Constant-Round YOSO MPC Without Setup

Sebastian Kolby!, Divya Ravi', and Sophia Yakoubov'*

Aarhus University, Denmark; {sk, divya, sophia.yakoubov}@cs.au.dk

Abstract. YOSO MPC (Gentry et al., Crypto 2021) is a new MPC
framework where each participant can speak at most once. This models
an adaptive adversary’s ability to watch the network and corrupt or
destroy parties it deems significant based on their communication. By
using private channels to anonymous receivers (e.g. by encrypting to a
public key whose owner is unknown), the communication complexity of
YOSO MPC can scale sublinearly with the total number N of available
parties, even when the adversary’s corruption threshold is linear in N
(e.g. just under N/2). It was previously an open problem whether YOSO
MPC can achieve guaranteed output delivery in a constant number of
rounds without relying on trusted setup.

In this work, we show that this can indeed be accomplished. We demon-
strate three different approaches: the first two (which we call YaOSO and
YOSO-GLS) use two and three rounds of communication, respectively.
Our third approach (which we call YOSO-LHE) uses O(d) rounds, where
d is the multiplicative depth of the circuit being evaluated; however,
it can be used to bootstrap any constant-round YOSO protocol that
requires setup, by generating that setup within YOSO-LHE. Though
YOSO-LHE requires more rounds than our first two approaches, it may
be more practical, since the zero knowledge proofs it employs are more
efficient to instantiate.

As a contribution of independent interest, we introduce a verifiable state
propagation UC functionality, which allows parties to send private mes-
sage which are verifiably derived in the “correct” way (according to the
protocol in question) to anonymous receivers. This is a natural function-
ality to build YOSO primitives on top of.

*Funded in part by the European Research Council (ERC) under the European
Unions’s Horizon 2020 research and innovation programme under grant agreement No
669255 (MPCPRO) and No 803096 (SPEC).



1 Introduction

As our digital world becomes more reliably connected, we grow to depend more
and more on outsourcing our data storage and processing to the cloud. There are
clear benefits to doing this, such as minimizing the risk of data loss (e.g. when
we spill coffee on our laptops), and using resources more efficiently. However,
there are also serious drawbacks, such as having to trust a cloud provider to
maintain both the availability and privacy of our data in an era of frequent
data breaches. Secure multi-party computation (MPC) [12J20/30] allows a cloud
comprised of many distinct machines to not only store, but also process our data
securely. MPC guarantees that the data remains private even from an attacker
controlling fewer that some threshold ¢ of the machines.

Outsourcing the processing of our data can be very useful: for instance, it lets
us search our securely stored emails without having to download the entire con-
tents of our inbox. Perhaps even more importantly, MPC can be used to compute
joint functions on multiple entities’ private data without revealing anything but
the function output. This enables crucial computations where multiple entities
have privacy concerns, like research using health data across different hospital
databases [28[1], and discovering the true extent of the gender wage gap across
many different institutions [24].

One long-standing challenge in MPC is balancing security and efficiency.
Intuitively, security increases with the number of machines we employ in our
MPC: the more machines are used, the more of them an attacker would need
to subvert in order to learn our data. In order to make our computation secure
against a powerful attacker, we would need a very large number of machines
— perhaps millions, e.g. in a distributed blockchain setting. However, running
a secure computation among millions of machines would be horribly inefficient;
transferring our data to those machines would be a prohibitive burden on our
devices, and the pairwise communication required by most MPC protocols would
be too much for the machines and their network.

An alternative path is to hide which machines we are outsourcing our data
to. Then, a small subset of machines could perform the computation, bypass-
ing the problem of prohibitive pairwise communication. By keeping the subset
anonymous, we ensure that an attacker won’t know which machines to target.

This approach is very tricky, since computing on data requires the machines
to communicate. However, as soon as a machine sends a message, it ceases to be
anonymous; an attacker who is watching the network will learn that the message-
sender — and message-receiver — likely play crucial roles in the computation,
and will be able to target them. The recent work of Gentry et al. [I7] introduces
secure computation in the you only speak once (YOSO) model. In this model,
once a machine sends a message, that machine becomes irrelevant to the com-
putation, so an attacker who then targets that machine gains nothing. To stop
an attacker from targeting the message recipients, YOSO protocols hide their
identities using what we call receiver-anonymous communication channels.



1.1 Related Work

Related work can be broken up into work focusing on receiver-anonymous com-
munication channels and on MPC protocols using those channels.

Receiver-Anonymous Communication Channels When data is outsourced
to a small set of machines, those machines immediately assume critical roles; so,
it is important to hide which machines are picked for this by choosing them ran-
domly and by keeping them anonymous. Of course, outsourcing data to a set of
machines requires private communication to those machines. In order to commu-
nicate privately to machines which must remain anonymous, we need receiver-
anonymous communication channels (RACCs) to those machines. RACCs are
modeled as publicly known encryption keys such that (a) the adversary does not
know who owns the corresponding decryption key as long as that owner is not
corrupt, and (b) fewer than some threshold ¢ (which we take to be half) of the
decryption key owners are corrupt.

Receiver-anonymous communication channels first appeared in the work of
Benhamouda et al. [7], which builds such channels with the guarantee that only
half of the decryption key owners are corrupt as long as only around a quarter
of the overall population is corrupt. Another RACC construction was shown by
Gentry et al. [I8], with the stronger guarantee that only half of the decryption
key owners are corrupt as long as only slightly less than half of the overall
population is corrupt. The downside of this second construction is that it is
more computationally intensive.

In the original YOSO paper of Gentry et al. [I7], RACCs were modeled as an
ideal functionality that allows private communication to anonymous receivers.
However, this ideal functionality doesn’t allow senders to prove that the messages
they sent follow the protocol instructions, which is often necessary for achieving
guaranteed output delivery. To model this, we instead introduce a verifiable state
propagation (VSP) functionality Fysp, which additionally requires the sender
to input a witness proving that her messages follow the protocol. We describe
Fysp informally in Section and formally in Section 2:3] In this work, we do
not focus on the problem of instantiating Fysp; we leave this to future work.
Intuitively, it can be built using RACCs together with zero knowledge proofs.
We instead study how to build YOSO MPC assuming that an instantiation of
Fysp is available.

YOSO MPC Recently, the first YOSO MPC protocols have appeared in the
literature [I7I13]. They all have a common structure: committees of size n —
where the size n is chosen to guarantee that n RACCs will have an honest ma-
jority with overwhelming probability — carry out the computation sequentially.
The lth (set of) committee(s) performs the Ith layer of multiplication, and uses
RACCs to pass the computation to their successors.

We summarize the constructions below, and compare them in Figure (1| It
should be noted that even constructions which do not explicitly make any com-
putational assumptions rely on RACCs, which do require such assumptions.



Fluid MPC (Choudhuri et al. [13]) This construction relies on specially
tailored sum-checks on top of the BGW construction [6]. While concretely
efficient, Fluid MPC does not guarantee output delivery; that is, a single cor-
rupt participating machine can cause the entire protocol to abort, allowing
the adversary to carry out a denial of service attack indefinitely.
YOSO-CDN (Gentry et al. [17]) This construction is based closely on
the CDN protocol [14]. Unlike Fluid MPC, CDN does guarantee output de-
livery, and is thus robust against denial of service attacks. However, this
protocol requires computational assumptions and setup; that is, some corre-
lated secrets are distributed to an initial subset of parties by e.g. a trusted
authority.

YOSO-IT (Gentry et al. [17]) This construction relies on new information-
theoretic techniques such as future broadcast, distributed commitments, and
augmented verifiable secret sharing. Like CDN, YOSO-IT guarantees output
delivery. However, while YOSO-IT does not require computational assump-
tions or setup, the number of committees required for each layer of multipli-
cation is polynomial rather than constant in the committee size, which can
be prohibitively inefficient.

1.2 Owur Contributions

In this paper, we make several contributions. First, we formalize the ideal func-
tionality (realized using RACCs) which most YOSO MPC constructions can run
on top of. We call this functionality the verifiable state propagation functionality,
denoted Fysp. This fills a gap in the original YOSO paper [17].

Next, we describe several YOSO MPC protocols in the Fysp-hybrid model.
(We assume that a realization of Fysp is available which requires only a single
round of communication for each call to the functionality; this can be achieved
with the use of RACCs and zero knowledge proofs.) A question that was pre-
viously open is whether it is possible to have a YOSO MPC protocol without
setup where the number of rounds of communication is independent of the circuit
being computed. We answer this question in the affirmative thrice-over.

Our first constant-round setup-free YOSO MPC protocol is YaOSO; it com-
piles an underlying two-round non-YOSO MPC protocol by garbling its second-
message function. YaOSO itself only requires two rounds, which is optimal.

Our second YOSO MPC protocol is YOSO-GLS; it builds on the GLS pro-
tocol [2I]. YOSO-GLS requires between three and five rounds, depending on
the setup we assume is available; Five rounds are necessary if only RACCs are
available, and three rounds are achievable if a URS (uniform random string) is
additionally present. YOSO-GLS uses complex assumptions such as threshold
FHE; however, unlike YaOSO, it does not rely on generic compilation, and so
may in practice be more efficient.

Our third YOSO MPC protocol is YOSO-LHFE; it is based on YOSO-CDN
[I7], but avoids the use of a secret shared decryption key, which is the setup



YOSO MPC scheme Security Number Number of Setup Computational
Guarantee of Rounds Speakers Building Blocks
Fluid MPC [13] Security with O(d) O(dn) none none
Abort
YOSO-CDN [17] Guaranteed d+3 m+ (d+ 1)n + CRS, NIZK, LHTE
Output 2dh distribution
Delivery of shares to
first
committee
YOSO-IT [17] Guaranteed O(d) poly(m, d, n) none none
Output
Delivery
YaOSO (this work) Guaranteed 2 m+n none YGC, 2-round
Output MPC
Delivery
YOSO-GLS (this work) Guaranteed 3 m+n+h URS TFHE
Output
Delivery
YOSO-GLS (this work) Guaranteed 5 m + 2n + 2h none TFHE
Output
Delivery
YOSO-LHE (this work) Guaranteed d+3 m+ (d+ 1)n + none LHE
Output (2d+ 1)h
Delivery
Bootstrapping (this work)|[| Guaranteed O(1) O(m +n) none LHE, TFHE
Output
Dtelivery

Fig.1: YOSO MPC Constructions. d is the multiplicative depth of the circuit
being computed; m is the number of inputs; n is the committee size chosen
to guarantee that n RACCs will have an honest majority with overwhelming
probability; h is the committee size chosen to guarantee that h RACCs will have
at least one honest receiver with overwhelming probability. Properties that are
optimal are in bold.

that YOSO-CDN relies on. YOSO-LHE takes O(d) rounds, where d is the mul-
tiplicative depth of the circuit being computed. However, YOSO-LHE also leads
to a YOSO MPC with a constant number of rounds; YOSO-LHE can be used
execute the setup for a constant-round YOSO protocol that uses threshold fully
homomorphic encryption (TFHE). We call this the bootstrapping protocol.

1.3 Verifiable State Propagation

YOSO protocols are analysed within the YOSO model, discussed in Section
which significantly simplifies analysis by allowing the protocol designer to only
consider abstract committees of roles rather than the entire set of parties in
the system, only some of whom might find themselves on committees. Previous
protocols were designed assuming access to two functionalities, providing point-
to-point and broadcast communication respectively (where the point-to-point
functionality could be realized using RACCs).

In the case of computationally secure protocols, a gap remained: the YOSO-
CDN protocol circumvented the need for verifiability of messages sent via the
point-to-point functionality by assuming access to encryption keys for each role,



and using only the broadcast functionality to send ciphertexts along with zero
knowledge proofs of correctness. However, explicit access to keys is not quite
consistent with the exclusive use of the two functionalities available.

In this work, we instead explicitly model the verification of messages within
the sending mechanism. We do this by introducing the verifiable state prop-
agation functionality Fysp, which supports both point-to-point and broadcast
messages, while providing a mechanism for proving these messages are correctly
produced. In practice this provides the same possibilities when designing proto-
cols as using zero knowledge proofs together with access to explicit encryption
keys; however, it allows for much simpler protocol descriptions.

We envision multi-string NIZKs [22] to be a useful tool to realize the ver-
ification actions of the Fysp. The protocols could consider a committee whose
roles each locally compute a CRS for the multi-string NIZK scheme. If we pick
our committee size in such a way that at least half the committee roles are hon-
est, then a majority of the CRS’s will be honestly generated, which is enough
to securely use the multi-string NIZK scheme. The members of this commit-
tee do not need to receive messages, allowing them to be self-selecting through
cryptographic sortition, as proposed for the nominating committees of [7].

For efficiency, some YOSO protocols (including YOSO-LHE) employ homo-
morphic computations on ciphertexts, through the use of either fully or partially
homomorphic encryption. Fysp allows the sender to prove that she correctly
computed her messages as a function of the messages she has received (and pos-
sibly additional input), but not as a function of messages of which she is not
the recipient. To additionally model such homomorphic computation on others’
messages, we introduce the Fig8 functionality, described in Section 5.1} FU2p al-
lows the sender to additionally prove that her messages were correctly computed
based on messages previously sent to a given recipient by others, even though
she might not know the contents of those messages.

VSP and the big picture. Consider what must be done to deploy YOSO proto-
cols: the roles need to be mapped (compiled) onto the set of real (or natural)
parties, while maintaining meaningful security guarantees. For a YOSO protocol
1T realising a functionality F in the Fysp-hybrid model, one might imagine the
possibility of designing a compiler such that Compile(II) UC realises an equiva-
lent functionality FVaturel in the FHavral_hybrid model. If it were then possible
to adapt the role assignment approaches of [7] or [I8] such that they UC realise
f\l,\g‘é,tuml, this would provide a complete path for transforming a protocol de-
signed in the YOSO model to a UC secure natural protocol. Black-box use of
Fvsp would then serve to disentangle the design of YOSO protocols from the
construction of role assignment mechanisms and RACCs, allowing the later to
focus on realising ]-'\],\é‘,‘)t“ml to be compatible with existing protocols.

Note that the environment classes considered for the compiled and uncom-
piled protocols are fundamentally different, as the YOSO environment is re-
stricted to random corruptions within the set of roles, while the natural environ-
ment may allow static or adaptive corruptions across the entire set of parties.



1.4 YaOSO: Technical Overview

Our first protocol is a two-round YOSO MPC protocol with guaranteed output
delivery which we call YaOSO. We present it in the Fysp-hybrid model. The op-
timality of two rounds follows from the fact that any one-round YOSO protocol
would be susceptible to a residual function attack [23] (as the adversary could
recompute first-round messages on behalf of corrupt parties, while keeping the
honest parties’ messages fixed, to obtain multiple evaluations of the function).
YaOSO is a general compiler that transforms any two-round broadcast non-
YOSO MPC protocol that achieves semi-malicious security E| in the dishonest
majority setting, to a two-round YOSO MPC protocol in the Fysp-hybrid model
that achieves malicious security with guaranteed output delivery in the honest
majority setting. Since the former can be instantiated using the protocols of
[16/8] with semi-malicious security in the plain model, this yields a round-optimal
YOSO MPC protocol in the Fysp-hybrid model with guaranteed output delivery.

Assumptions Our compiler is based on threshold secret sharing and adaptive
garbled circuits (Appendix7 which can be built from one-way functions. The
underlying protocol in our compiler can be instantiated using the protocols of
Garg et al. [I6] and Benhamouda et al. [§], which rely on 2-round semi-malicious
oblivious transfer (OT). E|

Recap of the Compiler of Ananth et al. [2] The main idea of our compiler
is to adapt the compiler of Ananth et al. [2] to the YOSO setting. We begin
with a high-level description of the compiler of Ananth et al. and refer to their
paper for further details. The compiler of Ananth et al. transforms any two-
round n-party MPC protocol with security against semi-malicious adversaries
(say Ism) to a two-round n-party MPC protocol with guaranteed output delivery
against semi-malicious fail-stop adversaries corrupting ¢ < n/2 parties (say II’).
In the first round of IT’, each party broadcasts the first-round message of the
underlying protocol Ilg,, along with an adaptive garbled circuit whose code
would be used to compute their second-round message in Il,. Such a garbled
circuit has the party’s input and randomness hard-coded and takes as input
the first-round messages she receives. Each of the labels corresponding to the
first-round messages are threshold-shared (with threshold ¢) among the set of
parties. In the second-round, parties broadcast the relevant share of the label,
based on the first-round messages that were broadcast. The threshold sharing
ensures that even if a party aborts in the second round, the labels corresponding
to the first-round messages can be reconstructed and her garbled circuit can be
evaluated to obtain her second-round messages. This achieves guaranteed output
delivery.

Lwhere semi-malicious security refers to security against an adversary that follows
the protocol honestly but can choose bad random coins for each round.

2The construction of Garg et al. [I6] is based on a two-round OT in the plain model
which is secure against semi-malicious receiver and semi-honest sender. We refer to
Garg et al. [I6] for further details.



Adapting the Compiler to the YOSO Setting In the compiler of Ananth
et al., the same participants are involved in the input, computation and output
phases; different roles are required to carry out these actions in the YOSO set-
ting. In the YOSO setting, we employ one committee for each round; the input
committee, and the computation committee. First, the members of the input
committee carry out the actions of the first-round of the compiler of Ananth et
al. (as described above); however, instead of sending the secret shares to one
another, they send them to the members of the computation committee. Next,
we observe that this gives the computation committee all of the information it
needs in order to enable the public reconstruction of the output; the actions of
the participants in the second round of the compiler of Ananth et al. depend only
on the first round public transcript and the threshold shares received in the first
round. This transfer of threshold shares can be done via the Fysp functionality,
which also upgrades the security to the malicious setting, as the actions of the
input and computation committee roles can now be verified.

Lastly, we note that, unlike the output of the compiler of Ananth et al., the
output of our compiler should now be publicly computable (since we do not wish
to involve a third committee). So, output computation should not depend on the
secret state of the roles who computed the earlier messages. To address this, we
assume that the output computation of I, does not require any secrets and
relies on the public transcript alone. We note that this can be assumed without
loss of generality, as one can always consider the output computation executed
by an additional participant of the MPC protocol Ilg, with a dummy input
that uses a default random tape E This completes the overview of our compiler,
which is formally described in Section

Round and Communication Complexity YaOSO uses two committees: an
input committee of size m (where honest majority is not required) and a com-
putation committee of size n (where the size n is chosen to be large enough to
guarantee an honest majority within the committee). The protocol comprises
just two rounds, where input committee roles speak first, followed by the com-
putation committee roles. The communication complexity is the communication
complexity of the underlying semi-malicious protocol that is being compiled,
with an additional overhead of O(|C|), where C is the circuit computing the
next-message function for computing the second-round messages of the underly-
ing protocol. (We do not explicitly consider the overhead incurred through the
use of Fysp.)

1.5 YOSO-GLS: Technical Overview

The second protocol we present is closely based on the three-round MPC protocol
of Gordon et al. [21], which we will henceforth refer to as the GLS protocol. We
call our adaptation YOSO-GLS. We present two variants of YOSO-GLS: the

3Since ITym is semi-maliciously secure, correctness of the output holds for any choice
of random tape.



first requires three rounds and access to a uniform random string (URS), and the
second requires two additional rounds instead sampling this string explicitly. We
prove our YOSO-GLS protocol securely YOSO realises MPC with guaranteed
output delivery in the Fysp-hybrid model.

Assumptions The technical cornerstone of the GLS protocol is a threshold fully
homomorphic encryption (TFHE) scheme based on the Learning with Error
(LWE) assumption described in Definition [f} Our YOSO-GLS protocol relies
similarly on this assumption.

Recap of the GLS Protocol To provide context for the necessary changes
when adapting to the YOSO setting we start by providing a high level recap of
the three round protocol of Gordon et al. and refer to their paper for further
details.

Round 1: In the first round, each party generates a key pair for the [19]
FHE scheme, using a common matrix B. Each party then broadcasts their
generated public key. Note that B is assumed to be chosen uniformly at
random and is available as a common reference string.

Round 2: In the second round, parties distribute Shamir sharings of their
secret keys along with a sharing of an additional error term. Parties then
encrypt their input under their own public key, reusing the encryption ran-
domness to produce additional hints, which allow transforming the ciphertext
to an encryption under a common public key. These ciphertexts and hints
are then broadcast.

Round 3: In the third round, the ciphertexts are transformed to encryptions
under the common public key for parties which appropriately distributed
their key and error shares. The circuit may then be evaluated homomorphi-
cally on the ciphertexts. The resulting output is then partially decrypted by
each party, exploiting the structure of the secret key sharings and linearity
of decryption. The shares of error terms, distributed along with the secret
keys in round one, are added to mask the partial decryptions. These partial
decryptions are then broadcast.

Finally, parties may perform polynomial interpolation over the partial decryp-
tions to reconstruct the final output.

Adapting the GLS Protocol to the YOSO Setting Moving to the YOSO
model poses a series of concrete challenges, as roles may not maintain state and
communicate across multiple rounds. The original GLS protocol requires storing
the secret keys generated in the first round, so they may be shared in the second.
Delaying sharing allowed avoiding the need for point-to-point communication in
the first round. In their setting, access to broadcast would allow distributing pub-
lic keys in the first round, enabling point-to-point commnication from the second
round onwards. In our setting, the Fysp functionality allows private communica-
tion to future committees in all rounds, meaning the secret keys may already be



secret shared and distributed in the first round. We call the committee perform-
ing this task the key generation committee, and the next committee — which
broadcasts encrypted inputs — the input committee. The final committee will
be the computation committee.

The separation between key generation and input committee roles presents a
new problem: if an input is encrypted under any single public key, that input is
leaked directly to the role which generated the key. Therefore, to avoid leaking
its input, a role must instead transform the ciphertext towards a common public
key prior to broadcasting it. This is possible due to the changes we have already
made, by sharing keys one round earlier.

These changes allow us to move to the YOSO setting while maintaining the
round complexity by requiring only three sequential committees, including the
input committee. Modifying key generation has the added benefit of making it
a local process, simplifying the presentation of the algorithm. Key generation in
the GLS protocol required access to a uniform reference string, this is unchanged
for our three round protocol. We provide a protocol realising the required URS
sampling, through the use of two additional committees, for a combined five
rounds in total.

Communication and Round Complexity The three round YOSO-GLS pro-
tocol uses one dishonest majority key generation committee of size h, an input
committee of size m and a final honest majority computation committee of size
n. The five round protocol, which avoids the need for a URS, requires one addi-
tional dishonest majority committee followed by an honest majority committee.
We maintain the asymptotic message complexity of the original GLS protocol.

1.6 YOSO-LHE: Technical Overview

The third protocol we present is structurally similar to the YOSO-CDN protocol
of Gentry et al. [I7]. We call it YOSO-LHE. Like YOSO-CDN, YOSO-LHE
requires O(d) rounds of communication, where d is the multiplicative depth of
the circuit being computed. However, unlike YOSO-CDN, YOSO-LHE does not
require the trusted distribution of an initial set of key share. In order decrease
the number of rounds without relying on such initial trusted distribution, YOSO-
LHE can be used to generate the setup necessary for some constant-round YOSO
MPC protocol (e.g. one based on threshold fully homomorphic encryption). We
elaborate on this in Section

Though YOSO-LHE requires more rounds than YaOSO or YOSO-GLS, we
believe it may be more efficient in practice, because of the simpler message
validity relations it employs; Fysp for those relations is much more practical to
instantiate than for those required by our other protocols. We prove our YOSO-
LHE protocol securely YOSO realises MPC with guaranteed output delivery in
the f\'}cs’g‘—hybrid model.

10



Assumptions YOSO-LHE uses the ]—"C‘S’?Q functionality to allow participants to
perform homomorphic operations on messages intended for others. YOSO-LHE
does not rely on any additional assumptions outside of f\*}gg; however, it’s worth
noting that ]—'{}g’;‘ for the linear homomorphism we require can be based on the
encryption scheme of Castagnos and Laguillaumie [IT], which in turn is based

on the DDH assumption in the class group setting.

Recap of the YOSO-CDN protocol Since our protocol is closely related to
the YOSO-CDN protocol of Gentry et al. [I7], we recap CDN — and YOSO-
CDN— here.

CDN [14] relies on linearly-homomorphic threshold encryption (LHTE), where
a fixed public encryption key pk is known, and the corresponding secret decryp-
tion key sk is secret shared among the n participants. A role can supply an
input by encrypting it under pk, and publishing the resulting ciphertext. The
participants then perform the computation by leveraging the homomorphism
of the encryption scheme for linear operations, and by using Beaver triples for
multiplications.

Assuming the availability of a Beaver triple @ = Enc(a), b = Enc(b) and
¢ = Enc(ab), the parties multiply ciphertexts T and ¥ (encrypting x and y,
respectively) by (1) using the linear homomorphism to compute € = a — x and
§ =b—y, (2) jointly decrypting € and §, and (3) using linear homomorphism to
compute Ty = ¢ — €b — da + €6.

The Beaver triples themselves can be generated on-the-fly in two rounds. In
the first round, each participant 7 of that round chooses a random additive share
a; of a, and publishes @; = Enc(a;) together with a zero knowledge proof that
it is well-formed. Everyone can then use the linear homomorphism to compute
a =Y a;, using only the contributions @; which are accompanied by a verifying
proof. In the second round, each participant ¢ of that round similarly contributes
an encrypted additive share b; of b, together with b;a (which she computes as
a linear operation on @ using her knowledge of b;), and a zero knowledge proof
that b; and b;a were produced consistently. Everyone can then compute b = > b;

and ¢ = Y b;a using the contributions from those parties ¢ whose zero knowledge
proofs verify.

To YOSO-ify this construction, Gentry et al. needed to make only a few
minor changes to ensure that every round of communication can be carried out
by a new committee. First, they observe that the two rounds of communication
that generate a Beaver triple (a) do not depend on the shared secret decryption
key, and so (b) can be carried out by committees with a dishonest majority and
no RACCs. They thus instruct two smaller committees of size h (where h is
chosen to guarantee that a set of h random roles will contain at least one honest
role with overwhelming probability) to carry out Beaver triple generation.

All that remains is to ensure that every committee that must decrypt a
value (whether those values are the ¢ and ¢ needed for a multiplication, or the
computation output itself) holds shares of the secret decryption key. In order to
do this, we need an additional property from the threshold linearly homomorphic

11



encryption scheme: it must allow a committee that holds a sharing of the secret
decryption key to re-share that key to the next committee in a single round of
communication. (They can do this in the same breath in which they broadcast
their contributions to the decryption of the values they are opening.) Gentry et
al. use an encryption scheme that has this property. An unfortunate downside of
this is that each secret key share has size O(n), resulting in O(n?) communication
per committee member as part of the key resharing (even disregarding the size
of the accompanying zero knowledge proof). An even more important remaining
issue is how the public encryption key, together with the initial sharing of the
decryption key, is generated. YOSO-CDN relies on a trusted setup for this.

Adapting YOSO-CDN YOSO-LHE is based closely on the YOSO-CDN pro-
tocol, described above. However, we make a crucial pivot: instead of using a
threshold linearly homomorphic encryption scheme (LHTE) with a global pub-
lic key, we use ngE to enable linear computations on messages to individual
recipients. This eliminates the need for a trusted setup. In order to provide a
secret to a committee instead of an individual recipient, the secret is shared, and
the individual shares are encrypted.

In more detail, in order to provide an input x to the computation, instead
of encrypting x to a global public key as in YOSO-CDN, a role must first secret
share x as (z1,...,2,), and then encrypt each share to a member of a specific
committee. That committee now holds a sharing of x, and can either jointly
decrypt x at the appropriate time (by decrypting and publishing the shares),
or compute on x and other values it may hold. Linear computations are accom-
plished by leveraging ]-'\'}g’,L‘, and through the linear homomorphisms of the secret
sharing scheme. A multiplication requires the use of a Beaver triple, just like in
YOSO-CDN; however, the Beaver triple must now be generated for this specific
committee, as shares encrypted under its public encryption keys.

Unlike in YOSO-CDN; if a value is input to one committee but must later
be used by a different committee, the first committee must re-share the value
to the new committee. This can be done simply by having each role re-share its
share to the new committee.

Communication Complexity, Round Complexity and Future Horizon
YOSO-LHE uses two types of committees: committees of size n (where the size
n is chosen to be large enough to guarantee an honest majority within the
committee), and committees of size h (where the h can be much smaller than n,
since only one honest role, rather than an honest majority, is needed). YOSO-
LHE uses one committee of size n for each layer of multiplication, as well as
one additional committee of size n to decrypt the output. Each multiplication
requires two committees of size h to generate a Beaver triple.

Including m roles who speak to provide inputs to the computation, this
makes the total number of roles who speak throughout the protocol equal to
m + (d+ 1)n + 2dh.

12



It might look like this necessitates 3d+3 rounds of communication, but many
of these committees can speak at the same time. The two committees generating
Beaver triples for the first multiplication must both speak before the first multi-
plication can happen, but the roles providing input can speak at the same time
as one of those Beaver triple committees. Committees generating Beaver triples
for future multiplications can always speak in parallel with previous commit-
tees; in fact, if desired, all of the Beaver triple committees could speak at once,
or alternatively, a single committee could generate all of the Beaver triples. Of
course, the committee who decrypts the output must speak last, which leaves
us with d + 3 rounds of communication. One reason not to have a single pair of
committees of size h generate all of the Beaver triples is what Gentry et al. call
the future horizon, which describes how long before a role needs to act must her
receiver anonymous communication channel be available, or, in other words, how
far in advance must machines be assigned to their roles, or how many rounds
can separate a speaker i from the last speaker j to whom speaker ¢ must send
a message. It is desirable to minimize the future horizon, because when running
in e.g. a blockchain environment, the pool of participants can be very dynamic,
and because machines are always coming and going it can be impractical to
select machines for roles too far in advance (since they might disappear before
the time comes). A small future horizon enables on-the-fly assignment of ma-
chines to roles while the protocol runs. If a single pair of committees generates
all of the Beaver triples, the future horizon of YOSO-LHE will be determined
by the round distance from the first of these two Beaver committees to the last
committee that receives an output of a multiplication (which will be the output
committee). This distance will be d + 2. If instead we have a designated pair of
committees generate Beaver triples for each layer of the multiplication (as we
described above), the future horizon is 3. (We assume that the output wires of a
given layer of multiplication gates in the circuit being computed serve as input
only to the next layer of multiplication gates; otherwise, the future horizon is
determined by the longest wire in the circuit. Note that any circuit can be con-
verted to a circuit with the property we assume by adding multiplication-by-one
gates.)

Comparison to YOSO-CDN There are advantages and disadvantages to
the changes we make to YOSO-CDN to obtain YOSO-LHE. Of course, a cru-
cial advantage of YOSO-LHE — and the motivation for our changes — is that
YOSO-LHE does not require trusted setup.

On the other hand, a disadvantage of YOSO-LHE is that a given value is held
by one committee; for it to be used by several committees, it must be shared to
several, or re-shared from committee to committee. In YOSO-CDN, any value
encrypted to the global public key is accessible by any committee that holds the
shared secret decryption key; no additional work to make the value accessible to a
given committee is needed. In particular, this means that in YOSO-LHE, Beaver
triple preprocessing must be done with a committee in mind. In YOSO-CDN,
all Beaver triples are useable by any committee.

13



1.7 Achieving Setup-Free Constant-Round YOSO MPC from
YOSO-LHE

Gentry et al. [I7] point out a simple constant-round YOSO MPC protocol: if a
secret key for a threshold fully homomorphic encryption (FHE) scheme is shared
to a committee, that committee can perform the entire computation as long as
joint decryption only requires a single round of communication. However, this
protocol requires setup, in the form of the distribution of the secret key shares.

‘We observe that it is possible to combine any setup-free YOSO MPC with any
constant-round YOSO MPC (which might rely on setup) to obtain a setup-free
YOSO MPC whose round complexity is independent of the circuit being com-
puted. This can be done simply by performing the setup for the constant-round
YOSO MPC within the setup-free YOSO MPC, and then using the constant-
round YOSO MPC for the actual computation. If the setup performed by the
setup-free YOSO MPC is independent of the circuit we wish to compute, the
number of rounds required by this bootstrapped protocol will be independent
of the size of the circuit as well. (Note that the number of rounds may still
depend on the security parameter depending on the setup performed.) We can
use our setup-free YOSO MPC — YOSO-LHE— to generate a threshold fully
homomorphic encryption key, and share the corresponding decryption key to a
committee.

(It should be noted that the YOSO-IT construction of Gentry et al. could
also be used as the setup-free YOSO MPC here; however, that construction is
much less practically efficient than ours, due to the large number of committees
they require even for a single multiplication.)

Lastly, we point that an alternate approach to designing constant-round
YOSO protocols could be via randomized encoding i.e. to first consider the low-
degree randomized encoding of the function to be computed and subsequently
use a YOSO MPC to realize this. Since this approach typically leads to an effi-
ciency blowup, we believe the bootstrapping approach outlined above to be more
promising towards designing efficient constant-round YOSO MPC.

2 YOSO Secure Multiparty Computation (MPC)
Definitions

In this section we recap what it means for an MPC protocol to be YOSO secure.
The YOSO model [17] makes a crucial separation between physical machines and
the roles which they play in the protocol. By mapping machines to roles in a
random and unpredictable way, we can ensure that the adversary will not know
which machines will be important, and will not be able to preemptively corrupt
or destroy those machines. In this paper, we describe our YOSO MPC protocols
in terms of roles. We ignore how roles are assigned to machines; we assume the
availability of a role assignment functionality which publishes encryption keys
which can be used to communicate with future roles. Mechanisms which realize
such a role assignment functionality were described by Benhamouda et al. [7]

14



and Gentry et al. [18]. (Our protocols assume that the encryption scheme used
has some special properties; the role assignment mechanisms cited above support
this.) The YOSO model uses the UC framework [10], with roles instead of physi-
cal machines as the participants. Every participant is ‘YOSO-ified’, meaning that
as soon as she speaks for the first time, she is killed. A protocol IT YOSO-realizes
a functionality F if the YOSO-ification of II UC-realizes F (Section [2.1)).

2.1 UC MPC

Consider a protocol IT = (Ry,...,R,) described as a tuple of roles R;, each of
which is a probabilistic polynomial-time (PPT) machine. Some of those roles are
input roles, who, when they speak, provide an input. Other roles are there to
assist in computing a function f on the provided inputs.

In a real-world execution of protocol II with environment £ and adversary
A, the PPT environment £ provides the input = = (z1,...,,,) to protocol’s
input roles. The environment also communicates with the PPT adversary A. We
consider a synchronous model, where the protocol is executed in rounds; in each
round, some roles speak (over a broadcast channel). During the execution of the
protocol, the corrupt roles receive arbitrary instructions from A4, while the honest
roles faithfully follow the instructions of the protocol using the input they were
given. We consider the adversary A to be rushing, i.e., during every round the
adversary can see the messages the honest roles sent before producing messages
from corrupt roles. At the end of the protocol execution, the environment &£
produces a binary output. Let REAL 7 4.£(1%) denote the random variable (over
the random coins used by all roles) representing £’s output in the real world.

Now, consider an ideal-world execution with the same environment &£, but
with an ideal-world adversary S. In the ideal-world execution, instead of running
the protocol I, the roles turn to a trusted party to compute f on the input
given to them by &. This trusted party receives the inputs xi,...,z, from
the input roles, and broadcasts f(x1,...,%;). We call this trusted party the
ideal functionality Fy for computation of f with guaranteed output delivery. Let
IDEALyF, s.£(17%) denote the random variable (over the random coins used by
S) representing &’s output in the ideal world.

Definition 1 (UC Security [10]). Let f : ({0,1}*)™ — {0,1}* be an m-input
function. A protocol I = (Ry,...,R,) UC-securely computes f (with guaranteed
output delivery) if for every PPT real-world adversary A there exists a PPT
ideal-world adversary (or simulator) S such that, for any PPT environment &,
it holds that REAL ae(1%) and IDEALF; s.(1%) are indistinguishable for
any large enough security parameter k.

2.2 The YOSO Adversary’s Corruption Power

Gentry et al. show that, given a role assignment mechanism that randomly maps
roles to machines, an adversary with the ability to selectively corrupt machines
corresponds to an adversary who randomly corrupts roles. This lets us assume

15



that an adversary who can corrupt slightly fewer than half of the available ma-
chines can corrupt less than half of the roles in a committee of roles as long as
the committees are chosen to be large enough. We let n be the committee size
that ensures an honest majority of roles. We let h be the (smaller) committee
size that ensures at least one honest role on the committee.

Gentry et al. also point out that for random corruptions, there is very little
difference between adaptive corruptions and static corruptions. In the case of
random corruptions, the adversary must leave the choice of which role to cor-
rupt to a special corruption controller; the adversary cannot tell whether the
corruption controller makes this random choice on the fly, or whether the choice
was made before the start of the protocol. We follow the path laid out by Gen-
try et al., and phrase our proof in terms of static security, noting that it can be
extended to the adaptive case using standard techniques.

Roles which are expected to provide input are a special case, since it makes
no sense to request input from random machines; rather, there are likely pre-
determined participants who are expected to provide meaningful inputs. We
prove our protocols secure without making any assumptions about the adver-
sary’s ability to corrupt input roles. In particular, we do not require an honest
majority of input roles.

To summarize, we prove security against an adversary who can statically
corrupt (a) arbitrarily many input roles, (b) fewer than half of the roles in each
committee of size n, and (c) all but one of the roles in each committee of size h.

2.3 Verifiable State Propagation

The Fysp functionality maintains two maps for messages between roles, a map
y for point-to-point messages, and a map z for broadcast messages. When roles
have completed their work, they may input a single SEND message to the func-
tionality containing all point-to-point messages as well as a broadcast message.
The role also provides a witness and relation along this input, allowing the func-
tionality to verify that the messages satisfy some requirement. The statements
for the considered relations may be divided into three parts, ¢send, Pbroadcast
and @receive- The first two contain the point-to-point and broadcast messages
respectively. The third and final part of the statement, which is specified by
the functionality, contains all messages sent directly to the role, allowing roles
to prove that their messages are well-formed with respect to secret messages
they have received. After receiving a send command from an honest role the
functionality outputs a SPOKE token, killing the role.

Roles may read messages input to the functionality in the rounds after they
were sent.

Functionality Fysp
E

his ideal functionality has the following behaviour:

16



— Define a map R : Role — Rel, . Specify the relations the messages of
each role must satisfy.
— Initially create point-to-point and broadcast maps:
y : N x Role x Role =+ Msg, where y(r,R,R’) = L for all r,R, R’
z : N x Role — Msg, where z(r,R) = L for all r,R.
— On input (SEND, S, ((Ry,21), ..., (Rk,zk)), 2, w) in round r proceed as
follows:
o Let ¢psena = ((Rlaxl)v ) (Rkyxk)) and Qvroadcast = T-
e Collect all y, # L for ' < r,R" € Role where y(r',R’,S) = yi to
produce a vector @receive = (R1,41)5 -+, (RL,,4m))-
o If <(¢send||¢receive||¢br0adcast)7 w) 4 R<S) ignore the input.
e Else:
* For i € [k] update y(r,S,R;) = x;. Store point to point messages
from the role.
x Update z(r,S) = x. Store the broadcast message from the role.
* Output (S, ((Ry,21),...,(Rk,zk)), z,w) to S. Leak messages
and the witness to the simulator in a Tushing fashion.
If S is honest give SPOKE to S.
— On input (READ,R,S,7’) in round r where v’ < r for x = y(r’,S,R)
output = to R.
— On input (READ,S,7’) in round r where ' < r output z = z(r/,S) to
R.

We prove each of our protocols secure in the Fysp-hybrid model, supplanting
the broadcast and point-to-point functionalities of [I7].

3 YaoOSO

As outlined in the overview in Section (1.4} we present a compiler that transforms
any two-round broadcast non-YOSO MPC protocol that achieves semi-malicious
security with abort in the dishonest majority setting to a two-round YOSO MPC
protocol in the Fysp-hybrid model that achieves malicious security with guar-
anteed output delivery in the honest majority setting. This compiler adapts the
approach of the compiler in [2] with suitable modifications to make it compatible
with the YOSO setting.

3.1 Tools

The compiler uses the following tools:

Tools.
— A two-round m-party non-YOSO broadcast protocol Il achieving semi-
malicious security with abort against dishonest majority (such as the pro-
tocols of [T6IR]). Iy is represented by the set of algorithms {frst-msg,,

17



snd-msg,, out}, where frst-msg, computes P;’s first-round broadcast mes-
sage; snd-msg, computes P;’s second messages; and out computes the
output.

The syntax of the algorithms is as follows:

e frst-msg,(z;, p;) — msg} produces the first-round broadcast message
of party P; to all parties.

e snd-msg;(z;, p;, msg}, ..., msgl ) — msg? produces the second-round
broadcast message of party P; to all parties.

e out(msg},...,msgl  msg? ... ,msg?) — y produces the public out-
put. As mentioned previously, it is without loss of generality to as-
sume that the output computation requires only the public transcript.

— An adaptive garbling scheme (garble, eval, simGC) (Appendix [A.2).
— A Shamir secret sharing scheme (Share, Rec) (Appendix [A.1)).

Notation. Let C; ., (msg],..., msgh,) (with hard coded values (z;,p;))
denote the boolean circuit that computes snd-msg,. For simplicity assume
each first round message is ¢ bits long, so each circuit has L = m - ¢ input
bits. Let g be the size of a garbled C;.

3.2 Protocol

We introduce a relation for each of the committees in the protocol, allowing Fysp
to enforce correct behaviour.
Below, is the relation corresponding to an input committee role I;,

send — Ei7 S('O)'78('1)‘ ;
Z : d‘ _( J_{ FAR g,l,z}le[L])ze[n] msg} — frst—msgj(xj7pj)
receive — 0 1
Rlnput,j = ¢broadcast = (msg]l, ch) (ch’ {Kj(vl)’ KJ('J)}IE[L]) = garble(l)\’ Cj’zj’Pj ’ pj,gc)
b b b b
(ajj, P> Pj.ges {(s;l)’l, cee s;l)’n) — Share(KJ(,l), p;l)

(b) )}be{o,l},le[L]
{Pj,z }be{O,l},le[L])

w =

Below, is the relation corresponding to a computation committee role F;,

¢send =1
0) (1)
¢receive - {Sj,l,i7 Sj’l’i}jELlE[L]’

— 1 1
RComputation,i = msgy, ..., msg..
_ (b))
beroadcast = {Sj,l7i}j617l€[L]
w= 1

msgi||...||msgl, :=b1,...,bL

We present the protocol IIy,0s0 in the Fysp-hybrid model.

18



— Protocol IIy,0s50 : Input

This step is run by the input committee I of size m. The jth input role I; (with input x;)
does the following:

— Compute the first round message of Il using input z; and randomness p; as msg; —
frst-msg, (z;, p;)
— Garble the circuit computing the second round next- message function of I, as
0
(GCj, K;) «+ garble(1*,C;, =P ) Pj.gc), where K = {K]( 1)7 KJ L }le[L] and p; gc denotes
the randomness used for garbling.

— Compute t-out-of-n threshold sharing of the labels as (sgbl) A9aoog sSbl)n) —
Share(K( 0 ,pibl)) (for I € [L] and b G {O 1}), where p(.b) denotes the randomness used.
— Send input (SEND i (B, {SJ L1 J)l ) hew)s - - (En, {sﬁ‘?n, S5l ) hew)), (msgl, 6c;),

(%4, 055 Pirger {Pj,L Yoeqo,1},1€1L)) to Fusp.

— Protocol IIy,0s0 : Computation

This step is run by the computation committee E of size n. The ith role E; does the
following:

— Collect the broadcast messages (msg; 5 GCj) of the input role I; by giving input
(READ, Ij, 1) to Fvsp-
— Collect the point-to-point message {Sgol) 30 s] L ,}ZG[L sent by I; by giving input

(READ, E;, I, 1) to Fysp. Let I’ denote the subset of input roles I; for whom the above
reads resulted in non-_L output.
— Fora € {(j—1)¢+1,...,5¢}, let b, denote the ath bit in msg; (where msg; is replaced by

default first-round message for j ¢ I’). In other words, set by, ..., b := msgi||...|/msg’ .
— Send input (SEND, E;, L, {S;bll)i}jel,Le{L}J-) to Fysp. (Assume the set of shares to be
simply | for j ¢ I').

— Protocol IIy,0s0 : Output

The output can be computed by any party as follows:

— Collect the broadcast messages (msg;, GCj) of each input role I; by inputing (READ, I;, 1)
to Fysp. Let I’ denote the subset of input roles I; for whom the above read resulted in
non-_L output.

— Collect the broadcast messages {s }JEI 1e[u) of each computation committee role E;

G0,
by inputing (READ, E;,2) Let E’ denote the subset of committee roles E; for whom the
above read resulted in non-_L output.

— Forjelr,

- Reconstruct the appropriate input label K;; for I € [L] as K;; < Rec({s;?ll))i}ieE/).
- Evaluate GC; to obtain msg? as msg? < eval(GCj;, Kj1,...,K; ).

— Compute the output as y «+ out(msgl, ..., msg’ ,msg?, ... msg2 ), where msgjl- and msg?

for input roles j € I’ are computed using default input and randomness.

Theorem 1. The protocol Ily.oso realises the MPC functionality Fy with
guaranteed output delivery in the Fysp-hybrid model.

The proof of Theorem [[] may be found in Appendix [C.]]

19



4 YOSO-GLS

We now present our first protocol as outlined in Section starting with the
TFHE scheme which makes up its core.

4.1 Threshold Fully Homomorphic Encryption

For the YOSO-GLS protocol we will use an adaptation of the Threshold Fully
Homomorphic Encryption (TFHE) scheme described by Gordon et al. in [21].
To simplify the security proof of the final protocol, and potentially ease future
use of TFHE, we extract three security properties of the scheme. This diverges
from the approach of [2I], where the authors analyse the scheme directly within
the security proof of the protocol.

As described in our technical overview, moving to the YOSO model requires
a series of modifications to the TFHE scheme, these changes are reflected in the
syntax we present now.

Syntaz.

Setup(1%,n,d; p) — pp: A setup algorithm parameterized by the size of an
honest majority committee n, producing public parameters pp, which are
given as an implicit argument to all subsequent algorithms.

KGen(p;) — (pk;, sk;) : Given public parameters pp and randomness p;, the
key generation algorithm produces a public key pk; and a secret key sk; split
into shares, such that sk; = (sk;1,...,skin).

Enc({pk;}ick, z; p) = C : Given a set of public keys {pk; };cx and a message
x, the encryption algorithm encrypts to a ciphertext C' under randomness p.
Eval(f,C1,...,Cp) — C : Homomorphically evaluates function f on input
ciphertexts C1, ..., Cy, to produce C.

PDec({pk;}ick,csk;,C) — d; : For a ciphertext C, encrypted under the pub-
lic keys {pk;}ick, and computation secret key csk; = {sk; ;}iex this algo-
rithm produces a partial decryption d;.

Combine({pk; }icx,C,{d;}icr) — out : Given a set of partial decryptions {d; };cr
of size at least ¢t 4+ 1, decrypts ciphertext C to plaintext out

To satisfy security we require one additional algorithm, for simulating partial
decryptions.

SimPDec(Cv {pki}i€K7 {Ski}’iEIKGenv {(CSkj’ dj)}jez(:omputation7 OUt) - {dj }jE[n]\IComputation :
Given a ciphertext C' under public keys {pk;};cx, along with partial decryp-
tions for corrupt computation roles, and all secrets known to the corrupted
roles, the partial decryption simulation algorithm produces partial decryp-
tions d; for j € [n]\Zcomputation Which are indistinguishable from honestly pro-
duced partial decryptions.

20



TFHE Security We extract three properties which we show our TFHE scheme
adapted for the YOSO setting satisfies. We define correctness (Definition , se-
mantic security (Definition (3] Figure [3]), and partial decryption simulatability
(Definition |4} Figure [4]), where semantic security and partial decryption sim-
ulatability use a common set of oracles defined in Figure [28 The oracles are
specifically tailored to represent the corruption powers of the adversary over dif-
ferent committees in the YOSO model. One peculiarity of this is that our oracles
do not allow an honestly generated key to be corrupted or leaked subsequently,
as roles erase all private state prior to sending any messages.

‘We will first define correctness.

Definition 2 (Correctness). A TFHE scheme is perfectly correct, if for all
positive integers n, h,d,t < n/2, all functions f (computed by a circuit of depth
d only containing NAND gates and), all p, {piKGe“}ie[hb{(mi7pf"°)}i€[m], and
non-empty sets K C [h], R C [n] where |R| > t:

f(xl, A ,.’L‘m) = Combine({pki}ie;@ C, {d/z}zeR>
Where the inputs to Combine are produced as:

— pp « Setup(1%,n,d; p)

— (pki, sk;) < KGen(pXCen) fori e K

— C; < Enc({pki}icx, xi; p£") for i € [m]

— C <« Eval(f,C1,...,Cp)

— dj — PDec({pkzi}ie;g, {Ski’j}ngC) forj € R.

For the purposes of our remaining definitions, we must first capture the corrup-
tion powers of the adversary. We do this by formalising three oracles, with access
to common state. These oracles are:

— OKGen(i): An oracle that generates a new honest key pair and registers it
in the system.

— OKReg(i, p;): An oracle that allows registering a corrupt key pair, requiring
the randomness used for its generation.

— OCorr(j): An oracle which leaks the computation key for csk;.

These oracles track which keys have been chosen by and leaked to the adversary,
allowing thresholds on corruptions to be checked in our security games. We do
not allow the adversary to corrupt an honestly generated key after the fact, as
this local state, such as the randomness used in generation, would be deleted in
the YOSO setting.

Definition 3 (Semantic Security). A TFHE scheme is semantically secure
under chosen plaintext attack if, for all PPT adversaries A,

1
Adv%ﬂ%}%ﬁé(ﬁ) = Pr[A wins Game%ﬁ%}%ﬁé(m)] e < negl(k)

for a negligible function negl in the security parameter k. Where Game%?]n%}CFﬁ‘Eq(ﬁ)

is defined as described in Figure [3

21



OKGen(i)

1: if ¢ € Hkgen UZKGen Vi & [n] : return L
(pki, ski = (ski1, ..., Skin)) < KGen()
Lieys = Lreys U {(4, pki, ski) }

Hikgen 1= Hrgen U {1}
: return pk;
OKReg(i, pi)

1: if ¢ € Hkgen UZKGen Vi & [n] : return L

2:  (pks,ski;) < KGen(p;)

3: Lkeys := Lkeys U {(¢, pks, ski)}

4: Tkgen := Ikgen U {i}

OCorr(j)
1: if j € [n]:return L

[SLEE SNV V)

2 Z-Computation = IComputation U {]}
3: cskj < {Skiy]' El(l,pk)“ (Ski,l, ey Ski,n)) c I—keys}
4

return csk;

Fig. 2: Oracles used in the security games for TFHE schemes

Definition 4 (Partial Decryption Simulatability). A TFHE scheme has
partial decryption simulatability if, for all PPT adversaries A, for all n,d and
functions f (of only NAND gates and depth less than d),

. ) 1
AdVES B S Ehe () = PrLA wins Gamelr B3 ie ()] — 5 < negl(s)

for a negligible function negl in the security parameter k, where Gamei%ﬁfﬁﬁ?ﬁE(n)

is defined as described in Figure

Instantiating Threshold Fully Homomorphic Encryption We provide an
instantiation of TFHE in Appendix [A4] proving its security in Appendix
A discussion of the changes required to adapt the original scheme to the YOSO
setting may be found in our technical overview (Section .

4.2 The YOSO-GLS Protocol
We present two variants of our YOSO-GLS protocol, achieving different round

complexities, depending on the allowed setup.

— A five round protocol. Two sequential committees, realising a subprotocol
for sampling public parameters for the TFHE scheme, described in Ap-
pendix Followed by three rounds for the TFHE scheme, consisting of a
key generation, input and computation committee, described in this section.

22



IND-CPA
Gamey ', i Teni (F)

1: HkGen := @; TKGen := @; IComputation = @; Lk:eys =10
2: O+ {OKGen, OKReg, OCorr}
3: pp <+ Setup(1”,n)

4: mo,z1 — A°(pp)

5: K < Hrkcen U IKgen

6: b {0,1}

7: C « Enc({pki}ick,zs)

g: b« AP

9: if |Hkeen| =0: A loses
10 :  if |Zcomputation| > t : A loses
11:  if |@o| # |z1] : A loses
12: ifb=0:Awins

13: else : A loses

Fig. 3: The semantic security game for TFHE schemes. See Figure
for a definition of the oracles provided to the adversary.

— A three round protocol. The explicit sampling of public parameters is re-
placed by access to a uniform reference string, leaving only the three rounds
needed for the TFHE scheme.

The functionality for sampling public parameters may be defined as f;reﬁl';'f (re-

alised in Appendix [B.1)). For now we assume access to this ideal functionality
and proceed to design our main protocol.

ionali TFHE
Functionality Fg

— Run pp + TFHE.Setup(1”,n,d) and output pp to S.
— On input (READ, R) output pp to R.

Notation. For the purposes of the three-round protocol we will consider three
committees:

Ki,..., K} denotes the key generation committee K (of size h).
I,..., I, denotes the input committee I (of size m).
Ey,...,E, denotes the computing committee E (of size n).

We introduce a relation for each of the committees in the protocol, allowing Fysp
to enforce correct behaviour.

23



ParDecSim
Game 4’y .. 7FHE(F)

1: HKGen = @; IKGen = @; IComputation = (D; Lkeys = (D
2: O < {OKGen, OKReg, OCorr}
pp < Setup(1”,n)

a4 A{(@n, 1) breim) A (PP)

5: K < Hrcen U Ikgen

6: for je[n]:

7 cskj < {sk; ;13(%, pks, (ski, ..., Skin)) € Lieys}
8: for ke [m]:

9:

Cr < Enc({pk:}ick,zr; pr)
10: C <+ Eval(f,C4,...,Cn)

11: out <+ f(x1,...,Tm)

12: b& {0,1}

13: ifb=0:

14 : for j € [n] \ Zcomputation :

15 : dj < PDec({pki}ick,csk;, C)

16: else :

17 : for j € Tcomputation :

18 : d;j <+ PDec({pk;}ick, csk;, C)

19: {d; }je[n]\IComputation < SimPDec(C, {pki}icx, {ski}icTicen

{(esk;, dj) }5eZcompuation» OUL)
20 b = A({d;}je(n)\ Zeomputation))
21: if [Hkgen| =0 : A loses
22 ¢ if |Zcomputation| > t : A loses
23: if b="b": A wins

24 : else : Aloses

Fig.4: The partial decryption simulatability game for TFHE schemes. See Fig-
ure [2] for a definition of the oracles provided to the adversary.

24



Below, is the relation corresponding to a role in the key generation committee

Kiv
Psenda = ((E1,8ki1), ..., (En,skiy))
RKG _ ¢receive =1 (pk'u (Ski,h ey Ski,n))
en (bbroadcast == (sz) — TFHEKGen(ppa PKL)
w = (pKi)
Below, is the relation corresponding to an input committee role I,
¢send =1
RE _ ¢receive =1 Cz
ne ¢broadcast = (Cz) — TFHE-EnC({pki}iGKa T3 Pll)
w = (xia Pll)
Lastly, the relation for a role in the computation committee E;,
¢Send =1 O(‘TFHEEVB'(f, Cl,...7cm)
RE | = (ybreceive == ((El, Ski,l)a e (Ena Skz,n)) CSki == {Skj,i}jEK
va ¢broadcast - (dz) dz — PDeC({pkk}k€K7 CSki; C)
w= L1

The Fysp functionality is parameterised by a map from roles to relations which
their messages must satisfy. In this case, when defining our use of Fysp, let R
be the map such that R(K;) = Rkgen for i € h , R(I;) = Rencfor j € m, and
R(Ek) = Reval for k € n. Having defined our committees and necessary relations
we may now present our protocol.

— Protocol IIypso—_crLs I

Setup: Any role R may read the public parameters pp after round two, by giving input
(READ, R) to FarHe.
KGen: This step is run by the key generation committee K of size h. Each member K;
(i € [h]) does the following:

1. Runs the key generation algorithm (pki, (ski,1,---,8kin)) <= TFHE.KGen(pp, px,)-

2. Input (SEND, K;, ((E1,ski1), .-, ( n, ski, n)),pk,,pk ) to Fysp.
When the key generation committee is finished all roles may define K such that {pk;}icx
contains all keys where pk; # L is returned by Fysp on the input (READ, K, 3).

Input: This step is run by the input generation committee I of size m. Each
member I; (¢ € [m]) encrypts their input z; under the TFHE keys to get
C,; < TFHE.Enc({pk;}iex, xi; pIi) and then inputs (SEND, I;, L, C;, (4, pI,i)) to Fvsp-

Computation:  This step is run by the computation committee E of size n. Each member

E; (i € [n]) does the following:
1. Collects all C; # L broadcasted by the committee I by giving input (READ, I;,2) to

Fvsp-
2. Evaluates the function f homomorphically on the ciphertexts C —
TFHE.Eval(f, C1,...,Cy), replacing any missing C; with default values.

3. Retrieves each key share by K, sk; ; by giving input (READ, I, E;, 2) to Fysp and defines
CSk}i = {Skj,i}je}(‘

4. Produces partial decryption d; <— PDec({pki }rex, cski, C).

5. Broadcasts d; by inputing (SEND, E;, L,d;, L) to Fysp.

Output: By inputing (READ, E;, 3) to Fysp, any party may then take a set {d; };cr of at least
t + 1 partial decryptions and recover the final output out - Combine({pk;}icikc,C,{d:}icr)-

25



Theorem 2. The protocol Ilypso—grs YOSO realises the MPC' functionality

Fr with guaranteed output delivery in the (fvsp,f;TpE)—hybrid model.

Here we provide a high level sketch of our proof strategy for the YOSO-GLS
protocol. A complete proof of Theorem [2] may be found in Appendix

The Fysp functionality directly leaks inputs from the corrupt roles to the
simulator, which may later input these to the MPC functionality to receive the
result of the computation. The Fysp additionally forces the adversary to provide
the randomness used for key generation and encryption to the simulator. For
messages to be stored they must satisfy the relation specified for a given role.
In our case, this ensures that keys, encryptions and decryptions are computed
correctly, for some choice of randomness. Thus, correctness of our TFHE scheme
implies that our protocol computes the correct output.

We may then proceed through two hybrids, reducing to the security prop-
erties of the TFHE scheme. First, partial decryptions for honest roles may be
simulated, exploiting that the key shares for the corrupt roles have been leaked
by Fysp and the output from the ideal MPC functionality. Indistinguishability
follows from the partial decryption simulatability of the TFHE scheme, mapping
corruptions in the protocol to use of the corresponding corruption oracles in the
security game. In the second hybrid, bringing the simulator to the ideal world,
encryptions of honest inputs may then be replaced by encryptions of zero. It
is still possible to produce the same partial decryptions, simply simulating for
the output received from the ideal functionality. Indistinguishability now follows
from the semantic security of the TFHE scheme, again mapping corruptions in
the protocol to oracle queries in the game.

5 YOSO-LHE

In this section, we describe our YOSO MPC protocol based on linearly homo-
morphic encryption (LHE). Instead of using LHE explicitly, we use the func-
tionality ]—'\%’ST , which models the use of homomorphic encryption for private
communication to future roles.

5.1 f\’,lsoyz Homomorphic Verifiable State Propagation

In some cases the functionality of Fysp may be unnecessarily restrictive. For ex-
ample, it is not unreasonable that the encryption scheme used to realise point-to-
point communication have homomorphic properties. If this were the case then
it might be possible for a role R’ to apply a function on a message x, sent
from a sender S to receiver R, without having to know what x is. We express
this additional power by introducing an expanded variant of our verifiable state
propagation functionality called F\'}g%‘. The class of functions allowed by ]—'Cg',;‘
may be restricted depending on the needs of the protocol and how the function-
ality is constructed, e.g. a linearly homomorphic encryption scheme allowing the
application of any linear function.

26



— Functionality F\i¢p

This ideal functionality has the following behaviour:

— Define a map R : Role — Rel}. Specify the relations the messages of
each role must satisfy.
— Initially create point-to-point and broadcast maps:
y : N X Role X Role —+ Msg, where y(r,R,R") = L for all »,R,R’.
In an abuse of notation we use y(R) as a shorthand for the vector of
all messages previously sent to role. Specifically, define y(R) as the
vector ((S1,v1),---,(Sm,Ym)) containing all pairs (S;,y;) such that
y; = y(r',S;,R) # L for some r' < r.
2z : N x Role = Msg, where z(r,R) = L for all r,R.
— On input (SEND, S, ((R1, 21, f1),-- -, (Rg, Tk, fx)),,w) in round r pro-
ceed as follows:
o Let ¢send = ((thlv fl)a R (Rkvxk, fk)) and ¢b7‘oadcast =x.
e Collect all y; # L for ' < r,R" € Role where y(r',R’,S) = yi to
produce a vector @receive = (R1,y1)s -+, (RL,,Um)).
o If ((¢send||¢7”eceive||¢broadcast)7 w) ¢ R(S) ignore the input.
e Else:

* For i € [k] update y(r,S,R;) = (x4, fi(y(Ry))). Store point to
point messages to each recipient role and apply the homomor-
phism on messages sent to each recipient role.

x Update z(r,S) = x. Store the broadcast message from the role.

x Output (S, ((Ry, 1, f1), .-, (Rk, g, fx)), z,w) to S. Leak mes-
sages and the witness to the simulator in a rushing fashion.

If S is honest give SPOKE to S.
— On input (READ,R,S,r') in round r where ' < r for (2, Zpom) =
y(r',S,R) output (z, Tpom) to R.
— On input (READ,S,7’) in round r where r’ < r output z = 2(1/,S) to
R.

Realizing Fi28: Choosing Compatible Linearly Homomorphic Encryption and
Secret Sharing. We wish to build our YOSO — LH E scheme through the use of
t-out-of-n secret sharings and a compatible linear homomorphism.

The natural choice of linearly homomorphic secret sharing is Shamir secret
sharing [27]. We have several constraints for picking our homomorphic encryp-
tion scheme: (a) it must offer a linear homomorphism over the same finite field
for independently generated key pairs (in order to support operations over shares
from a single secret sharing), and (b) it is strongly desirable that it not require a
common reference string. Notably, well known encryption schemes such as Pail-
lier [25] do not support distributed generation of keys, while alternate variants
such as the cryptosystems due to Damgard and Jurik [15] and Bresson et al. [9)
require a common reference string.

27



We instead propose the use of the linearly homomorphic cryptosystem of
Castagnos and Laguillaumie [I1], which has an ElGamal-like structure. The
plaintext msg is encoded in an exponent (as f™%) during encryption, so that
the natural multiplicative homomorphism of ElGamal becomes an additive one.
In order to enable efficient decryption, Castagnos and Laguillaumie use class
groups, and encode msg using a generator f of a subgroup where the discrete
logarithm problem is efficiently solvable. The message space will be integers mod-
ulo a prime p, where p can be a fixed parameter across multiple independently
generated key pairs (under the constraint that p is big enough)ﬁ

5.2 Informal Overview of YOSO-LHE

To submit an input = to a committee C of size n, an input owner first Shamir
secret shares that input with threshold n/2 as (z1,...,2,). She then uses FI2n
to send each share x; to one of the members of C.

To perform linear operations, the members of a committee use the linear
homomorphism of the Shamir secret sharing . Performing multiplications is more
involved. Let M denote the committee which holds shares of the values to be
multiplied, and let O denote the committee to which we would like to give shares
of the products. The multiplication requires two additional committees A and
B (of size h)— each of which only needs to have one honest role, as opposed
to an honest majority — to generate a Beaver triple. First, each member A; of
committee A chooses a random value a;, shares and sends it via FH2% to M,
and independently shares and sends it via F428 to O. The value a is defined as
the sum of successfully sent a;’s. We let a; j, denote the share sent by A; to O.

Each member B; of committee B then chooses a random value b;, and pro-
ceeds similarly to the members of committee A. However, each role B; also sends
to each member Oy, of O the value bj(a1x + - -+ an i), using ]-'\’}SO{," to compute
this value homomorphically without knowing the values a; ;. To ensure that Oy,
cannot compute b; by dividing the value it receives by aq x + - - - + ap, which it
knows, B; masks the value it sends with a freshly computed sharing of zero; so,
what it actually sends is b;(a1,x + -+ - + apk) + 0%, where 0; 5, is the kth share
of zero. As with a, b is defined as the sum of successfully sent b;’s; ¢ = ab is
similarly defined as the sum of b;a’s.

Next, to multiply two shared values z and y using the generated Beaver
triple (a, b, c), committee M locally computes shares of e =a—x and 6 =b—y
and broadcasts these shares, allowing public reconstruction of ¢ and §. Now
that committee M has spoken, committee O picks up the torch. They use their
own shares of a, b and ¢, as well as the reconstructed € and §, to compute
shares of zy = ¢ — eb — da + €d. (Note that we use this version of the Beaver
triple arithmetic — avoiding using shares of x and y — since shares of z and y
were held by committee M, and may by default not be available to members of
committee O.)

The formal description of the YOSO-LHE may be found in Appendix

4p is not a CRS, since security does not depend on the honest choice of p.

28



Theorem 3. The protocol Ilyoso—ruE Tealises the MPC functionality Fr with
guaranteed output delivery in the FOB-hybrid model.

The proof of Theorem [3] may be found in Appendix [C4]

References

1.
2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

SODA: Scalable oblivious data analytics. https://soda-project.eu/| (2019)
Ananth, P., Choudhuri, A.R., Goel, A., Jain, A.: Round-optimal secure multiparty
computation with honest majority. In: CRYPTO 2018, Part II (Aug 2018)
Asharov, G., Jain, A., Lépez-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction via
threshold FHE. In: EUROCRYPT 2012 (Apr 2012)

Bellare, M., Hoang, V.T., Rogaway, P.: Adaptively secure garbling with applica-
tions to one-time programs and secure outsourcing. In: ASTACRYPT 2012 (Dec
2012)

Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: ACM
CCS 2012 (Oct 2012)

Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: 20th
ACM STOC (May 1988)

Benhamouda, F., Gentry, C., Gorbunov, S., Halevi, S., Krawczyk, H., Lin, C.,
Rabin, T., Reyzin, L.: Can a public blockchain keep a secret? In: TCC 2020, Part I
(Nov 2020)

Benhamouda, F., Lin, H.: k-round multiparty computation from k-round oblivious
transfer via garbled interactive circuits. In: EUROCRYPT 2018, Part II (Apr / May
2018)

Bresson, E., Catalano, D., Pointcheval, D.: A simple public-key cryptosystem
with a double trapdoor decryption mechanism and its applications. In: ASI-
ACRYPT 2003 (Nov / Dec 2003)

Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd FOCS (Oct 2001)

Castagnos, G., Laguillaumie, F.: Linearly homomorphic encryption from DDH. In:
CT-RSA 2015 (Apr 2015)

Chaum, D., Crépeau, C., Damgard, I.: Multiparty unconditionally secure protocols
(abstract) (informal contribution). In: CRYPTO’87 (Aug 1988)

Choudhuri, A.R., Goel, A., Green, M., Jain, A., Kaptchuk, G.: Fluid MPC: Secure
multiparty computation with dynamic participants. In: CRYPTO 2021, Part II
(Aug 2021)

Cramer, R., Damgard, 1., Nielsen, J.B.: Multiparty computation from threshold
homomorphic encryption. In: EUROCRYPT 2001 (May 2001)

Damgard, I., Jurik, M.: A length-flexible threshold cryptosystem with applications.
In: ACISP 03 (Jul 2003)

Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal
assumptions. In: EUROCRYPT 2018, Part II (Apr / May 2018)

Gentry, C., Halevi, S., Krawczyk, H., Magri, B., Nielsen, J.B., Rabin, T., Yakoubov,
S.: YOSO: You only speak once - secure MPC with stateless ephemeral roles. In:
CRYPTO 2021, Part IT (Aug 2021)

Gentry, C., Halevi, S., Magri, B., Nielsen, J.B., Yakoubov, S.: Random-index PIR
and applications. In: TCC 2021, Part III (Nov 2021)

29


https://soda-project.eu/

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning
with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In:
CRYPTO 2013, Part I (Aug 2013)

Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: 19th ACM STOC
(May 1987)

Gordon, S.D., Liu, F.H., Shi, E.: Constant-round MPC with fairness and guarantee
of output delivery. In: CRYPTO 2015, Part II (Aug 2015)

Groth, J., Ostrovsky, R.: Cryptography in the multi-string model. In:
CRYPTO 2007 (Aug 2007)

Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: Computing
without simultaneous interaction. In: CRYPTO 2011 (Aug 2011)

Lapets, A., Jansen, F., Albab, K.D., Issa, R., Qin, L., Varia, M., Bestavros, A.:
Accessible privacy-preserving web-based data analysis for assessing and addressing
economic inequalities. In: Proceedings of the 1st ACM SIGCAS Conference on
Computing and Sustainable Societies. COMPASS ’18, Association for Computing
Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3209811.3212701,
https://doi.org/10.1145/3209811.3212701

Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: EUROCRYPT’99 (May 1999)

Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: 37th ACM STOC (May 2005)

Shamir, A.: How to share a secret. Communications of the Association for Com-
puting Machinery (11) (Nov 1979)

Veeningen, M., Chatterjea, S., Anna Zsé6fia, H., Spindler, G., Boersma, E., van der
Spek, P., van der Galién, O., Gutteling, J., Kraaij, W., Veugen, T.: Enabling ana-
lytics on sensitive medical data with secure multi-party computation. Stud Health
Technol Inform (2018)

Yao, A.C.C.: Protocols for secure computations (extended abstract). In: 23rd FOCS
(Nov 1982)

Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th
FOCS (Oct 1986)

30


https://doi.org/10.1145/3209811.3212701
https://doi.org/10.1145/3209811.3212701

Supplementary Material

A  Tools

We recap the tools we need in our YOSO constructions.

A.1 Linearly Homomorphic Secret Sharing

A t-out-of-n secret sharing scheme allows a party to “split” a secret into n shares
in a field F that can be distributed among different parties. To reconstruct the
original secret x at least t + 1 shares need to be used. Such a secret sharing
scheme is linearly homomorphic if it allows parties to locally evaluate linear
functions on shared values.

Syntazx. A t-out-of-n linearly homomorphic secret sharing scheme has the fol-
lowing algorithms:

Share(z; p) — (s1,--.,8n): An algorithm that, given a secret x, outputs a set
of n shares in a finite field F.

Rec({si}iesciny,|s|>¢) — @+ An algorithm that, given a vector of at least ¢ +1
shares, outputs the secret x.

Eval((s1,...,8m),(c1,...,¢cm)) — st An algorithm that, given some party ’s
shares s1,..., S, of secrets x1,...,x,, as well as coefficients cy, ..., ¢, out-
puts a share s of Z;”:l cjz; in the finite field F.

SimShare({s;}es,|51<ts ) = {57 }icin)\ s A simulation algorithm that, given
shares belonging to corrupt parties and a target value z, simulates the shares
belonging to honest parties that causes Rec to output the desired value.

Properties. We require the following properties of a linearly homomorphic t-out-
of-n secret sharing scheme:

Perfect Correctness. The perfect correctness property requires that the
shares of a secret x should always reconstruct to x. More formally, a secret
sharing scheme is perfectly correct if for any secret x, for any subset S C
[n],[S] > ¢,

(s1,-..,8n) < Share(zx)

o < Rec({s}ics) =5

Pr [m =g

where the probability is taken over the random coins of Share.

Furthermore, correctness should hold even when shares are a result of an
evaluation. More generally, the perfect correctness of a linearly homomor-
phic t-out-of-n secret sharing scheme requires that for any set of secrets
Z1,...,Tm, any set of coefficients ¢1, ..., ¢y, for any subset S C [n], |S| > ¢,



m (s1,...,s)) < Share(z;) Vj € [m]
Pr |2’ = chxj s; < Eval((s},...,s™),(c1,...,cm)) Vi€ n] | =1,

j=1 ' ReC({Si}ies)

where the probability is taken over the random coins of Share.

If a negligible error probability is allowed, we simply say that the scheme is
correct.

Privacy. The privacy property requires that any combination of up to ¢
shares should leak no information about the secret . More formally, we say
that a secret sharing scheme is private if for all (unbounded) adversaries A,

for any set Z C {1,...,n}, |Z| < ¢ and any two secrets xg,z1 (such that
|zo| = [1]),
_ {Si}ie[n] = Share(xo); . _ {si}ie[n] = Share(x);
Pr [A(S) =1 S = {sibies Pr|A(S)=1 S = {s:}iex < negl(k)

for a negligible function negl in the bit-length x of the size of F.

Share Simulatability. Additionally, we require an efficient simulator for
the generated shares. More formally, we say that a secret sharing scheme is
share simulatable if there exists a PPT simulator SimShare such that for every
PPT adversary A, for any set Z C {1,...,n}, |Z| <t (and H = {1,...,n}\2),
and any two secrets xg,x1, for (so,...,Sn) ¢ Share(zg), (s},...,s),) «
Share(z1) and {s/};en < SimShare({s; }icz, %0),

| Pr[A({si}iez, {si}ien) = 1] = Pr[A({si}icz, {5} }ien) = 1] | < negl(x)

for a negligible function negl in the bit-length x of the size of F.

Instantiation. In our constructions, we use Shamir’s threshold secret sharing
scheme [27], and refer to its algorithms as (SH.Share, SH.Rec, SH.Eval, SH.SimShare).
Shamir secret sharing satisfies the useful property we require in our construc-
tion — SH.Eval involves only linear operations (which is important since our con-
struction executes SH.Eval on the threshold shares under the hood of a linearly
homomorphic encryption scheme).

A.2 Garbling Scheme

A garbling scheme, introduced by Yao [29] and formalized by Bellare et al. [],
enables a party to “encrypt” or “garble” a circuit in such a way that it can be
evaluated on inputs — given tokens or “labels” corresponding to those inputs
— without revealing what the inputs are.

Definition 5 (Garbling Scheme). A projective garbling scheme is a tuple of
efficient algorithms GC = (garble, Eval) defined as follows.

32



garble(1™,C) — (GC,K): The garbling algorithm garble takes as input the
security parameter n and a boolean circuit C : {0,1}¢ — {0,1}™, and outputs
a garbled circuit GC and ¢ pairs of garbled labels K = (K?, K{,...,K?, K}).
For simplicity we assume that for every i € [¢{] and b € {0,1} it holds that
Kp e {0,1}".

Eval(GC, K1, ..., Ky) — y: The evaluation algorithm Eval takes as input the
garbled circuit GC and £ garbled labels K1, ..., Ky, and outputs a value y €
{0,1}™.

We require the following properties of a projective garbling scheme:

Perfect Correctness.. We say GC satisfies perfect correctness if for any boolean
circuit C: {0,1}* — {0,1}™ and x = (w1, ...,2¢) it holds that

Pr[Eval(GC,K][z]) = C(z)] =1,

where (GC,K) + garble(1",C) with K = (K{,K{,...,K},K}), and K[z] =
(K7t .. K",

Next, we formally define the security notions we require for a garbling scheme.
When garbled circuits are used in such a way that decoding information is used
separately, obliviousness requires that a garbled circuit together with a set of la-
bels reveals nothing about the input the labels correspond to, and privacy requires
that the additional knowledge of the decoding information reveals only the appro-
priate output. In our work, we do not consider decoding information separately
(but rather, consider it to be included in the garbled circuit), so we do not need
obliviousness.

Privacy. Informally, privacy requires that a garbled circuit together with a set of
labels reveal nothing about the input the labels correspond to (beyond the appro-
priate output).

More formally, we say that GC satisfies privacy if there exists a simulator
simGC such that for every PPT adversary A, it holds that

Pr[A wins] < % + negl(n)

in the following experiment:

( 7
Adversary A Challenger C
c:{0,1}* = {0,1}™
X = (x1,...,%x¢) € {0,1 ¢
(=2 DOy oy
if b=0:
(ec, (K7, Ky, ..., K}, Kp)) + garble(1",C)
K; =K forie [{
ifb=1:
(Ge, K1,...,Kp) < simGC(1™,C, C(z))
GC, Ki,..., K
<
b/
>
A wins if b=1b

33



Adaptive Privacy. Informally, this property requires that privacy is maintained
against an adversary who first obtains the garbled circuit and then selects the
input. More formally, we say that GC satisfies adaptive privacy if there exists a
simulator simGC such that for every PPT adversary A, it holds that

Pr[A wins| < % + negl(n)

in the following experiment:

Adversary A Challenger C

c:{0,1}* — {0, 1}™
{0,13" — {0, 1} o b {0,1}
if b=0:
(6¢, (K9, K1, ..., K¢, K;)) < garble(1™,C)
if b=1:
GC + simGC(1™, ¢(C), “ckt”)
where ¢(C) denotes the topology of Cﬁ

GC
< ¢
x = (x1,...,%x¢) € {0,1
(1 ) € {01} > if b=0:
K; = K. for i € [(]
if b= 1:
(K1, ..., Kg) « simGC(1™, C(x), “input”)
Ki,...,Kg
<
b/
>

A wins if b = b’

“we assume that the topology of a circuit does not reveal hard coded values (as
hard coded values are essentially fixed input labels for some wires)

Instantiation. For our constructions, adaptive garbled circuits can be obtained
using one-time pads with Yao’s garbled circuits (as shown by Bellare et al. [4]).

A.3 Vector operations

Before we may proceed to defining the scheme we must first recall a number
of vector operations, presented in [19]. Let £ = |logq| + 1 be the length of the
bit representation of an integer for some modulus ¢q. We may then define the
following procedures acting on vectors a € Z; and a’ € Z};‘e, where arithmetic is
over Zg.

— BitDecomp(a) = (a1,0,...,a1,6-1,---,0v,0,---,0y¢—1) Where a;; is the jth
bit of the ith element of a, such that a; = Z?;é 2jam-.

— BitDecomp™*(a/) = (Zf;é 2al ..., Z?;é 2al, ;) for o’ = (a1, ...,a1,0-1,
e 3 Qp,0y- -y e—1), while this is most naturally defined when o’ is a binary
vector it remains well defined when this is not the case.

— Flatten(a’) = BitDecomp(BitDecomp™*(a’)) for non-binary o’ this procedure
outputs a binary vector which preserves some of the structure of a’. This is
a central feature in how the GSW scheme limits error growth, see [I9] for

detailed exposition.

34



We also define the above procedures on matrices, by simply applying the proce-
dure row by row.

A.4 Threshold Fully Homomorphic Encryption construction

We will now describe our Threshold Fully Homomorphic Encryption construction
TFHE = (Setup, KGen, Enc, Eval, PDec, Combine, SimPDec)

Public Parameters. Following the approach of [2I] we define the following
public parameters, with respect to security parameter x. The number of roles
participating in the key generation is the size of a helper committee h, these roles
each produce keys shares for a committee of n roles. We then define a bound
d = poly(k) for the maximal circuit depth, along with a modulus ¢ = poly(d, k).
Finally, we introduce a lattice dimension v = wv(d,n) and error distribution
X = X(k,d, n) chosen such that they provide « bits of security for the LWE, ,
problem (See Definition [6). We set u = O((v+n)logq) and let £ be the bitlength
of our modulus |logg| + 1. For our B,-bounded error distribution x, we may
define a positive integer bound Bsmug € Z subject to the constraints:

(v+1)0+1)%-n-B,
Bsmug

= negl(k), n - Bsmug < q/8.

The final public parameter produced is a uniformly random matrix B € Zg*?,
to be used when generating public keys. Note that B is the only public parameter
which may not be locally and deterministically derived from know parameters.
We then have pp = (v, u, g, X, By, Bsmug, B) < Setup(1”, n).

Key Generation. We combine the two rounds of key generation of the [21]
scheme into a single procedure. KGen(B) where role i proceeds as follows:

— Sample s; uniformly in Zg, sample error term € from x*, and compute pk; =
B s; 4 ¢. If any sample from x has absolute value larger than B, , it should
be replaced 0 if this is the case. (Note that as x is By-bounded this only
happens with negligible probability)

— Sample an error term r; uniformly from [—Bsmug, Bsmug]

— Shamir share s; and r; with a t-of-n threshold to produce (s; 1, ..., ;) and
(ria,...,7in). Note that as s; is a vector each share s; ; actually consists of
v pointwise shares.

— Output (pki, ((8i1,7.1),-- -5 (SinsTin)))

Encryption. To permit a separate key generation committee we combine the
encryption and ciphertext transformation procedures, this is possible as consol-
idating key generation into a single rounds allows roles giving input to know
which key shares are available at time of encryption. Enc({pk; }icx, x) proceeds
as follows:

35



— First compute public key pk =3, pk;
— Sample R uniformly from {0, 1}(v+1éxu
— Compute and output C = Flatten(z - I(,41), + BitDecomp(R - pk||R - B))

Evaluation. All ciphertexts provided are encrypted under the same public key
pk = ) i Pk;, this corresponds directly to an encryption in the [19] scheme
under pk. Therefore, any circuit f, made up of only NAND gates, may be eval-
uated homomorphically on the ciphertexts. We refer the reader to [19] and [21]
for a detailed explanation.

Partial Decryption. Let 3 = [log(q/2)], such that 2% € (q/4,q/2]. The B-
th row of C' may then be parsed as Cs = (Cp1||Cp,2) where Cg € Z, and
0572 € Zz'z.

The partial decryption of our scheme proceeds exactly as the first round of
decryption in [21]. Partial decryption PDec, of a ciphertext under keys {pk; }icx,
for a party j, which has received key and noise shares {(s; ;,7 ;) }icx may be
done by:

— Summing all key shares z; = >, ) 5i
— Computing and outputting partial decryption d; = (BitDecom p ! (Cp2), i)+

Diek Tig

Final decryption. Given at least ¢ partial decryptions of C under keys {pk; };cx
any party reconstruct the final decryption. In Combine({pk;}icic, C,{d;}icr) a
party starts by choosing a set R' C R of size t + 1. They may then use Lagrange
polynomials jux to reconstruct w = ), - p f1x(0)dg. This is then finally used to
output the decryption:

BitDecomp ™' (Cjs,1) — w
28

Partial Decryption Simulatability. Given the secret and randomness shares
of corrupt roles the partial decryptions of the honest roles may be simulated.
We extract the approach taken by the simulator described in [21] for generating
third round messages, defining a seperate SimPDec algorithm, which proceeds
as follows:
The algorithm is given ciphertext C' with corresponding plaintext out, along
with secret and randomness shares for i € Zkgen, in the form of sk; = ((si1,74,1)s - -5 (Sins Tin))-
The algorithm additionally recieves (d;, csk; = {(si j,7i,j)icx }) for j € Zcomputation-

1. Partial decryptions are interpolated to produce w = (BitDecomp ™" (Cs,2), Y ici 5i)
such that

BitD “(Ca) -
out:{ i ecomeﬁ( 5,1) w-‘.

36



To decrypt to a desired output contributions of honest partial decryptions
must be constructed, such that they interpolate to give

W = BitDecomp™(Cj.1) — <BitDecomp_1(Cﬁ,2)7 Z si> — 20 . out,

1€ TKGen

where s; is reconstructed for each corrupt party in Zkgen, from the secrets
(Si,1; ey Si,n)-

2. We will define Shamir shares «; such that the honest decryptions ensure
that all partial decryptions reconstruct to W when combined. We start by
defining oy = W, and then pick indices V' C [n] \ Zcomputation, Such that
[V| + | Zcomputation| = t, so that we may construct «; for j € V' U Zcomputation-
This leaves o; well defined for the remaining roles, allowing them to be
interpolated.

— For ] € IComputation: Z; = ZiEHKGen Si,j5
— ForjeV: z; sampled uniformly randomly
— For JE VU IComputation5

a;j = (BitDecomp ™! (Cp.2), 2})

— Reconstruct the remaining shares for ¢ € [n] \ (V' U Zcomputation):

Q= D€ (0}UV UTcqmpunaon 19 (D)
3. For honest roles j € [n] RIComputation define

d; = (BitDecomp ' (Cs.2), z;) + a; + Z T
jeK

where z; =) € Ticen Sihi- Finally, output {d; }je[”]\IComputation

A.5 Security of the TFHE construction

Prerequisites To prove security of our TFHE scheme we must first introduce
the Learning with Errors assumption on which it is based.

Definition 6 (Learning with Error assumption [26]). For integers v =
v(k), ¢ = q(k) and distribution x = x(k), we say the LWE, ,, assumption
holds if for any u € poly(k), the distribution (B,B - s+ €) is computationally
indistinguishable from (B,u), where € < x*, and (B, s,u) are sampled uniformly
as B ﬁZZI‘X”, s ﬁZ}; andu(iZg.

We further recall a variant of the leftover hash lemma, and a useful result by

Asharov et al. that shows adding large noise may hide the small noise terms
from homomorphic evaluation.

Lemma 1 ([2I], Implicit in [26]). Let v,x,q be parameters such that the
LWE, .y, and let n be some integer polynomial in k. Then for u = O((v +
n)logq), for any vectors by, ..., b,—1 € Zg, the distribution of (B, b, R-(b|[B), R(b1]|
is computationally indistinguishable from (B,b, U, R - (b1]|...||bn-1)), where B
is uniform over Zy*", b is uniform over Zy, U is uniform over Zévﬂ)exu, and

¢ =|logq| +1.

37

oo bn=1))



Lemma 2 ([3]). Let By = Bi(k), Ba = Ba(k) be positive integers, and let
e1 be an integer such that |e1| < By. Then for ey sampled uniformly in the
interval [—Ba, Bs], the distribution of es is statistically close to that of e1 + ez,

if B1/Bs = negl(k).

Security proofs

Theorem 4. The TFHE scheme defined in Section [A] satisfies correctness
Definition 3

Proof. We follow the lines of the correctness proof of [21]. Each ciphertext Cy, +
Enc({pk; }ick, xk; pr) corresponds to a GSW ciphertext under the public key
(B, pk) where pk = ), pki, i.e.

Cy, = Flatten(xy, - I(y41)¢ + BitDecomp(R - pk||R. - B)).

By the analysis of [19] we know C « Eval(f,C1,...,Cy,) is an encryption of
out = f(C4,...,Cy,), with appropriately bounded error. Specifically, there exists
some error € satisfying [é| < ((v+1)¢+ 1)¢ - n - B, such that

BitDecomp™ ' (Cj.1) — <BitDecomp1(C’@’2)7 Z s,> =2 out +eé.
i€k

The norm of € is strictly bounded as the key generation procedure replacing any
error terms which are too large by zero, this prevents the adversary choosing
randomness which causes samples from x to exceed B,. Inspection of the par-
tial decryptions reveals that interpolating from any set of at least ¢ + 1 partial
decryptions d; = (BitDecomp ™ (Cj2), Y ik 8i.j) + Soyexc Tij Yeilds

w = <BitDecomp_1(CB,2)’ Z 51> + Z T
i€k €K

as r; are sampled from [—Bsmug, Bsmug) then |> ;7| < n - Bomug < ¢/8 and
thus

BitDecomp™ ' (Cp1) —w]
{ Y = out.

Here we implicitly rely on é/Bsmyg = negl(x). O

Theorem 5. The TFHE scheme defined in Section[A]] has semantic security
following from Definition[3

Proof. We prove the semantic security of our encryption scheme through a series
of hybrids, which we subsequently prove are indistinguishable.
Real Hj: The challenger is run as described in Gameﬁy nl?t}c;ﬁé(n)

38



Hybrid H;: Instead of running OKGen(i) as prescribed pk; is sampled as a
uniform vector in Zj. For each j € Zcomputation define s; ; and r; ; as uniformly
random shares. For each query to OCorr(j), fix any previously undefined s; ;
and r; ; for © € Hx as random shares, prior to outputting them.

Hybrid Hs: Instead of encrypting the ciphertext set C' = BitDecomp(U)
where U & Z((;)H)ZX(UH).

In Hs the ciphertext C' has the same distribution independent of b, therefore
no adversary may win the game with probability greater than 1/2. We will now
prove our sequence of hybrids are indistinguishable to any adversary which wins
the game:

Hy ~ Hy; To ensure correctness KGen replaces any samples from x which have norm
larger than B, by zero, this only happens with negligible probability for each
sample, and thus remains negligible when union bounding across the samples
for each OKGen query. Therefore, the error distribution with replacement
is statistically indistinguishable from the distribution without replacement.
The computational indistinguishability of each pk; from uniform vectors then
follows directly from the LWE assumption (Definition @ For an adversary
to win the game |Zcomputation| < t must hold, therefore for ¢ € Hkgen an adver-
sary will never see more than ¢ shares s; ; of s;. These shares are distribted
indetically to the random shares produced in H;.

H, ~ H, Consider the distribution ciphertext C' = Flatten(C") = BitDecomp(BitDecomp™*(C")).
We may restrict our focus to the distribution of BitDecomp™'(C’) as this
fully determines the distribution of the final ciphertext C. By the linearity
of BitDecomp ™! we may now consider the distribution of

BitDecomp ™! (x - Ioi1ye) + BitDecomp ™! (BitDecomp(R. - pk||R.- B))

= BitDecomp ' (z - Itys1ye) + (R - pk||R - B)

Consider the distribution of R - pk||R - B, for i € Hkgen this is may be
rewritten as R - pk;||R - B + >, i\ ;3 (R - pk;||0), where 0 is the all zero
matrix. By Lemma the ensemble (B, pk;, R - (pk;||B),{R - pkj}jex\{i}) is
indistinguishable from (B, pk;, U, {R - pk;}jex\(i}), for any choice of pk; for
J € KGen\ {i}, where U is uniform over ZL(IUH)ZX(UH). Thus we may replace
the ciphertext by the indistinguishable BitDecomp(U).

O

Theorem 6. The TFHE scheme defined in Section has partial decryption
simulatability Definition [J)

Proof. We will prove security in the partial decryption simulatability game by
showing the statistical distance between the real partial decryptions and simu-
lated partial decryptions in negligible.

When the adversary is given the partial decryptions on behalf of the honest
roles it no longer has access to the corruption oracles. Thus we may consider fixed

39



sets Hkgen, ZkGen from key generation as well as Zcomputation: Let K = Higen U

IKGen .
Consider the statistical distance A(X,Y’) between distributions X, Y defined

as:

X = <BitDecomp_1(C572), ZSW> + Z 74,4 | 1 € [n] \ Zcomputation

jEK: JEHKGen

Y = <BitDecomp_1(C’ﬁ,2), Z 5“> + oy + Z 75 |1 € [n] \ Zcomputation

J€ZKGen JEHKGen

Observe that X is the distribution of partial decryptions produced by the PDec
algorithm, while Y is the distribution of produced by the SimPDec algorithm,
excluding the contributions due to shares of r; for j € Zkgen. It is clear that
Advi?ﬁﬁfﬁ%’&(ﬁ) < A(X,Y). Due to the linearity of the inner product we may
simplify this further and instead consider X’ and Y’ where A(X,Y) = A(X',Y”)
for

X/ — <BitDec0mp1(C’5’2)7 Z sj,i> + Z T 1€ [n]\Icomputat]on R

jEHKGen jeHKGen

Y/ =q o; + Z T4 1€ [n] \IComputation

JEHKGen

We may now observe that X’ is distribted as random secret shares of
<BitDecomp_1(C'ﬁ,2)7 Z $j> + Z rj
JEHKGen JEHKGen

and Y’ is distributed as random secret shares of

W + Z Tj.

JEHKGen

Following the argumentation of the correctness proof (Theorem |4)) we know

BitDecomp™ ! (Cj5.1) — <BitDecomp1(Cﬂ’2), Z sj> =20 . out+é
jEK

for [é| < ((v+1)¢+1)%-n- B,.

40



Therefore,

<BitDecomp_1 (Cs2), Z 5j>

JEHKGen

= BitDecomp ' (Cj) — <BitDecomp_1(C572)7 Z sj> — 2% out+é
JE€TKGen

=W+e.
(Recall W = BitDecomp™'(Cj,1) — (BitDecomp™(Cj.2), > ieTie Si) — 27 . out)

As [Hkeen| > 0 we know by Lemma [2| that A(W +¢€+ 3,5 ;W +
> € Hicen r;) is negligible in the security parameter, concluding our proof. O

B YOSO constructions

B.1 Generating Public Parameters for YOSO-GLS

The public parameters of the TFHE scheme (Appendix include a uniformly
sampled matrix B, in this section we will demonstrate how to explicitly sample
such a matrix in a two round YOSO protocol. All other public parameters may
be derived deterministically. In the first committee, which may have a dishonest
majority, roles may sample random matrices, producing index-wise Shamir shar-
ings to send to the subsequent committee. The second committee which must
have an honest majority, then adds shares they have received and broadcasts the
result. Intuitively, this prevents a rushing adversary from biasing B, as it would
have to corrupt a majority of the second committee to know the contribution of
the honest roles.

Notation For the purposes of our protocol we define two committees:

S1,...,Sp denotes the sampling committee S (of size h).
C,...,C, denotes the combining committee C (of size n).

To ensure correct behaviour of the roles in these committees we define the rela-

tions:
(bsend = (Bj,h ce 7Bj,n)
Rshare = ¢receive =1 Bj,la ceey Bj,n

¢br0adcast =1 <~ Share(Bj; ij) ’
w= (Bj,p;)

¢send =1

R Combine = (breceive = (Bl,i7 sy Bh,i) B; = Z;'lzl Bj,i .
Obroadcast = Bi where B;; = L is replaced by 0
w= 1

We now define our protocol Hsetyp.

41



—{ Protocol Ilsep

This subprotocol is run by two sequential committees S and C, of sizes h and n respectively.

Sample: Each member S; (j € [h]) of the committee S does the following:

1. Uniformly sample a matrix B; & Z”;X”
2. Computes a point-wise Shamir sharing of B
— Bj,l, coog Bj,n < Share(Bj; psj)
3. Input (SEND, S;, ((C1,Bj1),...,(Cn,Bjn)), L, st) to Fvsp

Combine: Each member C; (¢ € [n]) of the committee C' does the following:
1. Inputs (READ, S;, C;, 1) for each j € [h] to get (B1,q,...,Bp, i), replacing any B; ; = L
with 0.
2. Defines B; = Eje[h] B
3. Input (SEND, C;, L,B;, J_) to Fvsp

Output: The matrix B may then be publicly computed, where each index is defined as B*A
Rec({B?’ﬁ}iER) where R C [n] of size at least t + 1, and B; # L for ¢ € R. Each B; may be
read from Fysp by giving input (READ, C;, 2). All remaining public parameters may be locally
derived given only k,n and d. The roles may then output pp = (v, u, ¢, X, By, Bsmug, B)-

Theorem 7. The protocol sernp YOSO-realises the functionality FSTe';':'pE in the
Fvsp-hybrid model.

The proof of Theorem [7] may be found in Appendix

B.2 Formal Description of YOSO-LHE

We describe the formal protocol in the F2m-hybrid below, which uses the tool
of Shamir secret sharing scheme (Share, Rec), described in Appendix
Below, we describe our notation for the relevant roles.

- Ci1,...,C), denotes the roles of a generic committee C; (of size n).

— Aja,...,Appand By, ..., By denote the roles of the two helper committees
(each of size h) responsible for the generation of Beaver triples to aid in the
round [ multiplication.

For simplicity, we assume that each committee only performs a single op-
eration (whether it be decryption, Beaver triple preparation or multiplication).
This can easily be parallelized so that each committee does a single level of
operations.

Before describing the protocol, we introduce some relations for use in f\r}g’g.

Below, is the relation corresponding to an input committee role.

Gsend = ((017 Z1, J—)a ) (Cna L, J—))
¢Tecei'ue =1

¢broadcast =1

w= (z,p)

Rshare = (21,...,2,) < Share(z;p) ¢,

42



Below, is the relation corresponding to roles that decrypt i.e. open a value which
has been computed as a public linear function (denoted as fy) of a subset of the
values that this role has received,

¢send =1

RDec _ ¢receive - (yla s 7ym)
¢broadcast =T T = ff(ylu”wym)
w= 1

— Protocol IIypso_rgg : Input and Output I

Input: This step is run by an input role.
To provide input  to committee C, the jth input role does the following:

— Computes a shamir sharing of its secret input x as (z1,...,zn) < Share(z; pr;) with
threshold ¢.
— Inputs (SExD, I, ((C1, @1, L), ..., (Cn,®n, L)), L, (m,pli)) to .FC‘S"S.

The ith role in C may then read her share of input x in the following round by inputting
(READ, C;, I;,1) to Fum.
Decrypt: This step is run by a committee C of size n, in round r. To reveal her share, each
member C; of committee C' does the following:

— Input (SEND, C;, L, z,, L) to .F\'}g',;'
Let Q C [n] denote the indices of the roles in C who provided a valid share z; # L read from
FU& using (READ, C;, 7). Anyone can then reconstruct x as @ <+ Rec({z;}ico).

Output: This step is run by committee C of size n.
The committee C' calls Decrypt using shares (outy, ..., outy,). El

“Note that the associated relation Rpec would involve the values that were
used to compute out; as a part of dreceive-

The additions in the circuit can be done via local computation. However,
multiplication gates still require interaction and thus require passing state over
to a new committee. To this end we introduce two new committees:

- M;q,..., M, denotes the roles of the committee (of size n) responsible for
the Ith multiplication.
- Oi1,...,0, denotes the roles of the committee (of size n) who holds the

output of the Ith multiplication. (If committee Oy is responsible for the next
multiplication, it will be the same as committee M;1; or it can be the output
committee.)

The multiplication committee uses the decryption operation to reveal interme-
diate values, avoiding the need for any new relations. We start by assuming that
a sharing of a beaver triple is held by our multiplication and output committee,
and will subsequently show how such a triple may be produced.

43



— Protocol IIypso—_ruE : Evaluation

Add: This step is run by a committee C of size n.
To add (z1,...,x,) (representing shares of z) and (y1,...,yn) (representing shares of y), the
ith member of the committee C does the following.

— Compute her share of the sum as z; = z; + y;.

Mult: This step is run by committee M; of size n and O; of size n
To multiply values

— (z1,1,---,%1,n) (representing shares of x;) and
— (Yi,1,---,Y1,n) (representing shares of y;)
where the sharing is he y committee M;) using the Beaver triple
h, he shari is held b i M, i he B ipl
- (ar,1,---5a1,n), (az,p sy a;’n),
- (bl,h DO} bl,n)v (bi,p coog ;,n)
where the sharing is he y committees M; an 1, respectively) an
h he shari is held b, i M, d O ivel d
— (¢115-++1¢ ) (wWhere the sharing is held by committee O;),

The ith member of the committee M; does the following to compute her share of ¢, = a; — x;
and 51 = bl — Y-

— Compute the difference €;,; = a;,; — 5.

— Compute the difference 8; ; = by,; — y1,i-

The committee M; then calls Decrypt using shares (€;,1,...,€1,n,) and (8;,1,...,0;,n) to re-
construct the values ¢; and §;. ﬂ
The ith member of the committee O; does the following to compute her share of z; = z;y;.

— Reconstruct € and § by inputing (READ, M; ;,1 4+ 2) to .7-'\’}2',‘3 (as described in Decrypt) for
each ith member of M;. Note that the multiplication gate at depth [ is evaluated in round
I+ 2.

— Compute z; ; 1= C;,i — €lb;,i — 5;(1211. + €;6;.

“Note that the associated relation Rpec would involve the set of received shares
ay i, bi,; and the values that were used to compute z;;,yi,; as a part of dreceive-

To produce beaver triples we will need two final types of committee. Let
Aia,..., A1 and Byg,..., By, denote the roles of the two helper committees
(each of size h) responsible for the generation of Beaver triples to aid in the
round [ multiplication. Two additional relations are also needed to ensure the
triples produced are well-formed:

_ ((Mla ai, J~)7 ERE} (Mna G,y L)a
Gsend = (0, af, 1), (Opal,, 1))
RBeaver,A = ¢receive =1 (Cll, ey an) — Share(a; p)
¢broadcast =1 A\ (a’,17 . ,aﬁl) “— Share(a; pl)
w=(a,p,p)

The below relation for the roles in the helper committee B; is required to
check that the correct linear homomorphic function f; is applied on the in-
coming messages (say y1,...,Ym) of a committee role Oy ;. For simplicity, we
describe f; as a tuple of coefficients (cy,...,cm,c) to represent the operation
fiyi, - ym) = c1y1 + Y2 + -+ + CnYm + C.

44



My, by, L), ..., (My, b, L),
Gsend = (((O L 1} )>7 &(() v ))) (b1,...,byn) < Share(b; p)
1,919 J1 )5+ nyYnsJdn A(’l,...,b;)<—Share(b;p’)

7?/Beaver,B = ¢receive =1 /\<01, o ;On) « Share(O; p//)

¢broadcast =1 o ‘ )
w=(bp,p,p") Afi=(b,...,b,0;) for i € [n]

—‘ Protocol I1yopso—ruE : Beaver triple generation

MakeBeaver: This step is run by two helper committees A; and B; of size h each
To produce a Beaver triple for the l/th multiplication, the members of the two helper com-
mittees A; and B; proceed as follows. (Multiplication then reduces to linear operations and
decryptions, described below.) Note that the Beaver values must be shared to two committees:
the committee M; responsible for performing the multiplication, and the committee O; who
will hold the output. Committee O; may then be asked to perform linear operations, another
multiplication, or simply to decrypt the output.
— Each member A; ; of committee A; does the following:
e Picks a random value a; ;.
e Computes two sharings of a;, ; as
* (al Hoiln e oo o @) &= Share(al J,pl j) and
(a; 17...,a“n)<—Share(ouJ,,o”)
w1th threshold t.
e Inputs (SEND, A; ;, (M1, 01,51, L), -, (Mi,n, @1, jn, L), (01150 515 L), (Otyny a5 s

J—)) L, (alaJ’pla]’pLJ)) to \h/‘é'n?

— Let Q4, C [h] denote the indices of the roles whose SEND verified successfully. Let a; =
ieQa, ay,j. Then,

e Each role M; ; can retrieve her share of a; as a;; = Y ay,j,i, where a; ; ; was

jEQAl
read from FH20 using (READ, My ;, Ay j, 1+ 2).

e FEach role O, ; can retrieve her share of a; as af’i = ZjEQAl a;,j,i’ where af,j’i was

read from F\2% using (READ, Oy ;, Ay j, 1 + 2).
— Each member B; ; of committee B; does the following:
e Picks a random value byj.
e Computes two sharings of b; ; as
* (bl oFailgaoo bl ],n) — Share(bl J,pl ;) and
(Bl s bp g ) < Share(bi.y: pl )

Wlth threshold

e Compute a zero sharing as (01,5,1,--,01,5,n) < Share(0; pj’;) with threshold ¢.

e Set the function f; = (by,j,...,b1,;,0;,;,) for each i € [n]. Recall that this function
would take as input y(O; ;) comprising of the messages (say y1, ..., yn) received by
Oy,i from sender roles A; 1,..., Ay, and outputs by jy1 +- - +by jyn + 0y, 5,4, where

any L values are to be interpreted as 0. (The shares of 0 are used to ensure that the
value b; ; is not leaked to Oy ;).
e Input (SEND, By j, (M1, bi,g,1, L), - - s (M, b0,5,n5 L) (01,1, 5 15 f1)s -+

(Ol,mbi,j,nvﬂz)) L, (blmpl,wpl,p/’l,g)) to Cg'ﬁ"

— Let Qp, C [h] denote the indices of the roles whose SEND verified successfully. Let

b = ZjEQB bi,;. Let (b] e Ci,j,z‘) denote the value that O; ; receives from fC‘S"S using

(READ Oy,i, Bl i»l+2). Then,
Each role Ml ,i can retrieve her share of b; as b; ; = ZjEQB bi,;,i, where by ; ; was
1

read from F2p using (READ, M ;, By j,1 + 2).
e Each role O; ; can retrieve her share of b; as b;,i = ZjEQB b;,j,i'
e FEach role O; ; can retrieve her share of ¢; = a;b; as c;’i = ZJ€QB ,J i
Note that the entirety of Beaver triple generation can be carried out without the helper
committees needing to receive any private messages. Additionally, note that Beaver triple
generation committees can have a dishonest majority, and can therefore be smaller (h < n).

45



The proof of Theorem [3] may be found in Appendix [C.4]

C Security proofs

C.1 Security of YaOSO

To prove the protocol Ily,050 YOSO realises the functionality F; with guaran-
teed output delivery, we will show that the protocol YoS(ITy,0s0) UC realises
the functionality ;. We may do this by constructing a simulator Sy,oso for
any given adversary A, such that:

REALYOS(HYLLOSO))A7£(1K) ~ IDEALfﬁSYaoso,g(lH)'

Proof. For a given adversary A we define the simulator Sy,os0.- Sy«oso in-
ternally uses the simulator (say Sgm) of the underlying semi-malicious protocol
I,. The idea is for Sy,0s50 to transform a malicious adversary in IIy,0s0 to
a semi-malicious adversary in Ilgy,. This is done by verifying the messages that
the maliciously corrupt roles use to invoke Fysp (which Sy,050 has access to).
If the messages verify, they are forwarded to S on behalf of semi-malicious
corrupt parties. Else, the messages are recomputed using default input and ran-
domness. In this manner, the messages corresponding to the underlying protocol
can be simulated. Additionally, Sy,0oso also invokes the simulator of the adap-
tive garbling scheme (Appendix to simulate the garbled circuits and labels
of honest roles.

First, we argue regarding the correctness of the ITy,050. The correctness of
the garbling scheme and threshold secret sharing ensures that the second-round
messages of I1;,, obtained via the evaluation of garbled circuits would be correct.
Now, correctness of ITy,0s0 follows directly from the correctness of Ilgy,.

Next, we define the simulator below. The set of indices corresponding to
honest roles and corrupt roles in committee C' are denoted as H¢ and Z¢o re-
spectively.

— Simulator Sy ,os0

Let S¢m denote the simulator of the underlying semi-malicious protocol ITgp.

Input: For the input committee, the simulator:
— For each honest inlput role j € Hrp,
e Receive {msg;} by interaction with Sm.
e Compute the simulated garbled circuit as GC; < simGC(1™, ¢(C;), “ckt”), where ¢(C;)
denotes the topology of the circuit (that does not depend on the hard coded values).
e When a corrupt role attempts to input (READ, I;,1) to Fysp, return the response
(msgjl., GCj) as computed above.
e When a corrupt computation committee role ¢ € Zg attempts to input
(READ, E;, I, 1) to Fysp, return as response a set of random shares {s§0l> 59 s(vll) i}le[L]-
— On behalf of Fysp, verify the SEND input by corrupt input roles j € Z;. Replace £hé'shares
with _L if the verification fails.
— When a corrupt computation committee role ¢ € Zg attempts to input (READ, E;, I;, 1)
5 0 1
to Fysp for j € Iy, return {sg',l),w s;,l),i}le[l-]' ) .
At the conclusion of this round the simulator knows (x, {msg} }, {51(“271.7 Siyg,i}le[L],ie[n]) (con-
sider default values in case a corrupt role aborts or the verification fails) for each corrupt input
role k € Z1 as they are leaked by Fysp.

46



The simulator may provide these inputs {xk}kezl to the ideal functionality to receive

out = f(z1,...,%m). This out is provided to Sim as the response from its ideal functionality
when invoked by Sgm.

Computation: For the computation committee the simulator:

— Interacts with Sgn as follows: Send the first-round message msgi on behalf of corrupt
roles k € Z;. Receive the second round messages msg? corresponding to the honest input
roles j € Hjy.

— For each j € Hr

e Compute the set of simulated garbled labels corresponding to GC; as
(Kj1,...,KjL) < simGC(1™, msg?, “input”)
e Compute the shares {s;f)Ll?i}ie’HE — SH.SimShare({sg?ll’)i}ieIE,Kjwl) for I € [L]

(where b1, ...,b. = msg}||...msgl).
— When a corrupt role attempts to input (READ, E;,2) for ¢ € Hg, return as response

{si.bll )1. }ier,ieq as computed above for j € Hr and leaked via Fysp for j € Zy.

We prove the indistinguishability of the real and ideal world through a series
of hybrids.

Real HO: Run everything as in the real protocol, using the honest roles
inputs. Note, through the use of Fysp the inputs of corrupt roles will already
be known to the simulator at this point, allowing them to be input the ideal
functionality to receive out = f(x1,...,2Zm).

Hybrid H1 (Simulate honest shares): The honest threshold shares held
by i € Hg corresponding to labels of GC; of honest input roles j € H;

are set as {Sgbf)l}zey,g — SH.SimShare({sgf’l’?i}ieIE,KN) for I € [L] (where

bi,...,bL = msgl||...msgl).

Hybrid H2 (Simulate garbled circuits of honest input roles): The gar-
bled circuit and corresponding labels of honest input role 7 € H; are com-
puted as GC; < simGC(1", $(C;), “ckt”) and (Kj 1, ..., K1) < simGC(1", msg3,
“input”).

Hybrid H3 (Simulate the messages of Il ): The first and second round
messages of the underlying protocol Iy, i.e. msgjl- and msg? for j € Hj are
obtained via the simulator Sg,. At this point the simulator no longer needs
access to honest party inputs.

We show that the hybrids in our sequence are indistinguishable.

HO ~ H1 The indistinguishablility of these hybrids follows from the share simulatabil-
ity of the threshold secret sharing scheme (Appendix .

H1 ~ H2 Indistinguishability of H1 and H2 follows via reduction to the adaptive
privacy of the garbling scheme (Appendix |A.2)).

H?2 ~ H3 Indistinguishability of H2 and H3 follows from semi-malicious security of
Tsm-

C.2 Security of YOSO-GLS

We will now prove security of the ITyoso—grs protocol (Theorem .

47



Proof. To prove the protocol IlIyoso—crs YOSO realises the functionality Fp
with guaranteed output delivery, we will show that the protocol YoS(IIyoso—arLs)
UC realises the functionality Fy. We may do this by constructing a simulator S
for any given adversary A, such that:

REALYOS(Uyosochs),.A,S(Pﬁ) ~ IDEAL_FhS,g(lK).

For a given adversary A we define the simulator as follows:

—1 Simulator S

Begin by reading public parameters leaked from Fseryp. Allow the adversary to control the
corrupt roles, simulating the honest roles and Fysp

KGen: For honest roles K; perform key generation as described in the protocol. At the
conclusion of this round the simulator knows sk; = (skj1,...,5k;n) for each corrupt role
K; (j € Zk) as they are leaked by Fysp.

Input: Rather than encrypting their input, each role may instead encrypt 0 under the
TFHE keys to get C; <« Enc({pki}ick,O0; pli) which may then be input to Fysp as
(SEND7 I, 1, Ci, (O, pji)).

At the conclusion of this round the simulator knows input z; for each corrupt input role
I; (j € Z1). The simulator may provide these inputs to the ideal functionality to receive
out = f(z1,...,%m)

Computation: For the computation committee the simulator:

— Homomorphically derives the ciphertext C' according to the protocol

— Derives partial decryptions for corrupt roles in the computation committee as d; <+
PDec({pkw }rek, csks, C) for csk; = {skj i}jek-

— The simulator then produces partial decryptions for the honest roles
{d;} i€\ Zcomputation < SimPDec(C, {pki}iek, {skitiezy, {(cskj, dj)}iezy ; out)

— When a corrupt role attempts to input (READ, E;, 3, Reval) to Fysp for an honest role Ej,
replace the response with d; as computed above.

We prove the indistinguishability of the real and ideal world through a series
of hybrids.

Real HO: Run everything as in the real protocol, using the honest roles
inputs. Note, through the use of Fysp the inputs of corrupt roles will already
be known to the simulator at this point, allowing them to be input the ideal
functionality to receive out = f(x1,...,2Zm).

Hybrid H1 (Partial decryption simulation): Simulate partial decryp-
tions for honest roles as:

{45} je i)\ Zeompuation < SIMPDec(C, {pki }icxc, {skitiez, {(cskj, d;)}jez,,out),

where desired output out should be the value returned by the ideal function-
ality. These partial decryptions should then be returned whenever a corrupt
role inputs (READ, E;, 3) to Fysp for j € Hp.

Note, this requires access to secret keys sk; for corrupt key generation roles
i € Ik, as well as partial decryptions d; and computation keys csk; for
7 € TIg. The simulator has these secrets as they are leaked by Fysp, and
may use them to deterministically compute partial decryptions. These partial
decryptions should then be returned when a corrupt role inputs (READ, Ej, 3)
for j € HEg.

48



Hybrid H2 (Encrypt 0 for honest roles): Replace encryptions of inputs
from honest roles by encryptions of 0. At this point the simulator no longer
needs access to honest role inputs.

First, we will prove correctness of the real protocol. The Fsetyp functionality
ensures correct sampling of the public parameters, while commnication through
the Fysp functionality with Rkgen enforces that all public keys used when en-
crypting are well-formed. All input ciphertexts are ensured to be encryptions
under some randomness by Fysp with Rgne. As a result partial decryptions un-
der the correct keys, as enforced by Fysp with Rgya, will recombine to produce
f(z1,...,x,) following from correctness of the TFHE scheme (Definition .
Note, we are guaranteed to have sufficient partial decryptions by the honest ma-
jority of the computation committee.

We will now prove that the hybrids in our sequence are indistinguishable.

HO ~ H1 The indistinguishablility of these hybrids follows from the partial decryption
simulatability of the TFHE scheme (Definition . An adversary successfully
distinguishing H0 and H1 with non-negligible probability may be used to
win the partial decryption simulatability game Gameﬁ%ﬁ?gﬁ:ﬁE(n), with
the same probability. This may be done by generating secret keys for honest
roles through use of the OKGen and registering all corrupt keys sent on
Fvsp with OKReg using the randomness leaked to the simulator. The point-
to-point messages read by corrupt roles F; for i € Zg, may be replaced
by the simulator with key shares received by invoking OCorr(i). By the
threshold guarantees of the committees K and E, we are guaranteed that
the |Hkgen| > 1 and |Zcomputation] < t. The partial decryptions for honest
roles in the protocol may then be set to the challenge provided in the game.
Thus, if our adversary guesses HO we may guess b = 0 in the game, guessing
b =1 otherwise.

H1 ~ H2 Indistinguishability of H1 and H2 follows by a reduction to the semantic
security of the TFHE scheme (Deﬁnition. Encrytptions on behalf of honest
input roles may be replaced one at a time, maintaining indistinguishability.
An adversary successfully distinguishing these cases may then be used to win
Ga meﬁﬁ%}iﬁé (). We will again map corruptions in K to uses of the OKReg
and corruptions in E to uses of OCorr. This provides the same guarantees
that [Hkgen| > 1 and |Zcomputation| < t. When replacing the input of an honest
input role I; we may input messages (0, z;) to the game. The challenge may
then be used as the ciphertext for I; in the protocol. If the adversary guesses
it is in the hybrid where the plaintext has been replaced, we guess b = 0 in
the game, guessing b = 1 otherwise. This allows winning the game with the
distinguishing advantage the adversary has on the hybrids.

C.3 Security of ITsetyp

Proof. We will show that YoS(ITse,,) UC realises ]:;;lljpE in the Fysp-hybrid

model. For a real world adversary A we will construct ideal world adversary S

49



such that the real and ideal ensembles are indistinguishable, i.e.

REALYOS(HSEmP),A,S(ln) ~ IDEAL]:TFHE S’g(lﬁ).

Setup ?

—1 Simulator S

The ideal functionality -FSTeTpE leaks the chosen matrix B to the simulator.
Sample: Run all honest roles in the sample committee as prescribed by the protocol.
Combine: The simulator ensures shares will reconstruct to B.

— For each corrupt role ¢ € Z¢ compute B; as in the protocol.
— Simulate B; for i € H¢, conditioned on corrupt shares, such that they reconstruct to B.

Shares sent to corrupt roles Fysp by honest roles in the sample committee
are identically distributed in the real and ideal worlds. Any set of fewer than
t shares is independent of the secret shared value. Therefore, simulated shares
will be distributed identically to real shares, as there is at least one honest role
in the sample committee.

C.4 Security of YOSO-LHE

To prove the protocol IlIyoso—rue YOSO realises the functionality F; with
guaranteed output delivery, we will show that the protocol YoS(IIyoso—rLuE)
UC realises the functionality ;. We may do this by constructing a simulator S
for any given adversary A, such that:

REALYOS(HYOSO—LHE),-A»g(1K> ~ IDEAL]:f’S’g(lm).

We start by analyzing the correctness of an all-honest execution of the pro-
tocol.

Lemma 3 (Correctness). The protocol IT on inputs (x1,...,%m,) produces
output value z = f(x1,...,xm,) when all roles are honest.

Proof. Correctness follows from the evaluation of each gate producing a sharing
of the appropriate gate output. If this is the case the output may be reconstructed
from the sharing associated with the final gate by perfect correctness of the secret
sharing scheme.

Input The role giving input distributes a sharing of its input value & by construc-
tion.
Add Perfect correctness of the Shamir secret sharing ensures the output is a
sharing of z = x + y.
Mult The values produced by MakeBeaver are valid sharings of a,b and ¢, where
¢ = ab. Tt follows by inspection that z = c—eb—da+€d = c— (a — x)b —
(b—yla+(a—z)(b—y) =1y

50



We will now prove the security of our YOSO-LHE protocol.

Proof. We start by defining a simulator S which may be composed with any
PPT real-world adversary A to produce an ideal world adversary &’ such that for
every PPT environment &, it holds that REAL 4 e(x) and IDEALF, s ¢()
are indistinguishable. We prove indistinguishability through a series of hybrids,
each indistinguishable from the last, starting in the real world and arriving in
the ideal world with our complete simulator.

We define the simulator S below. We denote the set of honest and corrupt
roles as ‘H and Z respectively; we let He and Z¢ represent the honest and corrupt
roles within a committee C.

—‘ Simulator S

Input: For the input committee, the simulator:
— When a corrupt role C; attempts to input (READ, C;, I;, 1) to fcgrs for honest input role
j € Hr, return (Z; ;, L) where Z;; is a random share.
— On behalf of ]-"C‘S"F',‘, verify the SEND input by corrupt input roles j € Z; and store the
shares (z;,1,...,%j n). Replace the shares with L if the verification fails.
— When a corrupt role C; attempts to input (READ, C;, I, 1) to fcgr{,' for corrupt input role
I, return (x; ;).
At the conclusion of this round the simulator knows the input (zx) (consider default values
in case a corrupt role aborts or the verification fails) for each corrupt input role k € Z; as
they are leaked by ]:ng The simulator may provide these inputs {zy}rez; to the ideal
functionality to receive out = f(x1,...,ZTm)-

Decrypt: 1. If the value being decrypted corresponds to the ¢ or § values during compu-
tation of multiplication gate, set plaintext z as a random value. Otherwise, this value
corresponds to decryption of the final output and the plaintext x is set to out.

2. Simulating the honest role shares. Let {xi}iezc denote the shares held by corrupt
roles in C' (which the simulator knows because these can be deduced using the values
leaked via the f\l}g;‘) Compute the shares on behalf of honest roles such that they would
be consistent with x as follows: Compute {z;};en + SH.SimShare({z;}icz ;@)

Add: S uses the values learned earlier to deduce the shares of the output of the addition gate,
i.e., z = z+y (where z and y denote the inputs to the addition gate) held by corrupt roles in C.

MakeBeaver: 1. S does the following with respect to the A; helper committee:
— When a corrupt role M; ; attempts to input (READ, M; ;, A; ;,1 + 2) to F\’}gr,? for
J € Ha,, return (a;,j,;) where a;,; ; is set as a random share.
— When a corrupt role O;; attempts to input (READ,O;;, Ay ;,1 + 2) to fcgg for
j € Hay, return (a; ; ;) where a; ; ; is set as a random share.

— On behalf of ]-'Cg',;‘, verify the SEND input by corrupt helper roles j € Z4, and store
the shares {a; j,i,a; ;,;}ie[n]- Replace the shares with L if the verification fails.

Return the relevant share as response on behalf of F\'}g;‘ when corrupt roles in M;

and O; invoke the .FCg'FT,’ with READ with respect to A; ;.

2. With respect to the B; helper committee, the S executes steps similar to the above (for
values {bl,j,i,bg,j,i}ie[n]); except that the c;’j,i values also need to be simulated in a
similar manner (i.e. set to random shares when honest roles in B; are involved and as
per the protocol when corrupt roles in B; are involved).

3. Using the leakage from ]-"\’}gn,;? and the shares sent on behalf of honest roles, the simulator
can deduce the shares of a;,b; held by the corrupt roles in M; and O; and ¢; held by
corrupt roles in O;.

Mult: 1. Deduce the shares of ¢; and §; held by corrupt roles in M; using the values learned
earlier.
2. Execute the simulation steps in Decrypt to open ¢; and §; on behalf of honest roles in M;.
3. Deduce the shares of the output of the multiplication gate, i.e., z;y; (where z; and y;
denote the inputs to the multiplication gate) held by corrupt roles in O; using the values
learned earlier.

51



Output: Using leaked values from F\'}g',‘;r,‘, S deduces the shares of the output held by the corrupt
roles in the output committee. Finally, S executes the simulation steps in Decrypt to open the
final output out.

We describe a series of hybrid simulators allowing us to arrive at the full
simulator described above. The final simulator does not require access to the
inputs of honest roles, relying only on the ideal functionality.

Real HO: The simulator does everything as in the real protocol. Fysp leaks
inputs from corrupt roles to the simulator, allowing these to be input to the
ideal functionality to receive the output out = f(z1,...,2m).

Hybrid H1 (Simulate output shares): Replace honest shares broadcast
through ]:\t}ngg in final call to the Decrypt procedure with simulated shares
produced as {out; };ex + SimShare({out;};cz,,out).

Hybrid H2 (Pick ¢, § Randomly, Simulate Honest Roles’ Shares) When
multiplication committee M; decrypts € and § choose € and § uniformly at
random and simulate honest shares:

— {eitienc < SimShare({e;}iczo . €),

— {01itienc < SimShare({d;;}iezc, 6).-
Ideal H3 (Replace shares of honest inputs with random) Rather than
sharing honest inputs, provide random shares to corrupt roles when they in-
put (READ, I;, C;,1) to FU2p.

We now prove that each pair in our sequence of hybrids is indistinguishable.

HO ~ H1 We will prove indistinguishablility from the real world through an invariant
over the evaluation of the circuit. The shares of honest inputs held by honest
roles make up a uniform sharing conditioned on the shares of corrupt roles.
For simplicity, we assume our circuit contains at least one multiplication
gate. After the first multiplication the corresponding held by honest roles
are independent of the view of the adversary. The process for beaver triple
generation ensures this as both the A and B committees contain at least
one honest role, resulting in the sum of their produced shares making up a
uniformly random sharing of a uniform value, conditioned on corrupt shares.
The honest shares of € and ¢ are defined as ¢; = a;; — x;; and §;; =
bii —yi for i € Hpr. Both a;; and b;; are uniform shares conditioned
on the shares of the adversary, rendering the same true for ¢ ; and d;;.
As cii is produced through the use of the homomorphism of .7-'\'}‘5",21 with
an added fresh sharing of 0 the result of cLi — qb;’i — qia;; + €6y for i €
Ho will be similarly uniform shares conditioned on the shares of corrupt
roles. Addition requires no communication, and produces new shares which
are again distributed as part of a uniformly chosen sharing conditioned on
the shares of the adversary. When decrypting for the final gate the shares
for the honest roles may therefore instead be simulated by invoking share
simulatability, here the output of the functionality may be used relying on
the correctness of the protocol.

52



Hl=~ H2

H2~ H3

As argued previously the values € and § are uniformly random, while the
shares of these values held by the honest roles constitute a uniform sharing
conditioned on the corrupt shares. Once again, the shares which are broad-
casted by honest roles may be replaced by simulations, by invoking share
simulatability.

Finally, as the decryptions of honest shares throughout the circuit do not
depend on honest shares of honest inputs the simulator may simply choose
uniform random shares to provide to the corrupt roles. This results in an
identical distribution and eliminates the need for the inputs of honest roles.

53



	Constant-Round YOSO MPC Without Setup

