
Improving Differential-Neural Cryptanalysis
Liu Zhang1,2, Zilong Wang1,2 and Baocang Wang3

1 School of Cyber Engineering, Xidian University, Xi’an, China,
liuzhang@stu.xidian.edu.cn,zlwang@xidian.edu.cn

2 State Key Laboratory of Cryptology, P.O.Box 5159, Beijing 100878, China
3 State Key Laboratory of Integrated Service Networks, Xidian University, Xi’an,

China,bcwang79@aliyun.com

Abstract. In CRYPTO’19, Gohr introduced a novel cryptanalysis method by de-
veloping a differential-neural distinguisher using neural networks as the underlying
distinguisher. He effectively integrated this distinguisher with classical differentials,
facilitating a 12-round key recovery attack on Speck32/64 (from a total of 22 rounds).
Bao et al. refined the concept of neutral bits, enabling key recovery attacks up to 13
rounds for Speck32/64 and 16 rounds (from a total of 32) for Simon32/64.
Our primary objective is to enhance the capabilities of differential-neural distinguishers
by applying more deep-learning techniques, focusing on handling more rounds and
improving accuracy. Inspired by the Inception Block in GoogLeNet, we adopted
a design that uses multiple parallel convolutional layers with varying kernel sizes
before the residual block to capture multi-dimensional information. Additionally,
we expanded the convolutional kernels in the residual blocks, thereby enlarging the
network’s receptive field. In the case of Speck32/64, our efforts yield accuracy
improvements in rounds 6, 7, and 8, enabling the successful training of a 9-round
differential-neural distinguisher. As for Simon32/64, we developed a differential-neural
distinguisher capable of effectively handling 12 rounds while achieving noteworthy
accuracy enhancements in rounds 9, 10, and 11.
Additionally, we utilized neutral bits to ensure the required data distribution for
launching a successful key recovery attack when using multiple-ciphertext pairs
as input for the neural network. Meanwhile, we redefined the formula for time
complexity based on the differences in prediction speeds of the distinguisher between
a single-core CPU and a GPU. Combining these various advancements allows us to
considerably reduce the time and data complexity of key recovery attacks on 13-round
Speck32/64. Furthermore, we used knowledge distillation techniques to reduce the
model size, thereby accelerating the distinguisher’s prediction speed and reducing
the time complexity. In particular, we achieved a successful 14-round key recovery
attack by exhaustively guessing a 1-round subkey, marking a significant milestone in
differential-neural cryptanalysis. For Simon32/64, we accomplished a groundbreaking
17-round key recovery attack for the first time and reduced the time complexity of
the 16-round key recovery attack.
Keywords: Differential-Neural Distinguisher · Inception Module · Speck · Simon
· Knowledge Distillation · Key Recovery Attack

1 Introduction
In CRYPTO 2019, Gohr [Goh19] proposed the idea of differential-neural cryptanalysis.
The differential-neural distinguisher, trained by the neural network, is introduced as the
underlying distinguisher. The differential-neural distinguisher can distinguish whether
ciphertexts are encrypted by plaintexts that satisfy a specific input difference or by random
numbers. However, the current differential-neural distinguisher seems only effective for

mailto:liuzhang@stu.xidian.edu.cn
mailto:zlwang@xidian.edu.cn
mailto:bcwang79@aliyun.com

2 Improving Differential-Neural Cryptanalysis

limited rounds of ciphertext. Therefore, a short high-probability classical differential
∆S → ∆P is prepended before the differential-neural distinguisher to increase the number
of rounds for key recovery attacks.

Gohr [Goh19] showed that the Residual Network [HZRS16] could capture the non-
randomness of the distribution of output pairs when the input pairs of round-reduced
Speck32/64 meet a specific difference. As a result, 6, 7, and 8-round differential-neural
distinguishers were trained, and 11, 12-round key recovery attacks for Speck32/64 were
achieved by combining a 2-round classical differential. There may be two directions to
improve differential-neural cryptanalysis. One is to use a longer classical differential
prepended on top of the differential-neural distinguisher. Bao et al. [BGL+22] generalized
the concept of neutral bits and searched for (conditional) simultaneous neutral bit-set with
a higher probability for more rounds of the classical differential. Thus, Bao et al. devised
a new 13-round key recovery attack for Speck32/64 with the same differential-neural
distinguisher proposed in [Goh19]. The other is to study the effective differential-neural
distinguisher with more rounds. Chen et al. [CSYY21] and Benamira [BGPT21] et al.
almost simultaneously proposed the method of using multiple-ciphertext pairs instead of
single-ciphertext pairs (in Gohr’s work) as input of the neural network, both improved
the accuracy of the 6, 7-round differential-neural distinguisher of Speck32/64. Bao
et al. [BGL+22] used the Dense Network [HLvdMW17] and the Squeeze-and-Excitation
Network [HSS18] to train differential-neural distinguisher, obtained 9, 10, and 11-round
differential-neural distinguisher and devised a 16-round key recovery attack for Simon32/64.
We made some improvements for differential-neural cryptanalysis, as listed below.

Our contribution. The contributions of this work include the following:

- We have enhanced the differential-neural distinguisher by revising its network architecture.
This improvement entailed introducing an Inception module comprising multiple parallel
convolutional layers before the Residual block. The Inception module’s integration aims
to capture a broader spectrum of information across various dimensions within the
ciphertext pairs. Furthermore, we fine-tuned the convolutional kernel sizes to better
match the cipher’s round functions. These developments have resulted in increased
accuracy for the 6, 7, and 8-round differential-neural distinguishers of Speck32/64,
and have allowed us to develop a new 9-round differential-neural distinguisher. In a
similar vein, for Simon32/64, we have enhanced the accuracy of the 9, 10, and 11-round
distinguishers and successfully created a novel 12-round distinguisher. The performance
results of the differential-neural distinguishers for Speck32/64 and Simon32/64 are
comprehensively presented in Tables 2 and 6, respectively.

- To successfully conduct key recovery attacks, each ciphertext pair obtained through
classical differentials must exhibit the same difference. Inspired by Gohr’s work on
the combined response of differential-neural distinguishers, we employed neutral bits
with a probability of 1 to generate multiple-plaintext pairs. These plaintext pairs were
then encrypted to produce multiple ciphertext pairs. Furthermore, to estimate the time
complexity of differential-neural cryptanalysis, we calculated the ratio of prediction
speeds between a single-core CPU and a GPU. This approach allows for a more equitable
and reasonable comparison of the results of differential-neural cryptanalysis with those
of classical cryptanalysis.

- We have successfully executed several key recovery attacks by combining the enhanced
differential-neural distinguisher with a classical differential. This methodology has led
to a reduction in both time and data complexity for the 13-round Speck32/64 key
recovery attack. Additionally, we implemented knowledge distillation techniques to
reduce the size of the model, which in turn accelerated the prediction speed of the

Liu Zhang, Zilong Wang and Baocang Wang 3

distinguisher during key recovery attacks, further lowering the time complexity. Notably,
we achieved a breakthrough by successfully conducting a 14-round key recovery attack
on Speck32/64, marking the first instance of such an attack in differential-neural
cryptanalysis. This was accomplished by exhaustively guessing a 1-round subkey. For
Simon32/64, we pioneered a 17-round key recovery attack using deep learning methods for
the first time. Moreover, we managed to reduce the time complexity of the 16-round key
recovery attack on Simon32/64. Comprehensive experimental comparisons demonstrating
these achievements are detailed in Table 1. Source codes are available in https:
//github.com/CryptAnalystDesigner/NeuralDistingsuisherWithInception.git.

Table 1: Summary of key recovery attacks on Speck32/64 and Simon32/64

Target Round Type Configure Time
Complexity

Data
Comoplexity

Success
Rate

Key
Space Reference

Speck
32/64

13

DD 1+8+4 257 225 − 264 [Din14]
DD 1+8+2+2 250.16 231.13 63% 264 [BCdST+23]
DD 2+8+3 255.58 224.26 − 264 [FLW+23]
ND 1+3+8+1 248.67+2.4⋆ 229 82% 263 [BGL+22]
ND 1+3+8+1 241.44+5.68† 227 21% 263 Sect.4.4
ND 1+3+8+1 241.22+3.81† 227 34% 263 Sect.5.2

14

DD 1+9+4 262.47 230.47 − 264 [SHY16]
DD 1+9+2+2 260.99 231.75 63% 264 [BCdST+23]
DD 2+9+3 260.58 230.26 76% 264 [FLW+23]
ND 1+3+8+1+1 257.12+3.81† 227 34% 263 Sect.5.3

Simon
32/64

16
DD 2+12+2 226.48 229.48 62% 264 [AL13]
ND 1+3+11+1 241.81+2.4⋆ 221 49% 264 [BGL+22]
ND 1+3+11+1 231.71+3.20† 221 59% 264 Sect.6.5

17 ND 1+4+11+1 240.64+5.22† 228 9% 264 Appendix.B
18 DD 1+13+4 246.00 231.2 63% 264 [ALLW14]
19 DD 2+13+4 234.00 231.5 - 264 [BRV14]
21 DD 4+13+4 255.25 231.0 - 264 [WWJZ18]

1. DD: differential distinguisher; N D: differential-neural distinguisher; −: Not available;
2. ⋆: 2.4 is the ratio of the time required for key recovery attacks using CPU and GPU in [BGL+22];
3. †: 5,68, 3.81, 3.20 and 5.22 are the ratio of the time required for different key recovery attacks using
single-core CPU and GPU in our device.

Organization. Section 2 gives the preliminary on the distinguisher model, the key
recovery attack process, and generalized neutral bits. Section 3 introduces the training
method and the result of distinguishers for Speck32/64. We introduce data generation,
complexity calculation and key recovery attack for 13-round Speck32/64 in Section 4.
Section 5 presents the knowledge distillation and key recovery attack for 13, 14-round
Speck32/64. Section 6 introduces the differential-neural cryptanalysis for Simon32/64.
We conclude the paper in Section 7.

https://github.com/CryptAnalystDesigner/NeuralDistingsuisherWithInception.git
https://github.com/CryptAnalystDesigner/NeuralDistingsuisherWithInception.git

4 Improving Differential-Neural Cryptanalysis

2 Preliminary
2.1 Brief Description of Speck32/64 and Simon32/64
Let ω be the word size (the number of bits of a word), and the block size can be denoted as
L bits, where L = 2ω. Let (xi, yi) be the left and right branches of a state after encryption
of i rounds, ki the subkey of i rounds. Denote the bitwise XOR by ⊕, the addition modulo
2ω by ⊞, the bitwise AND by ·, the bitwise right rotation by ≫, and the bitwise left
rotation by ≪.

Speck32/64 and Simon32/64 are members in the lightweight block cipher family
Speck and Simon [BSS+13]. The round function (out of 22) of Speck32/64 takes a 16-bit
subkey ki and a state consisting of two 16-bit words (xi, yi) as input. The state of the
next round (xi+1, yi+1) is computed as follows:

xi+1 = ((xi ≫ 7) ⊞ yi)⊕ ki, yi+1 = (yi ≪ 2)⊕ xi+1.

The round function (out of 32) of Simon32/64 takes a 16-bit subkey ki and a state
consisting of two 16-bit words (xi, yi) as input. The next round state (xi+1, yi+1) is
computed as follows:

xi+1 = (xi ≪ 1) · (xi ≪ 8)⊕ (xi ≪ 2)⊕ yi ⊕ ki, yi+1 = xi.

2.2 The Model of Differential-Neural Distinguisher for Speck32/64
The differential-neural distinguisher is a supervised model that distinguishes whether
ciphertexts are encrypted by plaintexts that satisfy a specific input difference or by
random numbers. Given m plaintext pairs {(Pi,0, Pi,1), i ∈ [0, m− 1]} and target cipher
Speck32/64, the resulting ciphertext pairs {(Ci,0, Ci,1), i ∈ [0, m − 1]} are regarded as
an instance. Note that m = 1 in [Goh19], m ∈ {1, 5, 10, 50, 100} in [BGPT21], and
m ∈ {2, 4, 8, 16} in [CSYY21]. Each instance will be attached with a label Y :

Y =
{

1, if Pi,0 ⊕ Pi,1 = ∆, i ∈ [0, m− 1]
0, if Pi,0 ⊕ Pi,1 ̸= ∆, i ∈ [0, m− 1]

where ∆ = (0x0040, 0x0000). If Y is 1, this instance is sampled from the target distribution
and defined as a positive example. Otherwise, this instance is sampled from a uniform
distribution and defined as a negative example. A large number of instances need to be
trained in neural networks. when the neural network can obtain a stable accuracy higher
than 0.5 on a test set, it can effectively distinguish whether ciphertexts are encrypted by
plaintexts that satisfy a specific input difference or by random numbers. The model of
differential-neural distinguisher can be described as:

Pr(Y = 1 | X0, . . . , Xm−1) = F (f(X0), · · · , f(Xm−1), φ(f(X0), · · · , f(Xm−1)))
Xi = (Ci,0, Ci,1), i ∈ [0, m− 1]; Pr(Y = 1 | X0, · · · , Xm−1) ∈ [0, 1]

where f(Xi) represents the basic features of a ciphertext pair Xi, and φ(·) is the derived
features, and F (·) is the new posterior probability estimation function.

2.3 Differential-neural Cryptanalysis
Gohr [Goh19] proposed a framework for differential-neural cryptanalysis dedicated to
recovering the last two rounds of subkeys for Speck. We decrypt the ciphertext using
guessed subkey and use the differential-neural distinguisher to estimate the distance
between the guessed subkey and the real key.

Liu Zhang, Zilong Wang and Baocang Wang 5

(PT0, PT1)

D
ec

k
ey

=
0

(S0, S1)

S0 ⊕ S1 = ∆S

(P0, P1)

P0 ⊕ P1 = ∆P

︸ ︷︷ ︸
s-round classical differential

ND

︸︷︷︸(r − 1)-round distinguisher attack

ND

︸ ︷︷ ︸
r-round distinguisher attack

1-round

key
guessing

(CT0, CT1)

1
-ro

u
n
d

key
g
u
essin

g

Figure 1: (1 + s + r + 1)-round key recovery attack of differential-neural cryptanalysis

The overall processing of a key recovery attack based on the differential-neural dis-
tinguisher is shown in Fig. 1, where ND is the trained differential-neural distinguisher,
(PT0, PT1) is plaintext pairs and (CT0, CT1) is ciphertext pairs. The (1 + s + r + 1)-round
key recovery attack employs a r-round main and (r − 1)-round helper differential-neural
distinguisher trained using input pairs with difference ∆P . A short s-round classical
differential (∆S → ∆P) with probability denoted by 2−p is prepended on top of the
differential-neural distinguisher to increase the number of the rounds of key recovery attack.
To ensure the existence of data pairs satisfying the difference ∆P after s-round encryption,
about c · 2p (denoted by ncts) data pairs with the difference ∆S are required according
to the probability of difference propagation, where c is a small constant. Neutral bits of
the s-round classical differential are used to expand each data pair to a structure of nb

data pairs. The ncts structures of the data pairs are decrypted in one round with 0 as
the subkey to get the plaintext structures because the nonlinear operation occurs before
the addition of keys for Speck and Simon. All plaintext structures are encrypted to
obtain the corresponding ciphertext structures. Each ciphertext structure is used to select
a candidate of the subkey by the r-round main differential-neural distinguisher based on a
variant of Bayesian optimization. The usage of ciphertext structures is also highly selective
by using a standard exploration-exploitation technique, namely Upper Confidence Bounds.
Each ciphertext structure is assigned a priority according to the score of the recommended
subkeys and the visited times. Without exhaustively performing trail decryption, the key
search policy depends on the expected response of the differential-neural distinguisher upon
wrong-key decryption. The wrong key response profile is to recommend new candidate
values from previous candidate values while minimizing the weighted Euclidean distance
in a BayesianKeySearch Algorithm [Goh19].

2.4 Combined Response and Neutral Bits
As the number of encryption rounds increases, the accuracy of the differential-neural
distinguisher decreases. To reduce the impact of the misjudgment of the single prediction of
the distinguisher, Gohr used the combined response of the differential-neural distinguisher
in ciphertext structure with the same distribution, which can be satisfied by neutral
bits [Goh19]. The primary notion of neutral bits can be interpreted as follows.

Definition 1 (Neutral bits of a differential, NB[BC04]). Let ∆in → ∆out be a differential
with input difference ∆in and output difference ∆out of a r-round encryption F r. Let
(P, P ′) be the input pair and (C, C ′ | C = F r(P), C ′ = F r(P ′)) be the output pair,
where P ⊕ P ′ = ∆in. If C ⊕ C ′ = ∆out, (P, P ′) is said to be conforming the differential
∆in → ∆out. Let e0, e1, . . . , en−1 be the standard basis of Fn

2 . Let i be an index of a
bit (starting from 0). The i-th bit is a neutral bit for the differential ∆in → ∆out, if
(P ⊕ ei, P ′ ⊕ ei) is also a confirming pair for any confirming pair (P, P ′).

The responses vi,k from the differential-neural distinguisher on ciphertext pairs in the

6 Improving Differential-Neural Cryptanalysis

Previous layer

1×1 convolutions 3×3 convolutions 5×5 convolutions 3×3 max pooling

Filter Concatenation

Figure 2: Inception Module

Output

Module 3

Module 2

Module 2

Module 1

Input

F (·)

f(·)

Module 1

Conv, 1, Nf

Conv, 3, Nf Conv, 5, Nf

Conv, 7, Nf

Concatenate, 4Nf

BN

Relu

Module 2

ks = ks + 2

Conv, ks, 4Nf

BN

Relu

Conv, ks, 4Nf

BN

Relu

⊕

Module 3

Dropout

FC, d0

BN

Relu

FC, d1

BN

Relu

FC, d2

BN

Relu

Output

FC, 1

Sigmod

Figure 3: The network architecture of
our distinguisher for Speck32/64

ciphertext structure (of size nb) are combined using the Formula sk =
∑nb−1

i=0 log2

(
vi,k

1−vi,k

)
and sk is used as the score of a recommended subkey. The score sk plays a decisive
role in the execution time and success rate of the attack. The number of instances with
the same distribution should be sufficiently large to enhance the distinguishing ability of
the low-accuracy differential-neural distinguisher. However, neutral bits of the nontrivial
classical differential are scarce. Therefore, probabilistic neutral bits (PNB) are exploited in
[Goh19]. Some probabilistic neutral bits, simultaneous-neutral bit-sets (SNBS), conditional
(simultaneous-) neutral bit(-set)s (CSNBS), and switching bits for adjoining differentials
(SBfADs) were found in [BGL+22] (refer to Appendix A).

3 Differential-Neural Distinguishers for Round-Reduced
Speck32/64

3.1 Inception Module
Generally speaking, the safest way to improve network performance is to increase the
width and depth of the network, which also has side effects. First, a deeper and wider
network often means many parameters. When the amount of data is small, the trained
network is easy to overfit, and when the depth of the network is deep, it is difficult to
train and easy to cause greater errors. The two side effects of disappearance restrict the
development of deep and wide convolutional neural networks, and the Inception network
solves these two problems very well.

One of the modules in the Inception module is as follows in Fig. 2: in the same layer,
there are 1×1, 3×3, 5×5 convolution and pooling layers, respectively, and the convolution
operation and the pooling layer are pooled using filters. Padding is used in all operations
to ensure that the output is the same size and the output results are all integrated after
these operations. The feature of this module is that in the same layer, different features
of the input of the previous layer are collected by using the above-mentioned kernels of
different sizes and performing pooling operations. This increases the width of the network
and uses these different-sized kernels and pooling operations to extract different features
from the previous layer.

3.2 Network Architecture
The overall structure of our neural network for training the differential-neural distinguisher
is depicted in Fig 3. Our neural network comprises four main components: an input layer

Liu Zhang, Zilong Wang and Baocang Wang 7

that incorporates multiple-ciphertext pairs, an initial convolutional layer consisting of
four parallel convolutional layers, a residual tower that consists of multiple convolutional
neural networks with two layers each, and a prediction head that comprises multiple fully
connected layers.
Input Representation. When the output of the r-th round is denoted as (C, C ′) = (xr ∥
yr, x′

r ∥ y′
r), it enables the direct computation of (yr−1, y′

r−1) without the knowledge of
the (r − 1)-th subkey, utilizing the round function of Speck. Consequently, the neural
network can process data in the format of (xr, x′

r, yr, y′
r, yr−1, y′

r−1). To accommodate this
data format, the input layer of the neural network comprises m ciphertext pairs, where
each pair consists of 3L units arranged in a [m, ω, 3L

ω] array. For Speck32/64, the values of
L and ω are set as 32 and 16 respectively.
Initial Convolution (Module 1). The initial convolutional layer, linked to the input
layer, comprises four distinct convolutional layers. Each layer utilizes Nf = 32 channels
but with varying kernel sizes. This design is inspired by the Inception module from
GoogLeNet [SLJ+15], where the outputs of these convolutional layers are concatenated
along the channel dimensions to integrate different feature maps. Batch normalization
is then employed on these concatenated outputs to stabilize the learning process. Subse-
quently, a rectifier nonlinearity is applied to the normalized outputs. The resulting matrix,
with dimensions [m, ω, 4Nf], is forwarded to the subsequent convolutional blocks layer,
facilitating further feature extraction.
Residual Blocks (Module 2). Each residual block in our network comprises two layers,
each equipped with 4Nf filters. The operational sequence within each block initiates with
a residual layer using a kernel size of ks = 3. This is followed by batch normalization,
enhancing the stability and efficiency of the training process. Subsequently, a rectifier
layer is applied, introducing nonlinearity into the model. A critical design element is
incorporating a skip connection at the end of each block, which links the output from the
final rectifier layer directly to the input of the block. This skip connection facilitates the
transfer of information to the subsequent block. Furthermore, the kernel size incrementally
increases by 2 following each residual block, allowing for a progressive receptive field
expansion. The architecture comprises five residual blocks, a configuration empirically
determined through experimental validation.
Prediction Head (Module 3 and Output). The prediction head features three hidden
layers, leading to a single output unit. A dropout layer is added before the first hidden
layer to reduce overfitting. The hidden layers consist of d0 = 512, d1 = 64, and d2 = 64
units, each followed by batch normalization and a rectifier layer. The output unit employs
a sigmoid activation function.
Rationale. The performance of a differential-neural distinguisher primarily depends on
two aspects: data and network structure. On the one hand, we have modified the input
data of the neural network according to the round function of Speck, as more data may
contain more information. On the other hand, unlike Gohr, who only used convolutional
layers with a kernel size of 1 to capture differential information, we think that due to the
cyclic shift operations and modular addition in the round functions, adjacent bits of the
ciphertext might also exhibit features. Therefore, we use the Inception module to attempt
to capture features across multiple dimensions. All in all, using the Inception module
and increasing the size of the convolutional kernel in the residual block are also aimed at
enlarging the receptive field of the network.

3.3 The Training of Differential-Neural Distinguisher
A comprehensive training procedure was undertaken to substantiate the effectiveness of
our proposed network architecture.

8 Improving Differential-Neural Cryptanalysis

Data Generation. Training and test datasets were generated utilizing the Linux random
number generator. This approach ensured the uniform distribution of keys Ki and the
generation of multiple-plaintext pairs {(Pi,j,0, Pi,j,1)}, j ∈ [0, m− 1] with the designated
input difference ∆ = (0x0040, 0x0000) and an associated vector of binary labels Yi. For
the r-round Speck32/64, the encryption process varied based on the label Yi. If Yi = 1,
the multiple-plaintext pairs underwent encryption for r rounds. Conversely, if Yi = 0, the
second plaintext in each pair was substituted with a newly generated random plaintext
before undergoing the same r-round encryption process.
Remark 1. We use two different numbers of datasets to train differential-neural distinguisher.
In Gohr’s study [Goh19], both the training and test sets consist of N and M instances,
respectively, each containing a single ciphertext pair, thus resulting in a total of N and
M ciphertext pairs. Contrastingly, in the work of Chen and Yu [CSYY21], the training
and test sets include N/m and M/m instances, respectively, with each instance comprising
m ciphertext pairs. This approach leads to the same total number of ciphertext pairs, N
and M , being used in both sets. For a fair comparison, we adopted the latter approach of
using N/m and M/m instances for our training and test sets. However, this methodology
potentially risks overfitting as discussed in Remark 2. To address this issue, we also
considered using N and M instances for the training and test sets, each containing m
ciphertext pairs, thereby involving a total of N ×m and M ×m ciphertext pairs.

Basic Training Method. We conducted the training for 20 epochs in the dataset for
N = 107 and M = 106. The batch size processed by the dataset is adjusted according to the
parameter m to maximize GPU performance. Optimization was performed against mean
square error loss plus a small penalty based on L2 weights regularization parameter c = 10−5

using the Adam algorithm [KB15]. A cyclic learning rate schedule was applied, setting the
learning rate li for epoch i to li = α+ (n−i) mod (n+1)

n · (β−α) with α = 10−4, β = 2×10−3

and n = 9. The networks obtained at the end of each epoch were stored, and the best
network by validation loss was evaluated against a test set.

Training (8-9)-round Distinguishers Using Staged Train Method. A multi-stage
pretraining approach was employed to train an 8-round differential-neural distinguisher for
Speck32/64. Initially, our 7-round distinguisher was used to identify 5-round Speck32/64
with the input difference (0x8000, 0x804a), which is the most probable difference to
manifest three rounds after the initial difference (0x0040, 0x0000). This training involved
107 instances over 20 epochs, using a learning rate of 10−4. Subsequently, the distinguisher
was trained to recognize 8-round Speck32/64 with the input difference (0x0040, 0x0000),
processing 107 new instances for 10 epochs at the same learning rate. The training
concluded with the learning rate being reduced to 10−5, and the model processed another
107 instances for 10 epochs. The training methodology for the 9-round distinguisher
mirrored this approach. The primary variation was the use of an 8-round distinguisher for
identifying 5-round Speck32/64 with the input difference (0x850a, 0x9520), which is the
most probable difference after four rounds starting from (0x0040, 0x0000).

3.4 Result
Test Accuracy. We present a comparative analysis of the accuracy of 6, 7, 8, and 9-round
differential-neural distinguishers against the benchmarks set in previous studies [Goh19,
CSYY21, BGPT21], as summarized in Table 2. Additionally, we report the accuracy
(Acc), true positive rate (TPR), and true negative rate (TNR) of these distinguishers, as
evaluated on newly generated datasets, in Table 3. The training methodology for the 6 and
7-round distinguishers adhered to the basic training method, whereas the 8 and 9-round
distinguishers were developed using the staged training method. Notably, variations in
accuracy under these two experimental conditions can be attributed to model overfitting,

Liu Zhang, Zilong Wang and Baocang Wang 9

as detailed in Remark 2.

Table 2: Summary accuracy of distinguisher on Speck32/64 using different number of
instances

r
m=2 m=4 m=5

[CSYY21][GLN22]⋆ N/m N [CSYY21][GLN22]⋆ N/m N [BGPT21] N/m N

6 0.8613 0.877 0.8771 0.8773 0.931 0.950 0.9468 0.9497 0.9541 0.9623 0.965
7 0.6393 0.663 0.6663 0.6649 0.6861 0.725 0.7194 0.7283 0.735 0.7436 0.7491
8 - 0.521 - - - 0.530 0.5329 0.5428 - - -

r
m=8 m=10 m=16

[CSYY21][GLN22]⋆ N/m N [BGPT21] N/m N [CSYY21][GLN22]⋆ N/m N

6 0.9562 0.990 0.9868 0.9895 0.99 0.9915 0.9939 0.9802 1.000 0.9969 0.9992
7 0.7074 0.801 0.7991 0.8106 0.808 0.8243 0.8341 0.6694 0.883 0.8759 0.8963
8 - 0.543 0.5347 0.5590 - - - 0.560 0.5566 0.5854
9 - - 0.5024 - - - - - 0.5050
⋆: combining the scores of multiple distinguishers trained by using single-ciphertext pair under independence
assumption.
The “N/m” column results in accuracy using N/m and M/m instances as training and test sets, respectively. The
“N” column results from accuracy using N and M instances as the training and test sets, respectively.

Table 3: Acc, TPR, TNR of distinguisher on Speck32/64 using N instances

m r Acc TPR TNR m r Acc TPR TNR

2
6 0.8768 0.8448 0.9087

4
6 0.9495 0.9429 0.9559

7 0.6635 0.6240 0.7029 7 0.7291 0.7048 0.7532
8 - - - 8 0.5428 0.5318 0.5537

8

6 0.9897 0.9862 0.9931

16

6 0.9992 0.9988 0.9996
7 0.8103 0.8024 0.8184 7 0.8958 0.8906 0.9009
8 0.5562 0.5434 0.5690 8 0.5853 0.5704 0.6002
9 0.5016 0.2122 0.7915 9 0.5045 0.5175 0.4915

In the study by Benamira et al. [BGPT21], the value of m varies as {1, 5, 10, 50, 100}.
However, for the ease of key recovery attack implementations, we chose to set m to powers
of 2, specifically {2, 4, 8, 16}. It is noteworthy that when m = 1, the approach of Benamira
et al. aligns with that of Gohr. Benamira et al. employed two distinct methodologies to
train and evaluate the differential-neural distinguisher with multiple-ciphertext pairs. The
first method, known as the Averaging Method, entails evaluating the neural distinguisher
score for each element of a ciphertext pair, followed by calculating the median of these
scores. This method is essentially the combined score method proposed by Gohr [GLN22].
The second, known as the 2D-CNN Method, treats the entire set of multiple-ciphertext
pairs as a singular input for the neural network. While these methods are theoretically
equivalent, the latter approach yields lower accuracy for the trained differential-neural
distinguisher. For instance, in the case of the 6-round distinguisher, accuracies of 0.9541
and 0.9327 were reported for the Averaging and 2D-CNN Methods, respectively, when
m = 5; and 0.99 and 0.977 when m = 10, as per Benamira et al.’s findings. This trend
indicates a consistently lower accuracy for the distinguisher trained using the 2D-CNN
Method. However, the accuracy of the 7-round distinguisher, as reported by Benamira
et al., was obtained using the Averaging Method, suggesting that direct neural network
training might result in even lower accuracy.
Remark 2. Why do we train a differential-neural distinguisher with two different numbers
of data? To ensure a fair comparison, we utilized N/m and M/m instances for our training

10 Improving Differential-Neural Cryptanalysis

and test sets, as discussed in Remark 1. However, as indicated by Fig. 4a, a notable
discrepancy exists between the training and test accuracies, suggesting a tendency towards
overfitting when using N/m and M/m instances, particularly for larger values of r and
m. In contrast, Fig. 4b shows nearly equal training and test accuracies, indicating that
using N and M instances for training and testing can mitigate overfitting, expedite model
convergence, and enhance accuracy. The observed overfitting not only diminishes the
accuracy of the distinguisher but may also impede the training of distinguishers for more
rounds.0 1 2 3 4 5 6 7 8 9 10111213141516171819

Epoch

0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

Ac
cu

ra
cy

r = 7 and m = 2

train acc
test acc

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Epoch

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Ac
cu

ra
cy

r = 7 and m = 4
train acc
test acc

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Epoch

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

r = 7 and m = 8
train acc
test acc

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Epoch

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

r = 7 and m = 16
train acc
test acc

(a) Using N/m instances

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Epoch

0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675
Ac

cu
ra

cy

r = 7 and m = 2
train acc
test acc

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Epoch

0.50

0.55

0.60

0.65

0.70

0.75

Ac
cu

ra
cy

r = 7 and m = 4

train acc
test acc

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Epoch

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Ac
cu

ra
cy

r = 7 and m = 8

train acc
test acc

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Epoch

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

r = 7 and m = 16

train acc
test acc

(b) Using N instances

Figure 4: Overfitting with the different number of instances.

Wrong Key Response Profile. We analyze scenarios where the distinguisher’s response
to incorrect key decryption depends on the bitwise difference between the guessed and real
subkey. Utilizing the wrong key response profile, as introduced in [Goh19], we precompute
this profile using 3000 ciphertext pairs per subkey guess. This precomputation informs
the BayesianKeySearch Algorithm, which iteratively refines subkey candidates by
minimizing their weighted Euclidean distance, thereby recommending probable subkeys
without exhaustive decryption. The empirical mean µ and standard deviation δ of the
distinguisher score are critical for the algorithm’s decision-making, enhancing the efficiency
of the key search process.

In Fig. 5, the abscissa represents the difference between the guessed and real subkey,
while the ordinate reflects the score from the differential-neural distinguisher using ci-
phertext pairs decrypted with the guessed subkey. A smaller Hamming weight of the key
difference correlates with higher distinguisher scores and vice versa. The distinguisher’s
score is notably higher when the difference between the guessed and real subkey is among
{16384, 32768, 49152}, as indicated by the ‘⋆’ markers on the vertical axis in the figures.
This observation suggests that incorrect guesses of the 14th and 15th bits of the subkey
minimally impact the distinguisher’s score. Consequently, excluding these two bits from
the key guessing process can effectively reduce the key space, a strategy also employed in
Gohr’s study [Goh19] to expedite key recovery attacks.

4 From Differential-Neural Distinguisher to Key Recovery
Attack

4.1 Generation of Same Distributed Data
During the training of the differential-neural distinguisher, we treat multiple-ciphertext
pairs as a single instance for input into the neural network. For positive examples, these

Liu Zhang, Zilong Wang and Baocang Wang 11

0 16384 32768 49152 65536
Difference to real key

0.4600

0.4800

0.5000

0.5200

M
ea

n
Re

sp
on

se

Gohr

0 16384 32768 49152 65536
Difference to real key

0.3500

0.4000

0.4500

0.5000

0.5500

0.6000

0.6500

M
ea

n
Re

sp
on

se

m = 4

0 16384 32768 49152 65536
Difference to real key

0.3000

0.4000

0.5000

0.6000

0.7000

M
ea

n
Re

sp
on

se

m = 8

0 16384 32768 49152 65536
Difference to real key

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

M
ea

n
Re

sp
on

se

m = 16

Figure 5: Wrong key response profile for 7-round Speck32/64 using N instances

ciphertext pairs are derived from encrypting multiple-plaintext pairs that share the same
difference ∆P .

After developing the differential-neural distinguisher, we prepend a classical differential
∆S → ∆P to extend the attack’s reach across more rounds. However, since classical
differentials are probabilistic, ensuring the same difference in multiple-ciphertext pairs
post-classical differential propagation is challenging.

To address this, we utilize neutral bits, which facilitate obtaining multiple-ciphertext
pairs with a consistent difference after classical differential propagation, which is crucial for
effective key recovery attacks. We start with randomly generated plaintext pairs with the
initial difference ∆S and manipulate the plaintext bits corresponding to log2 m neutral bits
to create m plaintext pairs. This approach ensures that the m ciphertext pairs produced by
processing these plaintext pairs through the classical differential share the same difference.

4.2 Experimental Environment and Data Complexity
Our approach follows the framework of previous studies [Goh19, BGL+22], with the primary
distinction being our use of a differential-neural distinguisher trained on N instances. For
detailed key recovery attack procedures, please refer to Appendix C. Consistent with
the criteria in [Goh19], a key guess is considered successful if it accurately predicts the
last round key and the second round key is within a Hamming distance of two from
the real subkey. The experiments were conducted using Python 3.7.15 and Tensorflow
2.5.0 on Ubuntu 20.04. Our hardware setup included Intel(R) Xeon(R) Gold 6226R
processors (2.90GHz), 256GB RAM, and five NVIDIA RTX2080Ti 12GB GPUs. The
specific parameters used in the key recovery attacks are outlined below.

Parameter Definition
nkg the number of times to guess the subkey kr involved in the condition.
ncts The number of ciphertext structures.
nb The number of ciphertext pairs in each ciphertext structure, i.e., 2|NB|.
nit The total number of iterations in the ciphertext structures.

c1, c2
The cutoffs with respect to the scores of the recommended last subkey
and second to last subkey, respectively.

nbyit1/2 The number of iterations, the default value is 5.
ncand1/2 The number of key candidates within each iteration, default value is 32.

12 Improving Differential-Neural Cryptanalysis

Theoretical Data Complexity. During key recovery attacks, the classic differentials
or neutral bits may require specific conditions, thereby dictating particular data needs.
As a result, the data complexity formula needs to include the factor nkg. The data
complexity Dc of our experiment is calculated with the formula nkg × nb × nct ×m× 2.
This complexity is a theoretical estimation. When the differential-neural distinguisher
achieves high accuracy, key recovery can be expedited, often using less data. Thus, the
actual data complexity in the experiment tends to be lower than the theoretical estimation.

4.3 Experimental Time Complexity
It has always been challenging to accurately calculate the time complexity and conduct a
fair comparison with previous work.

- In classical differential cryptanalysis, researchers often quantify the time complexity of a
key recovery attack in terms of the number of encryptions (the number of attack rounds)
required [Din14, ALLW14, BRV14, FLW+23, BCdST+23].

- In differential-neural cryptanalysis, Gohr [Goh19] utilized a GPU for training the
differential-neural distinguisher but implemented key recovery attacks on a single-core
CPU. He estimated that an optimized, SIMD-parallelized implementation of Speck32/64
could achieve brute force key search at roughly 228 keys per second per core. Subsequently,
Bao et al. [BGL+22] employed a GPU to expedite key recovery attacks for 13-round
Speck32/64. For a fair comparison with earlier studies, they adopted 228 keys per second
as the benchmark for encryption speed and calculated the ratio (Ratiocpu/gpu) of the
time required for key recovery attacks on CPU versus GPU, where Ratiocpu/gpu = 22.4

in their work.

To ensure a fair comparison, we conduct multiple key recovery attacks using our
differential-neural distinguisher and calculate the average running time (rt) for each
experiment. This rt serves as the representative time for the experiment. Additionally, we
evaluate the success rate (sr) of the key recovery attack by calculating the ratio of successful
experiments to the total number conducted. Moreover, classical differential cryptanalysis
typically utilize a single-core CPU for key recovery attack execution. However, part of the
differential-neural cryptanalysis key recovery attack process requires GPU execution. To
achieve a fairer comparison, we performed several experiments to determine the time ratio
required for key recovery attacks on a single-core CPU versus a GPU on our equipment.
The detailed results are provided in Table 4.

Table 4: Calculate the ratio of time required for key recovery attack using CPU and GPU

R Conf. m c1 c2 ncts nit nb Ne Device rt Ratiocpu/gpu sr

12 1+3+7+1 8 7 10 211 212 26 40
CPU 26729.89

25.565 100%
GPU 564.67 100%

In Table 4, when performing a key recovery attack on 12-round Speck32/64 using our
trained distinguisher, we determined the ratio (Ratiocpu/gpu) of the time required on a
single-core CPU versus a GPU to be 25.56. Additionally, we utilized the Python package
Cprofile to record the time taken for neural network prediction during the key recovery
attack on a single-core CPU. Our observations revealed that the neural network’s scoring
process for ciphertexts accounted for 99.77% of the total attack time. This significant time
disparity between CPU and GPU in key recovery attacks can be attributed to the CPU’s
relative inefficiency in handling the neural network’s extensive matrix computations.

Liu Zhang, Zilong Wang and Baocang Wang 13

Executing key recovery attacks on a single-core CPU is notably time-consuming.
However, utilizing GPU acceleration can significantly speed up the process. Therefore, we
propose a novel formula for calculating time complexity, which estimates the complexity of
key recovery attacks on CPU devices based on the time required to perform these attacks
on GPU devices.

- Prediction Speed Ps of Distinguisher on Single-core CPU and GPU: When
utilizing a GPU for key recovery attacks, optimizing its performance is crucial, as the
GPU may not be fully utilized. Setting GPU memory usage thresholds and adjusting
batch sizes are essential to control GPU utilization during distinguisher prediction,
thereby ensuring consistency in key recovery attacks. For instance, in a 12-round key
recovery attack, the GPU memory utilization was 3379MB with around 67% GPU
utilization. Therefore, controlling these parameters is vital when evaluating the GPU’s
predictive speed to ensure fairness. In contrast, predictions on a single-core CPU typically
reach 100% CPU utilization. Predictions on 107 instances were conducted using both a
GPU and a single-core CPU, and the required time was recorded. The GPU completed
the task in 729.749 seconds, while the single-core CPU took 33761 seconds. Thus, the
prediction speed ratio Ps between the single-core CPU and GPU is 25.53. Given that Ps

closely aligns with the Ratiocpu/gpu from Table 4, we use Ps instead of Ratiocpu/gpu to
calculate the time complexity.

- Encryption Speed Es of Cryptographic Algorithms on Single-core CPU: We
utilize a 232 plaintext to evaluate our device’s encryption speed Es. For Speck32/64,
each core can execute approximately 227.09 1-round encryption per second per core,
i.e., Es = 227.09; For Simon32/64, each core can execute approximately 225.48 1-round
encryption per second per core, i.e., Es = 225.48.

- Time Comlexity: Then the calculation formula of time complexity Tc is nkg × rt×
Es

R × Ps, where R is the number of rounds for key recovery attack.

4.4 Using Two Classical Differentials and SBfADs for 13-round Speck32/
64

Bao et al. observed that the output of the classical differential plays a significant role in
the performance of differential-neural distinguishers, whereas the input difference does
not. This insight allows for the use of multiple classical differentials with the same output
difference to be prepended to a differential-neural distinguisher. Such classical differentials
can share some neutral bits, potentially enabling data reuse and slightly reducing data
complexity. Additionally, Bao et al. employed the SBfADs, which save one condition,
thereby halving the time and data complexity compared to the CSNBS. Leveraging these
insights, we implemented a 13-round key recovery attack using two classical differentials
and SBfADs to harness the potential of our differential-neural distinguisher further.

Experiment 1: The components of key recovery attack ASpeck13R
I of 13-round

Speck32/64 are shown as follows.

1. 3-round classical differentials (0x8020, 0x4101)→ (0x0040, 0x0000) and (0x8060, 0x4101)
→ (0x0040, 0x0000);

2. generalized neutral bits of generating multiple-ciphertext pairs: {[20], [13], [12, 19]}; gen-
eralized neutral bits of combined response of differential-neural distinguisher:{[22], [14, 21],
[6, 29], [30], [0, 8, 31], [5, 28], [15, 24], [4, 27, 29]} (refer to Table 12 and one SBfADs [21]);

3. 8(7)-round differential-neural distinguisher NDSpeck8(7)r under difference (0x0040,
0x0000) and its wrong key response profiles NDSpeck8(7)r · µ and NDSpeck8(7)r · δ.

14 Improving Differential-Neural Cryptanalysis

At the beginning of the 13-round Speck32/64 key recovery attack, we initially guess
only two bits of k0: k0[7] and k0[15]⊕k0[8], influenced by two 3-round classical differentials,
along with two additional key bits k0[12]⊕ k0[5], k0[1] for employing two CSNBS, as per
Table 12. Due to the use of two classical differentials (0x8020, 0x4101) → (0x0040, 0x0000)
and (0x8060, 0x4101) → (0x0040, 0x0000), the condition k0[5] ⊕ k0[14] is unnecessary,
as indicated in Table 11. Additionally, by using SBfADs instead of CSNBS, the key bit
k0[2]⊕ k0[11] is not required to be guessed. It is important to note that although we used
SNBS, we did not use the key condition k0[11] ⊕ k0[4] to increase its probability since
0.672 is already sufficiently high. Thus, nkg = 24. However, for the economic feasibility of
experimental verification, we tested the core of the attack, ensuring these four conditions
were met. The specific parameters used in our 13-round key recovery attack ASpeck13R

I are
listed below.

nkg = 24 m = 8 nb = 28+1 ncts = 211

nit = 212 c1 = 8, c2 = −500 nbyit1 = nbyit2 = 5 ncand1 = ncand2 = 32

For the 13-round key recovery attack ASpeck13R
I , the GPU memory utilization was

9011MB, with GPU utilization approximately 91%. Predictions on 106 instances were
conducted using both a GPU and a single-core CPU, and the required time was recorded.
The GPU completed the task in 47.072 seconds, while the single-core CPU took 2413.396
seconds. Thus, the prediction speed ratio Ps between the single-core CPU and GPU is
25.68. Also, the classical differential prepended to the attack is valid when keys satisfy
k2[12] ̸= k2[11], so the attack was tested only for these valid keys, covering 263 keys. The
data complexity Dc is calculated as 24 × 29 × 211 × 8× 2/2 = 227 plaintexts, halved due
to the use of two classical differentials, which generate half of the required data pairs. In
100 trials, 21 were successful, yielding a success rate (sr) of 21%. The average runtime per
trial on our server was 17011.22 seconds. Therefore, the time complexity Tc is given by
nkg × rt× Es

R × Ps = 24 × 17011.22× 227.09

13 × 25.68 = 241.44+5.68.

5 Knowledge distillation for Differential-neural Cryptanaly-
sis

As analyzed in Section 4.3, it is evident that the majority of the time spent on key recovery
attacks on a single-core CPU is allocated to executing the distinguisher’s prediction. At
CRYPTO 2019, Gohr reported that the time ratio for executing key recovery attacks
on a single-core CPU compared to a GPU was only 1.447. This relatively small speed
ratio can be attributed to the small scale of Gohr’s neural network, resulting in lower
computational requirements. On the other hand, Gohr also implemented knowledge
distillation, reducing the depth of the residual tower in the neural network from 10 to
1, thereby further minimizing the network size. Therefore, in this section, we also apply
knowledge distillation to reduce the model’s parameters and computational overhead,
aiming to accelerate key recovery attacks.

5.1 Design and Train of Student Distinguisher
Simple Form of Knowledge Distillation Used by Gohr: Gohr [Goh19] utilized a
depth-10 residual tower to train a differential-neural distinguisher as the teacher network.
He then reduced the number of residual towers from 10 to 1 in the student network. A
training dataset of 9 million instances was generated, with each instance predicted using
the teacher distinguisher. These predictions were then used as training targets for the
student network. The training spanned over 30 epochs, with the learning rate reduced from

Liu Zhang, Zilong Wang and Baocang Wang 15

0.001 to 0.0001 within 20 epochs. For the 7-round scenario, the student distinguisher’s
performance was comparable to that of the teacher distinguisher.
Data Generation of Student network: We adopted Gohr’s method for data generation,
randomly generating 107 instances for the training set and 106 instances for the test set. The
distinguisher, trained as outlined in Section 3.3, was employed as the teacher distinguisher.
It was used to make predictions on the dataset, with the outcomes of these predictions
serving as the labels for the corresponding data points.
Network Architecture of Student Network: In our teacher network, we utilized four
convolutional layers with various kernel sizes to capture features across multiple dimensions.
Given the diverse receptive fields these kernel sizes offer, the kernel size in the student
network was set to kI = 7. To reduce the parameter count typically associated with fully
connected layers, we implemented GlobalAveragePooling as a substitute. Our objective,
as we scaled down the network’s size, was to maintain as close a resemblance as possible
between the student and teacher networks, illustrated in Fig 6.
Accuracy of Student Distinguisher Trained Using Knowledge Distillation: The
training of the student network was conducted over 40 epochs, with the learning rate being
reduced from 0.001 to 0.0001 within 20 epochs. As indicated in Table 5, the parameter of
the student network is merely 1/283 of that of the teacher network. Despite this drastic
parameter reduction, the number of convolutional operations within the student network
remains significant. Therefore, using multiple-ciphertext pairs as inputs to the network
yields only a 6.55-fold increase in GPU prediction speed for the distinguisher. While there
is a noticeable decline in accuracy compared to the teacher distinguisher, the student
distinguisher shows an improvement in the True Positive Rate (TPR). Employing the
student network directly for training the differential-neural distinguisher for 7 rounds
results in an accuracy of 0.8013.

Table 5: Parameters, Acc, TPR, TNR of Student Distinguishers

r Type Parameters Acc TPR TNR

7
DDT 9585729 0.8128 0.7941 0.8306
DDS 33857 0.8053 0.8119 0.7989

8
DDT 9585729 0.5532 0.5596 0.5453
DDS 33857 0.5403 0.5607 0.5212

DDT : Teacher distinguisher; DDS : Student distinguisher

5.2 Key Recovery attack of 13-round Speck32/64 Using Student Dis-
tinguisher

We implement key recovery attacks using student distinguishers and examine whether
knowledge distillation can accelerate key recovery attacks.

Experiment 2: The overall procedure for conducting the key recovery attackASpeck13R
II

using the student distinguisher, trained via knowledge distillation, closely follows the
method outlined in Section 4.4. The procedure includes only minor modifications to certain
parameters, which are detailed below.

nit = 213 c1 = 25 c2 = −650

Compared to Experiment 1, we replaced the distinguisher, necessitating corresponding
adjustments to the thresholds, c1 and c2. Due to the relatively small scale and the faster

16 Improving Differential-Neural Cryptanalysis

Output

Module 2

Module 2

Module 1

Input

F (·)

f(·)

Module 1

Conv, kI , Nf

BN

Relu

Module 2

Conv, ks, Nf

BN

Relu

Conv, ks, Nf

BN

Relu

⊕
Output

GlobalAveragePooling

Sigmod

Figure 6: The network architecture of
student distinguisher for Speck32/64 and
Simon32/64

Output

Module 2

Module 2

Module 1

Input

F (·)

f(·)

Module 1

Conv, 1, Nf

Conv, 2, Nf

Conv, 8, Nf

Concatenate, 3Nf

BN

Relu

Module 2

ks = ks + 2

Conv, ks, 3Nf

BN

Relu

Conv, ks, 3Nf

BN

Relu

⊕
Output

GlobalAveragePooling

Sigmod

Figure 7: The network architecture of
our distinguisher for Simon32/64

prediction speed of the student distinguisher, we increased the number of iterations, thereby
enhancing the success rate of the key recovery attack.

For the 13-round key recovery attack ASpeck13R
II , the GPU memory utilization was

5239MB, with GPU utilization around 48%. Predictions on 106 instances were conducted
using both a GPU and a single-core CPU, and the required time was recorded. The GPU
completed the task in 15.582 seconds, while the single-core CPU took 218.638 seconds.
Thus, the prediction speed ratio Ps between the single-core CPU and GPU is 23.81. The
classical differential prepended to the attack is valid when keys satisfy k2[12] ̸= k2[11], so
the attack was tested only for these valid keys, covering 263 keys. The data complexity
Dc is calculated as 24 × 29 × 211 × 8 × 2/2 = 227 plaintexts, halved due to the use of
two classical differentials, which generate half of the required data pairs. In 100 trials,
34 were successful, yielding a success rate (sr) of 34%. The average runtime per trial
on our server was 14587.229 seconds. Therefore, the time complexity Tc is given by
nkg × rt× Es

R × Ps = 24 × 14587.229× 227.09

13 × 23.81 = 241.22+3.81.

5.3 Brute Force Guessing of 1-round Subkey for 14-round Speck32/64
Within the current framework, there are intuitively two approaches to increase the round of
key recovery attacks. The first involves extending the length of the classical differential, and
the second involves increasing the rounds of the differential-neural distinguisher. However,
based on our current results, neither of these paths appears to be feasible.

- Increase the Length of the Classical Differential. In the 13-round key recovery
attack ASpeck13R

II , we employed 3-round sub-optimal classical differentials with a
probability of 2−12, leading to an estimated complexity of the core attack around
241.22. We utilized a MILP model to search for an optimal 4-round classical differ-
ential path (0x1488, 0x1008)→ (0x0040, 0x0000), which has a probability of 2−17.
Implementing a 14-round key recovery attack using a 4-round classical differential
would result in the time complexity of the core attack exceeding 246 under ideal
conditions, potentially surpassing the capabilities of our current computing resources.
Additionally, the 4-round classical differential lacks sufficient neutral bits for effective
use in key recovery attacks.

- Increase the Round of the Differential-neural Distinguisher. Although

Liu Zhang, Zilong Wang and Baocang Wang 17

we successfully trained a 9-round differential-neural distinguisher, its accuracy was
insufficiently high, precluding its use for a 14-round key recovery attack. Our
calculations indicate that the accuracy of the Difference Distribution Table (DDT)
should be 0.5089 and 0.5138 for m = 8 and m = 16 respectively. Meanwhile, a
differential-neural distinguisher can learn more features than DDT, suggesting that
its accuracy should surpass that of DDT. Therefore, if we can improve the accuracy
of the 9-roun distinguisher, it may become feasible to implement a 14-round key
recovery attack directly. This possibility is an ongoing area of our research.

Fortunately, we can estimate the time complexity of a 14-round key recovery attack. Given
the relatively low time complexity of our 13-round key recovery attack, we can approach a
14-round attack by employing a brute force method to guess an additional round of the
subkey. The time complexity of the 14-round attack is then calculated by multiplying
the time complexity of the 13-round attack by 216. Therefore, the time complexity Tc

of the 14-round key recovery attack ASpeck14R is given by 216 × nkg × rt × Es

R × Ps =
216 × 24 × 14587.229× 227.09

14 × 23.81 = 257.12+3.81.

6 Differential-Neural Distinguishers on Round-Reduced Si-
mon32/64

In ASIACRYPT 2022, Bao et al. [BGL+22] employed Dense Network and Squeeze-and-
Excitation Network to train 9, 10, and 11-round differential-neural distinguishers for
Simon32/64. We present the accuracy of the 9, 10, 11, and 12-round differential-neural
distinguishers for Simon32/64, employing a modified network architecture in the case of
multiple-ciphertext pairs.

6.1 Network Architecture
The network architecture used for training the differential-neural distinguisher for Si-
mon32/64 closely resembles that of Speck32/64. Meanwhile, considering the round
function of Simon32/64, we modified the convolutional layers and the convolutional kernel
size in the Inception module. Additionally, we have replaced the three fully connected
layers with a GlobalAveragePooling layer. The overall architecture is depicted in Fig 7.
Input Representation. Considering the round function of Simon32/64, it is possible
to compute (yr−1 ⊕ y′

r−1) without knowledge of the (r − 1)-th subkey. Consequently,
the neural network is designed to accept data in the format (xr, x′

r, yr, y′
r, yr−1 ⊕ y′

r−1).
The input layer accommodates m ciphertext pairs, each comprising 2.5L units, which are
organized in a [m, ω, 2.5L

ω] array configuration. For Simon32/64, the values of L and ω are
set as 32 and 16, respectively.
Initial Convolution (Module 1). The convolutional layer consists of three separate
convolution layers, each with Nf = 32 channels but differing kernel sizes of 1, 2, and
8. The outputs from these three layers are concatenated along the channel dimension.
Following this concatenation, batch normalization is applied to the combined output. The
final step involves applying rectifier nonlinearity to the batch-normalized output, resulting
in a [m, ω, 3Nf] matrix. This matrix is then forwarded to the residual blocks layer.
Residual Blocks (Module 2). The residual blocks layer in the netowork architecture
mirrors that of Speck32/64. The primary difference lies in the shape of the input, which
is adapted to accommodate the specific requirements of the network.
Prediction Head (Output). The prediction head of the network comprises a Global-
AveragePooling layer followed by an output unit. The output unit employs a Sigmoid

18 Improving Differential-Neural Cryptanalysis

activation function to facilitate the final prediction.
Rationale. Besides the prediction head, the network architectures used for training the
differential-neural distinguishers for Speck32/64 and Simon32/64 are fundamentally the
same. However, the use of multiple fully connected layers in the Speck32/64 network
architecture led to an excessive number of model parameters, increasing the training time.
Therefore, in designing the network structure for Simon32/64, we attempted to replace
these fully connected layers with GlobalAveragePooling layers. Another modification was
adapting the convolutional kernel sizes in the Inception module according to the round
function of Simon32/64.

6.2 The Training of Differential-Neural Distinguisher
Training Using the Basic Training Method. The training parameters were based on
the basic training method for Speck32/64 as detailed in Sect. 3. By modifying the network
architecture, we successfully trained the differential-neural distinguisher to recognize output
pairs from 9, 10, and 11-round Simon32/64, given the input difference (0x0000, 0x0040).
Training Using the Staged Training Method. A 12-round differential-neural dis-
tinguisher for Simon32/64 was trained through a series of pre-training stages. Initially,
we utilized our 11-round distinguisher to identify 9-round Simon32/64 instances with
the input difference (0x0440, 0x0100), which is the most likely difference to emerge three
rounds after the initial difference (0x0000, 0x0040). This training phase involved 107

instances across 20 epochs, with a learning rate set at 10−4. Subsequently, the distinguisher
was further trained to recognize 12-round Simon32/64 with the input difference (0x0000,
0x0040). This involved processing another set of 107 freshly generated instances over 10
epochs, maintaining the learning rate at 10−4. Finally, we reduced the learning rate to
10−5 for processing an additional 107 new instances each.

6.3 Result
Test Accuracy. We present the accuracy of 9, 10, 11, and 12-round differential-neural
distinguishers for Simon32/64 in Table 6. Additionally, Table 7 lists the Accuracy (Acc),
True Positive Rate (TPR), and True Negative Rate (TNR) as tested on newly generated
data. Compared to Gohr’s work [GLN22], although the accuracy of the differential-neural
distinguisher was not improved, the length of the distinguisher was increased by 1 round.

Table 6: Summary accuracy of the distinguisher on Simon32/64

r
m=1 m=2 m=4

[BGL+22] [GLN22]⋆ [GLN22]⋆ N/m N [GLN22]⋆ N/m N

9 0.6532 0.661 0.730 0.7251 0.7240 0.811 0.7991 0.8095
10 0.5629 0.567 0.598 0.5917 0.5907 0.637 0.6239 0.6339
11 0.5173 0.520 0.529 0.5193 0.5240 0.543 0.5343 0.5387
12 - - - - - - - -

r
m=8 m=16

[GLN22]⋆ N/m N [GLN22]⋆ N/m N

9 0.896 0.8774 0.8958 0.963 0.9344 0.9630
10 0.692 0.6716 0.6900 0.761 0.7230 0.7608
11 0.563 0.5441 0.5591 0.589 0.5339 0.5878
12 - - 0.5152 - - 0.5225

1. ⋆: combining scores of multiple distinguishers trained by using single-ciphertext pair under independence
assumption.
2. The combination method used in [GLN22] is the same as that in [BGPT21], which evaluates the distinguisher
score of each element in multiple ciphertext pairs, and then takes the median of the results. When the distingui-
sher is directly trained with multiple-ciphertext pairs, the accuracy of the distinguisher will be reduced.

Liu Zhang, Zilong Wang and Baocang Wang 19

Table 7: Acc, TPR, TNR of distinguisher on Simon32/64 using N instances

m r Acc TPR TNR m r Acc TPR TNR

2

9 0.7234 0.7022 0.7446

4

9 0.8101 0.7821 0.8382
10 0.5902 0.4779 0.7022 10 0.6347 0.5570 0.7124
11 0.5155 0.8618 0.1663 11 0.5344 0.7139 0.3550
12 - - - 12 - - -

8

9 0.8956 0.8811 0.9101

16

9 0.9630 0.9595 0.9664
10 0.6908 0.6846 0.6953 10 0.7619 0.7207 0.8030
11 0.5592 0.5946 0.5239 11 0.5871 0.5338 0.6406
12 0.5159 0.5324 0.4995 12 0.5218 0.5445 0.4991

Wrong Key Response Profile. The wrong key response profile for our 9, 10, 11, and
12-round differential-neural distinguishers is illustrated in Fig. 8. It is noteworthy that the
distinguisher’s score is higher when the difference between the guessed and the real key falls
within the set {8192, 16384, 24576, 32768, 40960, 49152, 57344}, particularly for r = 10
and 11, as indicated by the vertical coordinates marked with ‘⋆’. This observation suggests
that incorrect guesses of the 13th, 14th, and 15th bits of the subkey have a minimal impact
on the distinguisher’s score. Consequently, it is feasible to reduce the key guessing space
by excluding these bits, thereby potentially accelerating the key recovery attack.

0 8192 16384 24576 32768 40960 49152 57344 65536
Difference to real key

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

M
ea

n
Re

sp
on

se

r = 9

0 8192 16384 24576 32768 40960 49152 57344 65536
Difference to real key

0.4000

0.4500

0.5000

0.5500

0.6000

M
ea

n
Re

sp
on

se

r = 10

0 8192 16384 24576 32768 40960 49152 57344 65536
Difference to real key

0.4950

0.5000

0.5050

0.5100

0.5150

0.5200

0.5250

M
ea

n
Re

sp
on

se

r = 11

0 8192 16384 24576 32768 40960 49152 57344 65536
Difference to real key

0.4985

0.4990

0.4995

0.5000

0.5005

0.5010

0.5015

M
ea

n
Re

sp
on

se

r = 12

Figure 8: Wrong key response profile for Simon32/64 using N instances where m = 8

6.4 Knowledge Distillation for Simon32/64
When training a student distinguisher for Simon32/64 using knowledge distillation, the
training process and the student network’s architecture closely follow the approach outlined
in Section 5.1. The sole modification entails adjusting the kI value in Module 1 of Fig 6 to
8, reflecting the maximum convolution kernel size of 8 in Module 1 of the teacher network.

As indicated in Table 8, employing knowledge distillation leads to a significant reduction
in the model’s parameters, with only a minor decline in accuracy. When the student
network is directly used to train the distinguisher for 10 rounds, the Accuracy (Acc) achieves
0.6810, the True Positive Rate (TPR) is 0.6356, and the True Negative Rate (TNR) is
0.7265. Compared to distinguishers trained directly using the student network, those
trained via knowledge distillation, while maintaining similar accuracy levels, demonstrate
a more balanced TPR and TNR, indicating smaller variations.

20 Improving Differential-Neural Cryptanalysis

Table 8: Parameters, Acc, TPR, TNR of Student Distinguishers

r Type Parameters Acc TPR TNR

10
DDT 65227 0.6877 0.6932 0.6822
DDS 33793 0.6809 0.6750 0.6867

11
DDT 65227 0.5595 0.5346 0.5843
DDS 33793 0.5594 0.5448 0.5739

DDT : Teacher distinguisher; DDS : Student distinguisher;

6.5 Key Recovery Attack on 16-round Simon32/64
Following a procedure akin to the key recovery attack on Speck32/64, trained student
distinguishers can be effectively utilized in conjunction with a classical differential for
conducting key recovery attacks on Simon32/64. It is important to note that, based on
insights gained from the wrong key response profile, we opted not to guess the 14th and
15th bits of the subkey during the 16-round key recovery attack on Simon32/64.

Experiment 3: The components of the key recovery attack ASimon16R of the 16-round
Simon32/64 are shown below.

1. 3-round classical differential (0x0440, 0x1000)→(0x0000, 0x0040);

2. generalized neutral bits of generating multiple-ciphertext pairs: {[2], [3], [4]}; general-
ized neutral bits of combined response of differential-neural distinguis-her:{[6], [8], [9],
[10], [18], [22], [0, 24]} (refer to Table 13);

3. 11(10)-round differential-neural distinguisher NDSimon11(10)r under difference (0x0000,
0x0040) and its wrong key response profiles NDSimon11(10)r · µ and NDSimon11(10)r · δ.

At the outset of our 16-round key recovery attack ASimon16R on Simon32/64, we start
by guessing two key bits of k0, namely k0[1] and k0[3]. This guessing is necessitated by the
conditions of the 3-round differential, which require x1[1] = x′

1[1] = 0 and x1[3] = x′
1[3] = 0.

Consequently, the number of key guesses, nkg, is 22. However, to ensure economic viability
in experimental verification, we focused the core of our attack on instances where only
these two conditions are met. The specific parameters employed in our 16-round key
recovery attack ASimon16R are outlined below.

nkg = 22 m = 8 nb = 27 ncts = 28

nit = 29 c1 = 90, c2 = 100 nbyit1 = nbyit2 = 5 ncand1 = ncand2 = 32

For the 16-round key recovery attack ASimon16R, the GPU memory utilization was
4923MB, with GPU utilization around 34%. Predictions on 106 instances were conducted
using both a GPU and a single-core CPU, and the required time was recorded. The time
on the GPU was 23.5 seconds, while it was 215.625 seconds on the single-core CPU. This
results in a prediction speed ratio Ps between the single-core CPU and GPU of 23.20. The
data complexity Dc is calculated as 22 × 27 × 28 × 8× 2 = 221 plaintexts. A total of 100
trials were conducted, with 59 being successful, yielding a success rate (sr) of 59%. The
average runtime of the experiment was 300.31 seconds. Therefore, the time complexity Tc

is given by nkg × rt× Es

R × Ps = 22 × 300.31× 225.48

16 × 23.20 = 231.71+3.20.

7 Conclusion
In this paper, we designed a novel network architecture to train differential-neural distin-
guishers, employing multiple parallel convolution layers to capture features of cryptographic

Liu Zhang, Zilong Wang and Baocang Wang 21

algorithms across various dimensions. As a result, we achieved enhanced accuracy and
developed distinguishers for more rounds. Addressing the issue of identical data distribu-
tion, we proposed a solution that utilizes neutral bits with a probability of 1 to generate
multiple-plaintext pairs. Moreover, we implemented knowledge distillation techniques
to reduce the size of the distinguisher, thereby accelerating its prediction speed. The
combination of these improvements not only reduced the time complexity but also increased
the number of rounds in key recovery attacks.

References
[AL13] Hoda AlKhzaimi and Martin M. Lauridsen. Cryptanalysis of the SIMON

family of block ciphers. IACR Cryptol. ePrint Arch., page 543, 2013.

[ALLW14] Farzaneh Abed, Eik List, Stefan Lucks, and Jakob Wenzel. Differential
cryptanalysis of round-reduced simon and speck. In FSE, volume 8540 of
Lecture Notes in Computer Science, pages 525–545. Springer, 2014.

[BC04] Eli Biham and Rafi Chen. Near-collisions of SHA-0. In CRYPTO, volume
3152 of Lecture Notes in Computer Science, pages 290–305. Springer, 2004.

[BCdST+23] Alex Biryukov, Luan Cardoso dos Santos, Je Sen Teh, Aleksei Udovenko,
and Vesselin Velichkov. Meet-in-the-filter and dynamic counting with
applications to speck. In International Conference on Applied Cryptography
and Network Security, pages 149–177. Springer, 2023.

[BGL+22] Zhenzhen Bao, Jian Guo, Meicheng Liu, Li Ma, and Yi Tu. Enhancing
differential-neural cryptanalysis. In ASIACRYPT (1), volume 13791 of
Lecture Notes in Computer Science, pages 318–347. Springer, 2022.

[BGPT21] Adrien Benamira, David Gérault, Thomas Peyrin, and Quan Quan Tan.
A deeper look at machine learning-based cryptanalysis. In EUROCRYPT
(1), volume 12696 of Lecture Notes in Computer Science, pages 805–835.
Springer, 2021.

[BRV14] Alex Biryukov, Arnab Roy, and Vesselin Velichkov. Differential analysis of
block ciphers SIMON and SPECK. In FSE, volume 8540 of Lecture Notes
in Computer Science, pages 546–570. Springer, 2014.

[BSS+13] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers. The SIMON and SPECK families of lightweight
block ciphers. IACR Cryptol. ePrint Arch., page 404, 2013.

[CSYY21] Yi Chen, Yantian Shen, Hongbo Yu, and Sitong Yuan. A new neural
distinguisher considering features derived from multiple ciphertext pairs,
2021.

[Din14] Itai Dinur. Improved differential cryptanalysis of round-reduced speck. In
Selected Areas in Cryptography, volume 8781 of Lecture Notes in Computer
Science, pages 147–164. Springer, 2014.

[FLW+23] Zhuohui Feng, Ye Luo, Chao Wang, Qianqian Yang, Zhiquan Liu, and
Ling Song. Improved differential cryptanalysis on speck using plaintext
structures. Cryptology ePrint Archive, 2023.

[GLN22] Aron Gohr, Gregor Leander, and Patrick Neumann. An assessment of
differential-neural distinguishers. Cryptology ePrint Archive, 2022.

22 Improving Differential-Neural Cryptanalysis

[Goh19] Aron Gohr. Improving attacks on round-reduced speck32/64 using deep
learning. In CRYPTO (2), volume 11693 of Lecture Notes in Computer
Science, pages 150–179. Springer, 2019.

[HLvdMW17] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger.
Densely connected convolutional networks. In CVPR, pages 2261–2269.
IEEE Computer Society, 2017.

[HSS18] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In CVPR,
pages 7132–7141. Computer Vision Foundation / IEEE Computer Society,
2018.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In CVPR, pages 770–778. IEEE Computer
Society, 2016.

[KB15] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. In ICLR (Poster), 2015.

[SHY16] Ling Song, Zhangjie Huang, and Qianqian Yang. Automatic differential
analysis of ARX block ciphers with application to SPECK and LEA. In
ACISP (2), volume 9723 of Lecture Notes in Computer Science, pages
379–394. Springer, 2016.

[SLJ+15] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. Going deeper with convolutions. In CVPR, pages 1–9. IEEE
Computer Society, 2015.

[WWJZ18] Ning Wang, Xiaoyun Wang, Keting Jia, and Jingyuan Zhao. Differential
attacks on reduced SIMON versions with dynamic key-guessing techniques.
Sci. China Inf. Sci., 61(9):098103:1–098103:3, 2018.

Liu Zhang, Zilong Wang and Baocang Wang 23

A Used Generalized Neutral Bit-sets for Key Recovery
Attack

A.1 Generalized Neural Bit-sets for SPECK32/64 [BGL+22]

Neutral bit-sets (NB) Used in [Goh19] for 2-round Classical Differential: The signal from
the distinguisher will rather be weak. Gohr boosts it by using |NB| probabilistic neutral
bits to create from each plaintext pair. A plaintext structure consisting of 2|NB| plaintext
pairs that are expected to pass the initial 2-round classical differential together. Concretely,
neutral bits that are probabilistically neutral are summarized as follows.

Table 9: (Probabilistic) single-bit neutral bit for 2-round Classical Differential (0x0211,
0x0a04)→ (0x0040, 0x0000) of Speck32/64 [Goh19]

NB Pr. NB Pr. NB Pr. NB Pr. NB Pr. NB Pr. NB Pr.
[20] 1 [21] 1 [22] 1 [14] 0.965 [15] 0.938 [23] 0.812 [7] 0.806
[30] 0.809 [0] 0.763 [8] 0.664 [24] 0.649 [31] 0.644 [1] 0.574

Simultaneous-neutral bit-sets (SNBS) used in [BGL+22] for 2-round classical differential:
for the prepended 2-round differential on top of differential-neural distinguisher, Bao et
al. [BGL+22] can experimentally obtain 3 complete NB and 2 SNBS using an exhaustive
search. Concretely, for the 2-round differential (0x0211, 0x0a04)→ (0x0040, 0x0000), bit
and bit-sets that are (probabilistically) (simultaneous-)neutral are summarized in Table 10.

Table 10: (Probabilistic) SNBS for 2-round Classical Differential (0x0211, 0x0a04)→
(0x0040, 0x0000) of Speck32/64 [BGL+22]

NB Pr. NB Pr. NB Pr. NB Pr. NB Pr. NB Pr. NB Pr.
[20] 1 [21] 1 [22] 1 [9,16] 1 [2,11,25] 1 [14] 0.965 [15] 0.938
[6,29] 0.91 [23] 0.812 [30] 0.809 [7] 0.806 [0] 0.754 [11,27] 0.736 [8] 0.664

Conditional simultaneous-neutral bit-sets (CSNBS) used in [BGL+22] for 3-round
classical differential: Bao et al. found that there are three sufficient conditions for a pair
(x, y), (x′, y′) to conform to the 3-round differential (0x8020, 0x4101)→ (0x0040, 0x0000),
summarized in Table 11. Concretely, for the 3-round four sub-optimal differential, bit and
bit-sets that are (probabilistically) conditional simul-taneous-neutral are summarized in
Table 12.

Table 11: Three sufficient conditions conform the 3-round sub-optimal differen-
tial [BGL+22]

(0x8020, 0x4101)
↓

(0x0040, 0x0000)

(0x8060, 0x4101)
↓

(0x0040, 0x0000)

(0x8021, 0x4101)
↓

(0x0040, 0x0000)

(0x8061, 0x4101)
↓

(0x0040, 0x0000)
x[7] = 0

x[5]⊕ y[14] = 1
x[15]⊕ y[8] = 0

x[7] = 0
x[5]⊕ y[14] = 0
x[15]⊕ y[8] = 0

x[7] = 0
x[5]⊕ y[14] = 1
x[15]⊕ y[8] = 1

x[7] = 0
x[5]⊕ y[14] = 0
x[15]⊕ y[8] = 1

24 Improving Differential-Neural Cryptanalysis

Table 12: (Probabilistic) (simultaneous-)neutral bit-sets for 3-round differen-
tial (0x8020, 0x4101) → (0x0040, 0x0000), (0x8060, 0x4101) → (0x0040, 0x0000),
(0x8021, 0x4101) → (0x0040, 0x0000), (0x8061, 0x4101) → (0x0040, 0x0000) of
Speck32/64 [BGL+22]

(8020, 4101) (8060, 4101) (8021, 4101) (8061, 4101)
Bit-set Pre. Post. Pre. Post. Pre. Post. Pre. Post. Condition
[22] 0.995 1.000 0.995 1.000 0.996 1.000 0.997 1.000 -
[20] 0.986 1.000 0.997 1.000 0.996 1.000 0.995 1.000 -
[13] 0.986 1.000 0.989 1.000 0.988 1.000 0.992 1.000 -
[12,19] 0.986 1.000 0.995 1.000 0.993 1.000 0.986 1.000 -
[14,21] 0.855 0.860 0.874 0.871 0.881 0.873 0.881 0.876 -
[6,29] 0.901 0.902 0.898 0.893 0.721 0.706 0.721 0.723 -
[30] 0.803 0.818 0.818 0.860 0.442 0.442 0.412 0.407 -
[0,8,31] 0.855 0.859 0.858 0.881 0.000 0.000 0.000 0.000 -
[5,28] 0.495 1.000 0.495 1.000 0.481 1.000 0.469 1.000 x[12]⊕ y[5] = 1
[15,24] 0.482 1.000 0.542 1.000 0.498 1.000 0.496 1.000 y[1] = 0
[4,27,29] 0.672 0.916 0.648 0.905 0.535 0.736 0.536 0.718 x[11]⊕ y[4] = 1
[6,11,12,18] 0.445 0.903 0.456 0.906 0.333 0.701 0.382 0.726 x[2]⊕ y[11] = 0

Among the two 3-round differentials (0x8020,0x4101)→ (0x0040,0x0000) and (0x8060,0x4101)
→ (0x0040,0x0000) are adjoining differentials. The bit 5 of x (the bit 21 of x∥y) is the
SBfADs of both pairs. An SBfADs plays the same role as a deterministic unconditional NB,
thus is better to be used than probabilistic and conditional NBs. Specifically, employing
SBfADs saves one guessed key bit and reduces both time and data complexity by half
compared to employing the CSNBS.

A.2 Generalized Neural Bit-sets for SIMON32/64 [BGL+22]

For an input pair ((x, y), (x′, y′)) to conform to the 3-round differential (0x0440, 0x1000)
→ (0x0000, 0x0040), one has conditions that{

x[1] = x′[1] = 0
x[3] = x′[3] = 0

Table 13: NB and SNBS for 3-round Classical Differential (0x0440, 0x1000)→ (0x0000,
0x0040) of Simon32/64 [BGL+22]

[2] [3] [4] [6] [8] [9]
[10] [18] [22] [0,24] [12,26]

For an input pair ((x, y), (x′, y′)) to conform to the 4-round differential (0x1000,
0x4440)→(0x0000, 0x0040), one has conditions that{

x[5] = x′[5] = 0
x[3] = x′[3] = 0

Liu Zhang, Zilong Wang and Baocang Wang 25

Table 14: NB and SNBS for 4-round Classical Differential (0x1000, 0x4440)→ (0x0040,
0x0000) of Simon32/64 [BGL+22]

[2] [6] [12,26] [10,14,28]

Table 15: CSNBS for 4-round Classical Differential (0x1000, 0x4440)→ (0x0040, 0x0000)
of Simon32/64 [BGL+22]

Bit-set C. Bit-set C. Bit-set C. Bit-set C. Bit-set C.

x[1, 15] x[15, 13] x[13, 11] x[11, 9] x[9, 7]
[24,10] 00 [22,8] 00 [20] 00 [18,4] 00 [16,8] 00
[24,10,9] 10 [22,8,7] 10 [20,5] 10 [18,4,3] 10 [16,8,1] 10
[24,10,0] 01 [22,8,14] 01 [20,12] 01 [18,4,10] 01 [16] 01
[24,10,9,0] 11 [22,8,7,14] 11 [20,12,5] 11 [18,4,3,10] 11 [16,1] 11

C.: Condition on x[i, j], e.g., x[i, j] = 10 means x[i] = 1 and x[j] = 0.

B Key Recovery Attack on 17-round Simon32/64
Combining a 4-round classical differential with an 11-round teacher distinguisher, we
examine how far a practical attack can go on 17-round Simon32/64 in this subsection.

Experiment 4: The components of the key recovery attack ASimon17R of the 17-round
Simon32/64 are shown below.

1. 4-round classical differential (0x1000, 0x4440)→ (0x0000, 0x0040);

2. generalized neutral bits of generate multiple-ciphertext pairs: {[2], [6], [12, 26]} (refer to
Table 14); generalized neutral bits of combined response of differential-neural distin-
guisher:{[10, 14, 28]} and five neutral bits conditioned on x[1, 15], x[15, 13], x[13, 11], x[11,
9], x[9, 7] (refer to Table 15).

3. 11(10)-round differential-neural distinguisher NDSimon11(10)r under difference (0x0000,
0x0040) and its wrong key response profiles NDSimon11(10)r · µ and NDSimon11(10)r · δ.

In the beginning, we guess two key bits of k0, that is, k0[3] and k0[5], because of the 4-round
differential, the conditions for correct pairs are x1[5] = x′

1[5] = 0 and x1[3] = x′
1[3] = 0;

and six key bits k0[1], k0[15], k0[13], k0[11], k0[9], k0[7] for employing five conditional neutral
bits (refer to Table 15). Thus, nkg is 28. However, to make the experimental verification
economic, we tested the core of the attack with the eight conditions being fulfilled only.
The concrete parameters used in our 17-round key recovery attack ASimon17R are listed
below.

nkg = 28 m = 8 nb = 26 ncts = 211

nit = 212 c1 = 15, c2 = 65 nbyit1 = nbyit2 = 5 ncand1 = ncand2 = 32

For the 17-round key recovery attack ASimon17R, the GPU memory utilization was
9187MB, and the GPU utilization was around 83%. We conducted predictions on 106

instances using a GPU and a single-core CPU, calculating the required time. The time
required on the GPU was 37.589 seconds, while on the single-core CPU, it was 1402.609
seconds. Consequently, the prediction speed ratio Ps between the single-core CPU and
GPU is 25.22. The data complexity Dc is 28 × 26 × 211 × 8× 2 = 229 plaintexts. In total,

26 Improving Differential-Neural Cryptanalysis

100 trials are running, and 9 successful trials, that is sr = 9%. The average running time
of the experiment is 2435.63 seconds. Thus, the time complexity Tc = nkg× rt× Es

R ×Ps =
28 × 2435.63× 225.48

17 × 25.22 = 240.64+5.22.

C Procedure of (1 + s + r + 1)-round key recovery attack
The attack procedure is as follows.

1. Initialize variables Gbestkey ← (None, None), Gbestscore ← −∞.

2. For each of the nkg guessed key bits, on which the conditions depend,

(a) Generate ncts random data with difference ∆P , and satisfying the conditions being
conforming pairs (refer to Appendix A).

(b) Using ncts random data and log2 m neutral bit with probability one to generate
ncts data pairs. Every data pairs have m data.

(c) From the ncts random data pairs, generate ncts structures using the nb generalized
neutral bit.

(d) Decrypt one round using zero as the subkey for all data in the structures and obtain
the ncts plaintext structure.

(e) Query for the ciphertexts under (1 + s + r + 1)-round Speck or Simon of the
ncts×nb×2 plaintext structures, thus obtaining ncts ciphertext structures, denoted
by {C1, . . . , Cncts

}.
(f) Initialize an array ωmax and an array nvisit to record the highest distinguisher score

obtained so far and the number of visits have received in the last subkey search for
the ciphertext structures.

(g) Initialize variables bestscore ← −∞, bestkey ← (None, None), bestpos ← None to
record the best score, the corresponding best recommended values for the two
subkeys obtained among all ciphertext structures and the index of these ciphertext
structures.

(h) For j from 1 to nit:
i. Compute the priority of each of the ciphertext structures as follows: si =

ωmaxi + α ·
√

log2 j/nvisiti, for i ∈ {1, . . . , ncts}, and α = √ncts; The formula
of priority is designed according to a general method in reinforcement learning
to achieve automatic exploitation versus exploration trade-off based on Upper
Confidence Bounds. It is motivated to focus the key search on the most
promising ciphertext structures [Goh19].

ii. Pick the ciphertext structure with the highest priority score for further pro-
cessing in this j-th iteration, denote it by C, and its index by idx, nvisitidx ←
nvisitidx + 1.

iii. Run the BayesianKeySearch Algorithm [Goh19] with C, the r-round diffe-
rential-neural distinguisher NDr and its wrong key response profile NDr · µ
and NDr · σ, ncand1, and nbyit1 as input parameters; obtain the output, that
is, a list L1 of nbyit1 × ncand1 candidate values for the last subkey and their
scores, i.e., L1 = {(g1i, v1i) : i ∈ {1, . . . , nbyit1 × ncand1}}.

iv. Find the maximum v1max among v1i in L1, if v1max > ωmaxidx, ωmaxidx ←
v1max.

v. For each of recommended last subkey g1i ∈ L1, if the score v1i > c1,
A. Descrypt the ciphertext in C using the g1i by one round and obtain the

ciphertext structures C′ of (1 + s + r)-round Speck or Simon.

Liu Zhang, Zilong Wang and Baocang Wang 27

B. Run BayesianKeySearch Algorithm with C′, the differential-neural distin-
guisher NDr−1 and its wrong key response profile NDr−1 ·µ and NDr−1 ·σ,
ncand2, and nbyit2 as input parameters; obtain the output, that is a list L2
of nbyit2 × ncand2 candidate values for the last subkey and their scores, i.e.,
L2 = {(g2i, v2i) : i ∈ {1, . . . , nbyit2 × ncand2}}.

C. Find the maximum v2i and the corresponding g2i in L2, and denote them
by v2max and g2max.

D. If v2max > bestscore, update bestscore ← v2max, bestkey ← (g1i, g2max),
bestpos ← idx.

vi. If bestscore > c2, go to Step 2i.
(i) Make a final improvement using VerifierSearch [Goh19] on the value of bestkey

by examining whether the scores of a set of keys obtained by changing at most 2 bits
on top of the incrementally updated bestkey could be improved recursively until no
improvement is obtained, update bestscore to the best score in the final improvement;
If bestscore > Gbestscore, update Gbestscore ← bestscore, Gbestkey ← bestkey.

3. Return Gbestkey, Gbestscore.

	Introduction
	Preliminary
	Brief Description of Speck32/64 and Simon32/64
	The Model of Differential-Neural Distinguisher for Speck32/64
	Differential-neural Cryptanalysis
	Combined Response and Neutral Bits

	Differential-Neural Distinguishers for Round-Reduced Speck32/64
	Inception Module
	Network Architecture
	The Training of Differential-Neural Distinguisher
	Result

	From Differential-Neural Distinguisher to Key Recovery Attack
	Generation of Same Distributed Data
	Experimental Environment and Data Complexity
	Experimental Time Complexity
	Using Two Classical Differentials and SBfADs for 13-round Speck32/64

	Knowledge distillation for Differential-neural Cryptanalysis
	Design and Train of Student Distinguisher
	Key Recovery attack of 13-round Speck32/64 Using Student Distinguisher
	Brute Force Guessing of 1-round Subkey for 14-round Speck32/64

	Differential-Neural Distinguishers on Round-Reduced Simon32/64
	Network Architecture
	The Training of Differential-Neural Distinguisher
	Result
	Knowledge Distillation for Simon32/64
	Key Recovery Attack on 16-round Simon32/64

	Conclusion
	Used Generalized Neutral Bit-sets for Key Recovery Attack
	Generalized Neural Bit-sets for SPECK32/64 iacr/BaoGLMT21
	Generalized Neural Bit-sets for SIMON32/64 iacr/BaoGLMT21

	Key Recovery Attack on 17-round Simon32/64
	Procedure of (1+s+r+1)-round key recovery attack

