870

(c) From the ncts random data pairs, generate ncts structures using the nb871

generalized neutral bit.872

(d) Decrypt one round using zero as the subkey for all data in the structures873

and obtain the ncts plaintext structure.874

(e) Query for the ciphertexts under (1 + s + r + 1)-round Speck or Simon875

of the ncts × nb × 2 plaintext structures, thus obtaining ncts ciphertext876

structures, denoted by {C1, . . . , Cncts}.877

(f) Initialize an array ωmax and an array nvisit to record the highest distin-878

guisher score obtained so far and the number of visits have received in879

the last subkey search for the ciphertext structures.880

(g) Initialize variables bestscore ← −∞, bestkey ← (None, None), bestpos ←881

None to record the best score, the corresponding best recommended val-882

ues for the two subkeys obtained among all ciphertext structures and the883

index of these ciphertext structures.884

(h) For j from 1 to nit:885

i. Compute the priority of each of the ciphertext structures as follows:886

si = ωmaxi + α ·
√
log2 j/nvisiti, for i ∈ {1, . . . , ncts}, and α =

√
ncts;887

The formula of priority is designed according to a general method in888

reinforcement learning to achieve automatic exploitation versus explo-889

ration trade-off based on Upper Confidence Bounds. It is motivated to890

focus the key search on the most promising ciphertext structures [12].891

ii. Pick the ciphertext structure with the highest priority score for fur-892

ther processing in this j-th iteration, denote it by C, and its index by893

idx, nvisitidx ← nvisitidx + 1.894

iii. Run the BayesianKeySearch Algorithm [12] with C, the r-round895

diffe-rential-neural distinguisherNDr and its wrong key response pro-896

file NDr · µ and NDr · σ, ncand1, and nbyit1 as input parameters;897

obtain the output, that is, a list L1 of nbyit1 × ncand1 candidate val-898

ues for the last subkey and their scores, i.e., L1 = {(g1i, v1i) : i ∈899

{1, . . . , nbyit1 × ncand1}}.900

iv. Find the maximum v1max among v1i in L1, if v1max > ωmaxidx,901

ωmaxidx ← v1max.902

v. For each of recommended last subkey g1i ∈ L1, if the score v1i > c1,903

A. Descrypt the ciphertext in C using the g1i by one round and obtain904

the ciphertext structures C′ of (1+s+r)-round Speck or Simon.905

B. Run BayesianKeySearch Algorithm with C′, the differential-906

neural distinguisher NDr−1 and its wrong key response profile907

NDr−1 ·µ and NDr−1 ·σ, ncand2, and nbyit2 as input parameters;908

obtain the output, that is a list L2 of nbyit2 × ncand2 candidate909

values for the last subkey and their scores, i.e., L2 = {(g2i, v2i) :910

i ∈ {1, . . . , nbyit2 × ncand2}}.911

C. Find the maximum v2i and the corresponding g2i in L2, and de-912

note them by v2max and g2max.913
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D. If v2max > bestscore, update bestscore ← v2max, bestkey ← (g1i, g2max),914

bestpos ← idx.915

vi. If bestscore > c2, go to Step 2i.916

(i) Make a final improvement using VerifierSearch [12] on the value of917

bestkey by examining whether the scores of a set of keys obtained by918

changing at most 2 bits on top of the incrementally updated bestkey919

could be improved recursively until no improvement is obtained, up-920

date bestscore to the best score in the final improvement; If bestscore >921

Gbestscore, update Gbestscore ← bestscore, Gbestkey ← bestkey.922

3. Return Gbestkey, Gbestscore.923

C Overfitting in training differential-neural distinguisher924

with N/m and N instances925

From Fig. 11, 13, 15, 17, 19, we can see that the difference between training926

accuracy and test accuracy is relatively large. Therefore, using N/m and M/m927

instances as training and test sets to train a neural network will suffer from928

overfitting, especially when the number of rounds r and m is large. However, the929

difference between training accuracy and test accuracy is very small and almost930

equal in Fig. 12, 14, 16, 18, 20. Therefore, using N and M instances as training931

and test sets to train the differential-neural distinguisher can avoid overfitting,932

speed up the model convergence, and improve the model accuracy to a certain933

extent.934
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Fig. 11. Using N/m instances for 6-round Speck32/64
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Fig. 12. Using N instances for 6-round Speck32/64
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Fig. 13. Using N/m instances for 7-round Speck32/64
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Fig. 14. Using N instances for 7-round Speck32/64
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Fig. 15. Using N/m instances for 9-round Simon32/64
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Fig. 16. Using N instances for 9-round Simon32/64
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Fig. 17. Using N/m instances for 10-round Simon32/64
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Fig. 18. Using N instances for 10-round Simon32/64
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Fig. 19. Using N/m instances for 11-round Simon32/64
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Fig. 20. Using N instances for 11-round Simon32/64
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