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Abstract. We propose a floating-point fully homomorphic encryption
(FPFHE) based on torus fully homomorphic encryption equipped with
programmable bootstrapping [15]. Specifically, FPFHE for 32-bit and
64-bit floating-point messages are implemented, the latter being state-
of-the-art precision in FHEs. Also, a ciphertext is constructed to check if
an overflow had occurred or not while evaluating arithmetic circuits with
FPFHE, which is useful when the message space or arithmetic circuit
is too complex to estimate a bound of outputs such as deep learning
applications.
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1 Introduction

Since Gentry’s seminal work on fully homomorphic encryption (FHE) [17], var-
ious FHEs such as BGV/FV [7], FHEW/TFHE [24, 13], and CKKS [11] have
been proposed and intensively studied. Note that these schemes use integers,
bits, or approximated complex numbers as their message sets. FHE is a pow-
erful methodology for evaluating arithmetic functions while keeping the privacy
of data. As applications of FHE with boolean circuit, deniable FHE [1], pri-
vate information retrieval (PIR) [18, 22], private set intersection (PSI) [4], and
homomorphic transpiler [20] have been studied. Also, homomorphically evaluat-
ing machine and deep learning models such as image classification [6] have been
mostly studied by using CKKS. Since CKKS deals with a ciphertext packed with
a large number of messages, circuits that can evaluate parallel with extensive
data are suitable for CKKS. Moreover, no other FHE can process real messages
with high precision except CKKS 1. Therefore, CKKS is widely used to evaluate
deep neural networks (DNNs).

However, in CKKS, errors from encoding floating-point numbers to the mes-
sage space cannot be avoided. Since many DNNs learn with floating-point data
and arithmetic, encoding in CKKS inevitably introduce a loss of accuracy. With-
out solving such encoding error problems, CKKS may not guarantee satisfac-
tory results for the applications requiring complex and accurate results such as
privacy-preserving generative models [5]. Therefore, floating-point FHE (FPFHE)
is required for achieving equivalent results on plaintexts.

Another problem is an overflow occurrence such that evaluating a deep arith-
metic circuit returns irrelevant results when a circuit output takes a value out of
the message space. However, in contrast to evaluation with plaintexts, overflow is
hard to detect in ciphertext domain. Such overflow frequently occurs if a value of
circuit output is not bounded or an input dimension of a circuit is too large, then
every input cannot be ensured whether an overflow occurs or not. Also, when
the past data is used to update circuit parameters such as in privacy-preserving
federated learning [22], then inaccurate updating using meaningless values due
to overflow ruins the circuit performance. However, to the best of our knowledge,
an overflow detection for FHE has not been proposed.

Contributions Our main contributions are divided into two parts. First, we
propose a FPFHE, which effectively resolves the error problem from encoding
floating-point numbers and makes every operation on ciphertexts with FPFHE
synchronized to the corresponding operation on plaintexts from floating-point
message space. Moreover, we implement FPFHE with single (32-bit) and dou-
ble (64-bit) precision, which shows much better precision than the state-of-the-
art CKKS with 40-bit fixed-point precision [23]. Second, an effective overflow-
detection (OD) method for the proposed FPFHE is constructed, which can check
whether an overflow occurs or not during homomorphic operations. By combin-
ing these two schemes, we construct OD-FPFHE.

1 [14] implements DNNs with 5-bit precision by using TFHE.
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Also, we propose homomorphic algorithms to handle the following technical
issues, which are important components of OD-FPFHE.

• Sequential bootstrapping FHE requires a bootstrapping algorithm for re-
ducing the error after homomorphic operations. We extend the method in
[15] to bootstrap a large number of messages bits by using integers modulo
Q which is a number theoretic transform(NTT)-friendly. This algorithm en-
ables the proposed FPFHE to bootstrap more message bits and to use NTT
algorithm, which is one of the solutions for removing errors generated from
fast Fourier transform (FFT), listed as an open problem in [15].

• Accelerating deterministic gadget decomposition using modulus Q
This algorithm enables the proposed FPFHE to perform 64-bit integer op-
erations when an integer modulus Q = Q0Q1 > 264 is chosen such that Q0

and Q1 are NTT-friendly primes.
• Modified blind rotation for GINX-bootstrapping This algorithm keeps

the number of NTT operations constant for any secret key having finite
support and hence improves running time compared to the state-of-the-art
GINX-bootstrapping [24].

• Error analysis without independent heuristic This analysis is applica-
ble even when deterministic gadget decomposition is used and enables choos-
ing small lattice parameters for enhancing running time.

• Various homomorphic algorithms We propose homomorphic algorithms
such as evaluating min and max, lifting a constant message to a monomial
exponent, counting consecutive zeros from the most significant in the fraction
of floating-point message until non-zero value occurs, and performing carry
over after homomorphic operations. Note that these algorithms are run by
using sequential bootstrapping.

Related works Several methods to implement FPFHE have been suggested [21,
25]. However, since these methods do not normalize results after homomorphic
operations (See Section 2.6), it is possible that the operation error rapidly grows
when consecutive homomorphic operations are performed. Moreover they suffer
from slow operation time because they only add floating-point operations over
the FHE schemes using gate operations such as TFHE and BGV/FV.

For error analysis, [10] proves that average-case error analysis in [13] does not
require independent heuristic when randomized gadget decomposition is used.
Since randomized gadget decomposition requires sampling from the kernel lat-
tice, it is slow compared to deterministic gadget decomposition. However error
analysis for deterministic gadget decomposition has been performed under the
assumption that the mean of values is zero.

2 Preliminaries

This section introduces mathematical backgrounds and several fully homomor-
phic encryption schemes. The main reference and notation of algebraic and sta-
tistical background are followed [9], [28], and [31].
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2.1 Notation

Let N,Z,Q, and C be a set of natural numbers, integer numbers, rational num-
bers, and complex numbers, respectively. Let Zq

∼= Z/qZ be an integer ring Z
modulo qZ for some q ∈ N, and let Zq[X] be a polynomial ring Z[X] modulo
qZ[X]. We will use [n] to denote an index set 0, 1, ..., n− 1 for n ∈ N. More gener-
ally, [n1, n2, ..., nm] =

∏m
i=1[ni] is used as a product index set for n1, ..., nm ∈ N.

We will use notation a = (ai)i∈[n] as a vector notation and ai as a i-th
element of a. Analogously for any polynomial a(X) ∈ Z[X], we will use ai to
denote the coefficient of Xi in a(X). When a vector a(X) ∈

∏
i∈[n] Z[X] are

given, ai(X) denots the i-th element of a(X) and ai,j is the j-th coefficient of
the ai(X).

To measure the magnitude of element, we always use l1 metric | · | for x ∈ R.
For any vector x ∈ Rn, |x| be a maximum value of |xi| and for all i ∈ [n].
If x ∈ Zq is given, the |x| is defined by choosing the representation x̄ over -
q/2 ≤ x̄ < q/2 and evaluating |x̄|. Analogously, if x ∈ Zq[X] than |x| is defined
as maximum among |xi|.

We represent a natural number x ∈ N by x = (xnxn−1...x1x0)(β) for a given
β ≥ 2 if

x = x0 + x1β + ...+ xnβ
n,

where 0 ≤ x0, ..., xn < β and β is called a radix.

2.2 Algebraic background

Let Φ2N (X) ∈ Q[X] be the cyclotomic polynomial with order 2N ∈ N. If N
is a power of two, then Φ2N (X) is known to be XN + 1 ∈ Q[X]. Let RN ≜
Z[X]/(XN + 1) be the quotient polynomial ring with ideal (XN + 1), and let
RN,q ≜ Z[X]/(XN + 1, q) ∼= Zq[X]/(XN + 1) be the quotient polynomial ring
with ideal (XN + 1, q) for a positive integer q ∈ Z. It is clear that product of
a(X), b(X) ∈ RN,q is

a(X)b(X) =
∑
j∈[N ]

[∑
i∈[j]

aibj−i −
N−1∑
i=j+1

aibN+j−i

]
Xj ,

having the property that ai and bi for all i ∈ [N ] participate only once for all in
each coefficient of a(X)b(X). This property is called negacyclic property.

If Q is a prime number satisfying 2N |(Q− 1), then a field ZQ splits Φ2N (X)
and has a primitive 2N -th root of unity ζ ∈ ZQ such that by the Chinese
remainder theorem(CRT), there is an isomorphism as follows:

ψ : RN,Q → ZN
Q , a(X) 7→

(
a(ζ1), a(ζ3), ..., a(ζ2N−1)

)
.

We will call Q as NTT-friendly Q if Q satisfies 2N |(Q− 1).

5



More generally, if Q = Q0Q1...Qn−1 ∈ N with NTT-friendly primes Qi are
given, there exist isomorphisms being the inverse functions of each other as
follows:

ϕ :ZQ →
∏
i∈[n]

ZQi
, a 7→

(
a mod Q0, ..., a mod Qn−1

)
ϕ−1 :

∏
i∈[n]

ZQi → ZQ,
(
a0, ..., an−1

)
7→
( ∑

i∈[n]

aiQ
∗
i Q̂i

)
mod Q (1)

where Q∗
i = Q/Qi, and Q̂i = Q∗−1

i mod Qi. Then, we can find a primitive 2N -
th root of unity ζi ∈ RN,Qi for all i ∈ [n] and the ζ = ϕ−1(ζ0, ..., ζn−1) ∈ RN,Q

such that the following isomorphic structures are given as follows:

RN,Q = ZQ[X]/(XN + 1) ∼=
( ∏

i∈[n]

ZQi

)
[X]/(XN + 1) ∼=

∏
j∈[N ]

( ∏
i∈[n]

ZQi [ζ
2j−1
i ]

)
.

(2)

The isomorphic structures (2) play an essential role in CKKS and BGV/FV,
and a methodology to use (2) in TFHE have been an open problem [13]. Let
NTT-friendly primes (Q0 = ν2η0+1, Q1 = ν2η1+1) be denoted as shared primes
when these share the same scaling factor ν ∈ N. In this paper, the product of
shared primes is used as an integer modulus after Section 3.1.

2.3 Statistical background

Let (Ω,F ,P) be an ambient probability space and X : Ω → R be an one-
dimensional random variable. When the co-domain of a random variable is
defined on a finite ring ZQ, we always define X as a function using Ω → {-
⌊Q/2⌋, ..., ⌊Q/2⌋-1}. We call random variable X is B-bounded if |X| ≤ B almost
surely. We explain subgaussian random variable and its properties.

Definition 1 ([9]). A random variable X is a subgaussian random variable
with a standard parameter σ ≥ 0, denoted as X ∼ subG(σ), if E[X] = 0 and the
moment generating function MX(t) is bounded as follows:

MX(t) ≜ E[exp(tX)] ≤ exp(σ2t2/2).

Proposition 1 ([9]). For any random variable X ∼ subG(σ), X is O(σ
√
v)-

bounded except with 2−Ω(v) probability.

It is also known that the space of subgaussians forms an R-vector space from
following properties. (i) If X ∼ subG(σX) and Y ∼ subG(σY ), then X + Y ∼
subG(σX + σY ). (ii) For any scaling c ∈ R, cX ∼ subG(|c|σX). (iii) Moreover,
if X and Y are independent, X + Y ∼ subG((σ2

X + σ2
Y )

1/2).
Since (iii) is the best analytical result for the sum of two random variables

in terms of minimizing variance, we will focus on conditions when (iii) holds
without independence. Random variables Xi ∼ subG(σi) for i ∈ [n] are called
to have Pythagorean additivity if

∑
i∈[n]Xi ∼ subG((

∑
i∈[n] σ

2
i )

1/2). Following
conditions have been investigated.
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Lemma 1 (Sum of dependent subgaussians [10]). If (Zi|Z0, ..., Zi−1) ∼
subG(σi), E[Zi] = 0 for all i ∈ [n], and σi is free of Z0, ..., Zi−1, then Z0, ..., Zn−1

have Pythagorean additivity.

Corollary 1 (From Lemma 1 [10]). Let Yi ∼ subG(BY ) are mutually inde-
pendent BY -bounded random variables for all i ∈ [n], and let Xi ∼ subG(BX)
are BX-bounded random variables for all i ∈ [n] where Xi depends only on Xj

and Yj for all j < i. Then X0Y0,...,Xn−1Yn−1 have Pythagorean additivity.

Corollary 1 ensures that although all XiYi are dependent on each other, the
analytical result of variance is the same as whenXiYi are assumed to be mutually
independent. This property is useful for analyzing a sum of large numbers of
dependent random variables, e.g., analyzing an error bound after performing the
bootstrapping in FHE. However, Corollary 1 requires both zero mean bounded
random variables Xi, and Yi since Xi and Yi are subgaussian random variables.
The same analytic result under more relaxed conditions is derived in Section 4.1.

2.4 LWE/MLWE symmetric encryption and gadget decomposition

In this section, widely used lattice-based encryption schemes are introduced.
First, we recall the LWE symmetric encryption [30]. For any given natural num-
ber q, n, t ∈ N, and t-bit message space Z2t , a ciphertext with message m ∈ Z2t

and symmetric key s = (−s1, ...,−sn, 1) ∈ Zn+1
q is obtained as follows:

ct[m] ≜
(
a, b =

n∑
i=1

aisi +m⌊q/2t⌉+ e
)T ∈ Z(n+1)×1

q ,

where T refers to the transposition of a vector or matrix, a ∈ Zn
q is chosen

from a uniform distribution, e is sampled from a centered discrete Gaussian
distribution χe on Z with standard deviation σ, and a secret key s sampled from
a distribution χs. We adopt a ternary secret key s, which is widely used for FHE
[2]. In addition, secret key s for LWE encryption is called h-sparse if the number
of non-zero element s is h.

The decryption function φs of ct is defined as a Zq-linear functional as fol-
lows:

φs

(
ct
[
m⌊q/2t⌉

])
≜ b−

n∑
i=1

aisi = m⌊q/2t⌉+ e ∈ Zq.

Therefore, if ⌈log e⌉ ≤ ⌊log q⌋ − t is satisfied, then the message m is correctly
extracted from ct[m] and in that case, we call ct as a valid ciphertext.

Based on RN,Q, we can define module-LWE (MLWE) ciphertext as follows:

CT
[
m(X)⌊Q/2t⌉

]
≜
(
a(X), b(X) =

∑
i∈[K]

ai(X)si(X) +m(X)⌊Q/2t⌉+ e(X)
)T
,
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where CT ∈ R(K+1)×1
N,Q and every coefficient of si(X) and e(X) is sampled from

χe and χs, respectively. Security reduction of LWE and MLWE from shortest
independent vector problem (SIVP) on a general lattice or structured Minkowski
space (number field) [28], and general reductions between MLWEs have been
researched [26].

Especially, following the tight reduction from MLWE to LWE are widely used
in FHEs [13, 24]:

ct[mα]←SampleExtract(CT[m(X)] ≜ (a1(X), ..., aK(X), b(X)), α)

≜(a′(0,0), ..., a
′
(1,N−1), a

′
(2,1), ..., a

′
(K−1,N−1), bα) ∈ ZKN+1

Q , (3)

where a′(i,n)=ai,(α−n) for 0 ≤ n ≤ α, a′(i,n)=−a(i,N−n) for α < n ≤ N , for

all i ∈ [K]. Then, ct[mα] is a valid LWE ciphertext for the secret key s =
(s(0,0),...,s(0,N−1), s(1,0),...,s(K−1,N−1)) from the secret key s(X) of CT[m(X)].

In this paper, LWE and MLWE ciphertexts are denoted as ct and CT when
the message is clear in context. In addition, for a given N , a ciphertext ct is
called a squashed if the integer modulus of ct is 2N . Note that a squashed ct is
used to introduce FHEW / TFHE schemes in Section 2.5.

Next, we will review an approximated gadget for decomposing on MLWE
ciphertext.

Definition 2 ([16]). For any finite additive group R, an R-gadget of size l,
quality ρ, and precision ϵ is a vector g ∈ Rl such that any element u ∈ R
can be written as an approximated integer combination

∑
i gi · xi which satisfies

u−
∑

i gi · xi = A for some gadget error A ∈ R with |A| ≤ ϵ, and max|xi| ≤ ρ.

Proposition 2 (Deterministic (signed) gadget decomposition [13, 24]).
Assume that two finite additive group RN,Q and ZQ, B ∈ N, and l̄ ∈ N are given

such that B l̄−1 ≤ Q < B l̄. Then, there exists a gadget g = (B l̄−l, ..., B l̄−1) and
deterministic gadget decompositions G−1

1 : RN,Q → R1×l
N,Q and G−1

2 : ZQ → Z1×l
Q

with a quality ρ = ⌈B/2⌉ and a precision ϵ = ⌈B l̄−l/2⌉.

On the other hand, randomized gadget decomposition algorithms have been
studied and used in the lattice-based signature as a trapdoor information [16].
Let a (complete) lattice L ⊂ Rn be a finitely generated free Z-module with
rank n. For any gadget g from Proposition 2, the kernel lattice L⊥ is defined as
follows:

L⊥ ≜

{
v ∈ Zl :

∑
i∈[l]

vigi = 0

}
.

Since concrete basis of L⊥ having small norm values are well-known, algorithms
of sampling v ∈ L⊥ having |v| = O(B) and randomized gadget decomposition
are well-studied. By using gadget decomposition, Gentry, Sahai, and Waters
(GSW) [19] ciphertext and operation between GSW and MLWE ciphertexts are
introduced in the next section.
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2.5 Some fully homomorphic encryption for constructing
OD-FPFHE: GSW, FHEW and TFHE

This section reviews the GSW cryptosystem, which is necessary for constructing
bootstrapping algorithms. Let In ∈ Rn×n

N,Q be the identity matrix and ⊗ be the
kronecker product. Then for given message m ∈ {0, 1}, MLWE secret key s(X)

and RN,Q-gadget g from Proposition 2, GSW ciphertext GCT ∈ Rl(K+1)×(K+1)
N,Q

is defined as a matrix as follows:

GCT[m] ≜

(
CT
[
mS0(X)

]∣∣∣∣CT[mS1(X)
]∣∣∣∣...∣∣∣∣CT[mSl(K+1)−1(X)

])T

,

where S(X) = (IK+1 ⊗ g)s(X).
For any two ciphertexts CT[m1(X)] and GCT[m2], external product ⊠ is

defined as follows:

⊠ :CT×GCT→ CT, (CT,GCT) 7→ G−1(CT)GCT.

Decryption result of GCT⊠ CT is already known as follows [13]:

φs(X)(CT⊠GCT)

= m2m1(X) +m2e
′(X) +

∑
i∈[l(K+1)]

ei(X)G−1(CT)i +
∑

i∈[K+1]

si(X)Ai(X) (4)

where e(X) ∈ Rl(K+1)
N,Q is the noise contained in GCT, e′(X) is the noise con-

tained in CT, and A(X) is the gadget error. Since every norm value of ei(X)
and si(X) are small, validity of GCT ⊠ CT depends on ρ and ϵ of gadget de-
composition.

Given LWE ciphertext ct, bootstrapping algorithm of FHEW and TFHE
executes the following contents. (i) the modulus of ct is reduced to a valid
squashed ct′[m] = (a1, ..., an, b) with m = (mt−1, , ,m0)(2)2

v for v = log 2N − t
and add a bias to b of ct′ [24]; (ii) BlindRotate (See Algorithm 2 in Section
4.2) with public polynomial ACCPoly(X) ∈ RN,Q is run and following MLWE
ciphertext 2

CT

[
(−1)mt−1ACCPoly(X)X−φs(ct)

]
(5)

is obtained; (iii) valid, LWE ciphertext ct′′ with constant message of (5) is
extracted by using SampleExtract defined in (3); (iv) secret-key of ct′′ is
switched to secret-key of ct;

The correctness of bootstrapping algorithm depends of validity of squashed
ct′ and having zero of most significant bit (MSB), i.e. mt−1 = 0. Recently,
programmable bootstrapping (PBS) is proposed, which enables that server can
evaluate a look-up table on ciphertext by programming coefficients of ACCPoly

2 In this paper −φs(ct) is located on monomial degree in (5), instead of φs(ct) [13].
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(X) [15]. In addition, the without padding PBS (WoP-PBS) algorithm is pro-
posed that the above bootstrapping process is still correct when mt−1 = 1. In
this paper, WoP-PBS is applied to a RN,Q, where Q consisted of shared primes
in Section 4.3.

2.6 Introduction to floating-point number systems

A floating-point number system can be defined by using four parameters as
follows:

Definition 3 ([27]). A (β, p, emin, emax) floating-point number system is de-
fined by four integers: (i) a radix β ≥ 2,(ii) a precision p ≥ 2, (iii) two extreme
exponents emin and emax with emin < emax, such that every floating-point number
x ∈ R has at least one representation (s,m, e) satisfying

x = s ·m · βe, (6)

where s ∈ {1,−1} is the sign bit of x, m is an integer satisfying 0 ≤ m < β, and
e is an integer satisfying emin ≤ e ≤ emax.

We call m and s as fraction and exponent in (6), respectively. Since Defini-
tion 3 does not guarantee uniqueness of floating-point representation (s,m, e), a
unique representation, called normal form3 as follows:

Definition 4 ([27]). For the (β, p, emin, emax)-floating-point number system,
(s,m, e) of x ∈ R is a normal form if 1 ≤ m < β or if e = emin with 0 ≤ m < 1.

Intuitively, a fraction m can be expressed as (mp−1.mp−2...m1m0)(β). If x >
βemin , then we can choose the unique fraction with mp−1 > 0. Otherwise, we
uniquely choose the m with e = emin.

Let RZ : R → R be a rounding function to a floating-point number such
that RZ(x) rounds down if x ≥ 0, rounds up otherwise [27]. Then following
proposition are known.

Proposition 3 (Chapter 5 of [27]). Let ⊤ ∈ {+,−, ·, \} be the arithmetic
operation. If x, y ∈ R with βemin ≤ |x⊤y| ≤ (β − β1−p)βemax are given, following
inequality holds

|x⊤y − RZ(x⊤y)| ≤ β1−p min
(
x⊤y,RZ(x⊤y)

)
. (7)

Proposition 3 guarantees an error bound after operation and rounding depend-
ing on two numbers when overflow and underflow do not occurs. However if
normal form x and y are not chosen, rounding after p-digit loss a lot of preci-
sion and Proposition 3 is useless. For instance, take x = 0.1 · 101 in (10, 2, 0, 2)
floating-point system. When x2 = 0.01 · 102 is rounded down on second digit,
the result is not equal RZ(x2) = x and its error is 1 larger than 2−1 calculated
from (7).

3 We do not distinguish the definition of normal form and subnormal form in [27].
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The IEEE Standard [29] introduces (2, 24,−27+2, 27− 1) and (2, 53,−210+
2, 210−1) floating-point number systems, which are also called single and double
precision, respectively. In this paper, analog of those number systems will be
homomorphically implemented in Section 5 and simulated in Section 7.

3 Floating-point encryption and decryption

In this section, floating-point encryption and decryption are constructed, which
will be used for constructing FPFHE.

3.1 Floating-point encoding and decoding

We propose encoding and decoding algorithm between floating-point numbers
and the corresponding message polynomials. We choose q ∈ N and shared primes
Q0 = ν2η0+1 and Q1 = ν2η1+1 with Q0 > Q1, and define scaling factor ∆ = Q1

and ∆′ = ∆2qν and β-evaluation map Ψβ : N[X] → Q, a(X) 7→ a(β)β1−p.
Then for a given normal form (s,m, e) of floating point number x, Encode and
Decode are defined as follows:

• Encode(s,m = (mp−1.mp−2....m0)β,e)
– For the sign s, set a the polynomial M s(X) ≜ ∆s.
– For the fraction m, set the fraction polynomialM f(X) ≜ ∆

∑p−1
i=0 miX

i.
– For the exponent e, set the exponent polynomial M e(X) ≜ ∆′e.
– Return (M s(X),M f(X),M e(X)).

• Decode(M s(X), M f(X), M e(X))
– Set s = 1 if M s

0 > 0, s = −1 otherwise.

– Calculate a(X) =
⌊(
M f(X) + ⌊∆/2⌉

)
/∆
⌉
and set m = Ψβ(a(X)).

– Set e =
⌊(
M e

0 + ⌊∆′/2⌉
)
/∆′
⌉
.

– Return s ·m · βe.

Note that after analyzing bootstrapping error in Section 4.2, following facts are
obtain: (i) The size of Q1 controls bootstrapping error. (ii) Rounding error after
doing tensor product of two MLWE ciphertexts are relatively small when Q0 and
Q1 are shared primes. Moreover, the size of Q0 > Q1 is determined depending
on β, p, and carry system, analyzed in Section 5.2. The q is also used to integer
modulus of LWE ciphertext and shared primes are found by exhaustive search.

Since evaluation map Ψβ is a homomorphism-like map as

Ψβ

(
M f,1(X) +M f,2(X)

)
= Ψβ

(
M f,1(X)

)
+ Ψβ

(
M f,2(X)

)
,

Ψβ

(
M f,1(X) ·M f,2(X)

)
= Ψβ

(
M f,1(X)

)
· Ψβ

(
M f,2(X)

)
β1−p,

for given fraction polynomials M f,1(X) and M f,2(X), MLWE ciphertext having
fraction message polynomial can perform leveled homomorphic operations. How-
ever, these relation is not hold on the quotient polynomial ring RN,Q when an
one of coefficient or degree of result exceeds its integer or polynomial modulus.
This problem will be resolved and fully homomorphic operations will be obtain
in Section 5.
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3.2 Floating-point encryption and decryption schemes

In this section, a floating-point encryption scheme is proposed. We adopt the
state-of-the-art TFHE cryptosystem having tensor product [15] and change its
torus modulus to shared primes. To product two MLWE ciphertexts, K(K+1)/2
evaluation keys having message ski(X)skj(X) for some 0 ≤ j ≤ i ≤ K − 1 and
MLWE secret key sk are required.

For clear expression of those indexes, following index function is used. Let
θ : {(i, j) ∈ N2|x ≥ y} → N , (i, j) 7→ i(i+1)/2+ j be a bijection function which
is counting indexes of lower triangular of a matrix from left-top first, and θ−1

be its inverse function and θ−1
1 , θ−1

2 be coordinate functions of θ−1 such that
θ−1(x) = (θ−1

1 (x), θ−1
2 (x)).

Given Q0, Q1, and q, proposed floating-point encryption scheme is given as
follows:

• Setup(1λ) Given security parameter λ, generate follow items:

– Choose Ngct and Kgct for GSW, n and Kct for MLWE, n for LWE
ciphertext, and t for message space Z2t of LWE ciphertext. Choose h for
sparsity of secret key.

– Choose gadget parameters Bbl, Bpack, Bten, and Bks with B∗/2-quality
and B∗/2-precision, l∗ = ⌈logQ/ logB∗⌉−1 for all ∗ ∈ {bl,pack, ten, ks}.

• KeyGen(1λ) Given security parameter λ, generate following keys:

– Two ternary MLWE keys sk-bl, sk and h-sparse LWE keys sk-ks.

– KSi,j,k = ct[ski,jB
k+1
ks ] by using sk-ks for all (i, j, k) ∈ [Kct, n, lks].

– BL1
i =GCT[mi] and BL-1

i =GCT[m′
i] by using sk-bl for i ∈ [n] where

(mi,m
′
i) = (1, 0) if sk-ksi = 1, (mi,m

′
i) = (0, 1) if sk-ksi = −1,

(mi,m
′
i) = (0, 0) otherwise.

– Pi,j,k = CT[sk-bli,jB
k+1
pack] by using sk for all (i, j, k) ∈ [Kgct, Ngct, lpack].

– Teni,j = CT[ski1(X)ski2(X)Bk+1
ten ] by using sk for all (i, j) ∈ [(Kct +

1)Kct/2, lten], where i1 = θ-11 (i) and i2 = θ-12 (i).

Set a public key as ev = (P,BL1,BL-1,KS,Ten) and a secret key as sk.

• Encsk(x) :

– Choose normal form (s,m, e) of x and run Encode(e,m, s).

– Return (CTsign[M
s(X)], CTfrac[M

f(X)], CTexp[M
e(X)]) by using sk.

• Decsk(CTsign,CTfrac,CTexp) :

– Run the φsk for all inputs and get M s(X), M f(X), and M e(X).

– Return Decode(M s(X),M f(X),M e(X)).

The proposed encryption scheme is analogous to [15] however, we adopt h-
sparse secret key for encryption key-switching key, which will be used to control
errors after bootstrapping. Moreover when Q is larger than 264, G−1 suffers a
slowdown due to using high precision integer arithmetic. Next section introduces
accelerating gadget decomposition on such modulus Q.
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Algorithm 1 c← G−1
crt(d), accelerating gadget decomposition on CRT

Input: Q0 = ν2η0 + 1, Q1 = ν2η1 + 1, d = (a1, b1)× ...× (an, bn) ∈ (ZQ0 × ZQ1)
n

Output: c = (c0,0, c0,1, ..., c0,l−1, c1,0, ..., c1,l−1, ..., cn−1,w) ∈ Z1×nl
Q

1: calculate Q̂1 = Q−1
0 mod Q1 ▷Without loss of generality, Q1 ≤ Q0

2: for i ∈ [n] do
3: x = (ai − bi)Q̂1 mod Q1

4: y = x+ bi mod 2η0

5: z = xν + ⌊(x+ bi)/2
η0⌋

6: ci = (ci,0, ..., ci,l−1) := G−1(y + 2η0z) ▷Guarantee that 0 ≤ y < 2η0

7: end for
8: return c = (c1, ..., cn)

3.3 Accelerating gadget decomposition on shared primes

Let gadget decomposition G−1 from Proposition 2 is given. To avoid using arith-
metic operation larger than 64-bit, we save every element x as a CRT form as
(1) and Algorithm 1, denoted as G−1

crt , is used.
The correctness of G−1

crt is from the following property. For any (a, b) ∈ ZQ0
×

ZQ1
with 0 ≤ a < Q0, 0 ≤ b < Q1, and c = ϕ−1(a, b), there exists x < Q0 such

that c = b + xQ1 = (b + x) + (xν2η0). Since Q1 ≤ Q0, ϕ
-1(b, b) = b, hence we

obtain

xQ1 = ϕ-1(a, b)− ϕ-1(b, b) = ϕ-1(a− b, 0) = (a− b)Q1Q̂1 mod Q,

which means x = (a − b)Q̂1 mod Q0. Then we can split c ∈ ZQ into lower
significant η0-bit and more significant η1-bit without calculating exact value of
c, and run gadget decomposition twice, by using 64-bit integer operations.

4 Error analysis with deterministic gadget decomposition
and sequential bootstrapping for FHE

In this section, we revisit error analysis of bootstrapping [15] and propose se-
quential bootstrapping on shared primes. Section 4.1 proves more generalized
result of previous work [10], which is used to analyze error amplification without
independent heuristic even when deterministic gadget decomposition is used.

Section 4.2 performs an error analysis for the product of two fraction cipher-
texts following case, which is the worst case of constructing fully homomorphic
operations in Section 5. Assume that valid squashed two ciphertexts ct1i and ct2i
having i-digit fraction messages are given for all i ∈ [p]. Then following algo-
rithms are run: (i) A BlindRotate in Algorithm 2 runs to reduce error and raise
modulus from q to Q; (ii) A Packing in Algorithm 13 runs to pack outputs of
BlindRotate into two MLWE ciphertexts CT1 and CT2; (iii) A TensorProd
in Algorithm 14 runs to product CT1 and CT2, and p LWE ciphertexts (ct′i)i∈[p]

are obtained by using SampleExtract. (iv) A KeySwitch in Algorithm 3 runs
to generate squashed LWE ciphertext from (ct′i)i∈[p].
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If the results of above process are valid ciphertexts, a server can rerun this
process a polynomial number of times. Note that this process is analogous to
PackedSumProducts in [15], however we use KeySwitch to reduce ring and
integer modulus of ciphertext after doing tensor product.

However after multiplying two fraction message polynomials having degree
p − 1, the p − 1 coefficient can have a large message bit than 2t. To solve this
problem, Section 4.3 introduces a sequential bootstrapping.

4.1 Investigation of subgaussian random variables having
Pythagorean additivity

For subgaussian random variables X and Y , Corollary 1 requires boundedness
of both X and Y to show that XY is a subgaussian. However, we will show that
it is enough to require boundedness of one of X and Y and subgaussian others
as follows:

Lemma 2. Let X be a B-bounded random variable and Y be a σ-subgaussian
such that X and Y are uncorrelated, then XY ∼ subG(

√
8Bσ).

Proof. By using uncorrelated property, we obtain E[XY ] = E[X]E[Y ] = 0. Since
following inequality holds,

P(|XY | > t) ≤ P(|Y | > t/B) ≤ 2 exp

(
− t2

σ2B2

)
, (8)

it is known fact that (i) every k-th momentum is bounded as E[|XY |k] ≤
(2B2σ2)k/2 kΓ(k/2) where Γ(·) is a gamma function and (ii) a moment func-
tion is bounded by MXY (s) ≤ exp(4B2σ2s2) [31]. ⊓⊔

However, the factor
√
8 in Lemma 2 is undesirable and if we can use somewhat

more information of Y is given,
√
8 is removed as follows:

Lemma 3. Let X be a B-bounded random variable and Y be a σ-subgaussian
with a symmetric distribution, i.e. E[Y 2n−1] = 0 for all n ∈ N. If both X and Y
are independent, then XY ∼ subG(Bσ).

Proof. By using independent property, we obtain E[XY ] = E[X]E[Y ] = 0. By
Lemma 2, there exists a measurable function pointwisely larger than the moment
function MXY (s) for all s ∈ R. Then for any s ∈ R,

MXY (s) =

∫
Ω

esXY dP =

∫
Ω

lim
m→∞

m∑
n=1

(sXY )n

n!
dP (a)

= lim
m→∞

m∑
n=1

∫
Ω

(sXY )n

n!
dP

(b)

≤ lim
m→∞

m∑
n=1

∫
Ω

(sB)2nY 2n

2n!
dP (c)

= MBY (s)
(d)

≤ exp

(
(σB)2s2

2

)
, (9)

where (a) holds from monotone convergence of measurable functions with bound-
edness of MXY (s) [9], (c) holds from the property that Y has a symmetric dis-
tribution, and (d) holds from the property of B-scaled subgaussian. In addition,
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(b) holds since odd momentum of E[(XY )2n+1] = E[X2n+1] · E[Y 2n+1] is zero
for all n ∈ N by using independent property, and even momentum is bounded
by Lebesgue integral property with Y 2n ≤ B2n [9] for all n ∈ N. ⊓⊔

Then, we can derive the following corollary based on Lemma 1 and 3.

Corollary 2. Let Yi ∼ subG(σ) be mutually independent random variables hav-
ing symmetric distribution for all i ∈ [n]. Let X1, ..., Xn be B-bounded random
variables where Xi is dependent only for all X0, Y0,..., Xi−1, and Yi−1. Then
X0Y0,...,Xn−1Yn−1 have Pythagorean additivity. .

Proof. By using Lemma 3, Zi = XiYi are subG(σB) random variables for all
i ∈ [n]. Since Yi is independent to all Z1, ..., Zi−1 and Xi is still B-bounded even
if Z1, ..., Zi−1 are given, thereforeX0Y0,...,Xn−1Yn−1 have Pythagorean additivity
by using Lemma 2. ⊓⊔

Note that Corollary 2 does not require X to have subgaussian property, meaning
that E[X] can not be equal to zero compared to previous Corollary 1. Most of
additional errors after running bootstrapping are formed of product of output
of gadget decomposition and error in ciphertext or secret key. Since statistics of
deterministic gadget decomposition relies on its input, many case of expectation
of output is not zero, which is suitable for applying Corollary 2.

4.2 Error analysis: after running BlindRotate, Pack, TensorProd,
and KeySwitch algorithms

In this section, four algorithms BlindRotate, Packing, TensorProd, and
KeySwitching are run sequentially and error analysis for the output of each
algorithms is performed. Since these algorithms have been widely studied in
FHE with GINX-bootstrapping [13, 15], these algorithms are provided in Sup-
plementary material except BlindRotate and KeySwitch which are modified
to properly operate the proposed OD-FPFHE. Moreover, result of error anal-
ysis is given in this section and detailed proofs is provided in Supplementary
material.

Analyzing BlindRotate First, we analyze BlindRotate. Assume that a
squashed ct and ACCPoly(X) are given which determine the output message
as in (5). First, the blind rotation in [24] is modified to Algorithm 2 and error
analysis is performed as in Lemma 4. Note that BlindRotate returns 2c LWE
ciphertexts by using SampleExtract in (3) where c is pre-determined when ct
is generated by running KeySwitch which is defined below.

The difference between Algorithm 2 and blind rotation in [24] is Line 3, where
[24] runs with following equation ACC+ = [(Xai − 1)ACC ⊠ BL1

i ] + [(X-ai −
1)ACC ⊠ BL-1

i ]. To calculate external product ⊠, gadget decomposition should
be run as G−1

crt((X
ai − 1)ACC) and G−1

crt((X
ai +1)ACC). However, in Algorithm

2, only G−1
crt(ACC) calculation is required.
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Algorithm 2 out←BlindRotate(ct, ACCPoly(X), ev)

Input: ct = (a1, ..., an, b) ∈ Zn+1
2Ngct

, ACCPoly(X) ∈ RNgct,Q

Output: out ∈ Z(NgctKgct+1)×2c

Q

1: ACC := (0(X), ..., 0(X), X−bACCPoly(X)) ∈ Rk+1
Q

2: for i ∈ [n] do
3: ACC+ = (Xai − 1)[ACC⊠ BL1

i ] + (X-ai − 1)[ACC⊠ BL-1
i ]

4: end for
5: return out = (SampleExtract(ACC, α))α∈[2c]

Such difference gives more impact in the complexity when ct is encrypted by
using secret key having a support larger than ternary case. Suppose that secret
key having the support {d0, ..., dm−1} and BLj

i is encrypted with message 1 if
si = dj , and 0 otherwise for (i, j) ∈ [n,m]. Then Line 3 of BlindRotate is
replaced by following operation

ACC +=
∑
j∈[m]

(Xaidj − 1)[ACC⊠ BLj
i ]. (10)

Note that (Xaidj − 1) and BLj
i can be saved as NTT-transformed elements and

assume that previous ACC is saved as the NTT-transformed element. Since only
G−1

crt(ACC) is used to perform ⊠ for all index j in (10), only a number of one
inverse NTT and (Kgct + 1)lbl NTT operations are required which is free of
support size, and up to double errors are added compared to previous result
[24].

Next, an error amplification of BlindRotate is analyzed as follows:

Lemma 4. Assume that Algorithm 2 runs with valid squashed ct, and returns

outα ∈ ZNgctKgct+1
Q for the message (ACCPoly(X) X−φ(ct))α. Then for any α ∈

[Ngct], the error α-coefficient error E(α)bl of outα is bounded except with probability
2−Ω(v) as follows:

|E(α)bl | = O

(
Bbl

√
vNgctKgct

(
n+ σ

√
nlbl

))
. (11)

Proof is listed in Supplementary material.

Analyzing Packing Second, we analyze Packing p ciphertexts obtained by
BlindRotate are packed into one ciphertext by Packing which generates CTfrac.
Since Packing has been widely used and studied in FHEs [11, 24, 13], it is pro-
vided as Algorithm 13 in Supplementary material. An error amplification of
Packing after running BlindRotate is analyzed in Lemma 5.

Lemma 5. Assume that Algorithm 13 runs with p ciphertexts (cti[∆mi])i∈[p]

where cti ∈ ZNgctKgct+1
Q are generated by running Algorithm 2 with valid squashed
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(ct′j)j∈[p], and returns a ciphertext OUT[∆
∑

i∈[p]miX
i] ∈ RKct+1

Nct,Q
. Then for

any coefficient α ∈ [2p], the α-coefficient error E(α)Pack of OUT is bounded except
with probability 2−Ω(v) as follows:

|E(α)pack| = |E
(α)
bl |+O

(
Bpack

√
vNgctKgct(p+ σ

√
lpackp)

)
. (12)

Proof is listed in Supplementary material.

Analyzing TensorProd Third, we analyze TensorProd Two ciphertexts
packed from Packing are multiplied by using TensorProd. Since TensorProd
have been widely used and studied in FHEs [11, 15], it is listed as Algorithm 14
in Supplementary material.

An error amplification of TensorProd after running BlindRotate and
Packing is analyzed in Lemma 6.

Lemma 6. Assume that Algorithm 14 runs with two ciphertexts CT1[m1(X)]
and CT2[m2(X)] ∈ RKct+1

Nct,Q
which are generated by running Algorithm 2 and 13

with valid squashed (ctj)j∈[p] and (ct′j)j∈[p], and returns OUT[∆2m1(X)m2(X)]

∈ RKct+1
Nct,Q

. If ∆ = Ω(Nct|Epack|) is chosen and both coefficient of m1(X) and
m2(X) are bounded by ∆(β − 1), respectively, then for any α ∈ [2p], the α-

coefficient error E(α)Ten of OUT is bounded except with probability 2−Ω(v) as fol-
lows:

|E(α)ten | = O
(
∆pβ

∣∣∣E(p−1)
pack

∣∣∣+K2
ctN

2
ctltenBten + σBtenKgct

√
ltenNgctv

)
(13)

Proof is listed in Supplementary material.

Analyzing KeySwitch Finally, we analyze KeySwitch After two ciphertexts
are multiplied by TensorProd and SampleExtract for some coefficient α ∈
[2p], the result is squashed by KeySwitch. For a while, the message of squashed
ct has the formed of m∆2, where m = (mt′−1...m1m0)(2) and mf−1 = ... =
m1 = m0 = 0 for given f ∈ [t′]. The goal of KeySwitch is to bootstrap the
following s bits (mf+s−1...mf+1... mf )(2) after 0

′s and to return 2c outputs[15]
after running BlindRotate. The above assumption will be resolved in next
section.

Lemma 7. Assume that Algorithm 3 runs with a ciphertext ct[m∆2] gener-
ated by running Algorithm 2, 13, 14, and SampleExtract with valid squashed
(ctj)j∈[p] and (ct′j)j∈[p]. If message m = (mt′−1... m0)(2) with mf−1 = ... =
m0 = 0 is given and ∆ = Ω(Nct|Epack|), then the error of out with message
(mf+s...ms)(2)2

logNgct−s is bounded except with probability 2−Ω(v) as

O

(
|E(p−1)

ten |+∆νpβ2

∆ν2f+η1+s−logNgct
+
σBks

√
lksNctKctv

2q−1−logNgct
+
√
hv

)
(14)
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Algorithm 3 out← KeySwitch(CT, f, s, c, ev)

Input ct[m∆2] ∈ ZKctNct+1
Q , start index f , a number of desirable bootstrapping bit s

and the number of multi-out bit c.
Output squashed out

[
(mf+s...mf )(2)2

logNgct−s
]
∈ Zn+1

2n

1: ct← ⌊ct⌋Q→Q0≈ν2η0

2: Calculate the bias = 2f−1ν and add it to b of ct.
3: ct← ⌊ct/ν2η1+s+c+1+f−q⌉ mod 2q

4: Set out = (0, 0, ..., 0, bct) ∈ ZKctNct+1
2q ▷ where bct is b of ct

5: for (j, x) ∈ [Kct, Nct] do
6: v = G−1(act,j) ▷ where act,j is the j-coefficient of a of ct
7: out +=

∑
k vkKSj,x,k

8: end for
9: return out← ⌊out/2q−1−logNgct⌉2c mod 2Ngct

Proof is listed in Supplementary material.
If (14) is less than or equal 22 logNgct−t, output of KeySwitch is valid ci-

phertext and hence BlindRotate can be applied again. From now on, We will
call that a proposed floating-point encryption is valid if parameters satisfy those
inequality with f = 0, c = 0 and s = t− 1.

Moreover if shared primes are used, messages and approximated modulus
ν2η0 after running Line 1 in KeySwitch share same scaling factor ν with neg-
ligible error amplification. This property enables to change from calculating de-
nominator in Line 3 to shifting ν without extra message deformation.

In addition, if a non-sparse ternary secret is used key for encrypting KSj,x,k,
the third error term of (14) becomes O(

√
nv). Although the first and second

error terms of (14) can be reduced by increasing Q1 and q, O(
√
nv) cannot be

controlled hence makes an error floor. However if a sparse ternary secret key is
used for KSj,x,k, this error term is controlled by a sparsity h.

4.3 Sequential bootstrapping for accommodating large numbers

In this section, we discuss a methodology to bootstrap a ciphertext for a large
message bit based on the error analysis Lemma 4-7. We recall that WoP-PBS
algorithm in [15] enables bootstrapping and moreover returns correct ciphertext
even when MSB of message in a squashed ciphertext is one. Analogously, we
will explain how to construct WoP-PBS on integer modulo product Q which is
product of shared primes by using the following ACCPoly 1.

ACCPoly 1: Used to WoP-PBS, with c = 1, s = 4, and f = 0

output \ location 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1st outputs (×∆) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2st outputs (×∆) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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To instantiate WoP-PBS on shared primes, assume that a ciphertext ct[m∆2]
with m = (mt′ ...m1m0)(2) is given which is generated by running Algorithms 2
and 13, then extracted by using SampleExtract, and assume that the message
space of LWE ciphertext is Z2t = Z26 . Although a valid floating-point encryption
is given and Algorithm 3 runs with f = 0 and s = 4, output of BlindRotate is
sign-reversed by when m4 = 1 in (5).

Then the ACCPoly(X) constructed from ACCPoly 1 is used to fix its sign.
Let ot1 and ot2 be output functions of ACCPoly 1 with the inputs 0, ..., 15.
Then, the the ACC initial polynomial ACCPoly(X) =

∑
i∈[Ngct]

(ai + bi)X
i is

defined as follows: If i is even, then set ai = ot1
(
⌊i ∗ 2s/Ngct⌋

)
∆ and bi = 0,

otherwise, set ai = 0 and bi = ot2
(
⌊i ∗ 2s/Ngct⌋

)
∆ = ∆.

After running BlindRotate with ACCPoly 1, we obtain two ciphertexts
CT1[(−1)m4∆(m3m2m1m0)(2)] and CT2[(−1)m4∆]. Finally, if four main algo-
rithms run again with two ciphertexts and ACCPoly 1, valid ciphertext CT′[
(m3m2m1m0)(2)∆]. This is the application of WoP-PBS in our shared primes.

ACCPoly 2: Used to sequential bootstrapping, with c = 1, s = 4, and f = 0

output \ location 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1st outputs (×∆) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2st outputs (×∆2) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

However to bootstrap next 4-bits (m7m6m5m4)(2) message, lower signifi-
cant 4-bits should be removed from ct[m∆2]. This can be done by replac-
ing the second used ACCPoly 1 above process to ACCPoly 2. Since error
|Eten(X)| is Q1 times larger than |Epack(X)| in Lemma 5 and 6, subtracting
or adding ciphertexts generated from second output of ACCPoly 2 from a
ct still valid as many poly(η1)-times. Therefore after subtraction, we obtain
ct′[∆(mt′ ...m6m5)(2)] hence KeySwitch can run with ct′ correctly. Finally we
proposes a sequential bootstrapping from above observation.

Theorem 1 (sequential bootstrapping, analogous of Lemma 5 of [15]).
Let valid floating-point encryption scheme with LWE message space Z2t for t ≥ 2
is given. Then for every message bits mi of ciphertext ct[(mt′−1...m0)(2)∆

2]
returned from running Algorithm 2, 13, 14, and SampleExtract and for any
scaling ∆′′ ≥ ∆, a valid ciphertext CT[mi∆

′′] can be generated.

Although Theorem 1 is similar to Lemma 5 in [15], NTT algorithm can
be used in the proposed floating-point encryption, and hence having a large
messages are possible without generating extra noise contrast to using FFT.

In the next section, homomorphic addition and multiplication algorithms are
introduced for the proposed floating-point.
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5 Overflow-detectable floating-point FHE

In this section, we propose an overflow-detectable floating-point FHE. Section 5.1
proposes two homomorphic arithmetic operationsADD andMULT. Section 5.2
constructs various homomorphic algorithms which are important subroutines for
ADD and MULT. Section 5.3 proposes a homomorphic normalization method
for the floating-point outputs. Finally, Section 5.4 introduces a homomorphic
algorithms for generating ciphertext with the message indicating overflow oc-
currence.

Due to Theorem 1, various floating-point homomorphic operations can be
constructed and we implement (4,27,-511,511) and (4,12,-127,127) floating-point
FHE as examples, which achieve double and single precision, respectively. Also,
we choose LWE message space parameter t = 6 for bootstrapping each 5-bit of
message by using WoP-PBS. After explaining each pseudo-code of homomorphic
algorithms in Section 5.2, various ACC initial polynomials used to implement
those algorithms are introduced with (4,27,-511,511) floating-point FHE and
t = 6.

5.1 Overview of homomorphic operations for OD-FPFHE: addition,
multiplication and overflow-detection

A homomorphic addition of two floating-point ciphertexts is proposed in Algo-
rithm 4, denoted as ADD. Note that before adding two fraction ciphertexts,
both exponents should be equal. Lines 1-5 show the process of equalizing both
exponents. Also, subtraction can be easily constructed by replacing + to − in
Line 6 of Algorithm 4.

Algorithm 4 : (Outfrac,Outsign,Outexp,proof’) ← ADD(FCT1, FCT2, proof)

Input FCT1 = (CT1
frac,CT

1
sign,CT

1
exp), FCT

2 = (CT2
frac,CT

2
sign,CT

2
exp), proof

1: CTmax
exp [max(m1,m2)∆

′] = Max
(
CT1

exp[m1][m1∆
′], CT2

exp[m2∆
′]
)

2: for i=1:2 do
3: CTdiff

exp

[
min

(
max(m1,m2)−mi, p)

)
∆′

]
= Min( CTmax

exp - CTi
exp, CT[p∆

′]))

4: tmpCTi = TensorProd
(
ConstToExp(CTdiff

exp,CT
i
sign),CT

i
frac

)
5: end for
6: (Outsign,Outfrac, (IsZeroi)i∈[p]) = CarryAdd(tmpCT1 + tmpCT2)
7: proof’ := GenProof(Outexp,proof)
8: (Outfrac,Outexp) = Normal((IsZeroi)i∈[p],CT

max
exp + 1,Outfrac)

9: return (Outfrac,Outsign,Outexp,proof’)

The following operations are homomorphically performed. (i) ADD takes
two floating-point ciphertexts, and MLWE ciphertext proof with the message
indicating the overflow occurrence in the previous operations; (ii) The maximum
of two exponents is calculated in Line 1; (iii) The differences between each
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exponent and max values are calculated and cut less than p in Line 3; (iv)
The difference values are sign-reversed and lifted to the monomial exponent
multiplied with its sign message by ConstToExp, and then the outputs are
multiplied with each fraction message by TensorProd in Line 4; (v)CarryAdd
bootstraps each coefficient to be less than the precision β and moves its carry
to higher coefficients.

Algorithm 5 : (Outfrac,Outsign,Outexp,proof’)← MULT(FCT1,FCT2,proof)

Input FCT1 = (CT1
frac,CT

1
sign,CT

1
exp), FCT

2 = (CT2
frac,CT

2
sign,CT

2
exp), proof

1: (Tmpfrac, (IsZeroi)i∈[27]) = CarryMul(TensorProd(CT1
frac,CT

2
frac))

2: Tmpexp = CT1
exp +CT2

exp

3: Outsign = Bootstraps and Packing with TensorProd(CT1
sign,CT

2
sign)

4: proof’ := GenProof(Outexp, proof)
5: (Outfrac,Outexp) = Normal((IsZeroi)i∈[p],FCT

max
exp ,Outfrac)

6: return (Outfrac,Outsign,Outexp, proof’)

A homomorphic multiplication is proposed in Algorithm 5, denoted asMULT,
which takes the homomorphic calculations. (i) MULT takes two floating-point
ciphertexts, and proof; (ii) Fractions of two floating point numbers are multi-
plied by TensorProd in Line 1; (iii) CarryMul bootstraps each coefficient to
be less than the precision β and moves its carry to higher coefficients in Line 1;
(iv) Exponents of two floating point numbers are added in Line 2; (v) Signs of
two floating point numbers are multiplied by TensorProd and bootstrapped in
Line 3;

At the last part of both ADD and MULT, exponent is examined to check
whether an overflow is occurs or not by GenProof which is explained in Section
5.4. In addition, outputs is changed into a normal form by Normal which is ex-
plained in Section 5.3. Next section will introduce homomorphic sub-algorithms
for ADD and MULT.

5.2 Various homomorphic algorithms for ADD and MULT

We introduce sub-algorithms Max, Min, ConstToExp, CarryAdd, and Car-
ryMul.

First, we propose Max as in Algorithm 6. The correctness is followed from
the equation max(x, y) = ReLU(x− y)+ y where ReLU(x) return 0 if x < 0 and

x otherwise. To examine the sign of message in the ciphertext CT(1)
exp − CT(2)

exp,
we assume that both messages take values between emin and emax (Otherwise,
overflow occurrence is already contained in proof ciphertext. See Section 5.4).

Since the magnitude of message in CT(1)
exp−CT(2)

exp is less than 2e, we add a 2e∆′

and check whether me is still one or not by processing Line 6. Then, a ciphertext
CTtmpe[me∆] can mask other ciphertexts after running Line 7, which is same
as of ReLU.

21



Algorithm 6 : Out←Max(CT(1)
exp,CT

(2)
exp)

1: CTexp[meme−1...m0(2)∆
′]← CT

(1)
exp − CT

(2)
exp + 2e∆′ ▷Where e is a smallest

natural number satisfying emax − emin < 2e.
2: for i ∈ [e+ 1] bit of message mi do
3: Generate MLWE ciphertext CTtmpi[mi∆] by using sequential bootstrapping
4: end for
5: for i ∈ [e] do
6: Out += CT[memi2

i∆′]← Bootstrap TensorProd(CTtmpe,CTtmpi)
7: end for
8: return Out + CT

(2)
exp − 2e∆′

To implement and accelerate Max in our (4,27,-511,511) floating-point FHE
and e = 10, we apply two sequential bootstrapping to generate ciphertext having
4-bit messages in Line 2. Moreover, following ACCPoly 3 are used once to
bootstrap remaining two message bits in Line 2, and we obtain two ciphertexts
having message m10(m9m82

8 − 210)∆′ and m10∆ at once. Note that Min can
be implemented by equation min(x, y) = −ReLU(x− y) + x with similar way.

ACCPoly 3 Used for checking whether 2e is zero or not

output \ location 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1st outputs (×28∆′) 0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 11

2nd outputs (×∆) 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

Next, we propose a homomorphic algorithm lifting a constant messagem∆′ to
the monomial exponent message∆Xm as Algorithm 7, denoted asConstToExp,
which is used for equalizing exponent values before addition and for normalizing
after addition or multiplication. For the first case, ConstToExp returns cipher-
text corresonding to message ms∆X

−m for given its sign message ms, and the
last case, returns ciphertext with message ∆Xm.

Algorithm 7 : Out← ConstToExp(CTexp,CTsign)

Input CTexp[m∆′] where m = (me...m0)(2), (optional)CTsign[ms∆]
Output Out[∆Xm] where Out[ms∆X−m] can also be returned by packing with re-

versed index and multiply −1 when i = e in Line 4.
1: Calculate ciphertexts CTi[mi∆] by using sequential bootstrapping and Packing
2: Out← CTsign if CTsign is given, Out = ∆ otherwise.
3: for i ∈ [e+ 1] do

4: Out← TensorProd((X2i − 1)Out,CTi) +∆Out
5: Out← Bootstraps Out for every index j ∈ [2i] and Packing
6: end for
7: return Out
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The correctness of Algorithm 7 is analogous to the BlindRotate. Let mes-
sage m = (meme−1...m0)(2) and CTsign[ms∆] be given. When i = 0 in Line 4,
Out is assigned with the message ∆2ms((X−1)m0+1)=∆2msX

m0 . By induct-
ing on i, Out is assigned with message ∆2msX

mi...m0(2) if the previous message
of Out is ∆2msX

mi−1...m0(2) . In addition, we already know that Out in Line
4 can be bootstrapped with sufficiently large Q1 since addied error of Out is
relatively small by Lemma 5 and 6.

To implement and accelerate ConstToExp in our (4,27,-511,511) floating-
point FHE, ACCPoly 4 and 5 are used for bootstrapping in Line 2. Since the
message is cut and m ≤ p = 27 < 25 is less than 5 bits, less significant 3 bits are
sequentially bootstrapped by using ACCPoly 4 and more significant 2 bits are
bootstrapped by using ACCPoly 5. Note that a ciphertext CT[∆X32m5+16m4 ]
can be constructed by using Packing with ACCPoly 5. Then ACCPoly 4 is
used to process when i = 0, 1, and 2 on Line 3 at once and CT[∆X32m5+16m4 ]
is multiplied , which is desired result.

ACCPoly 4(Left) and 5(Right). Used for splitting constant messages

output \ location 0 1 2 3 4 5 6 7

1st outputs (×∆) 0 1 0 1 0 1 0 1

2st outputs (×∆) 0 0 1 1 0 0 1 1

3st outputs (×∆) 0 0 0 0 1 1 1 1

4st outputs (×∆) 1 1 1 1 1 1 1 1

output \ location 0 1 2 3 4 5 6 7

1st outputs (×∆) 1 0 0 0 - - - -

2st outputs (×∆) 0 1 0 0 - - - -

3st outputs (×∆) 0 0 1 0 - - - -

4st outputs (×∆) 0 0 0 1 - - - -

Next, a homomorphic carry over algorithm for addition is proposed in Algo-
rithm 8, denoted as CarryAdd, which is a core part to deal with the carries
occurred in addition of two fractions. Let π : Z → [β], π(x) = x mod β be a
message-extraction function. After two ciphertext added, each message in coef-
ficient should be adjusted by using π and remaining message, denoted as carry,
should be added to high order coefficient.

Since defining carry function is not unique in general, we propose definition
of abstract carry system. Let ci→j : Z → Z be a carry function for all i, j ∈ N
with i < j. Then we define carry collection Cj from j = 0 recursively, and carry
system C of polynomial ring Z[X] as follows:

Cj :Z[X]→ Z, α(X) =

n∑
i=0

αiX
i 7→

[
αj +

j−1∑
i=0

(ci→j ◦ Ci)(α(X))
]
, ∀j = 1, 2, ...

C :Z[X]→ Z[X], α(X) =

n∑
j=0

αjX
j 7→

n∑
j=0

(π ◦ Cj)(α(X))Xj , (15)

where C0

(∑
j αjX

j
)
= α0. Intuitively, the carry collection Cj adds every carry

ci→j from the coefficient i < j to the j-coefficient αj . In addition, we call C
is a valid carry system if φβ(α(X)) = (φβ ◦ C)(α(X)) ∈ Q for all α(X) ∈
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Z[X], i.e., sharing the same values when evaluating β. For ADD, carry functions
ci→i+1(x) = (x− π(x))/β are used for all i ∈ N.

Algorithm 8 (CT′
frac,CT

′
sign, (IsZeroi)i∈[p])← CarryAdd(CTfrac[m(X)∆2])

1: Set ctc = 0 for ctc ∈ ZKctNct+1
Q and CTfrac ← CTfracX

−1

2: for i ∈ [p+ 2] do
3: Tmp[∆2Ci(m(X))]← SampleExtract(CTfrac, i) + ctc

4: ct′i
[
∆(π ◦ Ci)(m(X))

]
, ctc

[
∆2(ci→i+1 ◦ Ci)(m(X))

]
← Bootstraps Tmp

5: end for
6: CT′

sign ← sequential bootstrap with CTc and extract its sign.
7: CT′ ← Packing with ct′0, ..., ct

′
p and TensorProd with CT′

sign

8: for i ∈ [p+ 2] do
9: (ct′′i , ct

c, IsZeroi)← Bootstrap SampleExtract(CT′, i) + ctc ▷where IsZeroi
has a message m∆ with m = 1 if message of CT′′

i is zero, and m = 0 otherwise
10: end for
11: return

(
CT′

frac ← Packing
(
(ct′′i )i∈[p+2]

)
,CT′

sign, (IsZeroi)i∈[p+1]

)

The Correctness of CarryAdd is as follows: After Algorithm 8 runs every
iteration on Line 2, the sign of carry message ctc is the sign of addition of two
ciphertexts. However if the sign is negative, packed messages from CT′

0, ...,CT
′
p+1

becomes sign-reversed. To fix its sign, calculated sign in Line 6 is multiplied to
CT′ in Line 7 and bootstrap again.

In addition, ADD checks whether each coefficient of C(m(X)) is zero or not
and generates a ciphertext IsZeroi containing boolean message above informa-
tion. This ciphertext is used to calculate normal form.

ACCPoly 6-8. Used for generating carry and IsZero ciphertexts in Algorithm 8

output \ location (adding 8∆2) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1st outputs (×∆) 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

2nd outputs (×∆2) -2 -2 -2 -2 -1 -1 -1 -1 0 0 0 0 1 1 1 1

output \ location (adding 8∆2) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1st outputs (×∆) 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

2nd outputs (×∆) -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1

output \ location (adding 4∆2) 0 1 2 3 4 5 6 7

1st outputs (×∆) 0 1 2 3 0 1 2 3

2nd outputs (×∆2) -1 -1 -1 -1 0 0 0 0

3st outputs (×∆) 1 0 0 0 1 0 0 0

To implement and accelerateCarryAdd in our (4,27,-511,511) floating-point
FHE, ACCPoly 6 is used for bootstrapping in Line 4. Note that the i-th coeffi-
cient message mi of corresponding to the sum of two fraction polynomials takes
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a value between from −6 and 6. If a carry message takes a value from −2 to
1, then CT′

i and CTc can be obtained by adding 8∆2 and bootstrapping with
ACCPoly 6. When bootstrapping with index i = p + 1 on Line 3, ACCPoly
7 is used to obtaining the sign of fraction message. Note that a i-th coefficient
message mi after packing and doing tensor product in Line 8 is the value be-
tween −3 and 3. Therefore, we obtain CT′′

i , CT
c, and IsZeroi by adding 4∆2

and then bootstrapping using ACCPoly 8.
Similar to CarryAdd, homomorphic carry over for multiplication is pro-

posed Algorithm 9, denoted as CarryMul with valid C with carry functions
ci→j .

Algorithm 9 (CT′
frac, (IsZeroi)i∈[p])← CarryMul(CTfrac[m(X)∆2])

1: ctci = 0, where ctci ∈ ZKctNct+1
Q , for all i ∈ [2p]

2: for i ∈ [2p] do
3: (ct′i

[
∆(π ◦ Ci)(m(X))

]
,
(
ctccj

[
∆2(ci→j ◦ Ci)(m(X))

])
j
, IsZeroi) ← Sequential

bootstrap with SampleExtract(CTfrac, i) + ctci
4: Update carry ctcj += ctccj for all j > i of generated carry ciphertexts
5: end for
6: return ( Packing(ct′i)i∈[2p], (IsZeroi)i∈[2p])

To implement and accelerate CarryMul in our (4,27,-511,511) floating-
point FHE, carry functions are designed as follows: for any given i-th coeffi-
cient of l-bit message m = (ml−1...m0)(2), set ci→i+1(m∆

2) = (m3m2)(2) and
ci→i+2j(m)=(m4j+3 m4j+2 m4j+1 m4j)(2) for all j ≥ 1. Then carry functions are
constructed efficiently by using ACCPoly 9 as follows: If l ≤ 4, then cipher-
texts of messages and carry are obtained by using sequential bootstrapping ones.
Otherwise, ACCPoly 9 is used and obtains four ciphertexts having messages
(−1)m3(m1m0)(2)∆, (−1)m3(m2)(2)∆, (−1)m3∆, and (−1)m3∆2. Then sign of
two for first and second ciphertexts can be removed by doing tensor product
with third ciphertext. Finally, we obtain a ciphertext with message 2m3∆

2 by
using forth ciphertext and adding ∆2.

ACCPoly 9. Used for generating carry in Algorithm 9

output \ location 0 1 2 3 4 5 6 7

1st outputs (×∆) 0 1 2 3 0 1 2 3

2nd outputs (×∆) 0 0 0 0 1 1 1 1

3rd outputs (×∆) 1 1 1 1 1 1 1 1

4th outputs (×∆2) 1 1 1 1 1 1 1 1

For accelerating CarryMul, upper-bound of Ci(m1(X)m2(X)) can be ana-
lyzed for any valid fraction message polynomialsm1(X) andm2(X) by following
Proposition 4.
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Proposition 4. Suppose that two polynomials a(X), b(X) ∈ N[X] are given
with each coefficient satisfy ai ≤ bi and carry functions ci→j : N→ N are given
for all i, j ∈ N satisfying ci→j(x) ≤ ci→j(y) if x ≤ y for all x, y ∈ N. Then
following inequality Cj(a(X)α(X)) ≤ Cj(b(X)α(X)) holds for all j-coefficient
and α(X) ∈ N[X].

Proof. Since every coefficient of b(X) is greater than or equal a(X), following
equation C0(a(X)α(X)) = a0α0 ≤ b0α0 ≤ C0(b(X)α(X)) holds. To induct on j,
let assume C0, ...,Cj−1 satisfies Proposition 4. Then for every index j ∈ N,

Cj(a(X)α(X)) =
∑

i∈[j+1]

aiαj−i +
∑
i∈[j]

(ci→j ◦ Ci)(a(X)α(X))

≤
∑

i∈[j+1]

biαj−i +
∑
i∈[j]

(ci→j ◦ Ci)(b(X)α(X)) = Cj(b(X)α(X))

⊓⊔

Therefore, Ci(m1(X)m2(X)) ≤ Ci(m1(X)mmax(X)) ≤ Ci(m
2
max(X)) is upper

bound for any product of two message polynomial by using Proposition 4 with
polynomial mmax(X) = (β − 1)∆

∑p−1
j=0 X

j .

From Proposition 4, we obtain condition for Q0 such that 2η0−η1 > logmaxi
Ci(m

2
max(X)). Otherwise, messages are deformed due to small Q0. Moreover,

maxiCi(m
2
max(X)) can be pre-calculated and it is upper-bounded by 210 for our

carry system and selected parameters. Therefore, index i is enough to assign
from p− 3 to 2p− 1 in Line 2 since every index i ≤ p− 4 cannot influence index
p.

5.3 Algorithm for normalizing after homomorphic floating-point
operations

When CarryAdd or CarryMul are ended, fraction and exponent should be
adjusted to a normal form. The first step is counting the number of zeros from
most significant in fraction and stopping when nonzero values are occurred. We
propose HomeCount as Algorithm 10 as follows:

When HomCount runs on the Line 4, product of CT1 and IsZeroi acts
like AND gate. Therefore, every returned ciphertexts CT1 in Line 4 encrypt
∆ until IsZeroi encrypts 0 for the first index i, and encrypt 0 after i-iteration.
Then, HomCount adds all returned ciphertext CT2 to Out in Line 5, which has
message scaled by ∆2. Finally, we bootstrap Out and obtains ciphertext with
message having a number of zeros until nonzero significant occurs.

By using Algorithm HomCount, we proposes Algorithm 11, denoted as
Normalize to normalize fraction and exponent on the ciphertext. Since the
number of nonzero significant fraction are calculated by using HomCount,
Normalize can subtracts it from exponent ciphertext. However subtracted mes-
sages can be less than emin, therefore Normalize evaluates Min and subtracts
its output from exponent ciphertext. In addition, the min ciphertext having con-
stant message converts to the MulCT having message in monomial exponent by
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Algorithm 10 : Out← HomCount((IsZero)i∈[p′])

1: CT1[∆mp′−1]← IsZerop′−1[∆mp′−1]
2: Out[∆2mp′−1]← ∆IsZerop′−1[∆mp′−1]
3: for i ∈ [p′ − 1] do

4: (CT1[∆
∏p′−1

j=i mj ],CT2[∆
2 ∏p′−1

j=i mj ]) ← Sequential bootstrap and Packing
with TensorProd(CT1, IsZeroi)

5: Out += CT2

6: end for
7: return Out[m∆′] ← Bootstrap Out, where m is a number of zeros until nonzero

significant occurs

using ConstToExp in Line 2. Then fraction can be adjusted to normal form
by doing tensor product with MulCT and CTfrac.

Algorithm 11 Outfrac,Outexp ← Normalize((IsZeroi)i∈[p],CTexp,CTfrac)

1: CTmin
exp = Min( HomCounter((IsZeroi)i∈[p]) , CTexp)

2: CTTmp = ConstToExp(CTmin
exp )

3: Outfrac ← SampleExtract(·, i), Bootstrap and Packing from Tensor-
Prod(CTTmp, CTfrac) for all i ∈ [p]

4: return (Outfrac,CTexp − CTmin
exp )

5.4 Generating a proof to detect overflow occurrence

In this section, we propose an algorithm to generate ciphertext having message
of overflow occurrence. Since message spaceM⊆ R for encrypting real numbers
is finite in practice, unique maximum and minimum norm values |x| for x ∈
M\{0} exist. Let UM and LM be the maximum and minimum norm values,
respectively. Assume that finite n messages xi ∈ M for i ∈ [n] and bounded
depth arithmetic circuit f :Mn → R are given. x are called f -overflow numbers
if |f(x)| > UM and if a norm value of any intermediate result is greater than
UM while evaluating f , it is called that an overflow occurs.

It is clear that CKKS has f -overflow numbers for any circuit f due to the
finite message space in C. Note that original BGV/FV do not show f -overflow
numbers because is uses a message space with t-characteristic ring for some
t ∈ N. However, if BGV/FV are used to encrypt a subset of Z, then f -overflow
numbers exist.

Since the messages of calculated ciphertext cannot be checked during ho-
momorphic operations, overflow occurrence has to be informed to a user by
generating extra ciphertext having such information as a message. Generation
of those for CKKS and BGV/FV is a complicated problem because fixed-point
operations are used and it may require a lot of extra precision to save and
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check overflowed-results. In FPFHE, however, inspection of the exponent is
enough to check overflow and just extra one bit precision in exponent is re-
quired. We propose Algorithm 12, denoted as GenProof is proposed, which
uses e′ = ⌊logmax(|emax − 1|, |emax − 2emin + 1|)⌋ + 1 to generate MLWE ci-
phertext for the message indicating whether the message of CTexp is larger than
emax or not and this ciphertext is called a proof.

Algorithm 12 proof′ ← GenProof(CTexp,proof)

Input CTexp[m∆′], proof[mpf∆
′]

Output proof[(mpf + α)∆′] with α = 1 if m > emax, and α = 0 otherwise

1: CT[(me′−1...m0)(2)∆
′] = CTexp + (2e

′
− emax − 1)∆′

2: proof′[α∆′]← Use sequential bootstrap to have a message α = 1−me′−1

3: return proof′ ← proof + proof′

GenProof is analogous to theMax which operates as follows: If the previous
proof has a message 0, i.e., an overflow does not occur while performing the
previous operations, then the message m is in 2emin ≤ m ≤ 2emax. Therefore,
m′ = emax −m + 1 is strict positive if and only if m ≤ emax. Moreover, e′-bit
from binary representation of 2e

′ −m′ is one if and only if m′ is strict positive,
meaning that proof’ in Line 2 has a message of whether m > emax or not.

Otherwise if the previous proof has a non-zero message, then it already con-
tains the information of overflow occurrence. Then, by returning the proof that
is the sum of all previous proofs, a user can check whether an overflow occurs
or not by decrypting the proof. Therefore, by using the proposed OD-FPFHE
and given bootstrapping failure probability 2−Ω(v), a user can detect f -overflow
numbers for any poly(v) bounded function f .

6 Security analysis

This paper relies on key-dependent message (KDM) and circular security as-
sumption to generate public keys [8, 17, 19] which is used for FHEs. To deter-
mine concrete parameter values of OD-FPFHE for achieving target security, we
estimate the computational complexity of Primal uSVP and dual lattice attack
using k-block BKZ with SVP oracle having the sieving cost 20.292k+16.4 [3]. In
addition, we apply hybrid primal and dual attack [12] to LWE key-switching
key encrypted by h-sparse sk-ks. Such derived concrete parameters are listed in
Table 1.

In Table 1 the number after D and S refers to the security level. For in-
stance, parameters D128 guarantees 128-bit security for Primal, Dual, and hy-
brid attacks. D and S refer to the double and signal precision of OD-FPFHE,
respectively. Note that, OD-FPFHE with D128 can deal with the ciphertexts for
double and single precision messages, but however OD-FPFHE with S128 can
deal with the ciphertexts for single precision messages only.
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Table 1: Concrete parameters of OD-FPFHE for various security levels

\ Nct Kct Ngct Kgct n Q0 − 1 Q1 − 1 q Bbl Bpack Bev Bks h

D128 28 13 211 2 785 521 · 239 521 · 229 221 212 216 218 2 131

D160 28 16 211 2 1089 521 · 239 521 · 229 221 210 214 218 2 131

D192 28 19 211 3 1292 521 · 239 521 · 229 222 210 213 218 2 160

S128 28 13 212 1 785 135 · 236 135 · 230 221 212 216 218 2 131

S160 28 15 212 1 1089 135 · 236 135 · 230 221 212 216 218 2 131

S192 28 18 211 3 1292 135 · 236 135 · 230 222 210 214 218 2 160

7 Simulation results and conclusions

We implement (4,27,-511,511) and (4,12,-127,127) floating-point number system
by using PALISADE v1.11. Simulation is performed by running Ubuntu 20.04
LTS over Intel(R) Xeon(R) Silver 4210R CPU @ 2.40GHz having 20 core 40
threads and 256 GB of RAM. PALISADE is compiled with the following CMake
flags: WITH-NATIVEOPT=ON (machine-specific optimizations were applied
by the compiler) and WITH-INTEL-HEXL= ON (AVX-512 acceleration was
used), by Clang++10.0.0. Running times for various parameters are listed in
Table 2. Since S128, S160, and S190 does not support double precision, the time
consumption is not available for these cases.

We simulate Algorithms 4 and 5 by using the number of 1 (single-core),
4, and 10 threads using parameters in Table 1, and list the operation time in
Table 2. In addition, we simulate addition and multiplication time per threads,
which is listed in Table 2 as Amortized time. Therefore, if many thread are
available, run time is expected to approach to the amortized time if a circuit is
evaluated parallel such as matrix multiplication. However if a circuit is evaluated
by sequential operations, run time is expected to approach to the Time (10
thread) in Table 2.

Next, we arbitrary choose double and single precision messages x without
encoding error i.e., Decode(Encode(x)) = x as follows:

x1d =-9.1763514236254290 ∗ 10-32, x2d = 6.2467247246375865 ∗ 10-24,
x3d = 2.4523526872362373 ∗ 1022, x4d = -5.4324663335297274 ∗ 1017,
x1f =-2.7914999921796382 ∗ 10-15, x2f = 8.3867001884896375 ∗ 10-12,
x3f = 1.82634005135360 ∗ 1014, x4f = -6.278269952 ∗ 109,

where xid and xif denote double and single precision message, respectively. Then

we evaluate z1 = (x1 + x2), z2 = (x3 − x4), z3 = z1 · z2, and z4 = z23 on the
ciphertext domain, and results are listed in Table 3 and 4 and correct calcu-
lation values are listed which is round down. It can be directly checked that
error between correct values and decryption result where overflow is not occur
is bounded as known as Proposition 3.

Also, we perform the previous circuits with single precision floating-point
numbers x1f , x

2
f , x

3
f , and x

4
f and results are as given in Table 4.
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Table 2: Time consumption for various parameters (second)

Addition D128 D160 D192 S128 S160 S192

Single precision

Time (1 thread) 530 823 1516 525 700 1495
Time (4 thread) 264 374 657 239 321 654
Time (10 thread) 181 269 452 183 248 423
Amortized time 57.5 70.2 131 52.1 66.8 130

Double precision

Time (1 thread) 858 1303 2439 - - -
Time (4 thread) 366 543 950 - - -
Time (10 thread) 256 387 630 - - -
Amortized time 103 112 253 - - -

Multiplication D128 D160 D192 S128 S160 S192

Single precision

Time (1 thread) 443 674 1257 426 580 1236
Time (4 thread) 223 314 551 203 282 530
Time (10 thread) 169 249 392 168 226 383
Amortized time 42.7 61.1 112 49.7 61.2 112

Double precision

Time (1 thread) 808 1230 2303 - - -
Time (4 thread) 402 565 946 - - -
Time (10 thread) 293 438 704 - - -
Amortized time 110 165 190 - - -

Table 3: double precision(64-bit) operation results

\ x1
d + x2

d x3
d − x4

d

Correct value 6.2467246328740732 · 10-24 2.45240701189957269 · 1022
OD-FPFHE 6.2467246328740717 · 10-24 2.45240701189957230 · 1022

\ (x1
d + x2

d)(x
3
d − x4

d) [(x1
d + x2

d)(x
3
d − x4

d)]
2

Correct value 0.153195112910661 0.023468742619710

OD-FPFHE 0.153195112910657 0.023468742619709

Table 4: single precision(32-bit) operation results

\ x1
f + x2

f x3
f − x4

f

Correct value 8.38390868 · 10-12 1.82640283 · 1014
OD-FPFHE 8.38390815 · 10-12 1.82640279 · 1014

\ (x1
f + x2

f )(x
3
f − x4

f ) [(x1
f + x2

f )(x
3
f − x4

f )]
2

Correct value 1531.23945 2344694.28

OD-FPFHE 1531.23937 2344694.00

Since the precision p = 12 for single precision is less than p = 27 for double
precision, the error values between correct and decryption result in Table 4 is
bigger than Table 3. However, errors are bounded properly bounded as known
as 3 when overflow is not occurs.

In addition, we choose following numbers DBL-MAX, DBL-MIN, FLT-MAX
and FLT-MIN which are maximum and minimum of double and single preci-
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sion floating-pint numbers, respectively, where these are provided in standard
library in C++ language. We evaluate DBL-MAX·1000, DBL-MIN·0.001, FLT-
MAX·1000, and FLT-MIN·0.001 on the ciphertext. All of decrypted results are
invalid however, message of proof ciphertext was not a zero, meaning that over-
flow occurs. These all simulation codes are opened in public 4.

Conclusions In this paper, We proposed a floating-point fully homomorphic
encryption. Since floating-point number system is widely used in many areas such
as deep learning models, the proposed FPFHE can guarantee both privacy and
accuracy for many applications. In addition, we proposed an OD-FPFHE, which
has many applications. For instance, it is quite useful for continual learning
models while keeping the privacy of training data such as privacy-preserving
federated learning because the encrypted training data can be excluded from
the training to avoid learning degeneration when it results in overflow.

Future works and open problems Since many applications need accurate
floating-point division algorithm, more accurate and efficient division algorithm
should be constructed. In addition, efficient floating-point homomorphic elemen-
tary functions such as exponential, logarithm, and N -th root function are also
desirable in privacy-preserving machine learning.

The critical disadvantage of OD-FPFHE is having slower operation time.
However, speed of operation can be improved in further researches as follows:
Since large modulus Q affects bootstrapping time slower, a method of reducing a
size of Q should be investigated. For instance, randomized gadget decomposition
are reported that it reduces error amplification after running GSW-like mul-
tiplication[16]. Therefore, effective randomized gadget decomposition for OD-
FPFHE and both rigorous and practical error analysis will improve speed of
operation time.
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Supplementary material

Omitted algorithms and proofs in the main paper are listed.

Proof of Lemma 4

Proof. When Algorithm 2 runs with i on Line 2, by using (4) and CMux gate
analysis in Section 3.4 of [13], the additive error is derived as follows:∑

j∈[lbl]

(Xai − 1)G-1
crt(ACC

(i))E1
j (X) +

∑
j∈[lbl]

(X-ai − 1)G-1
crt(ACC

(i))E-1
j (X)

+
∑

j∈[l̄bl]

[
(Xai − 1)A1

j (X) + (X-ai − 1)A-1
j (X)

]
sk-bl(X)j , (16)

where ACC(i) is the computed value after the i− 1st iteration on line 3, A1
j (X)

and A-1
j (X) are gadget error polynomials, E1

j (X) and E-1
j (X) are j-column error

polynomials of BL1
i and BL-1

i , respectively.
Since errors E1

j (X), E-1
j (X) and secret key sk-blj(X) follow symmetric dis-

tribution and each of them is multiplied with independent and bounded random
variable, then the summands in each summation have Pythagorean additivity by
Corollary 2. By induction on i, we obtain (11) by using negacyclic property, and
Proposition 1. ⊓⊔

Algorithm 13 for Packing and proof of Lemma 5

Algorithm 13 : OUT← Packing((cti)i∈[p], ev)

Input: (cti[∆mi])i∈[p] ∈
∏

i∈[p] Z
NgctKgct+1

Q ,

Output: OUT
[
∆

∑
i∈[p] miX

i
]
∈ RKct+1

Nct,Q

1: Set OUT = (0(X), ....,
∑

i∈[p] biX
i) ▷ where bi is the b of cti

2: for (i, j, x) ∈ [p,Kgct, Ngct] do
3: v = G−1

crt

(
CTi,j,x

)
4: OUT +=

∑
y∈[lpack]

vyPj,x,yX
i

5: end for
6: return OUT

Proof. The decryption output of the result OUT Algorithm 13 is as follows:

φ

((
0(X), ...,

∑
i∈[p]

biX
i
)
+

∑
i,j,x,y∈[p,Kgct,Ngct,lks]

G−1
crt(CTi,j,x)yPj,x,yX

i

)
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=
∑
i∈[p]

biX
i +

∑
i,j,x,y

G−1
crt(CTi,j,x)y(sk-blj,xB

y+1
pack + E′

j,x,y(X))Xi

=
∑
i

φ(CTi)X
i +
∑
j,x

(
∑
i

A′
j,x,yX

i)sk-blj,x +
∑

i,j,x,y

G−1
crt(CTi,j,x)yX

iE′
j,x,y(X),

(17)

where A′
j,x,y is a gadget error, and E′

j,x,y(X) is the error polynomial of packing
key Pj,x,y.

Since errors E′
j,x,y(X) and secret key sk-blj,x follow symmetric distribution

and each of them is multiplied with independent and bounded random variable,
then the second and third summands in (17) have Pythagorean additivity by

using Corollary 2. Since the first summation in (17) is
∑

i(∆miX
i+E(i)bl ), hence

(12) holds. ⊓⊔

Algorithm 14 for TensorProd and proof of Lemma 6

Algorithm 14 : OUT← TensorProd(CT1,CT2, ev)

Input CT1[∆m1(X)] = (a0, ..., aKct-1, b), CT2[∆m2(X)] = (a0, ..., aKct-1, b) ∈ RKct+1
n,Q

Output OUT[∆2m1(X)m2(X)] ∈ RKct+1
n,Q

1: OUT = ← bCT1 + bCT2 − (0, ..., 0, bb)
2: for i ∈ [Kct], j ≤ i do
3: Set k = θ(i, j) and set γk = 1/2 if i = j, γk = 1 otherwise.

4: v(X) = G−1
crt

(
γk

(
aiaj + ajai

))
5: OUT +=

∑
x vx(X)Tenk,x

6: end for
7: return OUT

Proof. We apply decryption function to OUT returned from Algorithm 14 as
follows:

φ

(
bCT1 + bCT2 − (0, ..., 0, bb) +

∑
k,x

G−1
crt

(
γk
[
ajai + aiaj

])
x
Tenk,x

)
= φ(CT1)φ(CT2) +

∑
k,x

A′′
k,x(X)ski(X)skj(X)

+
∑
k,x

G−1
crt

(
γk
[
ajai + aiaj

])
x

E′′
k,x(X), (18)

where A′′
k,x are gadget errors, E′′

k,x(X) are errors in Tenk,x. However, φ(CT1)
φ(CT2) −m1(X)m2(X) are calculated as follows:

m1(X)Epack,2(X) +m2(X)Epack,1(X) + Epack,1(X)Epack,2(X), (19)
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where Epack,1(X) and Epack,2(X) are packing error of CT1 and CT2, respectively.
Since the maximum degree of both message polynomial m1(X) and m2(X)

is p−1, the p−1 coefficient of m1(X)Epack,2(X)+m2(X)Epack,1(X) is expressed
as ∑

i∈[p]

m1,iE(p−1−i)
pack,2 +m2,iE(p−1−i)

pack,1 (20)

by negacyclic property. Since other coefficients consist of p summation of product
of message and packing error, without loss of generality, we analyze a worst-case
error of p − 1-th coefficient having messages m1(X) = m2(X) =

∑
i∈[p]∆(β −

1)Xi. Since |Epack,1(X)Epack,2(X)| =O(Nct|E(p−1)
pack,1|2), by using the fact ∆ =

Ω(Nct |Epack|), (16), and (17), then the (19) is bounded as O(∆pβ|E(p−1)
pack |).

Moreover for (18), the first summation is bounded as O(K2
ctN

2
ctltenBten), and the

second summation is bounded as O
(
σBten Kgct

√
ltenNgctv

)
, by using Corollary

2. ⊓⊔

Proof of Lemma 7

Proof. After running Algorithm 3 with input ct, the ct is multiplied by three
values ∆−1, (ν2η1+s+c+1+f−q)−1, and 2c+1+logNgct−q, that are listed in Line 1,
3, and 9. Since 2c+logNgct+1−q/Q1ν2

η1+s+c+1+f−q is multiplied to ct, error in
ct becomes the left of first term of (14). When Algorithm 3 runs on Line 1,
O(
√
KctNctv)-bounded floor errors are added, which is negligible compared to

|E(p−1)
ten |/∆.
Next, we consider ct in Line 1 as the ciphertext modulo ν2η0 . If the modulus

Q0 = ν2η0 + 1 of ct is changed to ν2η0 , then O(
√
KctNct) errors are added by

following decryption equation on Z:

b− aisi = m+ e+ h̄Q0 = m+ e+ h̄+ h̄ν2η0 ∈ Z

, for some h̄ ∈ Z where h̄ = O(
√
KctNct) for ternary secret key [11], which is neg-

ligible. Moreover, we regard the messagemQ1 = mν2η1+mν as a messagemν2η1

with error mν. Therefore, the message out becomes (mf+s...mf )(2)2
logNgct−s

after rounding all in Algorithm 3 and up to mν ≤ p(β − 1)2ν error is added.
Therefore, νp(β − 1)2 becomes the rest of first term of (14).

After rounding on Line 3,O(
√
NctKctv)-bounded rounding error is added. Af-

ter running on Line 5, errors in KSj,x,k are added and it is O(σBks

√
lksNctKctv)-

bounded random variable by Corollary 2. Both errors are divided by 2q−1−logNgct ,
after running Line 9, which is second term in (14).

Finally, rounding errors after running on Line 9 are added. However, we use
h-sparse secret key for encrypting KS and only a number of h rounding errors are
added. By using subgaussian property with Corollary 2, this error is O(

√
hv)-

bounded, hence third term of (14) holds. ⊓⊔
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