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Abstract. YOSO MPC (Gentry et al., Crypto 2021) is a new MPC
framework where each participant can speak at most once. This models
an adaptive adversary’s ability to watch the network and corrupt or de-
stroy parties it deems significant based on their communication. By using
private channels to anonymous receivers (e.g. by encrypting to a public
key whose owner is unknown), the communication complexity of YOSO
MPC can scale sublinearly with the total number N of available parties,
even when the adversary’s corruption threshold is linear in N (e.g. just
under N/2). It was previously an open problem whether YOSO MPC
can achieve guaranteed output delivery in a constant number of rounds
without relying on trusted setup. In this work, we show that this can
indeed be accomplished. Using linearly homomorphic encryption and se-
cret sharing, we construct YOSO-LHE, which is the first realistically
efficient YOSO MPC protocol that achieves guaranteed output deliv-
ery without trusted setup. YOSO-LHE is not itself constant-round; it
takes O(d) rounds of communication, where d is the depth of the circuit
being computed. However, YOSO-LHE can be used to bootstrap any
constant-round YOSO protocol that requires setup, by generating that
setup within YOSO-LHE. As long as the complexity of the setup is in-
dependent of the circuit to be evaluated, the bootstrapped protocol will
be constant-round.
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1 Introduction

As our digital world becomes more reliably connected, we grow to depend more
and more on outsourcing our data storage and processing to the cloud. There are
clear benefits to doing this, such as minimizing the risk of data loss (e.g. when we
spill coffee on our laptops), and using resources more efficiently. However, there
are also serious drawbacks, such as having to trust a cloud provider to maintain
both the availability and privacy of our data in an era of frequent data breaches.
Secure multi-party computation (MPC) [CCD88,GMW87,Yao86] allows a cloud
comprised of many distinct machines to not only store, but also process our data
securely. MPC guarantees that the data remains private even from an attacker
controlling fewer that some threshold t of the machines.

Outsourcing the processing of our data can be very useful: for instance, it lets
us search our securely stored emails without having to download the entire con-
tents of our inbox. Perhaps even more importantly, MPC can be used to compute
joint functions on multiple entities’ private data without revealing anything but
the function output. This enables crucial computations where multiple entities
have privacy concerns, like research using health data across different hospital
databases [VCAZ+18,sod19], and discovering the true extent of the gender wage
gap across many different institutions [LJA+18].

One long-standing challenge in MPC is balancing security and efficiency.
Intuitively, security increases with the number of machines we employ in our



MPC: the more machines are used, the more of them an attacker would need
to subvert in order to learn our data. In order to make our computation secure
against a powerful attacker, we would need a very large number of machines
— perhaps millions, e.g. in a distributed blockchain setting. However, running
a secure computation among millions of machines would be horribly inefficient;
transferring our data to those machines would be a prohibitive burden on our
devices, and the pairwise communication required by most MPC protocols would
be too much for the machines and their network.

An alternative path is to hide which machines we are outsourcing our data
to. Then, a small subset of machines could perform the computation, bypass-
ing the problem of prohibitive pairwise communication. By keeping the subset
anonymous, we ensure that an attacker won’t know which machines to target.

This approach is very tricky, since computing on data requires the machines
to communicate. However, as soon as a machine sends a message, it ceases to be
anonymous; an attacker who is watching the network will learn that the message-
sender — and message-receiver — likely play crucial roles in the computation,
and will be able to target them. The recent work of Gentry et al. [GHK+21]
introduces secure computation in the you only speak once (YOSO) model. In
this model, once a machine sends a message, that machine becomes irrelevant to
the computation, so an attacker who then targets that machine gains nothing.
To stop an attacker from targeting the message recipients, YOSO protocols hide
their identities using what we call receiver-anonymous communication channels.

1.1 Related Work

Related work can be broken up into work focusing on receiver-anonymous com-
munication channels (Section 1.1) and on MPC protocols using those channels
(Section 1.1).

Receiver-Anonymous Communication Channels When data is outsourced
to a small set of machines, those machines immediately assume critical roles; so,
it is important to hide which machines are picked for this by choosing them
randomly and by keeping them anonymous. Of course, outsourcing data to a
set of machines requires private communication to those machines. In order to
communicate privately to machines which must remain anonymous, we need
receiver-anonymous communication channels (RACCs) to those machines. We
model RACCs as a publicly known encryption keys such that (a) the adversary
does not know who owns the corresponding decryption key as long as that owner
is not corrupt, and (b) fewer than some threshold t (which we take to be half)
of the decryption key owners are corrupt.

Receiver-anonymous communication channels first appeared in the work of
Benhamouda et al. [BGG+20], which builds such channels with the guarantee
that only half of the decryption key owners are corrupt as long as only around
a quarter of the overall population is corrupt. Another RACC construction was
shown by Gentry et al. [GHM+21], with the stronger guarantee that only half
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of the decryption key owners are corrupt as long as only slightly less than half
of the overall population is corrupt. The downside of this second construction is
that it is more computationally intensive.

In this work, we do not focus on the problem of setting up RACCs, and
instead study how to build YOSO MPC on top of them.

YOSO MPC Recently, the first YOSO MPC protocols have appeared in the
literature [GHK+21,CGG+21]. They all have a common structure: committees
of size n — where the size n is chosen to guarantee that n RACCs will have an
honest majority with overwhelming probability — carry out the computation se-
quentially. The lth (set of) committee(s) performs the lth layer of multiplication,
and uses RACCs to pass the computation to their successors.

We summarize the constructions below, and compare them in Figure 1. It
should be noted that even constructions which do not explicitly make any com-
putational assumptions rely on RACCs, which do require such assumptions.

Fluid MPC (Choudhuri et al. [CGG+21]) This construction relies on
specially tailored sum-checks on top of the BGW construction [BGW88].
While concretely efficient, Fluid MPC does not guarantee output delivery;
that is, a single corrupt participating machine can cause the entire proto-
col to abort, allowing the adversary to carry out a denial of service attack
indefinitely.
YOSO-CDN (Gentry et al. [GHK+21]) This construction is based closely
on the CDN protocol [CDN01]. Unlike Fluid MPC, CDN does guarantee out-
put delivery, and is thus robust against denial of service attacks. However,
this protocol requires computational assumptions and setup; that is, some
correlated secrets are distributed to an initial subset of parties by e.g. a
trusted authority.
YOSO-IT (Gentry et al. [GHK+21]) This construction relies on new
information-theoretic techniques such as future broadcast, distributed com-
mitments, and augmented verifiable secret sharing. Like CDN, YOSO-IT
guarantees output delivery. However, while YOSO-IT does not require com-
putational assumptions or setup, the number of committees required for each
layer of multiplication is polynomial rather than constant in the committee
size, which can be prohibitively inefficient.

YOSO-CDN. Since our protocol is closely related to the YOSO-CDN protocol
of Gentry et al. [GHK+21], we recap CDN — and YOSO-CDN— here.

CDN [CDN01] relies on linearly-homomorphic threshold encryption (LHTE),
where a fixed public encryption key pk is known, and the corresponding secret
decryption key sk is secret shared among the n participants. A party can supply
an input by encrypting it under pk, and publishing the resulting ciphertext. The
participants then perform the computation by leveraging the homomorphism
of the encryption scheme for linear operations, and by using Beaver triples for
multiplications.
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YOSO MPC scheme Security
Guarantee

Number
of Rounds

Number of
Speakers

Setup Computational
Building Blocks

Fluid MPC [CGG+21] Security with
Abort

O(d) O(dn) none none

YOSO-CDN [GHK+21] Guaranteed
Output
Delivery

d+ 3 m+ (d+ 1)n+
2dh

CRS,
distribution
of shares to

first
committee

NIZK, LHTE

YOSO-IT [GHK+21] Guaranteed
Output
Delivery

O(d) poly(m, d, n) none none

YOSO-LHE (this work) Guaranteed
Output
Delivery

d+ 4 m+ (d+ 2)n+
(2d+ 1)h

none Multi-String
NIZK, LHE

Bootstrapping (this work) Guaranteed
Output
Delivery

O(1) O(n) none Multi-String
NIZK, LHE,

TFHE

Fig. 1: YOSO MPC Constructions. d is the multiplicative depth of the circuit
being computed; m is the number of inputs; n is the committee size chosen
to guarantee that n RACCs will have an honest majority with overwhelming
probability; h is the committee size chosen to guarantee that h RACCs will have
at least one honest receiver with overwhelming probability. Properties that are
optimal are in bold.

Assuming the availability of a Beaver triple a = Enc(a), b = Enc(b) and
c = Enc(ab), the parties multiply ciphertexts x and y (encrypting x and y,
respectively) by (1) using the linear homomorphism to compute ε = a− x and
δ = b− y, (2) jointly decrypting ε and δ, and (3) using linear homomorphism to
compute xy = c− εb− δa+ εδ.

The Beaver triples themselves can be generated on-the-fly in two rounds. In
the first round, each participant i of that round chooses a random additive share
ai of a, and publishes ai = Enc(ai) together with a zero knowledge proof that
it is well-formed. Everyone can then use the linear homomorphism to compute
a =

∑
ai, using only the contributions ai which are accompanied by a verifying

proof. In the second round, each participant i of that round similarly contributes
an encrypted additive share bi of b, together with bia (which she computes as
a linear operation on a using her knowledge of bi), and a zero knowledge proof
that bi and bia were produced consistently. Everyone can then compute b =

∑
bi

and c =
∑
bia using the contributions from those parties i whose zero knowledge

proofs verify.

To YOSO-ify this construction, Gentry et al. needed to make only a few minor
changes to ensure that every round of communication can be carried out by a
new committee. First, they observe that the two rounds of communication that
generate a Beaver triple (a) do not depend on the shared secret decryption key,
and so (b) can be carried out by committees with a dishonest majority and no
RACCs. They thus instruct two smaller committees of size h (where h is chosen
to guarantee that a set of h random parties will contain at least one honest party
with overwhelming probability) to carry out Beaver triple generation.
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All that remains is to ensure that every committee that must decrypt a
value (whether those values are the ε and δ needed for a multiplication, or the
computation output itself) holds shares of the secret decryption key. In order to
do this, we need an additional property from the threshold linearly homomorphic
encryption scheme: it must allow a committee that holds a sharing of the secret
decryption key to re-share that key to the next committee in a single round of
communication. (They can do this in the same breath in which they broadcast
their contributions to the decryption of the values they are opening.) Gentry et
al. use an encryption scheme that has this property. An unfortunate downside of
this is that each secret key share has size O(n), resulting in O(n2) communication
per committee member as part of the key resharing (even disregarding the size
of the accompanying zero knowledge proof). An even more important remaining
issue is how the public encryption key, together with the initial sharing of the
decryption key, is generated. YOSO-CDN relies on a trusted setup for this.

1.2 Our Contributions

In this paper, we describe two YOSO MPC protocols which have guaranteed
output delivery and do not require setup. We call the first of these YOSO-LHE ;
it is based on YOSO-CDN [GHK+21], but avoids the use of a secret shared
decryption key, which is the setup that YOSO-CDN relies on. YOSO-LHE takes
O(d) rounds, where d is the multiplicative depth of the circuit being computed.

A question that was previously open is whether it is possible to have a YOSO
MPC protocol without setup where the number of rounds of communication is
independent of the circuit being computed. We answer this question in the affir-
mative, by using YOSO-LHE to execute the setup for a constant-round protocol
that uses threshold fully homomorphic encryption (TFHE). We call this the
bootstrapping protocol.

1.3 YOSO-LHE: Technical Overview

YOSO-LHE is based closely on the YOSO-CDN protocol, described above. How-
ever, we make a crucial pivot: instead of using a threshold linearly homomorphic
encryption scheme (LHTE) with a global public key, we layer linearly homomor-
phic threshold secret sharing (e.g. Shamir secret sharing) and linearly homomor-
phic encryption (LHE) with participants’ individual (RACC) public keys, which
eliminates the need for a trusted setup.

In more detail, in order to provide an input x to the computation, instead
of encrypting x to a global public key as in YOSO-CDN, a party must first
secret share x as (x1, . . . , xn), and then encrypt each share to a member of a
specific committee. That committee now holds a sharing of x, and can either
jointly decrypt x at the appropriate time (by decrypting and publishing the
shares), or compute on x and other values it may hold. Linear computations
accomplished by leveraging the linear homomorphisms of both the secret sharing
and encryption schemes; a multiplication requires the use of a Beaver triple, just
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like in YOSO-CDN. However, the Beaver triple must now be generated for this
specific committee, as shares encrypted under its public encryption keys.

Unlike in CDN, if a value is input to one committee but must later be used
by a different committee, the first committee must re-share the value to the new
committee. This can be done simply by having each party re-share its share to
the new committee, and prove in zero knowledge that it did so correctly.

Eliminating Setup Recall that the YOSO-CDN protocol requires two types
of setup (ignoring the RACC channels, which are an inherent requirement for
all YOSO protocols):

1. The generation of the LHTE global public key and the distribution of shares
of the associated decryption secret key to the first committee.

2. The common reference string (CRS) for the NIZKs.

Using (encrypted) secret sharing instead of LHTE eliminates the first form of
setup. We can eliminate the need for a CRS by using a multi-string NIZK [GO07]
instead of a regular NIZK; such a NIZK uses multiple common reference strings,
and provides the desired guarantees as long as at least half of these strings
were produced honestly. By relying on a committee with an honest majority to
produce these strings, we avoid the need to assume a CRS provided by a trusted
setup.

Choosing Compatible Linearly Homomorphic Encryption and Secret
Sharing The natural choice of linearly homomorphic secret sharing is Shamir
secret sharing [Sha79]. We have several constraints for picking our homomorphic
encryption scheme: (a) it must offer a linear homomorphism over the same finite
field for independently generated key pairs (in order to support operations over
shares from a single secret sharing), and (b) it must not require a common
reference string, which we just took care to eliminate. In the famous linearly
homomorphic encryption scheme due to Paillier [Pai99], the message space —
integers modulo n, where n is a product of two primes — is inherently different
from key to key, since the factorization of n can act as the secret key. The
variant of the Paillier cryptosystem due to Bresson et al. [BCP03] — which has
an ElGamal-like structure — allows generating multiple key pairs with the same
message space, but at the expense of requiring a CRS; here, n can be considered
a public paramterer, but it must be generated in a trusted way, so that the
factorization of n is unknown to anyone.

We instead use the linearly homomorphic cryptosystem of Castagnos and
Laguillaumie [CL15], which also has an ElGamal-like structure. The plaintext
m is encoded in an exponent (as fm) during encryption, so that the natural
multiplicative homomorphism of ElGamal becomes an additive one. In order
to enable efficient decryption, Castagnos and Laguillaumie use class groups, and
encodem using a generator f of a subgroup where the discrete logarithm problem
is efficiently solvable (much like in the Paillier-based cryptosystems, but without
a second trapdoor in the form of the factorization of n). The message space will
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be integers modulo a prime p, where p can be a fixed parameter across multiple
independently generated key pairs (under the constraint that p is big enough).1

Assumptions YOSO-LHE inherits its assumptions from the linearly homomor-
phic encryption scheme and multi-string NIZK scheme it uses. The encryption
scheme of Castagnos and Laguillaumie [CL15] is based on the DDH assumption
in the class group setting; the Multi-string NIZKs due to Groth and Ostrovsky
[GO07] are based on enhanced trapdoor permutations.

Communication Complexity, Round Complexity and Future Horizon
YOSO-LHE uses two types of committees: committees of size n (where the size
n is chosen to be large enough to guarantee an honest majority within the
committee), and committees of size h (where the h can be much smaller than n,
since only one honest party, rather than an honest majority, is needed). YOSO-
LHE uses one committee of size n for each layer of multiplication, as well as two
additional committees of size n: one to create the multi-string NIZK common
reference strings, and one to decrypt the output. Each multiplication requires
two committees of size h to generate a Beaver triple. One additional committee
of size h must generate a sharing of zero to mask the output. Including m parties
who speak to provide inputs to the computation, this makes the total number
of parties who speak throughout the protocol equal to m+ (d+ 2)n+ (2d+ 1)h.

It might look like this necessitates 3d+4 rounds of communication, but many
of these committees can speak at the same time. The committee creating the
common reference strings must speak first, and the two committees generating
Beaver triples for the first multiplication must both speak before the first multi-
plication can happen, but the parties providing input can speak at the same time
as one of those Beaver triple committees. Committees generating Beaver triples
for future multiplications can always speak in parallel with previous committees;
in fact, if desired, all of the Beaver triple committees could speak at once, or
alternatively, a single committee could generate all of the Beaver triples (and the
sharing of zero to mask the output). Of course, the committee who decrypts the
output must speak last, which leaves us with d+ 4 rounds of communication.

One reason not to have a single pair of committees of size h generate all of
the Beaver triples is what Gentry et al. call the future horizon, which describes
how long before a role needs to act must her receiver anonymous communication
channel be available, or, in other words, how far in advance must machines be
assigned to their roles, or how many rounds can separate a speaker i from the last
speaker j to whom speaker i must send a message (by encrypting to the RACC
key pkj). It is desirable to minimize the future horizon, because when running in
e.g. a blockchain environment, the pool of participants can be very dynamic, and
because machines are always coming and going it can be impractical to select
machines for roles too far in advance (since they might disappear before the
time comes). A small future horizon enables on-the-fly assignment of machines

1p is not a CRS, since security does not depend on the honest choice of p.
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to roles while the protocol runs. If a single pair of committees generates all
of the Beaver triples, the future horizon of YOSO-LHE will be determined by
the round distance from the first of these two Beaver committees to the last
committee that receives an output of a multiplication (which will be the output
committee). This distance will be d + 2. If instead we have a designated pair
of committees generate Beaver triples for each layer of the multiplication (as
we described above), the future horizon is 3. (We assume that the output wires
of a given layer of multiplication gates in the circuit being computed serve as
input only to the next layer of multiplication gates; otherwise, the future horizon
is determined by the longest wire in the circuit. Note that any circuit can be
converted to a circuit with the property we assume by adding multiplication-by-
one gates.)

Comparison to YOSO-CDN There are advantages and disadvantages to
the changes we make to YOSO-CDN to obtain YOSO-LHE. Of course, a crucial
advantage of YOSO-LHE— and the motivation for our changes — is that YOSO-
LHE does not require trusted setup.

On the other hand, a disadvantage of YOSO-LHE is that a given value is held
by one committee; for it to be used by several committees, it must be shared to
several, or re-shared from committee to committee. In YOSO-CDN, any value
encrypted to the global public key is accessible by any committee that holds the
shared secret decryption key; no additional work to make the value accessible to a
given committee is needed. In particular, this means that in YOSO-LHE, Beaver
triple preprocessing must be done with a committee in mind. In YOSO-CDN,
all Beaver triples are useable by any committee.

1.4 Achieving Setup-Free Constant-Round YOSO MPC

It was previously an open problem to describe a setup-free constant-round YOSO
MPC. Gentry et al. [GHK+21] point out a simple constant-round YOSO MPC
protocol: if a secret key for a threshold fully homomorphic encryption (FHE)
scheme is shared to a committee, that committee can perform the entire compu-
tation as long as joint decryption only requires a single round of communication.
However, this protocol requires setup, in the form of the distribution of the secret
key shares.

We observe that it is possible to combine any setup-free YOSO MPC with any
constant-round YOSO MPC (which might rely on setup) to obtain a setup-free
constant-round YOSO MPC. This can be done simply by performing the setup
for the constant-round YOSO MPC within the setup-free YOSO MPC, and then
using the constant-round YOSO MPC for the actual computation. If the setup
performed by the setup-free YOSO MPC is independent of the circuit we wish to
compute, the number of rounds required by this bootstrapped protocol will be
independent of the size of the circuit as well. We can use our setup-free YOSO
MPC — YOSO-LHE— to generate a threshold fully homomorphic encryption
key, and share the corresponding decryption key to a committee.
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(It should be noted that the YOSO-IT construction of Gentry et al. could
also be used as the setup-free YOSO MPC here; however, that construction is
much less practically efficient than ours, due to the large number of committees
they require even for a single multiplication.)

1.5 Remark about RACCs

Notice that in YOSO-LHE, we use receiver-anonymous communication channels
(RACCs) in a non-black box way: we rely on the homomorphic properties of the
encryption schemes realizing the RACCs, and sometimes we require zero knowl-
edge proofs about the encrypted messages. In this sense, we stray from the ideal
RACCs described by Gentry et al. [GHK+21]. However, YOSO-CDN [GHK+21]
already strays similarly; while they do not require the encryption scheme realiz-
ing the RACCs to be homomorphic, they do need zero knowledge proofs about
encrypted messages. The properties required by YOSO-CDN and YOSO-LHE
are easily provided by existing realizations of RACCs [BGG+20,GHM+21].

2 YOSO Secure Multiparty Computation (MPC)
Definitions

In this section we recap what it means for an MPC protocol to be YOSO se-
cure. The YOSO model [GHK+21] makes a crucial separation between physical
machines and the roles which they play in the protocol. By mapping machines
to roles in a random and unpredictable way, we can ensure that the adversary
will not know which machines will be important, and will not be able to pre-
emptively corrupt or destroy those machines. In this paper, we describe our
YOSO MPC protocols in terms of roles. We ignore how roles are assigned to
machines; we assume the availability of a role assignment functionality which
publishes encryption keys which can be used to communicate with future roles.
Mechanisms which realize such a role assignment functionality were described
by Benhamouda et al. [BGG+20] and Gentry et al. [GHM+21]. (Our protocols
assume that the encryption scheme used has some special properties; the role
assignment mechanisms cited above support this.)

The YOSO model uses the UC framework [Can01], with roles instead of
physical machines as the participants. Every participant is ‘YOSO-ified’, mean-
ing that as soon as she speaks for the first time, she is killed. A protocol Π
YOSO-realizes a functionality F if the YOSO-ification of Π UC-realizes F (Sec-
tion 2.1).

2.1 UC MPC

Consider a protocol Π = (R1, . . . ,Ru) described as a tuple of roles Ri, each of
which is a probabilistic polynomial-time (PPT) machine. Some of those roles are
input roles, who, when they speak, provide an input. Other roles are there to
assist in computing a function f on the provided inputs.
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In a real-world execution of protocol Π on input x = (x1, . . . , xm) with
environment E and adversary A, the PPT environment E is given the input x,
and in turn provides the input to protocol’s input roles. The environment also
communicates with the PPT adversary A. We consider a synchronous model,
where the protocol is executed in rounds; in each round, some roles speak (over
a broadcast channel). During the execution of the protocol, the corrupt roles
receive arbitrary instructions from A, while the honest parties faithfully follow
the instructions of the protocol. We consider the adversary A to be rushing,
i.e., during every round the adversary can see the messages the honest roles
sent before producing messages from corrupt roles. At the end of the protocol
execution, the environment E produces a binary output. Let REALΠ,A,E(x)
denote the random variable (over the random coins used by all roles) representing
E ’s output in the real world.

Now, consider an ideal-world execution on the same input x and with the
same environment E , but with an ideal-world adversary S. In the ideal-world
execution, instead of running the protocol Π, the roles turn to a trusted party
to compute f . This trusted party receives the inputs x1, . . . , xm from the input
roles, and broadcasts f(x1, . . . , xm). We call this trusted party the ideal func-
tionality Ff . Let IDEALFf ,S,E(x) denote the random variable (over the random
coins used by all roles) representing E ’s output in the ideal world.

Definition 1 (UC Security [Can01]). Let f : ({0, 1}∗)m → {0, 1}∗ be an
m-input function. A protocol Π = (R1, . . . ,Ru) UC-securely computes f (with
guaranteed output delivery) if for every PPT real-world adversary A there exists a
PPT ideal-world adversary (or simulator) S such that, for any PPT environment
E, it holds that REALΠ,A,E(x) and IDEALFf ,S,E(x) are indistinguishable for
any set of inputs x = (x1, . . . , xm).

2.2 The YOSO Adversary’s Corruption Power

Gentry et al. show that, given a role assignment mechanism that randomly maps
roles to machines, an adversary with the ability to selectively corrupt machines
corresponds to an adversary who randomly corrupts roles. This lets us assume
that an adversary who can corrupt slightly fewer than half of the available ma-
chines can corrupt less than half of the roles in a committee of roles as long as
the committees are chosen to be large enough. We let n be the committee size
that ensures an honest majority of roles. We let h be the (smaller) committee
size that ensures at least one honest role on the committee.

Gentry et al. also point out that for random corruptions, there is very lit-
tle difference between adaptive corruptions and static corruptions. In the case
of random corruptions, the adversary must leave the choice of which party to
corrupt to a special corruption controller ; the adversary cannot tell whether the
corruption controller makes this random choice on the fly, or whether the choice
was made before the start of the protocol. We follow the path laid out by Gen-
try et al., and phrase our proof in terms of static security, noting that it can be
extended to the adaptive case using standard techniques.
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Roles which are expected to provide input are a special case, since it makes
no sense to request input from random machines; rather, there are likely pre-
determined participants who are expected to provide meaningful inputs. We
prove our protocols secure without making any assumptions about the adver-
sary’s ability to corrupt input roles. In particular, we do not require an honest
majority of input parties.

To summarize, we prove security against an adversary who can statically
corrupt (a) arbitrarily many input roles, (b) fewer than half of the roles in each
committee of size n, and (c) all but one of the roles in each committee of size h.

3 YOSO-LHE

In this section, we describe our YOSO MPC protocol based on linearly homo-
morphic encryption (LHE). We assume that role assignment has been executed;
that is, we assume the availability of an encryption key pkR (for a linearly homo-
morphic encryption scheme) for every role R, such that the appropriate machine
knows the corresponding decryption key skR.

We start with an informal overview. As a first step, we have a committee of
roles each locally compute a CRS for the multi-string NIZK scheme. If we pick
our committee size n in such a way that at least half the committee roles are
honest, then a majority of the CRS’s will be honestly generated, which is enough
to securely use the multi-string NIZK scheme. This step can be executed once
and for all, and does not need to be re-executed for each computation.

Next, to submit an input x to a committee C of size n, an input owner first
Shamir secret shares that input with threshold n/2 as (x1, . . . , xn). She then
encrypts each share xi to one of the members of C as xi.

To perform linear operations, the members of a committee use the linear
homomorphism of both Shamir secret sharing and of the encryption scheme.
Performing multiplications is more involved. Let M denote the committee which
holds shares of the values to be multiplied, and let O denote the committee to
which we would like to give shares of the products. The multiplication requires
two additional committees A and B — each of which only needs to have one
honest party, as opposed to an honest majority — to generate a Beaver triple.
First, each member Aj of committee A chooses a random value aj , shares and
encrypts it to both committees M and O, and broadcasts the two sets of en-
crypted shares (together with zero knowledge proofs that they executed these
steps correctly). The value a is defined as the sum of the aj ’s accompanied by
verifying proofs. Encryptions ai of shares of a held by members of M and en-
cryptions ai

′ of shares of a held by members of O are now publicly computable
using the linear homomorphisms of the secret sharing and encryption schemes.

Each member Bj of committee B then chooses a random value bj , and pro-
ceeds similarly to the members of committee A, except each party Bj also com-
putes a ciphertext bja (by multiplying a by bj , which it knows), and broadcasts
that ciphertext together with bj . As with a, b is defined as the sum of the bj ’s
accompanied by verifying proofs; c = ab is similarly defined as the sum of bja’s
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accompanied by verifying proofs. Encryptions of shares of b and c are again
publicly computable using the linear homomorphisms of the schemes.

Next, to multiply two encrypted and shared values x and y using the gener-
ated Beaver triple (a, b, c), committee M locally computes shares of ε = a − x
and δ = b − y and broadcasts these shares, allowing public reconstruction of
ε and δ. Now that committee M has spoken, committee O picks up the torch.
They use their own encrypted shares of a, b and c, as well as the reconstructed
ε and δ, to compute shares of xy = c − εb − δa + εδ. (Note that we use this
version of the Beaver triple arithmetic — avoiding using shares of x and y —
since shares of x and y were held by committee M , and may by default not be
available to members of committee O.) Finally, before decrypting the output,
we mask the output with a sharing of zero.

3.1 Formal Description of YOSO-LHE

We describe the formal protocol below. Our construction uses the following tools:

– A Shamir secret sharing scheme (Share,Rec), described in Appendix A.1.
– Linearly homomorphic public key encryption (Gen,Enc,Dec,Eval,KeyMatches),

described in Appendix A.2.
– Multi-string NIZK proofs (mNIZK.Gen,P,V), described in Appendix A.3.

We use multi-string NIZK proofs for the following relations:

RShare =

{
φ =

(
j, {pki}i∈[n], {xi}i∈[n]

)
w =

(
x, ρ, {ρ′i}i∈[n]

) (x1, . . . , xn)← Share(x; ρ)
∧ xi ← Enc(pki, xi; ρ

′
i) for i ∈ [n]

}
,

RDec =

{
φ =

(
pk, x, x

)
w =

(
sk
) accept← KeyMatches(pk, sk)

∧ x← Dec(sk, x)

}
,

RBeaver,A =


φ =

 l, j, {pkM,i}i∈[n],
{pkO,i}i∈[n], {ai}i∈[n],
{ai′}i∈[n]


w =

(
a, ρ, ρ′, {ρM,i}i∈[n],
{ρO,i}i∈[n]

)
(a1, . . . , an)← Share(a; ρ)
∧ (a′1, . . . , a

′
n)← Share(a; ρ′)

∧ ai ← Enc(pkM,i, ai; ρM,i) for i ∈ [n]
∧ ai′ ← Enc(pkO,i, a

′
i; ρO,i) for i ∈ [n]

 ,

RBeaver,B =


φ =


l, j, {pkM,i}i∈[n],

{pkO,i}i∈[n], {bi}i∈[n],

{bi
′}i∈[n], {ci′}i∈[n],

{ai′}i∈[n]


w =

(
b, ρ, ρ′, {ρM,i}i∈[n],
{ρO,i}i∈[n]

)
(b1, . . . , bn)← Share(b; ρ)
∧ (b′1, . . . , b

′
n)← Share(b; ρ′)

∧ bi ← Enc(pkM,i, bi; ρM,i) for i ∈ [n]

∧ bi
′ ← Enc(pkO,i, b

′
i; ρO,i) for i ∈ [n]

∧ ci′ := Eval(pkO,i, ai
′, b) for i ∈ [n]


,

Rzero =

{
φ =

(
j, {pki}i∈[n], {xi}i∈[n]

)
w =

(
ρ, {ρ′i}i∈[n]

) (x1, . . . , xn)← Share(0; ρ)
∧ xi ← Enc(pki, xi; ρ

′
i) for i ∈ [n]

}
,
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The statement for each of the relations contains a description of the role who
will be proving that statement. For RShare, this description is an index j of an
input role. For relation RDec, this description is the role’s public encryption key
(as appointed to it by the role assignment mechanism). For the Beaver relations,
this description is the number l of the multiplication, and the index of the j of
the committee member. Having statements that necessarily differ from role to
role prevents roles from copying and replaying others’ proofs. In particular, this
prevents input roles from copying others’ inputs (possibly without knowing the
input they are copying). To avoid such replay attacks accross different executions
of the protocol, it is also important to include a session identifier (sid) in all of
the statements. We leave this implicit to keep notation simple.

Below, we describe our notation for the relevant roles. For each role R for
which a receiver anonymous communication channel (RACC) is available, we let
pkR denote that role’s public encryption key, and skR denote that role’s private
decryption key.

– T1, . . . , Tn denotes the roles of the preparation committee (of size n) responsi-
ble for preparing the common reference strings to be used in the multi-string
NIZK proof system.

– Cl,1, . . . , Cl,n denotes the roles of a generic committee Cl (of size n).
– Ml,1, . . . ,Ml,n denotes the roles of the committee (of size n) responsible for

the lth multiplication.
– Ol,1, . . . , Ol,n denotes the roles of the committee (of size n) who holds the

output of the lth multiplication. (If committee Ol is responsible for the next
multiplication, it will be the same as committee Ml+1; or it can be the output
committee.)

– Al,1, . . . , Al,h and Bl,1, . . . , Bl,h denote the roles of the two helper committees
(each of size h) responsible for the generation of Beaver triples to aid in the
round l multiplication.

– Z1, . . . , Zh denotes the roles of a helper committee (of size h) responsible for
generating a sharing of zero to help mask the computation output.

For simplicity, we assume that each committee only performs a single op-
eration (whether it be decryption, Beaver triple preparation or multiplication).
This can easily be parallelized so that each committee does a single level of
operations.

Protocol Π

Prepare: This step is run by a committee T of size n, the members of which do not require
RACC’s.
To prepare the common reference strings to be used in multi-string NIZK proofs, each member
Ti (i ∈ [n]) of the preparation committee T broadcasts

– crsShare,i ← mNIZK.Gen(1κ,RShare),
– crsDec,i ← mNIZK.Gen(1κ,RDec),
– crsA,i ← mNIZK.Gen(1κ,RBeaver,A),
– crsB,i ← mNIZK.Gen(1κ,RBeaver,B), and
– crsMakeZero,i ← mNIZK.Gen(1κ,RMakeZero).

Everyone can now locally compute
– crsShare := (crsShare,1, . . . , crsShare,n),
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– crsDec := (crsDec,1, . . . , crsDec,n),
– crsA := (crsA,1, . . . , crsA,n),
– crsB := (crsB,1, . . . , crsB,n), and
– crsMakeZero := (crsMakeZero,1, . . . , crsMakeZero,n).

Input: This step is run by an input role, which does not require RACC’s.
To provide input x to committee C, the jth input role does the following:

– Computes a shamir sharing of its secret input x as (x1, . . . , xn) ← Share(x; ρ) with
threshold t.

– Encrypts the shares to the committee members; i.e., for i ∈ [n], encrypts share xi as
xi ← Enc(pkCi , xi; ρi).

– Sets φShare :=
(
j, pkC1

, . . . , pkCn , x1, . . . , xn
)

and wShare :=
(
x, ρ, {ρi}i∈[n]

)
. Computes

the multi-string NIZK proof πShare ← P(crsShare, φShare, wShare) for the NP language RShare.
– Broadcasts (πShare, x1, . . . , xn).

All members C1, . . . , Cn of committee C check the proof πShare, and reject the input if the
proof does not verify.

Decrypt: This step is run by a committee C of size n, the members of which require RACC’s.
To open a value (x1, . . . , xn), each member Ci of committee C does the following:

– Decrypts its share as xi ← Dec(skCi , xi).
– Sets φDec,i := {pkCi , xi, xi} and wDec,i := {skCi}. Computes the multi-string NIZK proof
πDec,i ← P(crsDec, φDec,i, wDec,i) for the NP language RDec.

– Broadcasts (πDec,i, xi).

Let Q ⊆ [n] denote the indices of the roles who provided a valid share (as determined
by the verification of the multi-string NIZK proof). Anyone can then reconstruct x as
x← Rec({xi}i∈Q).

Add: This step is run by everyone and does not require RACC’s.
To add values (x1, . . . , xn) and (y1, . . . , yn) (both encrypted to the same committee C),
everyone publicly computes element-wise homomorphic addition of the two vectors of
ciphertexts as zi := Eval(pkCi , (xi, yi), (1, 1)) for i ∈ [n].

MakeBeaver: This step is run by two helper committees Al and Bl of size h each, the mem-
bers of which do not require RACC’s.
To produce a Beaver triple for the lth multiplication, the members of the two helper com-
mittees Al and Bl proceed as follows. (Multiplication then reduces to linear operations and
decryptions, described below.) Note that the Beaver values must be shared to two committees:
the committee Ml responsible for performing the multiplication, and the committee Ol who
will hold the output. Committee Ol may then be asked to perform linear operations, another
multiplication, or simply to decrypt the output.

– Each member Al,j of committee Al does the following:
• Picks a random value al,j .
• Computes two sharings of al,j as

∗ (al,j,1, . . . , al,j,n)← Share(al,j ; ρl,j) and
∗ (a′l,j,1, . . . , a

′
l,j,n)← Share(al,j ; ρ

′
l,j)

with threshold t.
• Encrypts the shares to the lth multiplication and output committees; i.e., for i ∈ [n],

she encrypts
∗ al,j,i ← Enc(pkMl,i , al,j,i; ρl,j,i) and

∗ al,j,i
′ ← Enc(pkOl,i , a

′
l,j,i; ρ

′
l,j,i).

• Sets
∗ φA,l,j :=

(
l, j, {pkMl,i}i∈[n], {pkOl,i}i∈[n], al,j,1, . . . , al,j,n, al,j,1

′, . . . , al,j,n
′)

and
∗ wA,l,j :=

(
al,j , ρl,j , ρ

′
l,j , {ρl,j,i}i∈[n], {ρ′l,j,i}i∈[n]

)
.

Computes the multi-string NIZK proof πA,l,j ← P(crsA, φA,l,j , wA,l,j) for the NP
language RBeaver,A.

• Broadcasts (πA,l,j , al,j,1, . . . , al,j,n, al,j,1
′, . . . , al,j,n

′).
– Let QAl ⊆ [h] denote the indices of the roles who provided a verifying proof.

For each i ∈ [n], anyone can then compute a sharing of al =
∑
j∈QAl

al,j encrypted to

committee Ml and Ol using the homomorphisms of the encryption and sharing schemes.
More formally, everyone computes
• al,i as the homomorphic sum of the ciphertexts {al,j,i}j∈QAl

(i.e. al,i :=

Eval(pkMl,i , {al,j,i}j∈QAl
, (1, . . . , 1))), and
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• al,i
′ as the homomorphic sum of the ciphertexts {al,j,i′}j∈QAl

(i.e. al,i
′ :=

Eval(pkOl,i , {al,j,i
′}j∈QAl

, (1, . . . , 1))).

– Each member Bl,j of committee Bl does the following:
• Picks a random value bl,j .
• Computes two sharings of bl,j as

∗ (bl,j,1, . . . , bl,j,n)← Share(bl,j ; ρl,j) and
∗ (b′l,j,1, . . . , b

′
l,j,n)← Share(bl,j ; ρ

′
l,j)

with threshold t.
• Encrypts the shares to the lth multiplication and output committees; i.e., for i ∈ [n],

she encrypts
∗ bl,j,i ← Enc(pkMl,i , bl,j,i; ρl,j,i) and

∗ bl,j,i
′ ← Enc(pkOl,i , b

′
l,j,i; ρ

′
l,j,i).

• For each i ∈ [n], homomorphically multiplies the ciphertext al,i
′ by the constant

bl,j to get cl,j,i
′ (i.e., computes cl,j,i

′ := Eval(pkOl,i , al,i
′, bl,j)).

• Sets
∗ φB,l,j :=

(
l, j, {pkMl,i}i∈[n], {pkOl,i}i∈[n], bl,j,1, . . . , bl,j,n, bl,j,1

′
, . . . , bl,j,n

′
,

cl,j,1
′, . . . , cl,j,n

′, al,1
′, . . . , al,n

′) and

∗ wB,l,j :=
(
bl,j , ρl,j , ρ

′
l,j , {ρl,j,i}i∈[n], {ρ′l,j,i}i∈[n]

)
.

Compute the multi-string NIZK proof πB,l,j ← P(crsB , φB,l,j , wB,l,j) for the NP
language RBeaver,B.

• Broadcasts (πB,l,j , bl,j,1, . . . , bl,j,n, bl,j,1
′
, . . . , bl,j,n

′
, cl,j,1

′, . . . , cl,j,n
′).

– Let QBl ⊆ [h] denote the indices of the roles who provided a verifying proof.

For each i ∈ [n], anyone can then compute a sharing of bl = Σj∈QBl
bl,j encrypted to

committee Ml and Ol using the homomorphisms of the encryption and sharing schemes.
Further, everyone also computes the sharing of cl = albl encrypted to committee Ol.
More formally, everyone computes
• bl,i as the homomorphic sum of the ciphertexts {bl,j,i}j∈QBl

(i.e. bl,i :=

Eval(pkMl,i , {bl,j,i}j∈QBl
, (1, . . . , 1))),

• bl,i
′

as the homomorphic sum of the ciphertexts {bl,j,i
′}j∈QBl

(i.e. bl,i
′

:=

Eval(pkOl,i , {bl,j,i
′}j∈QBl

, (1, . . . , 1))), and

• cl,i
′ as the homomorphic sum of the ciphertexts {cl,j,i′}j∈QBl

i.e. (cl,i
′ :=

Eval(pkOl,i , {cl,j,i
′}j∈QBl

, (1, . . . , 1))).

Note that the entirety of Beaver triple generation can be carried out without the helper
committees needing to receive any private messages. Additionally, note that Beaver triple
generation committees can have a dishonest majority, and can therefore be smaller (h < n).

Mult: This step is run by committee Ml of size n, the members of which require RACC’s.
To multiply values

– (xl,1, . . . , xl,n) (representing xl) and
– (yl,1, . . . , yl,n) (representing yl)

(encrypted to committee Ml) using the Beaver triple
– (al,1, . . . , al,n), (al,1

′, . . . , al,n
′),

– (bl,1, . . . , bl,n), (bl,1
′
, . . . , bl,n

′
)

(encrypted to committees Ml and Ol, respectively) and
– (cl,1

′, . . . , cl,n
′), (encrypted to committee Ol),

We do the following:

– Everyone publicly computes a sharing of εl = al − xl and δl = bl − yl encrypted to
committee Ml using the homomorphisms of the encryption and sharing schemes. More
formally, everyone computes
• the homomorphic difference of the ciphertexts al,i and xl,i to get εl,i for i ∈ [n]

(i.e. εl,i := Eval(pkMl,i , (al,i, xl,i), (1,−1))), and

• the homomorphic difference of the ciphertexts bl,i and yl,i to get δl,i for i ∈ [n] (i.e.

δl,i := Eval(pkMl,i , (bl,i, yl,i), (1,−1))).

– Each member Cl,i of committee Ml opens the values εl,i and δl,i to reconstruct εl and
δl (as described above in Decrypt).

– Everyone publicly computes a sharing of xlyl = cl − εlbl − δlal + εlδl encrypted to
committee Ol using the homomorphisms of the encryption and sharing schemes. More
formally, for each i ∈ [n], everyone computes
• the ciphertext corresponding to plaintext 1 as 1 ← Enc(pkOl,i , 1; ρ′′) using some

default randomness ρ′′, and
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• the ciphertext corresponding to each share of zl = xlyl as zl,i
′ :=

Eval(pkOl,i , (cl,i
′, bl,i

′
, al,i

′, 1), (1,−εl,−δl, εlδl)).
MakeZero: This step is run by a helper committee Z of size h, the members of which do not
require RACC’s.
To produce a sharing of zero held by the output committee C, each member Zj of committee
Z does the following:

– Computes a random sharing of 0 as (0j,1, . . . , 0j,n)← Share(0; ρj) with threshold t.
– Encrypts the shares to the members of committee C; i.e., for i ∈ [n], she encrypts

0j,i ← Enc(pkCi , 0j,i; ρj,i).

– Sets φMakeZero :=
(
j, pkC1

, . . . , pkCn , 0j,1, . . . , 0j,n
)

and wMakeZero :=
(
ρ, {ρj,i}i∈[n]

)
.

Computes the multi-string NIZK proof πMakeZero ← P(crsMakeZero, φMakeZero, wMakeZero) for
the NP language RMakeZero.

– Broadcasts (πMakeZero, 0j,1, . . . , 0j,n).
Let QZ ⊆ [h] denote the indices of the roles who provided a verifying proof. For each i ∈ [n],
anyone can then compute the final shares of 0 by using the homomorphisms of the schemes.
More formally, everyone computes 0i as the homomorphic sum of the ciphertexts {0j,i}j∈QZ
(i.e. 0i := Eval(pkCi , {0j,i}j∈QZ , (1, . . . , 1))).

Output: This step is run by the output committee C of size n, the members of which require
RACC’s.
To output a value (out1, . . . , outn) (representing out), the committee C uses the shares of
zero (01, . . . , 0n) produced by the helper committee Z. The shares of zero are necessary to
randomize the output.
Anyone can compute the the sum of the encrypted output shares and encrypted shares of 0.
More formally, everyone computes outi

′ as the homomorphic sum of outi and 0i (i.e. outi
′ :=

Eval(pkCi , (outi, 0i), (1, 1))).

The committee C then calls Decrypt on (out1
′, . . . , outn

′).

3.2 Proof of Security

We start by analyzing the correctness of an all-honest execution of the protocol.

Lemma 1 (Correctness). The protocol Π on inputs (x1, . . . , xm) produces
output value z = f(x1, . . . , xm) when all roles are honest.

Proof. Correctness follows from the evaluation of each gate producing a sharing
of the appropriate gate output. If this is the case the output may be reconstructed
from the sharing associated with the final gate by perfect correctness of the secret
sharing scheme. Proofs produced honestly will be accepting due to completeness
of the multi-string NIZK proof system.

Input The role giving input distributes a sharing of its input value x by construc-
tion.

Add Perfect correctness of the Shamir secret sharing and the linearly homomor-
phic encryption scheme, and the compatibility of their homomorphisms, en-
sures the output is a sharing of z = x+ y.

Mult The values produced by MakeBeaver are valid sharings of a, b and c, where
c = ab. It follows by inspection that z = c − εb − δa + εδ = c − (a − x)b −
(b− y)a+ (a− x)(b− y) = xy.

We will now prove the security of our YOSO-LHE protocol.
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Theorem 1. For any m-input function f : ({0, 1}∗)m → {0, 1}∗, the protocol
Π described above YOSO-realizes f (with guaranteed output delivery) as long as
more than half the members of each size-n committee are honest, and at least
one member of each size-h committee is honest.

The fact that the YOSO property is preserved is evident from the fact that
every part speaks at most once. It remains to prove UC-security.

Proof. We start by defining a simulator S which may be composed with any
PPT real-world adversary A to produce an ideal world adversary S ′ such that for
every PPT environment E , it holds that REALΠ,A,E(x) and IDEALFf ,S,E(x)
are indistinguishable. We prove indistinguishability through a series of hybrids,
each indistinguishable from the last, starting in the real world and arriving in
the ideal world with our complete simulator.

We define the simulator S below. We denote the set of honest and corrupt
roles asH and I respectively; we letHC and IC represent the honest and corrupt
roles within a committee C.

Simulator S

Prepare: 1. Simulating the common reference strings. On behalf of each honest role i ∈ HT ,
S computes

– (crsShare,i, τShare,i, ξShare,i)← SE1(1κ,RShare),
– (crsDec,i, τDec,i, ξDec,i)← SE1(1κ,RDec),
– (crsA,i, τA,i, ξA,i)← SE1(1κ,RBeaver,A),
– (crsB,i, τB,i, ξB,i)← SE1(1κ,RBeaver,B), and
– (crsMakeZero,i, τMakeZero,i, ξMakeZero,i)← SE1(1κ,RMakeZero),

and broadcasts (crsShare,i, crsDec,i, crsA,i, crsB,i, crsMakeZero,i).
2. Let (crsShare,j , crsDec,j , crsA,j , crsB,j , crsMakeZero,j) denote the crs’s received from corrupt

role j ∈ IT .
3. Let (crsShare, crsDec, crsA, crsB , crsMakeZero) denote the vectors of n common reference

strings.
4. Let (τShare, τDec, τA, τB , τMakeZero) denote the vectors of simulation trapdoors (comprising

of the relevant τ ’s of roles in HT ).

5. Let (ξShare, ξDec, ξA, ξB , ξMakeZero) denote the vectors of extraction trapdoors (comprising
of the relevant ξ’s of roles in HT ).

Input: 1. Simulating encryptions. On behalf of the jth honest input role, compute the
encryptions xj,1, . . . , xj,n such that xj,i corresponds to encryptions of 0 when i ∈ HC
and encryptions of random shares when i ∈ IC .

2. Simulating the proofs. For jth honest input role, set φShare,j =(
j, pkC1

, . . . , pkCn , xj,1, . . . , xj,n
)

and compute the simulated multi-string NIZK
proof as πShare,j ← S2(crsShare, φShare,j , τShare) for the NP language RShare. Broadcast
(πShare,j , xj,1, . . . , xj,n).

3. Extraction of values held by corrupt roles. Let I′ denote corrupt input roles who provide
a verifying proof. For each j ∈ I′, run wj ← E2(crsShare, φShare,j , πShare,j , ξShare) where
φShare,j and πShare,j were received from the adversary. If (φShare,j , wj) /∈ RShare (i.e. the
extraction of the witness fails), then abort. Otherwise, S learns xj and the randomness
used by the jth corrupt role (for Shamir sharing its input). This is used to deduce the
input shares held by corrupt roles in C. Note that the shares held by corrupt roles in C
corresponding to honest inputs are already known to S (as she defined them).

4. Invoking the ideal functionality. Invoke Ff with xj on behalf of roles in I′ (the corrupt
input roles who provided a verifying proof) and default inputs on behalf of the remaining
corrupt input roles. Let out denote the output obtained from Ff .

Decrypt: 1. If the value being decrypted corresponds to the ε or δ values during compu-
tation of multiplication gate, set plaintext x as a random value. Otherwise, this value
corresponds to decryption of the final output and the plaintext x is set to out.

2. Simulating the decryption shares. Let {xi}i∈IC denote the shares held by corrupt roles
in C (which the simulator knows because these have been deduced at every computation
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stage). Compute the shares on behalf of honest roles such that they would be consistent
with x as follows: Compute {x′

i}i∈HC ← SH.SimShare({xi}i∈IC , x).

3. Simulating the proofs. For each i ∈ HC , set φDec,i = {pkCi , x
′
i, xi}. Compute the

simulated multi-string NIZK proof as πDec,i ← S2(crsDec, φDec,i, τDec) for the NP language
RDec. Broadcast (πDec,i, x

′
i).

Add: S uses the values learned earlier and homomorphism of secret sharing to deduce the
shares of the output of the addition gate, i.e., z = x+ y (where x and y denote the inputs to
the addition gate) held by corrupt roles in C.

MakeBeaver: 1. S does the following on behalf of honest helper j ∈ HAl :
– Simulating encryptions. Compute encryptions al,j,1, . . . , al,j,n, such that al,j,i cor-

responds to encryptions of 0 when i ∈ HMl and encryptions of random shares when
i ∈ IMl .

– Simulating encryptions. Compute encryptions al,j,1
′, . . . , al,j,n

′, such that al,j,i
′

corresponds to encryptions of 0 when i ∈ HOl and encryptions of random shares
when i ∈ IOl .

– Simulating the proofs. Set φA,l,j :=
(
l, j, {pkMl,i}i∈[n], {pkOl,i}i∈[n], al,j,1, . . . , al,j,n,

al,j,1
′, . . . , al,j,n

′) and compute the simulated multi-string NIZK proof
as πA,l,j ← S2(crsA, φA,l,j , τA) for the NP language RBeaver,A. Broadcast
(πA,l,j , al,j,1, . . . , al,j,n, al,j,1

′, . . . , al,j,n
′).

2. Extraction of values held by corrupt roles. Let I′ = IAl ∩ QAl denote the set of cor-

rupt roles in Al who provide a verifying proof. Then for each j ∈ I′, run wA,l,j ←
E2(crsA, φA,l,j , πA,l,j , ξA). If (φA,l,j , wA,l,j) /∈ RBeaver,A (i.e. the extraction of the wit-
ness fails), then abort. Otherwise, S can use the witness to deduce the shares of al held
by the corrupt roles in Ml and Ol.

3. S does the following on behalf of honest helper j ∈ HBl :
– Simulating encryptions. Compute encryptions bl,j,1, . . . , bl,j,n, such that bl,j,i cor-

responds to encryptions of 0 when i ∈ HMl and encryptions of random shares when
i ∈ IMl .

– Simulating encryptions. Compute encryptions bl,j,1
′
, . . . , bl,j,n

′
, such that bl,j,i

′

corresponds to encryptions of 0 when i ∈ HOl and encryptions of random shares
when i ∈ IOl .

– Simulating encryptions. Compute encryptions cl,j,1
′, . . . , cl,j,n

′, such that cl,j,i
′

corresponds to encryptions of 0 when i ∈ HOl and encryptions of random shares
when i ∈ IOl .

– Simulating the proofs. Set φB,l,j :=
(
l, j, {pkMl,i}i∈[n], {pkOl,i}i∈[n],

bl,j,1, . . . , bl,j,n, bl,j,1
′
, . . . , bl,j,n

′
, cl,j,1

′, . . . , cl,j,n
′, al,1

′, . . . , al,n
′).

Compute the simulated multi-string NIZK proof as πB,l,j ←
S2(crsB , φB,l,j , τB) for the NP language RBeaver,B. Broadcast

(πB,l,j , bl,j,1, . . . , bl,j,n, bl,j,1
′
, . . . , bl,j,n

′
cl,j,1

′, . . . , cl,j,n
′).

4. Extraction of values held by corrupt roles. Let I′ = IBl ∩ QBl denote the

corrupt roles in Bl who provide a verifying proof. Then for each j ∈ I′, run
wB,l,j ← E2(crsB , φB,l,j , πB,l,j , ξB). If (φB,l,j , wB,l,j) /∈ RBeaver,B (i.e. the extraction
of the witness fails), then abort. Else, S can use the witness to deduce the shares of bl
held by the corrupt roles in Ml and Ol and the shares of cl held by corrupt roles in Ol.

Mult: 1. Deduce the shares of εl and δl held by corrupt roles in Ml using the shares learned
earlier and homomorphism of the secret sharing.

2. Execute the simulation steps in Decrypt to open εl and δl on behalf of honest roles in Ml.
3. Deduce the shares of the output of the multiplication gate, i.e., xlyl (where xl and

yl denote the inputs to the multiplication gate) held by corrupt roles in Ol using the
homomorphism of secret sharing (and the values learned earlier).

MakeZero: 1. Simulating encryptions. On behalf of the j ∈ HZ , compute the encryptions
0j,1, . . . , 0j,n such that 0j,i corresponds to encryptions of 0 when i ∈ HC and encryptions
of random shares when i ∈ IC .

2. Simulating the proofs. On behalf of the j ∈ HZ , set φMakeZero,j =(
j, pkC1

, . . . , pkCn , 0j,1, . . . , 0j,n
)

and compute the simulated multi-string NIZK
proof as πMakeZero,j ← S2(crsMakeZero, φMakeZero,j , τMakeZero) for the NP language RMakeZero.

Broadcast (πMakeZero,j , 0j,1, . . . , 0j,n).
3. Extraction of values held by corrupt roles. Let I′ = IZ ∩ QZ denote the

corrupt roles in Z who provide a verifying proof. Then for each j ∈ I′, run
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wMakeZero,j ← E2(crsMakeZero, φMakeZero,j , πShare,j , ξMakeZero) where φMakeZero,j and πMakeZero,j

was received from the adversary. If (φMakeZero,j , wMakeZero,j) /∈ RMakeZero (i.e. the extraction
of the witness fails), then abort. Otherwise, S uses the witness to learn the shares of
zero held by the corrupt roles in the output committee C.

Output: Using the values learned earlier (including the shares of zero held by the corrupt roles
in output committee C) and the homomorphism of secret sharing, S deduces the shares of
the output (which are encrypted in outi, for i ∈ IC) held by the corrupt roles in the output
committee. Finally, S executes the simulation steps in Decrypt to open the final output out.

We describe a series of hybrid simulators allowing us to arrive at the full
simulator described above. The final simulator does not require access to the
inputs of honest roles, relying only on the ideal functionality.

Real: The simulator does everything as in the real protocol (in particular,
it uses honest roles’ real inputs).
Hybrid 1 (CRS Simulation): The simulator uses the multi-string NIZK
simulator SE1 to generate the common reference string for each of the honest
roles in the Prepare committee. This is indistinguishable from real case by
reference string indistinguishability.
Hybrid 2 (Proof Simulation): The simulator uses the simulation trap-
doors obtained when producing reference strings for the honest roles to simu-
late all honest proofs. The honest majority of the Prepare committee and sim-
ulation indistinguishability mean that this hybrid is indistinguishable from
the previous hybrid.
Hybrid 3 (Witness Extraction): In this hybrid the simulator extracts
values provided by corrupt roles. The adversary provides values in three
steps: Input, MakeBeaver and MakeZero. The simulator extracts witnesses
to find the shares and input values provided by the corrupt roles, aborting
if extraction fails. By simulation-extractability, extraction of a valid witness
only fails with negligible probability, ensuring this hybrid is indistinguishable
from the previous one.
There are several things to note here:
1. Due to the perfect correctness of the encryption scheme, there exists a

unique value and set of shares that will be contained in any valid witness.
2. Due to the statement for RShare and RMakeZero including a role index,

corrupt roles cannot reuse honest roles’ proofs. This is also the case for
RBeaver,A and RBeaver,B, where the round number is also needed for dis-
ambiguation. For RDec, a roles’ public key ins included in the statement,
serving the same purpose.

At this point, the simulator no longer needs access to the honest roles’ secret
keys, since all shares are either produced by the simulator herself (on behalf
of other honest roles), or are recovered from corrupt roles’ witnesses. The
simulator computes the shares on each wire of the circuit using the homo-
morphism of the secret sharing scheme.
The simulator gives the extracted corrupt roles’ input values (together with
the honest roles’ input values) to the ideal functionality to get the output
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z ← Ff (x1, . . . , xm), which will later be used to replace the protocol output.
Note input values without a verifying proof are replaced by default values,
as in the protocol.
Hybrid 4 (Encrypt 0 to Honest Roles): The simulator replaces all en-
cryptions between two honest roles with encryptions of 0. This is indistin-
guishable from the previous hybrid as an adversary with non-negligible distin-
guishing advantage can be reduced to an adversary breaking the to semantic
security of our LHE scheme. This reduction is made possible by the fact that
the simulator does not require access to secret keys for honest roles. During
Decrypt the honest roles still open to the correct shares contained in their ci-
phertext, but they can do so because the simulator knows the shares without
needing to decrypt (from extraction and linear computation).
Hybrid 5 (Abort if Adversary Decrypts Shares Incorrectly): In this
hybrid the simulator aborts if the adversary is able to open a corrupt role’s
ciphertext during Decrypt to something other than the share the simulator
expects (as a result of extraction and linear computation). In the following
hybrids the corrupt roles with verifying proofs will only decrypt the shares
expected by the simulator. The simulation soundness of the πDec,i proofs,
the perfect correctness of both the LHE and secret sharing scheme and the
key binding property of the LHE scheme ensure the simulator only aborts
with negligible probability. (The KeyMatches algorithm forces the adversary
to use a secret key which results in correct decryption.) Thus, this hybrid is
indistinguishable from the previous one. Correctness of the protocol now fol-
lows from correctness in the honest setting and the honest majority ensuring
reconstruction is always possible.
Hybrid 6 (Simulate Honest Roles’ Output Shares): Let IC and HC
denote the set of corrupt and honest roles, respectively, in the final out-
put committee C. The simulator knows the ideal functionality’s output out
since Hybrid 3, so she can replace the honest shares in the final call to
Decrypt; i.e., she now computes the honest roles’ shares as {out′l,i}i∈HC ←
SimShare({out′l,i}i∈IC , out).
This is indistinguishable from the previous hybrid since we added a random
sharing of 0 produced by the MakeZero committee to the sharing of out. This
results in a random sharing of the same value. An adversary distinguishing
this hybrid from the previous can be used to break the share simulatability
property of the secret sharing scheme. This is possible since the honest mem-
bers of the committee that runs MakeZero has not sent any messages which
are dependent on the shares it produces for honest roles.
Hybrid 7 (Pick ε, δ Randomly, Simulate Honest Roles’ Shares): For
each Decrypt which is part of a Mult, the simulator (a) picks the decrypted
value (ε or δ) randomly, and (b) simulates the honest shares of that value; that
is, {ε′l,i}i∈HMl ← SimShare({εl,i}i∈IMl , ε) and {δ′l,i}i∈HMl ← SimShare({δl,i}i∈IMl , δ).
Two facts ensure that this hybrid is indistinguishable from the previous one.
The first is the presence of at least one honest role in each of the A and
B committees in any MakeBeaver invocation. The honest role i in A has
not sent any messages which depend on the value al,i (all shares this role
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sent were either random or 0); similarly, the honest role j in B has not sent
any messages depending on bl,j and cl,j . Thus, the view of the adversary is
independent of the values of al, bl and cl, except when she sees εl and δl; as
long as al and bl are uniform, so are εl and δl, so we can pick them at random
directly.
Simulating the remaining shares will be indistinguishable from the real deriva-
tion of those shares by share simulatability.
Hybrid 8 (Replace Corrupt Roles’ Shares With Random): During the
Input operation, instead of giving corrupt roles real secret shares of honest
roles’ inputs x, give them random shares. Because honest roles’ shares have
already been replaced with 0 in each ciphertext and with simulated shares
in each decryption, the remaining shares (of which there are fewer than t)
are indistinguishable from random shares by the privacy property of Shamir
secret sharing. At this point, the simulator no longer requries access to the
inputs of honest roles.
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linearly homomorphic threshold secret sharing (as described in Section A.1),
linearly homomorphic public key encryption (as described in Section A.2), and
multi-string NIZK proofs (as described in Section A.3).
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A.1 Linearly Homomorphic Secret Sharing

A t-out-of-n secret sharing scheme allows a party to “split” a secret into n shares
in a field F that can be distributed among different parties. To reconstruct the
original secret x at least t + 1 shares need to be used. Such a secret sharing
scheme is linearly homomorphic if it allows parties to locally evaluate linear
functions on shared values.

Syntax. A t-out-of-n linearly homomorphic secret sharing scheme has the fol-
lowing algorithms:

Share(x; ρ)→ (s1, . . . , sn): An algorithm that, given a secret x, outputs a set
of n shares in a finite field F.
Rec({si}i∈S⊆[n],|S|>t)→ x: An algorithm that, given a vector of at least t+1
shares, outputs the secret x.
Eval((s1, . . . , sm), (c1, . . . , cm))→ s: An algorithm that, given some party i’s
shares s1, . . . , sm of secrets x1, . . . , xm as well as coefficients c1, . . . , cm, out-
puts a share s of

∑m
j=1 cjxj in the finite field F.

SimShare({si}i∈S,|S|≤t, x)→ {s′′i }i∈[n]\S: A simulation algorithm that, given
shares belonging to corrupt parties and a target value x, simulates the shares
belonging to honest parties that causes Rec to output the desired value.

Properties. We require the following properties of a linearly homomorphic t-out-
of-n secret sharing scheme:

Perfect Correctness. The perfect correctness property requires that the
shares of a secret x should always reconstruct to x. More formally, a secret
sharing scheme is perfectly correct if for any secret x, for any subset S ⊆
[n], |S| > t,

Pr

[
x = x′

(s1, . . . , sn)← Share(x)
x′ ← Rec({si}i∈S)

]
= 1,

where the probability is taken over the random coins of Share.
Furthermore, correctness should hold even when shares are a result of an
evaluation. More generally, the perfect correctness of a linearly homomor-
phic t-out-of-n secret sharing scheme requires that for any set of secrets
x1, . . . , xm, any set of coefficients c1, . . . , cm, for any subset S ⊆ [n], |S| > t,

Pr

x′ =

m∑
j=1

cjxj

(sj1, . . . , s
j
n)← Share(xj) ∀j ∈ [m]

si ← Eval((s1
i , . . . , s

m
i ), (c1, . . . , cm)) ∀i ∈ [n]

x′ ← Rec({si}i∈S)

 = 1,

where the probability is taken over the random coins of Share.
If a negligible error probability is allowed, we simply say that the scheme is
correct.

24



Privacy. The privacy property requires that any combination of up to t
shares should leak no information about the secret x. More formally, we say
that a secret sharing scheme is private if for all (unbounded) adversaries A,
for any set I ⊆ {1, . . . , n}, |I| ≤ t and any two secrets x0, x1 (such that
|x0| = |x1|),∣∣∣∣Pr

[
A(S) = 1

{si}i∈[n] = Share(x0);
S = {si}i∈I

]
− Pr

[
A(S) = 1

{si}i∈[n] = Share(x1);
S = {si}i∈I

]∣∣∣∣ ≤ µ(κ)

for a negligible function µ in the bit-length κ of the size of F.
Share Simulatability. Additionally, we require an efficient simulator for
the generated shares. More formally, we say that a secret sharing scheme is
share simulatable if there exists a PPT simulator SimShare such that for every
PPT adversaryA, for any set I ⊆ {1, . . . , n}, |I| ≤ t (andH = {1, . . . , n}\I),
and any two secrets x0, x1, for (s0, . . . , sn) ← Share(x0), (s′1, . . . , s

′
n) ←

Share(x1) and {s′′i }i∈H ← SimShare({si}i∈I , x0),

|Pr [A({si}i∈I , {si}i∈H) = 1]− Pr [A({si}i∈I , {s′′i }i∈H) = 1] | ≤ µ(κ)

for a negligible function µ in the bit-length κ of the size of F.

Instantiation. In our constructions, we use Shamir’s threshold secret sharing
scheme [Sha79], and refer to its algorithms as (SH.Share,SH.Rec,SH.Eval,SH.SimShare).
Shamir secret sharing satisfies the useful property we require in our construc-
tion – SH.Eval involves only linear operations (which is important since our con-
struction executes SH.Eval on the threshold shares under the hood of a linearly
homomorphic encryption scheme).

A.2 Linearly Homomorphic Encryption

A linearly homomorphic encryption scheme is a public key encryption scheme
that allows any third party to take ciphertexts β1, . . . , βm decrypting to x1, . . . , xm,
as well as coefficients c1, . . . , cm, and compute a ciphertext β that decrypts to∑m
j=1 cjxj (over a ring F).

Syntax. A homomorphic (over ring F) encryption scheme has the following al-
gorithms:

Gen(1κ)→ (pk, sk): An algorithm that, given the security parameter, gener-
ates a public-secret key pair (pk, sk).
Enc(pk, x; ρ)→ β: An algorithm that, given the public key, a message x ∈ F
and randomness ρ, outputs an encryption β of x.
Dec(sk, β)→ x: An algorithm that, given the secret key and a ciphertext β,
outputs a decryption x of β.
Eval(pk, (β1, . . . , βm), f = (c1, . . . , cm))→ β: A deterministic algorithm that,
given the public key, ciphertexts β1, . . . , βm corresponding to messages x1, . . . ,
xm ∈ Fm and a linear function f described as coefficients c1, . . . , cm, outputs
a ciphertext β that encrypts f(x1, . . . , xm) =

∑m
j=1 cjxj ∈ F.
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Properties. We require the following properties of a homomorphic encryption
scheme:

Perfect Correctness. The perfect correctness property requires that de-
cryption of honestly produced ciphertexts must return the appropriate mes-
sage. More formally, an encryption scheme is perfectly correct if for any mes-
sage x ∈ F,

Pr

[
Dec(sk, β) = x

(pk, sk)← Gen(1κ)
β ← Enc(pk, x)

]
= 1,

where the probability is taken over the random coins of Gen and Enc.
Further, in a homomorphic encryption scheme, decryption must remain cor-
rect even after homomorphic evaluation. More formally, we require that for
any set of values x1, . . . , xm, and any linear function f described as coeffi-
cients c1, . . . , cm,

Pr

x′ =

m∑
j=1

cjxj

(pk, sk)← Gen(1κ)
βj ← Enc(pk, xj) ∀j ∈ [m]
β ← Eval(pk, (β1, . . . , βm), f = (c1, . . . , cm))
x′ ← Dec(sk, β)

 = 1,

where the probability is taken over the random coins of Gen and Enc.
Semantic Security. The semantic security property requires that an adver-
sary cannot distinguish which among the two messages (that the adversary
chooses) is encrypted in a given ciphertext. More formally, for all PPT ad-
versaries A, for (x0, x1)← A(1κ), if |x0| = |x1|,

Pr

[
A(pk, β) = b

(pk, sk)← Gen(1κ); b← {0, 1}
β ← Enc(pk, xb)

]
≤ 1

2
+ µ(κ),

where the probability is taken over the random coins of Gen and Enc.
Key Binding. This is a new property we introduce, which requires that the
correspondence between a secret and public key be checkable. In particular,
we require the existence of the following algorithm:

KeyMatches(pk, sk)→ accept/reject: Checks whether a given public
key pk and secret key sk correspond to one another.

For any (pk, sk) ← Gen(1κ), we require KeyMatches(pk, sk) = accept. Fur-
thermore, for any message x, for any ciphertext β ← Enc(pk, x), it should
hold that for all keys sk′ such that KeyMatches(pk, sk′) = accept, it holds
that Dec(sk, β) = Dec(sk′, β). (To weaken the definition, we might consider
efficiently computable keys sk′ instead.) This allows parties to “prove correct
decryption”.
One might think that we get the ability to prove correct decryption for free
from perfect correctness. However, perfect correctness only considers the hon-
estly generated decryption key; key binding mmakes sure the adversary can-
not get away with using a different key, which might convincingly decrypt to
something incorrect.
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Instantiation. We rely on the linearly homomorphic cryptosystem of Castagnos
and Laguillaumie [CL15], which uses class groups. This scheme has the same
structure as ElGamal encryption; a secret key consists of an element x, with gx

(for some generator g) as part of the public key. Notice that, in particular, this
scheme gives is the key binding property for free; it is easy to check this discrete
log relationship within the KeyMatches algorithm.

Notice also that if we didn’t get key binding for free, we could add key
binding to any encryption scheme by including in the public key a perfectly
binding commitment to the secret key. The new key generation algorithm Gen
would do the following (building on the key generation algorithm Gen′ of the
original encryption scheme):

Gen(1κ)→ (pk, sk) :

– (pk′, sk′)← Gen′(1κ)
– Choose randomness ρ
– γ ← Commit(sk′; ρ)
– Return (pk = (pk′, γ), sk = (sk′, ρ))

The KeyMatches algorithm would then simply return accept if γ = Commit(sk′, ρ),
and reject otherwise.

A.3 Multi-string Non-Interactive Zero-knowledge Proofs.

Multi-string NIZK proofs [GO07] is a generalization of NIZK in the common
reference string (CRS) model. Instead of having one trusted authority to gen-
erate the reference string, in the multi-string model several authorities generate
the reference strings. The properties of Multi-string NIZK proofs are defined
similarly to those of NIZKs in the CRS model, except that the notions of com-
pleteness, soundness and zero-knowledge are required to hold only if the num-
ber of common reference strings that are honestly generated is above a certain
threshold.

Syntax. A multi-string NIZK for an NP relationRL has the following algorithms:

mNIZK.Gen(1κ)→ crs : An algorithm to generate a common reference string.
In the multi-string model comprising of n common reference strings, we let
crs = (crs1, . . . , crsn) denote the vector of the n common reference strings.
P(crs, φ, w)→ π: An algorithm run by the prover that, given the vector of
common reference strings crs, statement φ and the witness w outputs the
proof π that (φ,w) ∈ RL.
V(crs, φ, π)→ accept/reject: An algorithm that, given the vector of com-
mon reference strings crs, statement φ and the proof π verifies whether π
proves the existence of a witness w such that (φ,w) ∈ RL.

The rest of the algorithms are only necessary for proofs of security, and will not
be used in the real world:
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S1(1κ)→ (crs, τ): A simulation algorithm that generates a simulated refer-
ence string and a simulation trapdoor.
S2(crs, φ, τ)→ π: A simulation algorithm that, given the vector of common
reference strings crs, statement φ and a vector τ containing tz (where tz is
a pre-defined threshold for the multi-string NIZK proof system) simulation
trapdoors for common reference strings in crs, outputs a simulated proof of
the existence of a witness w such that (φ,w) ∈ RL.
E1(1κ)→ (crs, ξ): A simulation algorithm that generates a simulated refer-
ence string and an extraction trapdoor.
E2(crs, φ, π, ξ)→ w: An extraction algorithm that, given the vector of com-
mon reference strings crs, statement φ, a valid proof π and a vector ξ con-
taining ts (where ts is a pre-defined threshold for the multi-string NIZK proof
system) extraction trapdoors for common reference strings in crs, outputs a
witness w such that (φ,w) ∈ RL.
SE1(1κ)→ (crs, τ, ξ): A simulation algorithm that outputs a simulated ref-
erence string, a simulation trapdoor and an extraction trapdoor such that
(crs, τ) is distribted as the output of S1, and (crs, ξ) is distributed as the
output of E1.

Properties. We require the following properties from a (tc, ts, tz, n) multi-string
NIZK proof system for an NP relation RL (as defined in the work [GO07]).

(tc, ts, tz, n)-Completeness. Informally, this property requires that if at
least tc out of n common reference strings are honest, then the prover holding
a witness for the statement should be able to create a convincing proof. More
formally, for all non-uniform polynomial time adversaries A,

Pr

[
V(crs, φ, π) = 1

(crs, φ, w)← AmNIZK.Gen(1κ)
π ← P(crs, φ, w)

]
≥ 1− µ(κ)

where mNIZK.Gen on query i output crsi ← mNIZK.Gen(1κ), at least tc of
the crsi’s generated by mNIZK.Gen are included and A outputs (φ,w) ∈ RL,
and µ is a negligible function in the security parameter κ.
We use multi-string NIZKs with perfect (tc, ts, tz, n)-completeness for all
0 ≤ tc ≤ n in our protocol. This means that even if the adversary chooses all
common reference strings itself, we are guaranteed to output an acceptable
proof when (φ,w) ∈ RL.

(tc, ts, tz, n)-Soundness. Informally, this property requires that if at least ts
out of n common random strings are honestly generated, then an adversary
cannot forge the proof. The adversary gets to see possible choices of correctly
generated common reference strings and can adaptively choose n of them. It
may also include up to n− ts fake common reference strings it itself chooses.
More formally, for all adversaries A,

Pr[V(crs, φ, π) = 1 and φ /∈ L : (crs, φ, π)← AmNIZK.Gen(1κ)] ≤ µ(κ)
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where mNIZK.Gen is an oracle that on query i outputs crsi ← mNIZK.Gen(1κ),
the adversary outputs crs such that at least ts of the crsi’s generated by
mNIZK.Gen are included, and µ is a negligible function in the security pa-
rameter κ.

(tc, ts, tz, n)-Zero Knowledge. Informally, this property requires that if tz
common reference strings are correctly generated, then the adversary learns
nothing from the proof. As is standard in the zero-knowledge literature, we
say that this is the case when the proof can be simulated given only the
statement φ.
The definition of zero-knowledge is split into the following two parts.

Reference String Indistinguishability. This property simply says that the ad-
versary cannot distinguish real common reference strings from simulated ref-
erence strings. More formally, for all non-uniform polynomial time adversaries
A, ∣∣∣∣Pr[A(crs) = 1|crs← mNIZK.Gen(1κ)]

−Pr[A(crs) = 1|(crs, τ)← S1(1κ)]

∣∣∣∣ ≤ µ(κ)

for a negligible function µ in the security parameter κ.

(tc, ts, tz, n)-Simulation Indistinguishability. This property strengthens the
standard definition of zero-knowledge and requires that even with access to
the simulation trapdoors, the adversary cannot distinguish real proofs from
simulated ones on a set of simulated reference strings. More formally, for all
non-uniform polynomial time adversaries A,

∣∣∣∣ Pr[A(π) = 1|(crs, τ , φ, w)← AS1(1κ);π ← P(crs, φ, w)]
−Pr[A(π) = 1 : (crs, τ , φ, w)← AS1(1κ);π ← S2(crs, τ , φ)]

∣∣∣∣ ≤ µ(κ),

where S1 on query i outputs (crsi, τi) ← S1(1κ), the adversary outputs
(φ,w) ∈ RL and crs, τ such that at least tz of the crsi’s generated by S1 are
included and τ contains tz simulation trapdoors τi corresponding to crsi’s
that have been generated by the oracle S1, and µ is a negligible function in
the security parameter κ.

(tc, ts, tz, n)-Knowledge. Informally, this property requires the existence of
probabilistic polynomial time algorithms E1 and E2 that can extract a witness
from a valid proof.
Like the definition of zero-knowledge, the definition is split into two parts.

Reference String Indistinguishability. For all non-uniform polynomial time
adversaries A,∣∣∣∣Pr[A(crs) = 1|crs← mNIZK.Gen(1κ)]

−Pr[A(crs) = 1|(crs, ξ)← E1(1κ)]

∣∣∣∣ ≤ µ(κ)

where µ is a negligible function in the security parameter κ.
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Extractability. For all non-uniform polynomial time adversaries A,

Pr

[
V(crs, φ, π) = 1,(φ,w) /∈ RL

(crs, φ, π)← AE1(1κ)

w ← E2(crs, φ, w, ξ)

]
≤ µ(κ)

where E1 is an oracle that returns (crsi, ξi) ← E1(1κ), ξ contains at least ts
ξi’s corresponding to the crsi’s generated by E1, and µ is a negligible function
in the security parameter κ.

(tc, ts, tz, n)-Simulation Soundness. Informally, this property requires that
an adversary cannot prove any false statement even after seeing simulated
proofs of arbitrary statements. More formally, for all non-uniform polynomial
time adversaries A,

Pr[V(crs, φ, π) = 1, (crs, φ, π) /∈ Q,φ /∈ L|(crs, φ, π)← AS1,S2(1κ)] ≤ µ(κ)

where S1 on query i returns (crsi, τi)← S1(1κ), S2 on query (crsj , φj) returns
πj ← S2(crsj , τ j , φj) with τ j having simulation trapdoors for the crsi’s gen-
erated by S1, the adversary produces crsj containing at least ts crsi’s gener-
ated by S1, Q is the list of statements and corresponding proofs (crsj , φj , πj)
in the queries to S2, and µ is a negligible function in the security parameter κ.

(tc, ts, tz, n)-Simulation Extractability. Informally, this property requires
that even after seeing many simulated proofs, whenever the adversary makes
a new proof, we should be able to extract a witness. More formally, a multi-
string NIZK proof system is (tc, ts, tz, n)-simulation extractable if it has
(tc, ts, tz, n)-knowledge, is a (tc, ts, tz, n)-NIZK proof (i.e. completeness, sound-
ness and zero-knowledge hold for the relevant thresholds), and for all non-
uniform polynomial time adversaries A,

Pr

V(crs, φ, π) = 1,
(crs, φ, π) /∈ Q,

(φ,w) /∈ RL

(crs, φ, π)← ASE′
1,S2(1κ),

w ← E2(crs, φ, π, ξ)

 ≤ µ(κ)

where SE′1 on query i returns (crsi, ξi) from (crsi, τi, ξi) ← SE1(1κ), S2 on
query (crsj , φj) returns πj ← S2(crsj , τ j , φj) (where τ j contains tz τi’s cor-
responding to crsi’s in crsj generated by SE1), Q is the list of statements
and corresponding proofs (crsj , φj , πj) made by S2, ξ contains the first ts
ξi’s generated by SE1 corresponding to crsi’s in crs, and µ is a negligible
function in the security parameter κ.
The above property of simulation extractability implies simulation-soundness.

Instantiation. In our constructions, we use the (0, ts, tz, n) multi-string NIZK
with ts = tz = d(n+ 1)/2e of [GO07], which relies on enhanced trapdoor
permutations and satisfies the properties outlined above.
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