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Abstract. YOSO MPC (Gentry et al., Crypto 2021) is a new MPC
framework where each participant can speak at most once. This models
an adaptive adversary’s ability to watch the network and corrupt or
destroy parties it deems significant based on their communication. By
using private channels to anonymous receivers (e.g. by encrypting to a
public key whose owner is unknown), the communication complexity of
YOSO MPC can scale sublinearly with the total number N of available
parties, even when the adversary’s corruption threshold is linear in N
(e.g. just under N/2). It was previously an open problem whether YOSO
MPC can achieve guaranteed output delivery in a constant number of
rounds without relying on trusted setup.
In this work, we show that this can indeed be accomplished. We demon-
strate three different approaches: the first two (which we call YaOSO and
YOSO-GLS) use two and three rounds of communication, respectively.
Our third approach (which we call YOSO-LHSS) uses O(d) rounds,
where d is the multiplicative depth of the circuit being evaluated; how-
ever, it can be used to bootstrap any constant-round YOSO protocol that
requires setup, by generating that setup within YOSO-LHSS. Though
YOSO-LHSS requires more rounds than our first two approaches, it may
be more practical, since the zero knowledge proofs it employs are more
efficient to instantiate.
As a contribution of independent interest, we introduce a verifiable state
propagation UC functionality, which allows parties to send private mes-
sage which are verifiably derived in the “correct” way (according to the
protocol in question) to anonymous receivers. This is a natural function-
ality to build YOSO protocols on top of.
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1 Introduction

As our digital world becomes more reliably connected, we grow to depend more
and more on outsourcing our data storage and processing to the cloud. There are
clear benefits to doing this, such as minimizing the risk of data loss (e.g. when
we spill coffee on our laptops), and using resources more efficiently. However,
there are also serious drawbacks, such as having to trust a cloud provider to
maintain both the availability and privacy of our data in an era of frequent
data breaches. Secure multi-party computation (MPC) [15,27,38] allows a cloud
comprised of many distinct machines to not only store, but also process our data
securely. MPC guarantees that the data remains private even from an attacker
controlling fewer that some threshold t of the machines.

Outsourcing the processing of our data can be very useful: for instance, it lets
us search our securely stored emails without having to download the entire con-
tents of our inbox. Perhaps even more importantly, MPC can be used to compute
joint functions on multiple entities’ private data without revealing anything but
the function output. This enables crucial computations where multiple entities
have privacy concerns, like research using health data across different hospital
databases [36,1], and discovering the true extent of the gender wage gap across
many different institutions [32].

One long-standing challenge in MPC is balancing security and efficiency.
Intuitively, security increases with the number of machines we employ in our
MPC: the more machines are used, the more of them an attacker would need
to subvert in order to learn our data. In order to make our computation secure
against a powerful attacker, we would need a very large number of machines
— perhaps millions, e.g. in a distributed blockchain setting. However, running
a secure computation among millions of machines would be horribly inefficient;
transferring our data to those machines would be a prohibitive burden on our
devices, and the pairwise communication required by most MPC protocols would
be too much for the machines and their network.

An alternative path is to hide which machines we are outsourcing our data
to. Then, a small subset of machines could perform the computation, bypass-
ing the problem of prohibitive pairwise communication. By keeping the subset
anonymous, we ensure that an attacker won’t know which machines to target.

This approach is very tricky, since computing on data requires the machines
to communicate. However, as soon as a machine sends a message, it ceases to be
anonymous; an attacker who is watching the network will learn that the message-
sender — and message-receiver — likely play crucial roles in the computation,
and will be able to target them. The recent work of Gentry et al. [24] introduces
secure computation in the you only speak once (YOSO) model. In this model,
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once a machine sends a message, that machine becomes irrelevant to the com-
putation, so an attacker who then targets that machine gains nothing. To stop
an attacker from targeting the message recipients, YOSO protocols hide their
identities using what we call receiver-anonymous communication channels.

1.1 Related Work

Related work can be broken up into work focusing on receiver-anonymous com-
munication channels and on MPC protocols using those channels.

Receiver-Anonymous Communication Channels When data is outsourced
to a small set of machines, those machines immediately assume critical roles; so,
it is important to hide which machines are picked for this by choosing them ran-
domly and by keeping them anonymous. Of course, outsourcing data to a set of
machines requires private communication to those machines. In order to commu-
nicate privately to machines which must remain anonymous, we need receiver-
anonymous communication channels (RACCs) to those machines. RACCs are
modeled as publicly known encryption keys such that (a) the adversary does not
know who owns the corresponding decryption key as long as that owner is not
corrupt, and (b) fewer than some threshold t (which we take to be half) of the
decryption key owners are corrupt.

Receiver-anonymous communication channels first appeared in the work of
Benhamouda et al. [7], which builds such channels with the guarantee that only
half of the decryption key owners are corrupt as long as only around a quarter
of the overall population is corrupt. Another RACC construction was shown
by Gentry et al. [25], with the stronger guarantee that only half of the de-
cryption key owners are corrupt as long as only slightly less than half of the
overall population is corrupt. The downside of this second construction is that
it is more computationally intensive (as compared to the former, which can be
based on lighter-weight assumptions such as cryptographic sortition and anony-
mous PKE). The recent work of Campanelli et al. [11] proposes a new primitive,
namely ‘Encryption to the Future’ based on a special kind of witness encryption
to realize RACCs.

YOSO MPC Recently, the first YOSO MPC protocols have appeared in the
literature [24,16]. They all have a common structure: committees of size n —
where the size n is chosen to guarantee that the committee will have an honest
majority with overwhelming probability — carry out the computation sequen-
tially. The lth (set of) committee(s) performs the lth layer of multiplication, and
uses RACCs to pass the computation to their successors.

We summarize the constructions below, and compare them in Table 1. It
should be noted that even constructions which do not explicitly make any com-
putational assumptions rely on RACCs, which do require such assumptions.

YOSO-CDN (Gentry et al. [24]) This construction is based closely on
the CDN protocol [18] and achieves guarantee output delivery. However, this
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protocol requires computational assumptions and setup; that is, some corre-
lated secrets are distributed to an initial subset of parties by e.g. a trusted
authority.

YOSO-IT (Gentry et al. [24]) This construction relies on new information-
theoretic techniques such as future broadcast, distributed commitments, and
augmented verifiable secret sharing. Like CDN, YOSO-IT guarantees output
delivery. However, while YOSO-IT does not require computational assump-
tions or setup, the number of committees required for each layer of multipli-
cation is polynomial rather than constant in the committee size, which can
be prohibitively inefficient.

YOSO MPC from Class Groups (Braun et al. [9]) In a recent concur-
rent independent work, Braun et al. perform distributed key generation for
a linearly homomorphic threshold encryption (LHTE) scheme based on class
groups in the YOSO setting. Resharing this LHTE key between committees
then allows evaluating a circuit in the CDN style, which yields a YOSO pro-
tocol with no setup. This approach has the advantage that any committee
holding the key may access previously broadcasted ciphertexts. Like YOSO-
CDN a committee is needed for each layer of multiplications and output
delivery is guaranteed.

Other specialised protocols have also been studied in the YOSO setting, such
as [22] which proposes new protocols for distributed key generation, threshold
encryption and signature schemes. Lastly, MPC in YOSO-like settings (with
dynamic participation) have been explored in works such as [16], [2] and [21].

1.2 Our Contributions

In this paper, we make several contributions. First, we formalize an ideal func-
tionality which most YOSO MPC constructions can run on top of. We call this
functionality the verifiable state propagation functionality, denoted FVeSPa. This
fills a gap in the original YOSO paper [24], where RACCs were modeled as an
ideal functionality that allows private communication to anonymous receivers.
However, this abstraction does not allow public verifiability of messages sent
between two parties, which is often used in protocol designs.

To capture verification, the new functionality additionally requires the sender
to input a witness proving that her messages follow the protocol. We describe
FVeSPa informally in Section 1.3, and formally in Section 3. Intuitively, any in-
vocation to the FVeSPa ideal functionality can be realized using RACCs together
with zero knowledge proofs. We discuss this further in Section 3.1 and leave the
formalization to future work. In this work, we focus on how to build YOSO MPC
protocols in the FVeSPa-hybrid model.

Next, we describe several YOSO MPC protocols in the FVeSPa-hybrid model
that achieve guaranteed output delivery (GOD). A natural question is whether
it is possible to have a YOSO MPC protocol without setup where the number
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YOSO MPC
scheme

Security
Guarantee

Number
of Rounds

Number of
Speakers

Setup Computational
Building Blocks

RACC
functionalities

Fluid MPC [16] Security with
Abort

O(d) O(dn) none none none

YOSO-CDN [24] Guaranteed
Output
Delivery

d+ 3 m+ (d+ 1)n+
2dh

CRS,
distribution
of shares to

first
committee

NIZK, LHTE FBC

YOSO-IT [24] Guaranteed
Output
Delivery

O(d) poly(m, d, n) none none FSPP,FBC

Braun et al. [9]
(concurrent)

Guaranteed
Output
Delivery

O(d) O(m+ nd) none NIZK, LHTE FSPP,FBC

YaOSO (this
work)

Guaranteed
Output
Delivery

2 m + n none YGC, 2-round
MPC

FVeSPa

YOSO-GLS (this
work)

Guaranteed
Output
Delivery

3 m+ n+ h URS TFHE FVeSPa

YOSO-GLS (this
work)

Guaranteed
Output
Delivery

5 m+ 2n+ 2h none TFHE FVeSPa

YOSO-LHSS
(this work)

Guaranteed
Output
Delivery

d+ 3 m+ (d+ 1)n+
2dh

none LHE Fhom
VeSPa

Bootstrapping
(this work)

Guaranteed
Output
Delivery

O(1) O(m+ n) none LHE, TFHE Fhom
VeSPa

Table 1: YOSO MPC Constructions. d is the multiplicative depth of the circuit
being computed; m is the number of inputs; n is the committee size chosen
to guarantee that a majority of the roles will be honest; h is the committee
size chosen to guarantee that the committee has at least one honest role with
overwhelming probability. FBC and FSPP, introduced in [24], allow broadcast
and secure point-to-point messages respectively; FVeSPa enables verifiability of
messages, with Fhom

VeSPa allowing additional homomorphic operations. Properties
that are optimal are in bold.

of rounds of communication is independent of the circuit being computed. 1 We
answer this question in the affirmative thrice-over.

Our first constant-round setup-free YOSO MPC protocol is YaOSO ; it com-
piles an underlying two-round non-YOSO MPC protocol by garbling its second-
message function. YaOSO itself only requires two rounds, which is optimal.

Our second YOSO MPC protocol is YOSO-GLS ; it builds on the GLS pro-
tocol [28]. YOSO-GLS requires between three and five rounds, depending on
the setup we assume is available; Five rounds are necessary if only RACCs are
available, and three rounds are achievable if a URS (uniform random string) is
additionally present. YOSO-GLS uses complex assumptions such as threshold

1We assume that each round of communication through FVeSPa may be realised by
one round of broadcast communication. For further detail on a potential realisation see
Section 3.1.

6



FHE; however, unlike YaOSO, it does not rely on generic compilation, and so
may in practice be more efficient.

Our third YOSO MPC protocol is YOSO-LHSS ; it is based on YOSO-CDN
[24], but avoids the use of a secret shared decryption key, which is the setup that
YOSO-CDN relies on. YOSO-LHSS takes O(d) rounds, where d is the multi-
plicative depth of the circuit being computed. However, YOSO-LHSS also leads
to a YOSO MPC with a constant number of rounds; YOSO-LHSS can be used
execute the setup for a constant-round YOSO protocol that uses threshold fully
homomorphic encryption (TFHE). We call this the bootstrapping protocol.

Broadly speaking, we faced two main challenges in the design of the above
protocols: first, identifying suitable non-YOSO protocols as starting points, and
second, making the necessary changes to YOSO-ify them. In non-YOSO MPC
protocols, the same participants are involved in input, computation and output.
To adapt such a protocol to the YOSO setting, a natural approach is to make
each committee carry out the respective round of the non-YOSO protocol and
distribute its state among the next committee members to carry the computa-
tion forward. However, translating the next-message functions 2 computed on
a participant’s local state in each round of the underlying protocol to a next-
message function on a distributed state could get very complicated (both in
terms of efficiency and design), depending on the steps involved in the under-
lying protocol. Therefore, identifying suitable non-YOSO protocols that allow
smooth transformation to the YOSO setting is a crucial and non-trivial step in
our protocol designs.

We give an overview of our protocols in Section 1.4 – Section 1.6.

1.3 Verifiable State Propagation

Previous YOSO protocols were designed assuming that the roles (i.e. the one-
time stateless parties) have access to two functionalities, providing point-to-point
and broadcast communication respectively (where the point-to-point function-
ality could be realized using RACCs) 3.

In the case of computationally secure protocols, a gap remained: the YOSO-
CDN protocol achieves verifiability of messages sent via the point-to-point func-
tionality by assuming access to encryption keys for each role, and using the
broadcast functionality to send ciphertexts along with zero knowledge proofs of
correctness. Explicit access to keys requires using RACCs in a non black-box
manner, which strays from the ideal notion of RACCs (which is simply to serve
as a means for point-to-point communication to anonymous receivers). In this
work, we address the above gap by instead explicitly modeling the verification
of messages within the sending mechanism.

2Next-message function refers to the code a participant uses to compute her mes-
sages of the next round, which is a function computed on the messages she has seen
previously and possibly additional input.

3Recall that RACCs are modeled as publicly known encryption keys (where the
owners of the decryption key are secret). For point-to-point communication towards a
role, one simply needs to encrypt the message using the role’s encryption key.

7



We do this by introducing the verifiable state propagation functionality
FVeSPa, which supports both point-to-point and broadcast messages, while pro-
viding a mechanism for proving these messages are correctly produced. In prac-
tice, designing protocols in the FVeSPa-hybrid provides the same possibilities
when designing protocols as using zero knowledge proofs together with access to
explicit encryption keys; however, it allows for much simpler protocol descrip-
tions and a modular protocol design.

Further, we also introduce an augmented version of FVeSPa, namely the Fhom
VeSPa

functionality (described in Section 6.1). FVeSPa allows the sender to prove that
she correctly computed her messages as a function of the messages she has re-
ceived (and possibly additional input), but not as a function of messages of which
she is not the recipient. On the other hand, Fhom

VeSPa functionality also allows the
sender to additionally prove that her messages were correctly computed based
on messages previously sent to a given recipient by others, even though she might
not know the contents of those messages. This augmented functionality allows
us to capture efficient YOSO protocol designs (such as YOSO-LHSS) which em-
ploy homomorphic computations on ciphertexts, through the use of either fully
or partially homomorphic encryption.

1.4 YaOSO: Technical Overview

Our first protocol is a two-round YOSO MPC protocol with guaranteed output
delivery which we call YaOSO. We present it in the FVeSPa-hybrid model. The
optimality of two rounds follows from the fact that any one-round YOSO proto-
col would be susceptible to a residual function attack [31] (as the adversary could
recompute first-round messages on behalf of corrupt parties, while keeping the
honest parties’ messages fixed, to obtain multiple evaluations of the function).

YaOSO is a generic compiler that transforms any two-round broadcast non-
YOSO MPC protocol that achieves semi-malicious security 4 in the dishonest
majority setting, to a two-round YOSO MPC protocol in the FVeSPa-hybrid
model that achieves malicious security with guaranteed output delivery in the
honest majority setting. Since the former can be instantiated using the pro-
tocols of [23,8] with semi-malicious security in the plain model, this yields a
round-optimal YOSO MPC protocol in the FVeSPa-hybrid model with guaran-
teed output delivery.

Assumptions Our compiler is based on threshold secret sharing and adaptive
garbled circuits (Appendix A.2), which can be built from one-way functions. The
underlying protocol in our compiler can be instantiated using the protocols of
Garg et al. [23] and Benhamouda et al. [8], which rely on 2-round semi-malicious
oblivious transfer (OT). 5

4Where semi-malicious security refers to security against an adversary that follows
the protocol honestly but can choose bad random coins for each round.

5The construction of Garg et al. [23] is based on a two-round OT in the plain model
which is secure against semi-malicious receiver and semi-honest sender. We refer to
Garg et al. [23] for further details.
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Recap of the Compiler of Ananth et al. [3] The main idea of our compiler
is to adapt the compiler of Ananth et al. [3] to the YOSO setting. We begin
with a high-level description of the compiler of Ananth et al. and refer to their
paper for further details. The compiler of Ananth et al. transforms any two-
round n-party MPC protocol with security against semi-malicious adversaries
(say Πsm) to a two-round n-party MPC protocol with guaranteed output delivery
against semi-malicious fail-stop adversaries corrupting t < n/2 parties (say Π ′).
In the first round of Π ′, each party broadcasts the first-round message of the
underlying protocol Πsm, along with an adaptive garbled circuit whose code
would be used to compute their second-round message in Πsm. Such a garbled
circuit has the party’s input and randomness hard-coded and takes as input
the first-round messages she receives 6. Each of the labels corresponding to the
first-round messages are threshold-shared (with threshold t) among the set of
parties. In the second-round, parties broadcast the relevant share of the label,
based on the first-round messages that were broadcast. The threshold sharing
ensures that even if a party aborts in the second round, the labels corresponding
to the first-round messages can be reconstructed and her garbled circuit can be
evaluated to obtain her second-round messages. This achieves guaranteed output
delivery.

Adapting the Compiler to the YOSO Setting In the compiler of Ananth
et al., the same participants are involved in the input, computation and output
phases; different roles are required to carry out these actions in the YOSO set-
ting. In the YOSO setting, we employ one committee for each round; the input
committee, and the computation committee. First, the members of the input
committee carry out the actions of the first-round of the compiler of Ananth et
al. (as described above); however, instead of sending the secret shares to one
another, they send them to the members of the computation committee. Next,
we observe that this gives the computation committee all of the information it
needs in order to enable the public reconstruction of the output; the actions of
the participants in the second round of the compiler of Ananth et al. depend
only on the first round public transcript and the threshold shares received in
the first round. This transfer of threshold shares can be done via the FVeSPa

functionality, which also upgrades the security to the malicious setting, as the
actions of the input and computation committee roles can now be verified.

Lastly, we note that, unlike the output of the compiler of Ananth et al., the
output of our compiler should now be publicly computable (since we do not wish
to involve a third committee). So, output computation should not depend on the
secret state of the roles who computed the earlier messages. To address this, we
assume that the output computation of Πsm does not require any secrets and
relies on the public transcript alone. We note that this can be assumed without
loss of generality, as one can always consider the output computation executed
by an additional participant of the MPC protocol Πsm with a dummy input

6This technique of using next-message garbling to emulate a party ‘speaking’ in the
next round also appears in works of [17,20,29].
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that uses a default random tape 7. This completes the overview of our compiler,
which is formally described in Section 4.

Round and Communication Complexity YaOSO uses two committees: an
input committee of size m (where honest majority is not required) and a com-
putation committee of size n (where the size n is chosen to be large enough to
guarantee an honest majority within the committee). The protocol comprises
just two rounds, where input committee roles speak first, followed by the com-
putation committee roles. The communication complexity is the communication
complexity of the underlying semi-malicious protocol that is being compiled,
with an additional overhead of O(|C|), where C is the circuit computing the
next-message function for computing the second-round messages of the under-
lying protocol. 8

1.5 YOSO-GLS: Technical Overview

The second protocol we present is closely based on the three-round MPC protocol
of Gordon et al. [28], which we will henceforth refer to as the GLS protocol. We
call our adaptation YOSO-GLS. We present two variants of YOSO-GLS: the
first requires three rounds and access to a uniform random string (URS), and the
second requires two additional rounds instead sampling this string explicitly. We
prove our YOSO-GLS protocol securely YOSO realises MPC with guaranteed
output delivery in the FVeSPa-hybrid model.

Assumptions The technical cornerstone of the GLS protocol is a threshold fully
homomorphic encryption (TFHE) scheme based on the Learning with Error
(LWE) assumption described in Definition 6. Our YOSO-GLS protocol relies
similarly on this assumption.

Recap of the GLS Protocol To provide context for the necessary changes
when adapting to the YOSO setting we start by providing a high level recap of
the three round protocol of Gordon et al. and refer to their paper for further
details.

Round 1: In the first round, each party generates a key pair for the [26]
FHE scheme, using a common matrix B. Each party then broadcasts their
generated public key. Note that B is assumed to be chosen uniformly at
random and is available as a common reference string.

7Since Πsm is semi-maliciously secure, correctness of the output holds for any choice
of random tape.

8Analyzing the concrete communication costs of our protocols would require ana-
lyzing the overhead incurred through the use of FVeSPa (which we rely on in a black-box
fashion).
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Round 2: In the second round, parties distribute Shamir sharings of their
secret keys along with a sharing of an additional error term. Parties then
encrypt their input under their own public key, reusing the encryption ran-
domness to produce additional hints, which allow transforming the ciphertext
to an encryption under a common public key. These ciphertexts and hints
are then broadcast.

Round 3: In the third round, the ciphertexts are transformed to encryptions
under the common public key for parties which appropriately distributed
their key and error shares. The circuit may then be evaluated homomorphi-
cally on the ciphertexts. The resulting output is then partially decrypted by
each party, exploiting the structure of the secret key sharings and linearity
of decryption. The shares of error terms, distributed along with the secret
keys in round one, are added to mask the partial decryptions. These partial
decryptions are then broadcast.

Finally, parties may perform polynomial interpolation over the partial decryp-
tions to reconstruct the final output.

Adapting the GLS Protocol to the YOSO Setting Moving to the YOSO
model poses a series of concrete challenges, as roles may not maintain state and
communicate across multiple rounds. The original GLS protocol requires storing
the secret keys generated in the first round, so they may be shared in the second.
Delaying sharing allowed avoiding the need for point-to-point communication in
the first round. In their setting, access to broadcast would allow distributing
public keys in the first round, enabling point-to-point commnication from the
second round onwards. In our setting, the FVeSPa functionality allows private
communication to future committees in all rounds, meaning the secret keys may
already be secret shared and distributed in the first round. We call the committee
performing this task the key generation committee, and the next committee —
which broadcasts encrypted inputs — the input committee. The final committee
will be the computation committee.

The separation between key generation and input committee roles presents a
new problem: if an input is encrypted under any single public key, that input is
leaked directly to the role which generated the key. Therefore, to avoid leaking
its input, a role must instead transform the ciphertext towards a common public
key prior to broadcasting it. This is possible due to the changes we have already
made, by sharing keys one round earlier.

These changes allow us to move to the YOSO setting while maintaining the
round complexity by requiring only three sequential committees, including the
input committee. Modifying key generation has the added benefit of making it
a local process, simplifying the presentation of the algorithm. Key generation in
the GLS protocol required access to a uniform reference string, this is unchanged
for our three round protocol. We provide a protocol realising the required URS
sampling, through the use of two additional committees, for a combined five
rounds in total.
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Communication and Round Complexity The three round YOSO-GLS pro-
tocol uses one dishonest majority key generation committee of size h, an input
committee of size m and a final honest majority computation committee of size
n. The five round protocol, which avoids the need for a URS, requires one addi-
tional dishonest majority committee followed by an honest majority committee.
We maintain the asymptotic message complexity of the original GLS protocol.

1.6 YOSO-LHSS: Technical Overview

The third protocol we present is structurally similar to the YOSO-CDN protocol
of Gentry et al. [24]. We call it YOSO-LHSS. Like YOSO-CDN, YOSO-LHSS
requires O(d) rounds of communication, where d is the multiplicative depth of
the circuit being computed. However, unlike YOSO-CDN, YOSO-LHSS does
not require the trusted distribution of an initial set of key share. In order de-
crease the number of rounds without relying on such initial trusted distribution,
YOSO-LHSS can be used to generate the setup necessary for some constant-
round YOSO MPC protocol (e.g. one based on threshold fully homomorphic
encryption). We elaborate on this in Section 1.7.

Though YOSO-LHSS requires more rounds than YaOSO or YOSO-GLS, we
believe it may be more efficient in practice, because of the simpler message
validity relations it employs; the zero-knowledge proofs for those relations (that
would be to used realize the actions of FVeSPa) is much more practical than for
those required by our other protocols.

We prove our YOSO-LHSS protocol securely YOSO realises MPC with guar-
anteed output delivery in the Fhom

VeSPa-hybrid model.

Assumptions YOSO-LHSS uses the Fhom
VeSPa functionality to allow participants

to perform homomorphic operations on messages intended for others. YOSO-
LHSS does not rely on any additional assumptions outside of Fhom

VeSPa; however,
it’s worth noting that Fhom

VeSPa for the linear homomorphism we require can be
based on the encryption scheme of Castagnos and Laguillaumie [14], which in
turn is based on the DDH assumption in the class group setting.

Recap of the YOSO-CDN protocol Since our protocol is closely related to
the YOSO-CDN protocol of Gentry et al. [24], we recap CDN — and YOSO-
CDN— here.

CDN [18] relies on linearly-homomorphic threshold encryption (LHTE), where
a fixed public encryption key pk is known, and the corresponding secret decryp-
tion key sk is secret shared among the n participants. A role can supply an
input by encrypting it under pk, and publishing the resulting ciphertext. The
participants then perform the computation by leveraging the homomorphism
of the encryption scheme for linear operations, and by using Beaver triples for
multiplications.

Assuming the availability of a Beaver triple a = Enc(a), b = Enc(b) and
c = Enc(ab), the parties multiply ciphertexts x and y (encrypting x and y,
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respectively) by (1) using the linear homomorphism to compute ε = a− x and
δ = b− y, (2) jointly decrypting ε and δ, and (3) using linear homomorphism to
compute xy = c− εb− δa+ εδ.

The Beaver triples themselves can be generated on-the-fly in two rounds. In
the first round, each participant i of that round chooses a random additive share
ai of a, and publishes ai = Enc(ai) together with a zero knowledge proof that
it is well-formed. Everyone can then use the linear homomorphism to compute
a =

∑
ai, using only the contributions ai which are accompanied by a verifying

proof. In the second round, each participant i of that round similarly contributes
an encrypted additive share bi of b, together with bia (which she computes as
a linear operation on a using her knowledge of bi), and a zero knowledge proof
that bi and bia were produced consistently. Everyone can then compute b =

∑
bi

and c =
∑
bia using the contributions from those parties i whose zero knowledge

proofs verify.
To YOSO-ify this construction, Gentry et al. needed to make only a few

minor changes to ensure that every round of communication can be carried out
by a new committee. First, they observe that the two rounds of communication
that generate a Beaver triple (a) do not depend on the shared secret decryption
key, and so (b) can be carried out by committees with a dishonest majority and
no RACCs. They thus instruct two smaller committees of size h (where h is
chosen to guarantee that a set of h random roles will contain at least one honest
role with overwhelming probability) to carry out Beaver triple generation.

All that remains is to ensure that every committee that must decrypt a
value (whether those values are the ε and δ needed for a multiplication, or the
computation output itself) holds shares of the secret decryption key. In order to
do this, we need an additional property from the threshold linearly homomorphic
encryption scheme: it must allow a committee that holds a sharing of the secret
decryption key to re-share that key to the next committee in a single round of
communication. (They can do this in the same breath in which they broadcast
their contributions to the decryption of the values they are opening.) Gentry et
al. use an encryption scheme that has this property. An unfortunate downside of
this is that each secret key share has size O(n), resulting in O(n2) communication
per committee member as part of the key resharing (even disregarding the size
of the accompanying zero knowledge proof). An even more important remaining
issue is how the public encryption key, together with the initial sharing of the
decryption key, is generated. YOSO-CDN relies on a trusted setup for this.

Adapting YOSO-CDN YOSO-LHSS is based closely on the YOSO-CDN
protocol, described above. However, we make a crucial pivot: instead of using a
threshold linearly homomorphic encryption scheme (LHTE) with a global public
key, we use Fhom

VeSPa to enable linear computations on messages to individual
recipients. This eliminates the need for a trusted setup.

In order to provide a secret to a committee instead of an individual recipient,
we share the secret using a linearly homomorphic threshold secret sharing (e.g.
Shamir secret sharing). In more detail, in order to provide an input x to the
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computation, instead of encrypting x to a global public key as in YOSO-CDN,
a role must first secret share x as (x1, . . . , xn) and then send each share to a
member of a specific committee (this point-to-point communication can be done
using Fhom

VeSPa). That committee now holds a sharing of x, and can either jointly
reconstruct x at the appropriate time (by publishing the shares), or compute
on x and other values it may hold. Linear computations are accomplished by
leveraging Fhom

VeSPa, and through the linear homomorphisms of the secret shar-
ing scheme. A multiplication requires the use of a Beaver triple, just like in
YOSO-CDN; however, the Beaver triple must now be generated for this specific
committee.

Unlike in YOSO-CDN, if a value is input to one committee but must later
be used by a different committee, the first committee must re-share the value
to the new committee. This can be done simply by having each role re-share its
share to the new committee.

Communication Complexity, Round Complexity and Future Horizon
YOSO-LHSS uses two types of committees: committees of size n (where the
size n is chosen to be large enough to guarantee an honest majority within the
committee), and committees of size h (where the h can be much smaller than n,
since only one honest role, rather than an honest majority, is needed). YOSO-
LHSS uses one committee of size n for each layer of multiplication, as well as
one additional committee of size n to decrypt the output. Each multiplication
requires two committees of size h to generate a Beaver triple.

Including m roles who speak to provide inputs to the computation, this
makes the total number of roles who speak throughout the protocol equal to
m+ (d+ 1)n+ 2dh.

It might look like this necessitates 3d+3 rounds of communication, but many
of these committees can speak at the same time. The two committees generating
Beaver triples for the first multiplication must both speak before the first multi-
plication can happen, but the roles providing input can speak at the same time
as one of those Beaver triple committees. Committees generating Beaver triples
for future multiplications can always speak in parallel with previous commit-
tees; in fact, if desired, all of the Beaver triple committees could speak at once,
or alternatively, a single committee could generate all of the Beaver triples. Of
course, the committee who decrypts the output must speak last, which leaves
us with d+ 3 rounds of communication. One reason not to have a single pair of
committees of size h generate all of the Beaver triples is what Gentry et al. call
the future horizon, which describes how long before a role needs to act must her
receiver anonymous communication channel be available, or, in other words, how
far in advance must machines be assigned to their roles, or how many rounds
can separate a speaker i from the last speaker j to whom speaker i must send
a message. It is desirable to minimize the future horizon, because when running
in e.g. a blockchain environment, the pool of participants can be very dynamic,
and because machines are always coming and going it can be impractical to
select machines for roles too far in advance (since they might disappear before
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the time comes). A small future horizon enables on-the-fly assignment of ma-
chines to roles while the protocol runs. If a single pair of committees generates
all of the Beaver triples, the future horizon of YOSO-LHSS will be determined
by the round distance from the first of these two Beaver committees to the last
committee that receives an output of a multiplication (which will be the output
committee). This distance will be d + 2. If instead we have a designated pair
of committees generate Beaver triples for each layer of the multiplication (as
described above), the future horizon is 3. (We assume that the output wires of a
given layer of multiplication gates in the circuit being computed serve as input
only to the next layer of multiplication gates; otherwise, the future horizon is
determined by the longest wire in the circuit. Note that any circuit can be con-
verted to a circuit with the property we assume by adding multiplication-by-one
gates.)

Comparison to YOSO-CDN There are advantages and disadvantages to the
changes we make to YOSO-CDN to obtain YOSO-LHSS. Of course, a crucial
advantage of YOSO-LHSS — and the motivation for our changes — is that
YOSO-LHSS does not require trusted setup.

On the other hand, a disadvantage of YOSO-LHSS is that a given value
is held by one committee; for it to be used by several committees, it must be
shared to several, or re-shared from committee to committee. In YOSO-CDN,
any value encrypted to the global public key is accessible by any committee
that holds the shared secret decryption key; no additional work to make the
value accessible to a given committee is needed. In particular, this means that
in YOSO-LHSS, Beaver triple preprocessing must be done with a committee in
mind. In YOSO-CDN, all Beaver triples are useable by any committee.

1.7 Achieving Setup-Free Constant-Round YOSO MPC from
YOSO-LHSS

Gentry et al. [24] point out a simple constant-round YOSO MPC protocol: if a
secret key for a threshold fully homomorphic encryption (FHE) scheme is shared
to a committee, that committee can perform the entire computation as long as
joint decryption only requires a single round of communication. However, this
protocol requires setup, in the form of the distribution of the secret key shares.

We observe that it is possible to combine any setup-free YOSO MPC with any
constant-round YOSO MPC (which might rely on setup) to obtain a setup-free
YOSO MPC whose round complexity is independent of the circuit being com-
puted. This can be done simply by performing the setup for the constant-round
YOSO MPC within the setup-free YOSO MPC, and then using the constant-
round YOSO MPC for the actual computation. If the setup performed by the
setup-free YOSO MPC is independent of the circuit we wish to compute, the
number of rounds required by this bootstrapped protocol will be independent
of the size of the circuit as well. (Note that the number of rounds may still
depend on the security parameter depending on the setup performed.) We can
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use our setup-free YOSO MPC — YOSO-LHSS— to generate a threshold fully
homomorphic encryption key, and share the corresponding decryption key to a
committee. (It should be noted that the YOSO-IT construction of Gentry et
al. could also be used as the setup-free YOSO MPC here; however, that con-
struction is much less practically efficient than ours, due to the large number of
committees they require even for a single multiplication.)

Lastly, we point out that an alternate approach to designing constant-round
YOSO protocols could be via randomized encoding i.e. to first consider the low-
degree randomized encoding of the function to be computed and subsequently
use a YOSO MPC to realize this. Since this approach typically leads to an
efficiency blowup, we believe the bootstrapping approach outlined above to be
more promising towards designing efficient constant-round YOSO MPC.

2 YOSO Secure Multiparty Computation (MPC)
Definitions

In this section we recap what it means for an MPC protocol to be YOSO secure.
The YOSO model [24] makes a crucial separation between physical machines
and the roles which they play in the protocol. By mapping machines to roles
in a random and unpredictable way, we can ensure that the adversary will not
know which machines will be important, and will not be able to preemptively
corrupt or destroy those machines. In this paper, we describe our YOSO MPC
protocols in terms of roles. We ignore how roles are assigned to machines; we
assume the availability of a role assignment functionality which allows point-to-
point communication and broadcast messages between roles. Mechanisms which
realize such a role assignment functionality were described by Benhamouda et
al. [7] and Gentry et al. [25]. The YOSO model uses the UC framework [12],
with roles instead of physical machines as the participants. Every participant
is ‘YOSO-ified’, meaning that as soon as she speaks for the first time, she is
killed. A protocol Π YOSO-realizes a functionality F if the YOSO-ification of
Π UC-realizes F (Section 2.1).

2.1 UC MPC

Consider a protocol Π = (R1, . . . ,Ru) described as a tuple of roles Ri, each of
which is a probabilistic polynomial-time (PPT) machine. Some of those roles are
input roles, who, when they speak, provide an input. Other roles are there to
assist in computing a function f on the provided inputs.

In a real-world execution of protocol Π with environment E and adversary
A, the PPT environment E provides the input x = (x1, . . . , xm) to protocol’s
input roles. The environment also communicates with the PPT adversary A. We
consider a synchronous model, where the protocol is executed in rounds; in each
round, some roles speak (over a broadcast channel). During the execution of the
protocol, the corrupt roles receive arbitrary instructions fromA, while the honest
roles faithfully follow the instructions of the protocol using the input they were
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given. We consider the adversary A to be rushing, i.e., during every round the
adversary can see the messages the honest roles sent before producing messages
from corrupt roles. At the end of the protocol execution, the environment E
produces a binary output. Let REALΠ,A,E(1

κ) denote the random variable (over
the random coins used by all roles) representing E ’s output in the real world.

Now, consider an ideal-world execution with the same environment E , but
with an ideal-world adversary S. In the ideal-world execution, instead of running
the protocol Π, the roles turn to a trusted party to compute f on the input
given to them by E . This trusted party receives the inputs x1, . . . , xm from
the input roles, and broadcasts f(x1, . . . , xm). We call this trusted party the
ideal functionality Ff for computation of f with guaranteed output delivery. Let
IDEALFf ,S,E(1

κ) denote the random variable (over the random coins used by
S) representing E ’s output in the ideal world.

Definition 1 (UC Security [12]). Let f : ({0, 1}∗)m → {0, 1}∗ be an m-input
function. A protocol Π = (R1, . . . ,Ru) UC-securely computes f (with guaranteed
output delivery) if for every PPT real-world adversary A there exists a PPT
ideal-world adversary (or simulator) S such that, for any PPT environment E,
it holds that REALΠ,A,E(1

κ) and IDEALFf ,S,E(1
κ) are indistinguishable for

any large enough security parameter κ.

2.2 The YOSO Adversary’s Corruption Power

Gentry et al. show that, given a role assignment mechanism that randomly maps
roles to machines, an adversary with the ability to selectively corrupt machines
corresponds to an adversary who randomly corrupts roles. This lets us assume
that an adversary who can corrupt slightly fewer than half of the available ma-
chines can corrupt less than half of the roles in a committee of roles as long as
the committees are chosen to be large enough. We let n be the committee size
that ensures an honest majority of roles. We let h be the (smaller) committee
size that ensures at least one honest role on the committee.

Gentry et al. also point out that for random corruptions, there is very little
difference between adaptive corruptions and static corruptions. In the case of
random corruptions, the adversary must leave the choice of which role to cor-
rupt to a special corruption controller ; the adversary cannot tell whether the
corruption controller makes this random choice on the fly, or whether the choice
was made before the start of the protocol. We follow the path laid out by Gen-
try et al., and phrase our proof in terms of static security, noting that it can be
extended to the adaptive case using standard techniques.

Roles which are expected to provide input are a special case, since it makes
no sense to request input from random machines; rather, there are likely pre-
determined participants who are expected to provide meaningful inputs. We
prove our protocols secure without making any assumptions about the adver-
sary’s ability to corrupt input roles. In particular, we do not require an honest
majority of input roles.
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To summarize, we prove security against an adversary who can statically
corrupt (a) arbitrarily many input roles, (b) fewer than half of the roles in each
committee of size n, and (c) all but one of the roles in each committee of size h.

2.3 Compiling Abstract YOSO to Natural YOSO

The YOSO model separates the protocol design (that considers abstract roles)
from the role assignment (that maps roles to machines). Current YOSO MPC
protocols in the abstract model use the two communication functionalities: FBC

and FSPP, for broadcast and point-to-point messages respectively. To demon-
strate how abstract YOSO protocols can be realized in practice, Gentry et al.
[24] present a compiler that transforms an abstract YOSO protocol (designed in
the FBC and FSPP hybrid model) with t random, static role corruptions to a UC
secure protocol in the natural world with t′ chosen static machine corruptions.
This compiler requires t′/N < t/n, where n and N refer to the size of a com-
mittee and the number of machines respectively. The compiled UC protocol in
the natural world is in the FRA-hybrid model, where FRA denotes the ideal func-
tionality modeling a blockchain with role assignment. The high-level intuition
of the compiler is that since the role-to-machine assignment is unknown to the
adversary, the chosen corruptions of machines in the natural world translates to
random corruptions in the abstract world. Gentry et al. [24] also presents such
a a compiler for adaptive security.

3 Verifiable State Propagation

As mentioned above, current YOSO MPC protocols use the two communica-
tion functionalities: FBC and FSPP, for broadcast and point-to-point messages
respectively. We define the verifiable state propagation functionality, FVeSPa, as
an augmented variant of these functionalities, building in verification directly.
Conceptually we envision FVeSPa playing a similar role to existing GMW-like
compilers, such as [4], that adds a layer of verification to each of the messages
in the protocol transcript.

Next, we elaborate on the motivation behind introducing this new functional-
ity FVeSPa. We note that the abstraction of FSPP is problematic when considering
the verifiability of messages sent between two parties, as the secure channels pro-
vide no way of proving statements about how the messages a role passes on to
the next committee relate to the messages it received. Explicit encryption keys
used for the point-to-point communication would allow the use of NIZK, but this
would require exposing the role assignment mechanism to the design of the MPC
layer, breaking the abstraction of the YOSO model. The use of setup (which we
wish to avoid) in the YOSO-CDN protocol of [24] effectively sidesteps this issue
as keys are assumed as a part of the setup, allowing the subsequent use of NIZK
w.r.t. encrypted messages sent on FBC. Braun et al. [9] similarly assume explicit
keys for roles to enable NIZK.
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The FVeSPa functionality maintains two maps for messages between roles, a
map y for point-to-point messages, and a map z for broadcast messages. When
roles have completed their work, they may input a single Send message to
the functionality containing all point-to-point messages as well as a broadcast
message. The role also provides a witness and relation along this input, al-
lowing the functionality to verify that the messages satisfy some requirement.
The statements for the considered relations may be divided into four parts,
φsend, φbroadcast, φreceive and φpublic. The first two contain the point-to-point
and broadcast messages respectively. While the third part of the statement,
which is specified by the functionality, contains all messages sent directly to the
role, allowing roles to prove that their messages are well-formed with respect
to secret messages they have received. The fourth and final part, of the state-
ment, which is also specified by the functionality, contains all previous broadcast
messages. After receiving a send command from an honest role the functionality
outputs a Spoke token, killing the role.

Roles may read messages input to the functionality in the rounds after they
were sent.

Functionality FVeSPa

This ideal functionality has the following behaviour:

– Define a map R : Role→ Rel⊥. Specify the relations the messages of each role
must satisfy.

– Initially create point-to-point and broadcast maps:
y : N× Role× Role→ Msg⊥ where y(r,R,R′) = ⊥ for all r,R,R′

z : N× Role→ Msg⊥ where z(r,R) = ⊥ for all r,R.
– On input (Send,S, ((R1, x1), . . . , (Rk, xk)), x, w) in round r proceed as fol-

lows:
• Let φsend = ((R1, x1), . . . , (Rk, xk)) and φbroadcast = x.
• Collect all yk 6= ⊥ for r′ < r,R′ ∈ Role where y(r′,R′, S) = yk to produce

a vector φreceive = ((R′
1, y1), . . . , (R′

m, ym)).
• Let φpublic be the current public state, represented by a vector of all

elements (r′,R′,msg), for all R′ ∈ Role where z(r′,R′) = msg 6= ⊥ and
r′ < r.

• If ((φsend||φreceive||φbroadcast||φpublic), w) 6∈ R(S) ignore the input.
• Else:

∗ For i ∈ [k] update y(r,S,Ri) = xi. Store point to point messages
from the role.

∗ Update z(r,S) = x. Store the broadcast message from the role.
∗ Output (S, ((R1, |x1|), . . . , (Rk, |xk|)), x) to S. Leak message lengths

and the broadcast message to the simulator in a rushing fashion.
If S is honest give Spoke to S.

– On input (Read,R, S, r′) in round r where r′ < r for x = y(r′,S,R) output
x to R.

– On input (Read, S, r′) in round r where r′ < r output x = z(r′, S) to R.
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We prove each of our protocols secure in the FVeSPa-hybrid model, supplant-
ing the broadcast and point-to-point functionalities of [24].

3.1 VeSPa and the big picture

In this section, we outline how the protocols in the FVeSPa-hybrid model can
be deployed in the natural world. Similar to the compiler of Gentry et al. [24]
(described in Section 2.3), one can design a compiler that transforms an abstract
YOSO protocol in the FVeSPa-hybrid model 9 with a fraction ρ random, static
corruptions to a UC secure YOSO protocol (in the FRA-hybrid model) in the
natural world with fraction ρ′ chosen, static corruptions (where ρ′ < ρ). In
Appendix C, we demonstrate this compilation with a toy example (similar to
[24]) to illustrate the feasibility of compilation of our YOSO protocols into the
natural world.

Theorem 1. (informal) There exist constants ρ, ρ′, where 0 < ρ′ < ρ < 1/2,
such that if a protocol ΠAbstract YOSO realises Ff in the FVeSPa-hybrid model
against ρ random static corruptions then ΠNatural = Compile(ΓAbstract) UC re-
alises Ff in the FRA-hybrid model against ρ′ chosen static corruptions. (ΓAbstract

is ΠAbstract cast into the SYOSO model.)

In the above, SYOSO refers to a simplified YOSO model (used as a stepping
stone in the compilation of [24]).

The main difference between our compiler and the one of [24] is that in our
case the ideal functionality FVeSPa in the abstract protocol includes verification
actions (in addition to point-to-point and broadcast communication, similar to
[24]). To avoid relying on setup, we propose using multi-string NIZKs 10 [30]
(See Appendix A.6) to realize the verification actions of FVeSPa. The only modi-
fication needed for our case is an extra committee of parties who each generate a
multi-string NIZK CRS 11, allowing subsequent parties to prove their messages
were correctly computed. The security of multi-string NIZK is guaranteed if the
parties that non-interactively generate parts of a CRS, have an honest majority.
We refer to Appendix C for further details and proof sketch of Theorem 1.

In summary, FVeSPa may largely be seen as a reorganisation of existing ab-
stractions. More specifically, it does not introduce any computational overhead
as compared to constructions that rely on FBC and FSPP since this is essen-
tially a conceptual reorganization of work: it moves the zero-knowledge proofs
previously explicit in the MPC layer to the FVeSPa layer.

9Note that the FVeSPa is an augmented version of FBC and FSPP.
10Informally, multi-string NIZKs avoids trusting a single authority to generate the

CRS and instead involves several authorities to generate the CRS; while only assuming
that majority of them are honest.

11In fact, the members of this designated CRS generation committee do not need to
receive messages, allowing them to be self-selecting through cryptographic sortition, as
proposed for the nominating committees of [7].
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4 YaoOSO

As outlined in the overview in Section 1.4, we present a compiler that transforms
any two-round broadcast non-YOSO MPC protocol that achieves semi-malicious
security with abort in the dishonest majority setting to a two-round YOSO MPC
protocol in the FVeSPa-hybrid model that achieves malicious security with guar-
anteed output delivery in the honest majority setting. This compiler adapts the
approach of the compiler in [3] with suitable modifications to make it compatible
with the YOSO setting.

4.1 Tools

The compiler uses the following tools:

– A two-round m-party non-YOSO broadcast protocol Πsm achieving semi-
malicious security with abort against dishonest majority (such as the pro-
tocols of [23,8]). Πsm is represented by the set of algorithms {frst-msgi,
snd-msgi, out}, where frst-msgi computes Pi’s first-round broadcast mes-
sage; snd-msgi computes Pi’s second messages; and out computes the output.
The syntax of the algorithms is as follows:

• frst-msgi(xi, ρi)→ msg1
i produces the first-round broadcast message of

party Pi to all parties.
• snd-msgi(xi, ρi,msg1

1, . . . ,msg1
m)→ msg2

i produces the second-round broad-
cast message of party Pi to all parties.

• out(msg1
1, . . . ,msg1

m,msg2
1, . . . ,msg2

m) → y produces the public output.
As mentioned previously, it is without loss of generality to assume that
the output computation requires only the public transcript.

– An adaptive garbling scheme (garble, eval, simGC) (Appendix A.2).
– A Shamir secret sharing scheme (Share,Rec) (Appendix A.1).

Notation. Let Ci,xi,ρi(msg1
1, . . . ,msg1

m) (with hard coded values (xi, ρi)) denote
the boolean circuit that computes snd-msgi. For simplicity assume each first
round message is ` bits long, so each circuit has L = m · ` input bits. Let g be
the size of a garbled Ci.

4.2 Protocol

We introduce a relation for each of the committees in the protocol, allowing
FVeSPa to enforce correct behaviour.
Below, is the relation corresponding to an input committee role Ij ,

RInput,j =



φsend =
(
Ei, {s(0)

j,l,i, s
(1)
j,l,i}l∈[L]

)
i∈[n]

φreceive = ⊥ , φpublic = ⊥
φbroadcast =

(
msg1

j , GCj
)

w =

(
xj , ρj , ρj,gc,

{ρ(b)
j,l }b∈{0,1},l∈[L]

)
msg1

j ← frst-msgj(xj , ρj)

(GCj , {K(0)
j,l ,K

(1)
j,l }l∈[L])← garble(1λ, Cj,xj ,ρj , ρj,gc){

(s
(b)
j,l,1, . . . , s

(b)
j,l,n)← Share(K

(b)
j,l , ρ

(b)
j,l )
}
b∈{0,1},l∈[L]


.
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Below, is the relation corresponding to a computation committee role Ei,

RComputation,i =



φsend = ⊥
φreceive = {s(0)

j,l,i, s
(1)
j,l,i}j∈I,l∈[L],

φbroadcast = {s(bl)
j,l,i}j∈I,l∈[L]

φpublic = msg1
1, . . . ,msg1

m

w = ⊥

msg1
1|| . . . ||msg1

m := b1, . . . , bL


.

We present the protocol ΠY aOSO in the FVeSPa-hybrid model.

Protocol ΠY aOSO : Input

This step is run by the input committee I of size m. The jth input role Ij (with input xj)
does the following:

– Compute the first round message of Πsm using input xj and randomness ρj as msg1j ←
frst-msgi(xj , ρj)

– Garble the circuit computing the second round next-message function of Πsm as

(GCj , ~Kj) ← garble(1λ, Cj,xj,ρj , ρj,gc), where ~Kj = {K(0)
j,l , K

(1)
j,l }l∈[L] and ρj,gc denotes

the randomness used for garbling.

– Compute t-out-of-n threshold sharing of the labels as (s
(b)
j,l,1, . . . , s

(b)
j,l,n) ←

Share(K
(b)
j,l , ρ

(b)
j,l ) (for l ∈ [L] and b ∈ {0, 1}), where ρ

(b)
j,l denotes the randomness used.

– Send input
(
Send, Ij ,

(
(E1, {s(0)j,l,1, s

(1)
j,l,1}l∈[L]), . . . , (En, {s

(0)
j,l,n, s

(1)
j,l,n}l∈[L])

)
,
(
msg1j , GCj

)
,(

xj , ρj , ρj,gc, {ρ(b)j,l }b∈{0,1},l∈[L]
))

to FVeSPa.

Protocol ΠY aOSO : Computation

This step is run by the computation committee E of size n. The ith role Ei does the
following:

– Collect the broadcast messages
(
msg1j , GCj

)
of the input role Ij by giving input

(Read, Ij , 1) to FVeSPa.

– Collect the point-to-point message {s(0)j,l,i, s
(1)
j,l,i}l∈[L] sent by Ij by giving input

(Read, Ei, Ij , 1) to FVeSPa. Let I′ denote the subset of input roles Ij for whom the above
reads resulted in non-⊥ output.

– For α ∈ {(j−1)`+1, . . . , j ˙̀}, let bα denote the αth bit in msg1j (where msg1j is replaced by

default first-round message for j /∈ I′). In other words, set b1, . . . , bL := msg11|| . . . ||msg1m.

– Send input (Send, Ei,⊥, {s
(bl)

j,l,i}j∈I,l∈{L},⊥) to FVeSPa. (Assume the set of shares to be

simply ⊥ for j /∈ I′).

Protocol ΠY aOSO : Output

The output can be computed by any party as follows:

– Collect the broadcast messages
(
msg1j , GCj

)
of each input role Ij by inputing (Read, Ij , 1)

to FVeSPa. Let I′ denote the subset of input roles Ij for whom the above read resulted in
non-⊥ output.
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– Collect the broadcast messages {s(bl)j,l,i}j∈I,l∈[L] of each computation committee role Ei

by inputing (Read, Ei, 2) Let E′ denote the subset of committee roles Ei for whom the
above read resulted in non-⊥ output.

– For j ∈ I′,
- Reconstruct the appropriate input label Kj,l for l ∈ [L] as Kj,l ← Rec({s(bl)j,l,i}i∈E′ ).
- Evaluate GCj to obtain msg2j as msg2j ← eval(GCj , Kj,1, . . . , Kj,L).

– Compute the output as y ← out(msg11, . . . ,msg1m,msg21, . . . ,msg2m), where msg1j and msg2j
for input roles j /∈ I′ are computed using default input and randomness.

Theorem 2. The protocol ΠY aOSO realises the MPC functionality Ff with
guaranteed output delivery in the FVeSPa-hybrid model.

The proof of Theorem 2 may be found in Appendix B.1

5 YOSO-GLS

We now present our first protocol as outlined in Section 1.5, starting with the
TFHE scheme which makes up its core.

5.1 Threshold Fully Homomorphic Encryption

For the YOSO-GLS protocol we will use an adaptation of the Threshold Fully
Homomorphic Encryption (TFHE) scheme described by Gordon et al. in [28].
To simplify the security proof of the final protocol, and potentially ease future
use of TFHE, we extract three security properties of the scheme. This diverges
from the approach of [28], where the authors analyse the scheme directly within
the security proof of the protocol.

As described in our technical overview, moving to the YOSO model requires
a series of modifications to the TFHE scheme, these changes are reflected in the
syntax we present now.

Setup(1κ, n, d; ρ)→ pp: A setup algorithm parameterized by the size of an
honest majority committee n, producing public parameters pp, which are
given as an implicit argument to all subsequent algorithms.
KGen(ρi)→ (pki, ski) : Given public parameters pp and randomness ρi, the
key generation algorithm produces a public key pki and a secret key ski split
into shares, such that ski = (ski,1, . . . , ski,n).
Enc({pki}i∈K, x; ρ)→ C : Given a set of public keys {pki}i∈K and a message
x, the encryption algorithm encrypts to a ciphertext C under randomness ρ.
Eval(f, C1, . . . , Cm)→ C : Homomorphically evaluates function f on input
ciphertexts C1, . . . , Cm to produce C.
PDec({pki}i∈K, cskj , C)→ dj : For a ciphertext C, encrypted under the pub-
lic keys {pki}i∈K, and computation secret key cskj = {ski,j}i∈K this algo-
rithm produces a partial decryption dj .
Combine({pki}i∈K, C, {di}i∈R)→ out : Given a set of partial decryptions {di}i∈R
of size at least t+ 1, decrypts ciphertext C to plaintext out
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To satisfy security we require one additional algorithm, for simulating partial
decryptions.

SimPDec(C, {pki}i∈K, {ski}i∈IKGen , {(cskj , dj)}j∈IComputation
, out)→ {dj}j∈[n]\IComputation

:
Given a ciphertext C under public keys {pki}i∈K, along with partial decryp-
tions for corrupt computation roles, and all secrets known to the corrupted
roles, the partial decryption simulation algorithm produces partial decryp-
tions dj for j ∈ [n]\IComputation which are indistinguishable from honestly pro-
duced partial decryptions.

TFHE Security We extract three properties which we show our TFHE scheme
adapted for the YOSO setting satisfies. We define correctness (Definition 2), se-
mantic security (Definition 3, Figure 2), and partial decryption simulatability
(Definition 4, Figure 3), where semantic security and partial decryption sim-
ulatability use a common set of oracles defined in Figure 1. The oracles are
specifically tailored to represent the corruption powers of the adversary over dif-
ferent committees in the YOSO model. One peculiarity of this is that our oracles
do not allow an honestly generated key to be corrupted or leaked subsequently,
as roles erase all private state prior to sending any messages.

We will first define correctness.

Definition 2 (Correctness). A TFHE scheme is perfectly correct, if for all
positive integers n, h, d, t < n/2, all functions f (computed by a circuit of depth
d only containing NAND gates and), all ρ, {ρKGeni }i∈[h], {(xi, ρEnci )}i∈[m], and
non-empty sets K ⊂ [h], R ⊂ [n] where |R| > t:

f(x1, . . . , xm) = Combine({pki}i∈K, C, {di}i∈R).

Where the inputs to Combine are produced as:

– pp← Setup(1κ, n, d; ρ)

– (pki, ski)← KGen(ρKGeni ) for i ∈ K
– Ci ← Enc({pki}i∈K, xi; ρEnci ) for i ∈ [m]

– C ← Eval(f, C1, . . . , Cm)

– dj ← PDec({pki}i∈K, {ski,j}i∈K, C) for j ∈ R.

For the purposes of our remaining definitions, we must first capture the corrup-
tion powers of the adversary. We do this by formalising three oracles, with access
to common state. These oracles are:

– OKGen(i): An oracle that generates a new honest key pair and registers it
in the system.

– OKReg(i, ρi): An oracle that allows registering a corrupt key pair, requiring
the randomness used for its generation.

– OCorr(j): An oracle which leaks the computation key for cskj .
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These oracles track which keys have been chosen by and leaked to the adversary,
allowing thresholds on corruptions to be checked in our security games. We do
not allow the adversary to corrupt an honestly generated key after the fact, as
this local state, such as the randomness used in generation, would be deleted in
the YOSO setting.

OKGen(i)

1 : if i ∈ HKGen ∪ IKGen ∨ i 6∈ [n] : return ⊥
2 : (pki, ski = (ski,1, . . . , ski,n))← KGen()

3 : Lkeys := Lkeys ∪ {(i, pki, ski)}
4 : HKGen := HKGen ∪ {i}
5 : return pki

OKReg(i, ρi)

1 : if i ∈ HKGen ∪ IKGen ∨ i 6∈ [n] : return ⊥
2 : (pki, ski)← KGen(ρi)

3 : Lkeys := Lkeys ∪ {(i, pki, ski)}
4 : IKGen := IKGen ∪ {i}
OCorr(j)
1 : if j 6∈ [n] : return ⊥
2 : IComputation := IComputation ∪ {j}
3 : cskj ← {ski,j |∃(i, pki, (ski,1, . . . , ski,n)) ∈ Lkeys}
4 : return cskj

Fig. 1: Oracles used in the security games for TFHE schemes

Definition 3 (Semantic Security). A TFHE scheme is semantically secure
under chosen plaintext attack if, for all PPT adversaries A,

AdvIND−CPAA,n,t,TFHE (κ) = Pr[A wins GameIND−CPAA,n,t,TFHE (κ)]− 1

2
≤ negl(κ)

for a negligible function negl in the security parameter κ. Where GameIND−CPAA,n,t,TFHE (κ)
is defined as described in Figure 2

Definition 4 (Partial Decryption Simulatability). A TFHE scheme has
partial decryption simulatability if, for all PPT adversaries A, for all n, d and
functions f (of only NAND gates and depth less than d),

AdvParDecSimA,n,d,f,TFHE(κ) = Pr[A wins GameParDecSimA,n,d,f,TFHE(κ)]− 1

2
≤ negl(κ)

for a negligible function negl in the security parameter κ, where GameParDecSimA,n,d,f,TFHE(κ)
is defined as described in Figure 3
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GameIND−CPAA,n,t,TFHE (κ)

1 : HKGen := ∅; IKGen := ∅; IComputation := ∅; Lkeys := ∅
2 : O ← {OKGen,OKReg,OCorr}
3 : pp← Setup(1κ, n)

4 : x0, x1 ← AO(pp)

5 : K ← HKGen ∪ IKGen

6 : b
$← {0, 1}

7 : C ← Enc({pki}i∈K, xb)

8 : b′ ← A{OCorr}(C)

9 : if |HKGen| = 0 : A loses

10 : if |IComputation| > t : A loses

11 : if |x0| 6= |x1| : A loses

12 : if b = b′ : A wins

13 : else : A loses

Fig. 2: The semantic security game for TFHE schemes. See Figure 1
for a definition of the oracles provided to the adversary.

Instantiating Threshold Fully Homomorphic Encryption We provide an
instantiation of TFHE in Appendix A.4, proving its security in Appendix A.5.
A discussion of the changes required to adapt the original scheme to the YOSO
setting may be found in our technical overview (Section 1.5).

5.2 The YOSO-GLS Protocol

We present two variants of our YOSO-GLS protocol, achieving different round
complexities, depending on the allowed setup.

– A five round protocol. Two sequential committees, realising a subprotocol
for sampling public parameters for the TFHE scheme, described in Ap-
pendix A.7. Followed by three rounds for the TFHE scheme, consisting of a
key generation, input and computation committee, described in this section.

– A three round protocol. The explicit sampling of public parameters is re-
placed by access to a uniform reference string, leaving only the three rounds
needed for the TFHE scheme.

The functionality for sampling public parameters may be defined as FTFHE
Setup (re-

alised in Appendix A.7). For now we assume access to this ideal functionality
and proceed to design our main protocol.
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GameParDecSimA,n,d,f,TFHE(κ)

1 : HKGen := ∅; IKGen := ∅; IComputation := ∅; Lkeys := ∅
2 : O ← {OKGen,OKReg,OCorr}
3 : pp← Setup(1κ, n)

4 : {(xk, ρk)}k∈[m] ← AO(pp)

5 : K ← HKGen ∪ IKGen
6 : for j ∈ [n] :

7 : cskj ← {ski,j |∃(i, pki, (ski,1, . . . , ski,n)) ∈ Lkeys}
8 : for k ∈ [m] :

9 : Ck ← Enc({pki}i∈K, xk; ρk)

10 : C ← Eval(f, C1, . . . , Cm)

11 : out← f(x1, . . . , xm)

12 : b
$← {0, 1}

13 : if b = 0 :

14 : for j ∈ [n] \ IComputation :

15 : dj ← PDec({pki}i∈K, cskj , C)

16 : else :

17 : for j ∈ IComputation :

18 : dj ← PDec({pki}i∈K, cskj , C)

19 : {dj}j∈[n]\IComputation
← SimPDec(C, {pki}i∈K, {ski}i∈IKGen ,

{(cskj , dj)}j∈IComputation , out)

20 : b′ ← A({dj}j∈([n]\IComputation))

21 : if |HKGen| = 0 : A loses

22 : if |IComputation| > t : A loses

23 : if b = b′ : A wins

24 : else : A loses

Fig. 3: The partial decryption simulatability game for TFHE schemes. See Fig-
ure 1 for a definition of the oracles provided to the adversary.
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Functionality FTFHE
Setup

– Run pp← TFHE.Setup(1κ, n, d) and output pp to S.
– On input (Read,R) output pp to R.

Notation Our three-round protocol considers three committees:

K1, . . . ,Kh denotes the key generation committee K (of size h).
I1, . . . , Im denotes the input committee I (of size m).
E1, . . . , En denotes the computing committee E (of size n).

We introduce a relation for each of the committees in the protocol, allowing
FVeSPa to enforce correct behaviour. Below, is the relation for a role in the key
generation committee Ki,

RKGen =


φsend =

(
(E1, ski,1), . . . , (En, ski,n)

)
φreceive = ⊥ , φbroadcast =

(
pki
)

w =
(
ρKi
) (pki, (ski,1, . . . , ski,n))

← TFHE.KGen(pp, ρKi)

 .

Below, is the relation corresponding to an input committee role Ii,

REnc =


φsend = ⊥, φreceive = ⊥
φbroadcast =

(
Ci
)

φpublic =
(
(K1, pk1), . . . , (Kh, pkh)

)
w =

(
xi, ρIi

) Ci
← TFHE.Enc({pki}i∈K, xi; ρIi)

 .

Lastly, the relation for a role in the computation committee Ei,

REval =



φsend = ⊥
φreceive =

(
(E1, ski,1), . . . , (En, ski,n)

)
φbroadcast =

(
di
)

φpublic =

(
(K1, pk1), . . . , (Kh, pkh),

(I1, C1), . . . , (Im, Cm)
)

w = ⊥

C ← TFHE.Eval(f, C1, . . . , Cm)
cski = {skj,i}j∈K
di ← PDec({pkk}k∈K, cski, C)


.

The FVeSPa functionality is parameterised by a map from roles to relations which
their messages must satisfy. In this case, when defining our use of FVeSPa, let R
be the map such that R(Ki) = RKGen for i ∈ h , R(Ij) = REnc for j ∈ m, and
R(Ek) = REval for k ∈ n. Having defined our committees and necessary relations
we may now present our protocol.

Protocol ΠY OSO−GLS

Setup: Any role R may read the public parameters pp after round two, by giving input
(Read,R) to FTFHE

Setup .
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KGen: This step is run by the key generation committee K of size h. Each member Ki
(i ∈ [h]) does the following:

1. Runs the key generation algorithm (pki, (ski,1, . . . , ski,n))← TFHE.KGen(pp, ρKi ).
2. Input (Send, Ki, ((E1, ski,1), . . . , (En, ski,n)), pki, ρKi ) to FVeSPa.

When the key generation committee is finished all roles may define K such that {pki}i∈K
contains all keys where pki 6= ⊥ is returned by FVeSPa on the input (Read, Ki, 3).

Input: This step is run by the input generation committee I of size m. Each
member Ii (i ∈ [m]) encrypts their input xi under the TFHE keys to get
Ci ← TFHE.Enc({pki}i∈K, xi; ρIi ) and then inputs (Send, Ii,⊥, Ci, (xi, ρIi )) to FVeSPa.

Computation: This step is run by the computation committee E of size n. Each member
Ei (i ∈ [n]) does the following:

1. Collects all Cj 6= ⊥ broadcasted by the committee I by giving input (Read, Ij , 2) to
FVeSPa.

2. Evaluates the function f homomorphically on the ciphertexts C ←
TFHE.Eval(f, C1, . . . , Cm), replacing any missing Cj with default values.

3. Retrieves each key share by K, skj,i by giving input (Read, Ij , Ei, 2) to FVeSPa and defines
cski = {skj,i}j∈K .

4. Produces partial decryption di ← PDec({pkk}k∈K, cski, C).
5. Broadcasts di by inputing (Send, Ei,⊥, di,⊥) to FVeSPa.

Output: By inputing (Read, Ei, 3) to FVeSPa, any party may then take a set {di}i∈R of at least
t+ 1 partial decryptions and recover the final output out← Combine({pki}i∈K, C, {di}i∈R).

Theorem 3. The protocol ΠY OSO−GLS YOSO realises the MPC functionality
Ff with guaranteed output delivery in the (FVeSPa,FTFHE

Setup )-hybrid model.

Here we provide a high level sketch of our proof strategy for the YOSO-GLS
protocol. A complete proof of Theorem 3 may be found in Appendix B.2.

The FVeSPa functionality directly leaks inputs from the corrupt roles to the
simulator, which may later input these to the MPC functionality to receive
the result of the computation. The FVeSPa additionally forces the adversary to
provide the randomness used for key generation and encryption to the simulator.
For messages to be stored they must satisfy the relation specified for a given role.
In our case, this ensures that keys, encryptions and decryptions are computed
correctly, for some choice of randomness. Thus, correctness of our TFHE scheme
implies that our protocol computes the correct output.

We may then proceed through two hybrids, reducing to the security prop-
erties of the TFHE scheme. First, partial decryptions for honest roles may be
simulated, exploiting that the key shares for the corrupt roles have been leaked
by FVeSPa and the output from the ideal MPC functionality. Indistinguishability
follows from the partial decryption simulatability of the TFHE scheme, mapping
corruptions in the protocol to use of the corresponding corruption oracles in the
security game. In the second hybrid, bringing the simulator to the ideal world,
encryptions of honest inputs may then be replaced by encryptions of zero. It
is still possible to produce the same partial decryptions, simply simulating for
the output received from the ideal functionality. Indistinguishability now follows
from the semantic security of the TFHE scheme, again mapping corruptions in
the protocol to oracle queries in the game.
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6 YOSO-LHSS

In this section, we describe our YOSO MPC protocol based on linearly homo-
morphic encryption (LHE). Instead of using LHE explicitly, we use the func-
tionality FhomVeSPa, which models the use of homomorphic encryption for private
communication to future roles.

6.1 Homomorphic Verifiable State Propagation

In some cases the functionality of FVeSPa may be unnecessarily restrictive. For
example, it is not unreasonable that the encryption scheme used to realise point-
to-point communication have homomorphic properties. If this were the case then
it might be possible for a role R′ to apply a function on a message x, sent from a
sender S to receiver R, without having to know what x is. We express this addi-
tional power by introducing an expanded variant of our verifiable state propaga-
tion functionality called Fhom

VeSPa. The class of functions allowed by Fhom
VeSPa may be

restricted depending on the needs of the protocol and how the functionality is
constructed, e.g. a linearly homomorphic encryption scheme allowing the appli-
cation of any linear function. For ease of comparison to FVeSPa we mark details
exclusive to Fhom

VeSPa with a dark background.

Functionality FhomVeSPa

This ideal functionality has the following behaviour:

– Define a map R : Role→ Rel⊥. Specify the relations the messages of each role
must satisfy.

– Initially create point-to-point and broadcast maps:
y : N× Role× Role→ Msg⊥ where y(r,R,R′) = ⊥ for all r,R,R′.
In an abuse of notation we use y(R) as a shorthand for the vector of
all messages previously sent to role. Specifically, define y(R) as the vec-
tor ((S1, y1), . . . , (Sm, ym)) containing all pairs (Sj , yj) such that yj =
y(r′, Sj ,R) 6= ⊥ for some r′ < r.
z : N× Role→ Msg⊥ where z(r,R) = ⊥ for all r,R.

– On input (Send, S, ((R1, x1, f1 ), . . . , (Rk, xk, fk )), x, w) in round r proceed as
follows:
• Let φsend = ((R1, x1, f1 ), . . . , (Rk, xk, fk )) and φbroadcast = x.
• Collect all yk 6= ⊥ for r′ < r,R′ ∈ Role where y(r′,R′,S) = yk to produce

a vector φreceive = ((R′
1, y1), . . . , (R′

m, ym)).
• Let φpublic be the current public state, represented by a vector of all

elements (r′,R′,msg), for all R′ ∈ Role where z(r′,R′) = msg 6= ⊥ and
r′ < r.

• If ((φsend||φreceive||φbroadcast||φpublic), w) 6∈ R(S) ignore the input.
• Else:

∗ For i ∈ [k] update y(r, S,Ri) = (xi, fi(y(Ri))). Store point to point
messages to each recipient role and apply the homomorphism on mes-
sages sent to each recipient role.

∗ Update z(r, S) = x. Store the broadcast message from the role.
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∗ Output (S, ((R1, |x1|, |f1(y(Ri))|), . . . , (Rk, |xk|, |fk(y(Ri))|)), x) to
S. Leak message lengths and the broadcast message to the simula-
tor in a rushing fashion.

If S is honest give Spoke to S.
– On input (Read,R, S, r′) in round r where r′ < r for (x, xhom ) = y(r′, S,R)

output (x, xhom ) to R.
– On input (Read,S, r′) in round r where r′ < r output x = z(r′, S) to R.

Realizing FhomVeSPa: Choosing Compatible Linearly Homomorphic Encryption and
Secret Sharing We wish to build our Y OSO − LHSS scheme through the use
of t-out-of-n secret sharings and a compatible linear homomorphism.

The natural choice of linearly homomorphic secret sharing is Shamir secret
sharing [35]. We have several constraints for picking our homomorphic encryp-
tion scheme: (a) it must offer a linear homomorphism over the same finite field
for independently generated key pairs (in order to support operations over shares
from a single secret sharing), and (b) it is strongly desirable that it not require a
common reference string. Notably, well known encryption schemes such as Pail-
lier [33] do not support distributed generation of keys, while alternate variants
such as the cryptosystems due to Damg̊ard and Jurik [19] and Bresson et al. [10]
require a common reference string.

We instead propose the use of the linearly homomorphic cryptosystem of
Castagnos and Laguillaumie [14], which has an ElGamal-like structure. The
plaintext msg is encoded in an exponent (as fmsg) during encryption, so that
the natural multiplicative homomorphism of ElGamal becomes an additive one.
In order to enable efficient decryption, Castagnos and Laguillaumie use class
groups, and encode msg using a generator f of a subgroup where the discrete
logarithm problem is efficiently solvable. The message space will be integers mod-
ulo a prime p, where p can be a fixed parameter across multiple independently
generated key pairs (under the constraint that p is big enough).12

6.2 Informal Overview of YOSO-LHSS

To submit an input x to a committee C of size n, an input owner first Shamir
secret shares that input with threshold n/2 as (x1, . . . , xn). She then uses Fhom

VeSPa

to send each share xi to one of the members of C.
To perform linear operations, the members of a committee use the linear

homomorphism of the Shamir secret sharing . Performing multiplications is more
involved. Let M denote the committee which holds shares of the values to be
multiplied, and let O denote the committee to which we would like to give shares
of the products. The multiplication requires two additional committees A and
B (of size h)— each of which only needs to have one honest role, as opposed
to an honest majority — to generate a Beaver triple. First, each member Aj of

12p is not a CRS, since security does not depend on the honest choice of p.
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committee A chooses a random value aj , shares and sends it via Fhom
VeSPa to M ,

and independently shares and sends it via Fhom
VeSPa to O. The value a is defined as

the sum of successfully sent aj ’s. We let aj,k denote the share sent by Aj to Ok.
Each member Bj of committee B then chooses a random value bj , and pro-

ceeds similarly to the members of committee A. However, each role Bj also sends
to each member Ok of O the value bj(a1,k + · · ·+ah,k), using FhomVeSPa to compute
this value homomorphically without knowing the values ai,k. To ensure that Ok
cannot compute bj by dividing the value it receives by a1,k + · · ·+ ah,k which it
knows, Bj masks the value it sends with a freshly computed sharing of zero; so,
what it actually sends is bj(a1,k + · · ·+ ah,k) + 0j,k, where 0j,k is the kth share
of zero. As with a, b is defined as the sum of successfully sent bj ’s; c = ab is
similarly defined as the sum of bja’s.

Next, to multiply two shared values x and y using the generated Beaver
triple (a, b, c), committee M locally computes shares of ε = a− x and δ = b− y
and broadcasts these shares, allowing public reconstruction of ε and δ. Now
that committee M has spoken, committee O picks up the torch. They use their
own shares of a, b and c, as well as the reconstructed ε and δ, to compute
shares of xy = c − εb − δa + εδ. (Note that we use this version of the Beaver
triple arithmetic — avoiding using shares of x and y — since shares of x and y
were held by committee M , and may by default not be available to members of
committee O.)

6.3 Formal Description of YOSO-LHSS

We describe the formal protocol in the Fhom
VeSPa-hybrid below, which uses the tool

of Shamir secret sharing scheme (Share,Rec), described in Appendix A.1.
Below, we describe our notation for the relevant roles.

– Cl,1, . . . , Cl,n denotes the roles of a generic committee Cl (of size n).
– Al,1, . . . , Al,h and Bl,1, . . . , Bl,h denote the roles of the two helper committees

(each of size h) responsible for the generation of Beaver triples to aid in the
round l multiplication.

For simplicity, we assume that each committee only performs a single op-
eration (whether it be decryption, Beaver triple preparation or multiplication).
This can easily be parallelized so that each committee does a single level of
operations.

Before describing the protocol, we introduce some relations for use in Fhom
VeSPa.

Below, is the relation corresponding to an input committee role.

RShare =


φsend =

(
(C1, x1,⊥), . . . , (Cn, xn,⊥)

)
φreceive = ⊥
φbroadcast = ⊥
φpublic = ⊥
w =

(
x, ρ
) (x1, . . . , xn)← Share(x; ρ)

 ,
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Below, is the relation corresponding to roles that decrypt i.e. open a value which
has been computed as a public linear function (denoted as f`) of a subset of the
values that this role has received,

RDec =


φsend = ⊥
φreceive = (y1, . . . , ym)
φbroadcast = x
φpublic = ⊥
w = ⊥

x := f`(y1, . . . , ym)

 .

Protocol ΠY OSO−LHSS : Input and Output

Input: This step is run by an input role.
To provide input x to committee C, the jth input role does the following:

– Computes a shamir sharing of its secret input x as (x1, . . . , xn) ← Share(x; ρIi ) with
threshold t.

– Inputs
(
Send, Ij ,

(
(C1, x1,⊥), . . . , (Cn, xn,⊥)

)
,⊥,

(
x, ρIi

))
to Fhom

VeSPa.

The ith role in C may then read her share of input x in the following round by inputting
(Read, Ci, Ij , 1) to Fhom

VeSPa.

Decrypt: This step is run by a committee C of size n, in round r. To reveal her share, each
member Ci of committee C does the following:

– Input (Send, Ci,⊥, xi,⊥) to Fhom
VeSPa.

Let Q ⊆ [n] denote the indices of the roles in C who provided a valid share xi 6= ⊥ read from

Fhom
VeSPa using (Read, Ci, r). Anyone can then reconstruct x as x← Rec({xi}i∈Q).

Output: This step is run by committee C of size n.
The committee C calls Decrypt using shares (out1, . . . , outn). a

aNote that the associated relation RDec would involve the values that were
used to compute outi as a part of φreceive.

The additions in the circuit can be done via local computation. However,
multiplication gates still require interaction and thus require passing state over
to a new committee. To this end we introduce two new committees:

– Ml,1, . . . ,Ml,n denotes the roles of the committee (of size n) responsible for
the lth multiplication.

– Ol,1, . . . , Ol,n denotes the roles of the committee (of size n) who holds the
output of the lth multiplication. (If committee Ol is responsible for the next
multiplication, it will be the same as committee Ml+1; or it can be the output
committee.)

The multiplication committee uses the decryption operation to reveal interme-
diate values, avoiding the need for any new relations. We start by assuming that
a sharing of a beaver triple is held by our multiplication and output committee,
and will subsequently show how such a triple may be produced.
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Protocol ΠY OSO−LHSS : Evaluation

Add: This step is run by a committee C of size n.
To add (x1, . . . , xn) (representing shares of x) and (y1, . . . , yn) (representing shares of y), the
ith member of the committee C does the following.

– Compute her share of the sum as zi = xi + yi.

Mult: This step is run by committee Ml of size n and Ol of size n
To multiply values

– (xl,1, . . . , xl,n) (representing shares of xl) and
– (yl,1, . . . , yl,n) (representing shares of yl)

(where the sharing is held by committee Ml) using the Beaver triple
– (al,1, . . . , al,n), (a′l,1, . . . , a

′
l,n),

– (bl,1, . . . , bl,n), (b′l,1, . . . , b
′
l,n)

(where the sharing is held by committees Ml and Ol, respectively) and
– (c′l,1, . . . , c

′
l,n), (where the sharing is held by committee Ol),

The ith member of the committee Ml does the following to compute her share of εl = al − xl
and δl = bl − yl.

– Compute the difference εl,i = al,i − xl,i.
– Compute the difference δl,i = bl,i − yl,i.

The committee Ml then calls Decrypt using shares (εl,1, . . . , εl,n) and (δl,1, . . . , δl,n) to re-
construct the values εl and δl.

a

The ith member of the committee Ol does the following to compute her share of zl = xlyl.

– Reconstruct ε and δ by inputing (Read,Ml,i, l + 2) to Fhom
VeSPa (as described in Decrypt)

for each ith member of Ml. Note that the multiplication gate at depth l is evaluated in
round l + 2.

– Compute zl,i := c′l,i − εlb
′
l,i − δla

′
l,i + εlδl.

aNote that the associated relationRDec would involve the set of received shares
al,i, bl,i and the values that were used to compute xl,i, yl,i as a part of φreceive.

To produce beaver triples we will need two final types of committee. Let
Al,1, . . . , Al,h and Bl,1, . . . , Bl,h denote the roles of the two helper committees
(each of size h) responsible for the generation of Beaver triples to aid in the
round l multiplication. Two additional relations are also needed to ensure the
triples produced are well-formed:

RBeaver,A =



φsend =

(
(M1, a1,⊥), . . . , (Mn, an,⊥),

(O1, a
′
1,⊥), . . . , (On, a

′
n,⊥)

)
φreceive = ⊥
φbroadcast = ⊥
φpublic = ⊥
w =

(
a, ρ, ρ′

)
(a1, . . . , an)← Share(a; ρ)
∧ (a′1, . . . , a

′
n)← Share(a; ρ′)


,

The below relation for the roles in the helper committee Bl is required to
check that the correct linear homomorphic function fi is applied on the in-
coming messages (say y1, . . . , ym) of a committee role Ol,i. For simplicity, we
describe fi as a tuple of coefficients (c1, . . . , cm, c) to represent the operation
fi(y1, . . . , ym) = c1y1 + c2y2 + · · ·+ cmym + c.
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RBeaver,B =



φsend =

(
(M1, b1,⊥), . . . , (Mn, bn,⊥),

(O1, b
′
1, f1), . . . , (On, b

′
n, fn)

)
φreceive = ⊥
φbroadcast = ⊥
φpublic = ⊥
w =

(
b, ρ, ρ′, ρ′′

)
(b1, . . . , bn)← Share(b; ρ)
∧ (b′1, . . . , b

′
n)← Share(b; ρ′)

∧(01, . . . , 0n)← Share(0; ρ′′)
∧fi = (b, . . . , b, 0i) for i ∈ [n]


,

Protocol ΠY OSO−LHSS : Beaver triple generation

MakeBeaver: This step is run by two helper committees Al and Bl of size h each
To produce a Beaver triple for the lth multiplication, the members of the two helper com-
mittees Al and Bl proceed as follows. (Multiplication then reduces to linear operations and
decryptions, described below.) Note that the Beaver values must be shared to two committees:
the committee Ml responsible for performing the multiplication, and the committee Ol who
will hold the output. Committee Ol may then be asked to perform linear operations, another
multiplication, or simply to decrypt the output.

– Each member Al,j of committee Al does the following:
• Picks a random value al,j .
• Computes two sharings of al,j as

∗ (al,j,1, . . . , al,j,n)← Share(al,j ; ρl,j) and
∗ (a′l,j,1, . . . , a

′
l,j,n)← Share(al,j ; ρ

′
l,j)

with threshold t.
• Inputs

(
Send, Al,j ,

(
(Ml,1, al,j,1,⊥), . . . , (Ml,n, al,j,n,⊥), (Ol,1, a

′
l,j,1,⊥), (Ol,n, a

′
l,j,n,

⊥)
)
,⊥, (al,j , ρl,j , ρ′l,j)

)
to Fhom

VeSPa.

– Let QAl ⊆ [h] denote the indices of the roles whose Send verified successfully. Let al =∑
j∈QAl

al,j . Then,

• Each role Ml,i can retrieve her share of al as al,i =
∑
j∈QAl

al,j,i, where al,j,i was

read from Fhom
VeSPa using (Read,Ml,i, Al,j , l + 2).

• Each role Ol,i can retrieve her share of al as a′l,i =
∑
j∈QAl

a′l,j,i, where a′l,j,i was

read from Fhom
VeSPa using (Read, Ol,i, Al,j , l + 2).

– Each member Bl,j of committee Bl does the following:
• Picks a random value bl,j .
• Computes two sharings of bl,j as

∗ (bl,j,1, . . . , bl,j,n)← Share(bl,j ; ρl,j) and
∗ (b′l,j,1, . . . , b

′
l,j,n)← Share(bl,j ; ρ

′
l,j)

with threshold t.
• Compute a zero sharing as (0l,j,1, . . . , 0l,j,n)← Share(0; ρ′′l,j) with threshold t.

• Set the function f ′i = (bl,j , . . . , bl,j , 0l,j,i) for each i ∈ [n]. Recall that this function
would take as input y(Ol,i) comprising of the messages (say y1, . . . , yh) received by
Ol,i from sender roles Al,1, . . . , Al,h and outputs bl,jy1 + · · ·+ bl,jyh+ 0l,j,i, where
any ⊥ values are to be interpreted as 0. (The shares of 0 are used to ensure that the
value bl,j is not leaked to Ol,i).

• Input
(
Send, Bl,j ,

(
(Ml,1, bl,j,1,⊥), . . . , (Ml,n, bl,j,n,⊥), (Ol,1, b

′
l,j,1, f

′
1), . . . ,

(Ol,n, b
′
l,j,n, f

′
n)
)
,⊥, (bl,j , ρl,j , ρ′l,j , ρ

′′
l,j)
)

to Fhom
VeSPa.

– Let QBl ⊆ [h] denote the indices of the roles whose Send verified successfully. Let

bl =
∑
j∈QBl

bl,j . Let (b′l,j,i, c
′
l,j,i) denote the value that Ol,i receives from Fhom

VeSPa using

(Read, Ol,i, Bl,j , l + 2). Then,
• Each role Ml,i can retrieve her share of bl as bl,i =

∑
j∈QBl

bl,j,i, where bl,j,i was

read from Fhom
VeSPa using (Read,Ml,i, Bl,j , l + 2).

• Each role Ol,i can retrieve her share of bl as b′l,i =
∑
j∈QBl

b′l,j,i.

• Each role Ol,i can retrieve her share of cl = albl as c′l,i =
∑
j∈QBl

c′l,j,i.

Note that the entirety of Beaver triple generation can be carried out without the helper
committees needing to receive any private messages. Additionally, note that Beaver triple
generation committees can have a dishonest majority, and can therefore be smaller (h < n).
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Theorem 4. The protocol ΠY OSO−LHSS realises the MPC functionality Ff
with guaranteed output delivery in the Fhom

VeSPa-hybrid model.

The proof of Theorem 4 may be found in Appendix B.4.
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Supplementary Material

A Tools

We recap the tools we need in our YOSO constructions.

A.1 Linearly Homomorphic Secret Sharing

A t-out-of-n secret sharing scheme allows a party to “split” a secret into n shares
in a field F that can be distributed among different parties. To reconstruct the
original secret x at least t + 1 shares need to be used. Such a secret sharing
scheme is linearly homomorphic if it allows parties to locally evaluate linear
functions on shared values.

Syntax A t-out-of-n linearly homomorphic secret sharing scheme has the follow-
ing algorithms:

Share(x; ρ)→ (s1, . . . , sn): An algorithm that, given a secret x, outputs a set
of n shares in a finite field F.
Rec({si}i∈S⊆[n],|S|>t)→ x: An algorithm that, given a vector of at least t+1
shares, outputs the secret x.
Eval((s1, . . . , sm), (c1, . . . , cm))→ s: An algorithm that, given some party i’s
shares s1, . . . , sm of secrets x1, . . . , xm as well as coefficients c1, . . . , cm, out-
puts a share s of

∑m
j=1 cjxj in the finite field F.

SimShare({si}i∈S,|S|≤t, x)→ {s′′i }i∈[n]\S: A simulation algorithm that, given
shares belonging to corrupt parties and a target value x, simulates the shares
belonging to honest parties that causes Rec to output the desired value.

Properties We require the following properties of a linearly homomorphic t-out-
of-n secret sharing scheme:

Perfect Correctness. The perfect correctness property requires that the
shares of a secret x should always reconstruct to x. More formally, a secret
sharing scheme is perfectly correct if for any secret x, for any subset S ⊆
[n], |S| > t,

Pr

[
x = x′

(s1, . . . , sn)← Share(x)
x′ ← Rec({si}i∈S)

]
= 1,

where the probability is taken over the random coins of Share.
Furthermore, correctness should hold even when shares are a result of an
evaluation. More generally, the perfect correctness of a linearly homomor-
phic t-out-of-n secret sharing scheme requires that for any set of secrets
x1, . . . , xm, any set of coefficients c1, . . . , cm, for any subset S ⊆ [n], |S| > t,



Pr

x′ =

m∑
j=1

cjxj

(sj1, . . . , s
j
n)← Share(xj) ∀j ∈ [m]

si ← Eval((s1
i , . . . , s

m
i ), (c1, . . . , cm)) ∀i ∈ [n]

x′ ← Rec({si}i∈S)

 = 1,

where the probability is taken over the random coins of Share.
If a negligible error probability is allowed, we simply say that the scheme is
correct.
Privacy. The privacy property requires that any combination of up to t
shares should leak no information about the secret x. More formally, we say
that a secret sharing scheme is private if for all (unbounded) adversaries A,
for any set I ⊆ {1, . . . , n}, |I| ≤ t and any two secrets x0, x1 (such that
|x0| = |x1|),∣∣∣∣Pr

[
A(S) = 1

{si}i∈[n] = Share(x0);
S = {si}i∈I

]
− Pr

[
A(S) = 1

{si}i∈[n] = Share(x1);
S = {si}i∈I

]∣∣∣∣ ≤ negl(κ)

for a negligible function negl in the bit-length κ of the size of F.
Share Simulatability. Additionally, we require an efficient simulator for
the generated shares. More formally, we say that a secret sharing scheme is
share simulatable if there exists a PPT simulator SimShare such that for every
PPT adversaryA, for any set I ⊆ {1, . . . , n}, |I| ≤ t (andH = {1, . . . , n}\I),
and any two secrets x0, x1, for (s0, . . . , sn) ← Share(x0), (s′1, . . . , s

′
n) ←

Share(x1) and {s′′i }i∈H ← SimShare({si}i∈I , x0),

|Pr [A({si}i∈I , {si}i∈H) = 1]− Pr [A({si}i∈I , {s′′i }i∈H) = 1] | ≤ negl(κ)

for a negligible function negl in the bit-length κ of the size of F.

Instantiation In our constructions, we use Shamir’s threshold secret sharing
scheme [35], and refer to its algorithms as (SH.Share,SH.Rec,SH.Eval,SH.SimShare).
Shamir secret sharing satisfies the useful property we require in our construc-
tion – SH.Eval involves only linear operations (which is important since our con-
struction executes SH.Eval on the threshold shares under the hood of a linearly
homomorphic encryption scheme).

A.2 Garbling Scheme

A garbling scheme, introduced by Yao [37] and formalized by Bellare et al. [6],
enables a party to “encrypt” or “garble” a circuit in such a way that it can be
evaluated on inputs — given tokens or “labels” corresponding to those inputs
— without revealing what the inputs are.

Definition 5 (Garbling Scheme). A projective garbling scheme is a tuple of
efficient algorithms GC = (garble,Eval) defined as follows.
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garble(1n, C)→ (GC,K): The garbling algorithm garble takes as input the
security parameter n and a boolean circuit C : {0, 1}` → {0, 1}m, and outputs
a garbled circuit GC and ` pairs of garbled labels K = (K0

1 ,K
1
1 , . . . ,K

0
` ,K

1
` ).

For simplicity we assume that for every i ∈ [`] and b ∈ {0, 1} it holds that
Kb
` ∈ {0, 1}n.

Eval(GC,K1, . . . ,K`)→ y: The evaluation algorithm Eval takes as input the
garbled circuit GC and ` garbled labels K1, . . . ,K`, and outputs a value y ∈
{0, 1}m.

We require the following properties of a projective garbling scheme:

Perfect Correctness. We say GC satisfies perfect correctness if for any boolean
circuit C : {0, 1}` → {0, 1}m and x = (x1, . . . , x`) it holds that

Pr[Eval(GC,K[x]) = C(x)] = 1,

where (GC,K) ← garble(1n, C) with K = (K0
1 ,K

1
1 , . . . ,K

0
` ,K

1
` ), and K[x] =

(Kx1
1 , . . . ,Kx`

` ).
Next, we formally define the security notions we require for a garbling scheme.

When garbled circuits are used in such a way that decoding information is used
separately, obliviousness requires that a garbled circuit together with a set of
labels reveals nothing about the input the labels correspond to, and privacy
requires that the additional knowledge of the decoding information reveals only
the appropriate output. In our work, we do not consider decoding information
separately (but rather, consider it to be included in the garbled circuit), so we
do not need obliviousness.

Privacy Informally, privacy requires that a garbled circuit together with a set
of labels reveal nothing about the input the labels correspond to (beyond the
appropriate output).

More formally, we say that GC satisfies privacy if there exists a simulator
simGC such that for every PPT adversary A, it holds that

Pr[A wins] ≤ 1

2
+ negl(n)

in the following experiment:

Adversary A Challenger C

C : {0, 1}` → {0, 1}m
−−−−−−−−−−−−−−−−−−−−−−−−−−B

x = (x1, . . . , x`) ∈ {0, 1}`
−−−−−−−−−−−−−−−−−−−−−−−−−−B b← {0, 1}

if b = 0:
(GC, (K0

1 , K
1
1 , . . . , K

0
` , K

1
` ))← garble(1n, C)

Ki = K
xi
i for i ∈ [`]

if b = 1:
(GC, K1, . . . , K`)← simGC(1n, C, C(x))

GC,K1, . . . ,K`
C−−−−−−−−−−−−−−−−−−−−−−−−−−

b′
−−−−−−−−−−−−−−−−−−−−−−−−−−B
A wins if b = b′
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Adaptive Privacy Informally, this property requires that privacy is maintained
against an adversary who first obtains the garbled circuit and then selects the
input. More formally, we say that GC satisfies adaptive privacy if there exists a
simulator simGC such that for every PPT adversary A, it holds that

Pr[A wins] ≤ 1

2
+ negl(n)

in the following experiment:

Adversary A Challenger C

C : {0, 1}` → {0, 1}m
−−−−−−−−−−−−−−−−−−−−−−−−−−B b← {0, 1}

if b = 0:
(GC, (K0

1 , K
1
1 , . . . , K

0
` , K

1
` ))← garble(1n, C)

if b = 1:
GC← simGC(1n, φ(C), “ckt”)
where φ(C) denotes the topology of C a

GC
C−−−−−−−−−−−−−−−−−−−−−−−−−−

x = (x1, . . . , x`) ∈ {0, 1}`
−−−−−−−−−−−−−−−−−−−−−−−−−−B if b = 0:

Ki = K
xi
i for i ∈ [`]

if b = 1:
((K1, . . . , K`)← simGC(1n, C(x), “input”)

K1, . . . ,K`
C−−−−−−−−−−−−−−−−−−−−−−−−−−

b′
−−−−−−−−−−−−−−−−−−−−−−−−−−B
A wins if b = b′

awe assume that the topology of a circuit does not reveal hard coded values (as
hard coded values are essentially fixed input labels for some wires)

Instantiation For our constructions, adaptive garbled circuits can be obtained
using one-time pads with Yao’s garbled circuits (as shown by Bellare et al. [5]).

A.3 Vector operations

Before we may proceed to defining the scheme we must first recall a number
of vector operations, presented in [26]. Let ` = blog qc + 1 be the length of the
bit representation of an integer for some modulus q. We may then define the
following procedures acting on vectors a ∈ Zvq and a′ ∈ Zv·`q , where arithmetic is
over Zq.

– BitDecomp(a) = (a1,0, . . . , a1,`−1, . . . , av,0, . . . , av,`−1) where ai,j is the jth

bit of the ith element of a, such that ai =
∑`−1
j=0 2jai,j .

– BitDecomp−1(a′) = (
∑`−1
j=0 2ja′1,j , . . . ,

∑`−1
j=0 2ja′v,j) for a′ = (a1,0, . . . , a1,`−1,

. . . , av,0, . . . , av,`−1), while this is most naturally defined when a′ is a binary
vector it remains well defined when this is not the case.

– Flatten(a′) = BitDecomp(BitDecomp−1(a′)) for non-binary a′ this procedure
outputs a binary vector which preserves some of the structure of a′. This is
a central feature in how the GSW scheme limits error growth, see [26] for
detailed exposition.
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We also define the above procedures on matrices, by simply applying the proce-
dure row by row.

A.4 Threshold Fully Homomorphic Encryption construction

We will now describe our Threshold Fully Homomorphic Encryption construction
TFHE = (Setup,KGen,Enc,Eval,PDec,Combine,SimPDec)

Public Parameters. Following the approach of [28] we define the following
public parameters, with respect to security parameter κ. The number of roles
participating in the key generation is the size of a helper committee h, these roles
each produce keys shares for a committee of n roles. We then define a bound
d = poly(κ) for the maximal circuit depth, along with a modulus q = poly(d, κ).
Finally, we introduce a lattice dimension v = v(d, n) and error distribution
χ = χ(κ, d, n) chosen such that they provide κ bits of security for the LWEv,q,χ
problem (See Definition 6). We set u = O((v+n) log q) and let ` be the bitlength
of our modulus blog qc + 1. For our Bχ-bounded error distribution χ, we may
define a positive integer bound Bsmug ∈ Z subject to the constraints:

((v + 1)`+ 1)d · n ·Bχ
Bsmug

= negl(κ), n ·Bsmug < q/8.

The final public parameter produced is a uniformly random matrix B ∈ Zu×vq ,
to be used when generating public keys. Note that B is the only public parameter
which may not be locally and deterministically derived from know parameters.
We then have pp = (v, u, q, χ,Bχ, Bsmug,B)← Setup(1κ, n).

Key Generation. We combine the two rounds of key generation of the [28]
scheme into a single procedure. KGen(B) where role i proceeds as follows:

– Sample si uniformly in Zvq , sample error term ẽ from χu, and compute pki =
B · si + ẽ. If any sample from χ has absolute value larger than Bχ, it should
be replaced 0 if this is the case. (Note that as χ is Bχ-bounded this only
happens with negligible probability)

– Sample an error term ri uniformly from [−Bsmug, Bsmug]
– Shamir share si and ri with a t-of-n threshold to produce (si,1, . . . , si,n) and

(ri,1, . . . , ri,n). Note that as si is a vector each share si,j actually consists of
v pointwise shares.

– Output (pki, ((si,1, ri,1), . . . , (si,n, ri,n)))

Encryption. To permit a separate key generation committee we combine the
encryption and ciphertext transformation procedures, this is possible as consol-
idating key generation into a single rounds allows roles giving input to know
which key shares are available at time of encryption. Enc({pki}i∈K, x) proceeds
as follows:
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– First compute public key pk =
∑
i∈K pki

– Sample R uniformly from {0, 1}(v+1)`×u

– Compute and output C = Flatten(x · I(v+1)` + BitDecomp(R · pk||R ·B))

Evaluation. All ciphertexts provided are encrypted under the same public key
pk =

∑
i∈K pki, this corresponds directly to an encryption in the [26] scheme

under pk. Therefore, any circuit f , made up of only NAND gates, may be eval-
uated homomorphically on the ciphertexts. We refer the reader to [26] and [28]
for a detailed explanation.

Partial Decryption. Let β = blog(q/2)c, such that 2β ∈ (q/4, q/2]. The β-
th row of C may then be parsed as Cβ = (Cβ,1||Cβ,2) where Cβ,1 ∈ Z`q and

Cβ,2 ∈ Zv·`q .
The partial decryption of our scheme proceeds exactly as the first round of

decryption in [28]. Partial decryption PDec, of a ciphertext under keys {pki}i∈K,
for a party j, which has received key and noise shares {(si,j , ri,j)}i∈K may be
done by:

– Summing all key shares zj =
∑
i∈K si,j

– Computing and outputting partial decryption dj = 〈BitDecomp−1(Cβ,2), zj〉+∑
i∈K ri,j

Final decryption. Given at least t partial decryptions of C under keys {pki}i∈K
any party reconstruct the final decryption. In Combine({pki}i∈K, C, {di}i∈R) a
party starts by choosing a set R′ ⊂ R of size t+ 1. They may then use Lagrange
polynomials µk to reconstruct w =

∑
k∈R′ µk(0)dk. This is then finally used to

output the decryption: ⌊
BitDecomp−1(Cβ,1)− w

2β

⌉

Partial Decryption Simulatability. Given the secret and randomness shares
of corrupt roles the partial decryptions of the honest roles may be simulated.
We extract the approach taken by the simulator described in [28] for generating
third round messages, defining a seperate SimPDec algorithm, which proceeds
as follows:

The algorithm is given ciphertext C with corresponding plaintext out, along
with secret and randomness shares for i ∈ IKGen, in the form of ski = ((si,1, ri,1), . . . , (si,n, ri,n)).
The algorithm additionally recieves (dj , cskj = {(si,j , ri,j)i∈K}) for j ∈ IComputation.

1. Partial decryptions are interpolated to produce w = 〈BitDecomp−1(Cβ,2),
∑
i∈K si〉

such that

out =

⌊
BitDecomp−1(Cβ,1)− w

2β

⌉
.
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To decrypt to a desired output contributions of honest partial decryptions
must be constructed, such that they interpolate to give

W = BitDecomp−1(Cβ,1)−

〈
BitDecomp−1(Cβ,2),

∑
i∈IKGen

si

〉
− 2β · out,

where si is reconstructed for each corrupt party in IKGen, from the secrets
(si,1, . . . , si,n).

2. We will define Shamir shares αi such that the honest decryptions ensure
that all partial decryptions reconstruct to W when combined. We start by
defining α0 = W , and then pick indices V ⊂ [n] \ IComputation, such that
|V |+ |IComputation| = t, so that we may construct αj for j ∈ V ∪ IComputation.
This leaves αj well defined for the remaining roles, allowing them to be
interpolated.
– For j ∈ IComputation: z

′
j =

∑
i∈HKGen

si,j
– For j ∈ V : z′j sampled uniformly randomly
– For j ∈ V ∪ IComputation:

αj = 〈BitDecomp−1(Cβ,2), z′j〉

– Reconstruct the remaining shares for t ∈ [n] \ (V ∪ IComputation):
αt =

∑
j∈{0}∪V ∪IComputation

µj(t)αj
3. For honest roles j ∈ [n] \ IComputation define

di = 〈BitDecomp−1(Cβ,2), zi〉+ αi +
∑
j∈K

rj,i

where zi =
∑
j∈IKGen sj,i. Finally, output {dj}j∈[n]\IComputation

A.5 Security of the TFHE construction

Prerequisites To prove security of our TFHE scheme we must first introduce
the Learning with Errors assumption on which it is based.

Definition 6 (Learning with Error assumption [34]). For integers v =
v(κ), q = q(κ) and distribution χ = χ(κ), we say the LWEv,q,χ assumption
holds if for any u ∈ poly(κ), the distribution (B,B · s + ẽ) is computationally
indistinguishable from (B, u), where ẽ← χu, and (B, s, u) are sampled uniformly

as B
$← Zu×vq , s

$← Zvq and u
$← Zuq .

We further recall a variant of the leftover hash lemma, and a useful result by
Asharov et al. that shows adding large noise may hide the small noise terms
from homomorphic evaluation.

Lemma 1 ([28], Implicit in [34]). Let v, χ, q be parameters such that the
LWEv,q,χ, and let n be some integer polynomial in κ. Then for u = O((v +
n) log q), for any vectors b1, . . . , bn−1 ∈ Zuq , the distribution of (B, b,R·(b||B),R(b1|| . . . ||bn−1))
is computationally indistinguishable from (B, b,U,R · (b1|| . . . ||bn−1)), where B

is uniform over Zu×vq , b is uniform over Zuq , U is uniform over Z(v+1)`×u
q , and

` = blog qc+ 1.
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Lemma 2 ([4]). Let B1 = B1(κ), B2 = B2(κ) be positive integers, and let
e1 be an integer such that |e1| < B1. Then for e2 sampled uniformly in the
interval [−B2, B2], the distribution of e2 is statistically close to that of e1 + e2,
if B1/B2 = negl(κ).

Security proofs

Theorem 5. The TFHE scheme defined in Section A.4 satisfies correctness
Definition 2

Proof. We follow the lines of the correctness proof of [28]. Each ciphertext Ck ←
Enc({pki}i∈K, xk; ρk) corresponds to a GSW ciphertext under the public key
(B, pk) where pk =

∑
i∈K pki, i.e.

Ck = Flatten(xk · I(v+1)` + BitDecomp(R · pk||R ·B)).

By the analysis of [26] we know C ← Eval(f, C1, . . . , Cm) is an encryption of
out = f(C1, . . . , Cm), with appropriately bounded error. Specifically, there exists
some error ẽ satisfying |ẽ| < ((v + 1)`+ 1)d · n ·Bχ such that

BitDecomp−1(Cβ,1)−

〈
BitDecomp−1(Cβ,2),

∑
i∈K

si

〉
= 2β · out + ẽ.

The norm of ẽ is strictly bounded as the key generation procedure replacing any
error terms which are too large by zero, this prevents the adversary choosing
randomness which causes samples from χ to exceed Bχ. Inspection of the par-
tial decryptions reveals that interpolating from any set of at least t + 1 partial
decryptions dj = 〈BitDecomp−1(Cβ,2),

∑
i∈K si,j〉+

∑
i∈K ri,j yeilds

w =

〈
BitDecomp−1(Cβ,2),

∑
i∈K

si

〉
+
∑
i∈K

ri

as ri are sampled from [−Bsmug, Bsmug] then |
∑
i∈K ri| ≤ n · Bsmug < q/8 and

thus ⌊
BitDecomp−1(Cβ,1)− w

2β

⌉
= out.

Here we implicitly rely on ẽ/Bsmug = negl(κ). ut

Theorem 6. The TFHE scheme defined in Section A.4 has semantic security
following from Definition 3

Proof. We prove the semantic security of our encryption scheme through a series
of hybrids, which we subsequently prove are indistinguishable.

Real H0: The challenger is run as described in GameIND−CPAA,n,t,TFHE (κ)
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Hybrid H1: Instead of running OKGen(i) as prescribed pki is sampled as a
uniform vector in Zvq . For each j ∈ IComputation define si,j and ri,j as uniformly
random shares. For each query to OCorr(j), fix any previously undefined si,j
and ri,j for i ∈ HK as random shares, prior to outputting them.
Hybrid H2: Instead of encrypting the ciphertext set C = BitDecomp(U)

where U
$← Z(v+1)`×(v+1)

q .

In H2 the ciphertext C has the same distribution independent of b, therefore
no adversary may win the game with probability greater than 1/2. We will now
prove our sequence of hybrids are indistinguishable to any adversary which wins
the game:

H0 ≈ H1 To ensure correctness KGen replaces any samples from χ which have norm
larger than Bχ by zero, this only happens with negligible probability for each
sample, and thus remains negligible when union bounding across the samples
for each OKGen query. Therefore, the error distribution with replacement
is statistically indistinguishable from the distribution without replacement.
The computational indistinguishability of each pki from uniform vectors then
follows directly from the LWE assumption (Definition 6). For an adversary
to win the game |IComputation| ≤ t must hold, therefore for i ∈ HKGen an adver-
sary will never see more than t shares si,j of si. These shares are distribted
indetically to the random shares produced in H1.

H1 ≈ H2 Consider the distribution ciphertext C = Flatten(C ′) = BitDecomp(BitDecomp−1(C ′)).
We may restrict our focus to the distribution of BitDecomp−1(C ′) as this
fully determines the distribution of the final ciphertext C. By the linearity
of BitDecomp−1 we may now consider the distribution of

BitDecomp−1(x · I(v+1)`) + BitDecomp−1(BitDecomp(R · pk||R ·B))

= BitDecomp−1(x · I(v+1)`) + (R · pk||R ·B)

Consider the distribution of R · pk||R · B, for i ∈ HKGen this is may be
rewritten as R · pki||R · B +

∑
j∈K\{i}(R · pkj ||0), where 0 is the all zero

matrix. By Lemma 1 the ensemble (B, pki, R · (pki||B), {R · pkj}j∈K\{i}) is
indistinguishable from (B, pki, U, {R · pkj}j∈K\{i}), for any choice of pkj for

j ∈ KGen \ {i}, where U is uniform over Z(v+1)`×(v+1)
q . Thus we may replace

the ciphertext by the indistinguishable BitDecomp(U).
ut

Theorem 7. The TFHE scheme defined in Section A.4 has partial decryption
simulatability Definition 4.

Proof. We will prove security in the partial decryption simulatability game by
showing the statistical distance between the real partial decryptions and simu-
lated partial decryptions in negligible.

When the adversary is given the partial decryptions on behalf of the honest
roles it no longer has access to the corruption oracles. Thus we may consider fixed
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sets HKGen, IKGen from key generation as well as IComputation. Let K = HKGen ∪
IKGen.

Consider the statistical distance ∆(X,Y ) between distributions X,Y defined
as:

X =


〈
BitDecomp−1(Cβ,2),

∑
j∈K

sj,i

〉
+

∑
j∈HKGen

rj,i i ∈ [n] \ IComputation



Y =


〈
BitDecomp−1(Cβ,2),

∑
j∈IKGen

sj,i

〉
+ αi +

∑
j∈HKGen

rj,i i ∈ [n] \ IComputation


Observe that X is the distribution of partial decryptions produced by the PDec
algorithm, while Y is the distribution of produced by the SimPDec algorithm,
excluding the contributions due to shares of rj for j ∈ IKGen. It is clear that

AdvParDecSimA,n,d,f,TFHE(κ) ≤ ∆(X,Y ). Due to the linearity of the inner product we may
simplify this further and instead consider X ′ and Y ′ where ∆(X,Y ) = ∆(X ′, Y ′)
for

X ′ =


〈
BitDecomp−1(Cβ,2),

∑
j∈HKGen

sj,i

〉
+

∑
j∈HKGen

rj,i i ∈ [n] \ IComputation

 ,

Y ′ =

αi +
∑

j∈HKGen

rj,i i ∈ [n] \ IComputation

 .

We may now observe that X ′ is distribted as random secret shares of〈
BitDecomp−1(Cβ,2),

∑
j∈HKGen

sj

〉
+

∑
j∈HKGen

rj

and Y ′ is distributed as random secret shares of

W +
∑

j∈HKGen

rj .

Following the argumentation of the correctness proof (Theorem 5) we know

BitDecomp−1(Cβ,1)−

〈
BitDecomp−1(Cβ,2),

∑
j∈K

sj

〉
= 2β · out + ẽ

for |ẽ| < ((v + 1)`+ 1)d · n ·Bχ.
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Therefore,〈
BitDecomp−1(Cβ,2),

∑
j∈HKGen

sj

〉

= BitDecomp−1(Cβ,1)−

〈
BitDecomp−1(Cβ,2),

∑
j∈IKGen

sj

〉
− 2β · out + ẽ

= W + ẽ.

(Recall W = BitDecomp−1(Cβ,1)−
〈
BitDecomp−1(Cβ,2),

∑
i∈IKGen si

〉
− 2β · out)

As |HKGen| > 0 we know by Lemma 2 that ∆(W + ẽ +
∑
j∈HKGen

rj ,W +∑
j∈HKGen

rj) is negligible in the security parameter, concluding our proof. ut

A.6 Compilation tools

Multi-string Non-Interactive Zero-knowledge Proofs. Multi-string NIZK
proofs [30] is a generalization of NIZK in the common reference string (CRS)
model. Instead of having one trusted authority to generate the reference string,
in the multi-string model several authorities generate the reference strings. The
properties of Multi-string NIZK proofs are defined similarly to those of NIZKs
in the CRS model, except that the notions of completeness, soundness and zero-
knowledge are required to hold only if the number of common reference strings
that are honestly generated is above a certain threshold.

Syntax A multi-string NIZK for an NP relation RL has the following algorithms:

mNIZK.Gen(1κ)→ crs : An algorithm to generate a common reference string.
In the multi-string model comprising of n common reference strings, we let
crs = (crs1, . . . , crsn) denote the vector of the n common reference strings.
P(crs, φ, w)→ π: An algorithm run by the prover that, given the vector of
common reference strings crs, statement φ and the witness w outputs the
proof π that (φ,w) ∈ RL.
V(crs, φ, π)→ accept/reject: An algorithm that, given the vector of com-
mon reference strings crs, statement φ and the proof π verifies whether π
proves the existence of a witness w such that (φ,w) ∈ RL.

The rest of the algorithms are only necessary for proofs of security, and will not
be used in the real world:

S1(1κ)→ (crs, τ): A simulation algorithm that generates a simulated refer-
ence string and a simulation trapdoor.
S2(crs, φ, τ)→ π: A simulation algorithm that, given the vector of common
reference strings crs, statement φ and a vector τ containing tz (where tz is
a pre-defined threshold for the multi-string NIZK proof system) simulation
trapdoors for common reference strings in crs, outputs a simulated proof of
the existence of a witness w such that (φ,w) ∈ RL.
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E1(1κ)→ (crs, ξ): A simulation algorithm that generates a simulated refer-
ence string and an extraction trapdoor.
E2(crs, φ, π, ξ)→ w: An extraction algorithm that, given the vector of com-
mon reference strings crs, statement φ, a valid proof π and a vector ξ con-
taining ts (where ts is a pre-defined threshold for the multi-string NIZK proof
system) extraction trapdoors for common reference strings in crs, outputs a
witness w such that (φ,w) ∈ RL.
SE1(1κ)→ (crs, τ, ξ): A simulation algorithm that outputs a simulated ref-
erence string, a simulation trapdoor and an extraction trapdoor such that
(crs, τ) is distribted as the output of S1, and (crs, ξ) is distributed as the
output of E1.

Properties We require the following properties from a (tc, ts, tz, n) multi-string
NIZK proof system for an NP relation RL (as defined in the work [30]).

(tc, ts, tz, n)-Completeness. Informally, this property requires that if at
least tc out of n common reference strings are honest, then the prover holding
a witness for the statement should be able to create a convincing proof. More
formally, for all non-uniform polynomial time adversaries A,

Pr

[
V(crs, φ, π) = 1

(crs, φ, w)← AmNIZK.Gen(1κ)
π ← P(crs, φ, w)

]
≥ 1− negl(κ)

where mNIZK.Gen on query i output crsi ← mNIZK.Gen(1κ), at least tc of
the crsi’s generated by mNIZK.Gen are included and A outputs (φ,w) ∈ RL,
and negl is a negligible function in the security parameter κ.
We use multi-string NIZKs with perfect (tc, ts, tz, n)-completeness for all
0 ≤ tc ≤ n in our protocol. This means that even if the adversary chooses all
common reference strings itself, we are guaranteed to output an acceptable
proof when (φ,w) ∈ RL.

(tc, ts, tz, n)-Soundness. Informally, this property requires that if at least ts
out of n common random strings are honestly generated, then an adversary
cannot forge the proof. The adversary gets to see possible choices of correctly
generated common reference strings and can adaptively choose n of them. It
may also include up to n− ts fake common reference strings it itself chooses.
More formally, for all adversaries A,

Pr[V(crs, φ, π) = 1 and φ /∈ L : (crs, φ, π)← AmNIZK.Gen(1κ)] ≤ negl(κ)

where mNIZK.Gen is an oracle that on query i outputs crsi ← mNIZK.Gen(1κ),
the adversary outputs crs such that at least ts of the crsi’s generated by
mNIZK.Gen are included, and negl is a negligible function in the security
parameter κ.

(tc, ts, tz, n)-Zero Knowledge. Informally, this property requires that if tz
common reference strings are correctly generated, then the adversary learns
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nothing from the proof. As is standard in the zero-knowledge literature, we
say that this is the case when the proof can be simulated given only the
statement φ.
The definition of zero-knowledge is split into the following two parts.

Reference String Indistinguishability This property simply says that the ad-
versary cannot distinguish real common reference strings from simulated ref-
erence strings. More formally, for all non-uniform polynomial time adversaries
A, ∣∣∣∣Pr[A(crs) = 1|crs← mNIZK.Gen(1κ)]

−Pr[A(crs) = 1|(crs, τ)← S1(1κ)]

∣∣∣∣ ≤ negl(κ)

for a negligible function negl in the security parameter κ.

(tc, ts, tz, n)-Simulation Indistinguishability This property strengthens the
standard definition of zero-knowledge and requires that even with access to
the simulation trapdoors, the adversary cannot distinguish real proofs from
simulated ones on a set of simulated reference strings. More formally, for all
non-uniform polynomial time adversaries A,

∣∣∣∣ Pr[A(π) = 1|(crs, τ , φ, w)← AS1(1κ);π ← P(crs, φ, w)]
−Pr[A(π) = 1 : (crs, τ , φ, w)← AS1(1κ);π ← S2(crs, τ , φ)]

∣∣∣∣ ≤ negl(κ),

where S1 on query i outputs (crsi, τi) ← S1(1κ), the adversary outputs
(φ,w) ∈ RL and crs, τ such that at least tz of the crsi’s generated by S1 are
included and τ contains tz simulation trapdoors τi corresponding to crsi’s
that have been generated by the oracle S1, and negl is a negligible function
in the security parameter κ.

(tc, ts, tz, n)-Knowledge. Informally, this property requires the existence of
probabilistic polynomial time algorithms E1 and E2 that can extract a witness
from a valid proof.
Like the definition of zero-knowledge, the definition is split into two parts.

Reference String Indistinguishability For all non-uniform polynomial time
adversaries A,∣∣∣∣Pr[A(crs) = 1|crs← mNIZK.Gen(1κ)]

−Pr[A(crs) = 1|(crs, ξ)← E1(1κ)]

∣∣∣∣ ≤ negl(κ)

where negl is a negligible function in the security parameter κ.

Extractability For all non-uniform polynomial time adversaries A,

Pr

[
V(crs, φ, π) = 1,(φ,w) /∈ RL

(crs, φ, π)← AE1(1κ)

w ← E2(crs, φ, w, ξ)

]
≤ negl(κ)
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where E1 is an oracle that returns (crsi, ξi) ← E1(1κ), ξ contains at least
ts ξi’s corresponding to the crsi’s generated by E1, and negl is a negligible
function in the security parameter κ.

(tc, ts, tz, n)-Simulation Soundness. Informally, this property requires that
an adversary cannot prove any false statement even after seeing simulated
proofs of arbitrary statements. More formally, for all non-uniform polynomial
time adversaries A,

Pr[V(crs, φ, π) = 1, (crs, φ, π) /∈ Q,φ /∈ L|(crs, φ, π)← AS1,S2(1κ)] ≤ negl(κ)

where S1 on query i returns (crsi, τi)← S1(1κ), S2 on query (crsj , φj) returns
πj ← S2(crsj , τ j , φj) with τ j having simulation trapdoors for the crsi’s gen-
erated by S1, the adversary produces crsj containing at least ts crsi’s gener-
ated by S1, Q is the list of statements and corresponding proofs (crsj , φj , πj)
in the queries to S2, and negl is a negligible function in the security param-
eter κ.

(tc, ts, tz, n)-Simulation Extractability. Informally, this property requires
that even after seeing many simulated proofs, whenever the adversary makes
a new proof, we should be able to extract a witness. More formally, a multi-
string NIZK proof system is (tc, ts, tz, n)-simulation extractable if it has
(tc, ts, tz, n)-knowledge, is a (tc, ts, tz, n)-NIZK proof (i.e. completeness, sound-
ness and zero-knowledge hold for the relevant thresholds), and for all non-
uniform polynomial time adversaries A,

Pr

V(crs, φ, π) = 1,
(crs, φ, π) /∈ Q,

(φ,w) /∈ RL

(crs, φ, π)← ASE′1,S2(1κ),

w ← E2(crs, φ, π, ξ)

 ≤ negl(κ)

where SE′1 on query i returns (crsi, ξi) from (crsi, τi, ξi) ← SE1(1κ), S2 on
query (crsj , φj) returns πj ← S2(crsj , τ j , φj) (where τ j contains tz τi’s cor-
responding to crsi’s in crsj generated by SE1), Q is the list of statements
and corresponding proofs (crsj , φj , πj) made by S2, ξ contains the first ts
ξi’s generated by SE1 corresponding to crsi’s in crs, and negl is a negligible
function in the security parameter κ.
The above property of simulation extractability implies simulation-soundness.

Instantiation In our constructions, we use the (0, ts, tz, n) multi-string NIZK
with ts = tz = d(n+ 1)/2e of [30], which relies on enhanced trapdoor per-
mutations and satisfies the properties outlined above.

Encryption with key binding

Syntax We define our encryption scheme as follows.

Gen(1κ)→ (pk, sk): An algorithm that, given the security parameter, gener-
ates a public-secret key pair (pk, sk).
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Enc(pk, x; ρ)→ β: An algorithm that, given the public key, a message x ∈ F
and randomness ρ, outputs an encryption β of x.

Dec(sk, β)→ x: An algorithm that, given the secret key and a ciphertext β,
outputs a decryption x of β.

Properties We require the following properties of our encryption scheme:

Perfect Correctness. The perfect correctness property requires that de-
cryption of honestly produced ciphertexts must return the appropriate mes-
sage. More formally, an encryption scheme is perfectly correct if for any mes-
sage x ∈ F,

Pr

[
Dec(sk, β) = x

(pk, sk)← Gen(1κ)
β ← Enc(pk, x)

]
= 1,

where the probability is taken over the random coins of Gen and Enc.

Semantic Security. The semantic security property requires that an adver-
sary cannot distinguish which among the two messages (that the adversary
chooses) is encrypted in a given ciphertext. More formally, for all PPT ad-
versaries A, for (x0, x1)← A(1κ), if |x0| = |x1|,

Pr

[
A(pk, β) = b

(pk, sk)← Gen(1κ); b← {0, 1}
β ← Enc(pk, xb)

]
≤ 1

2
+ negl(κ),

where the probability is taken over the random coins of Gen and Enc.

Key Binding. This is a new property we introduce, which requires that the
correspondence between a secret and public key be checkable. In particular,
we require the existence of the following algorithm:

KeyMatches(pk, sk)→ accept/reject: Checks whether a given public
key pk and secret key sk correspond to one another.

For any (pk, sk) ← Gen(1κ), we require KeyMatches(pk, sk) = accept. Fur-
thermore, for any message x, for any ciphertext β ← Enc(pk, x), it should
hold that for all keys sk′ such that KeyMatches(pk, sk′) = accept, it holds
that Dec(sk, β) = Dec(sk′, β). (To weaken the definition, we might consider
efficiently computable keys sk′ instead.) This allows parties to “prove correct
decryption”.

One might think that we get the ability to prove correct decryption for free
from perfect correctness. However, perfect correctness only considers the hon-
estly generated decryption key; key binding makes sure the adversary cannot
get away with using a different key, which might convincingly decrypt to
something incorrect.
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Instantiation For a scheme like ElGamal encryption; a secret key consists of an
element x, with gx (for some generator g) as part of the public key. Notice that,
in particular, this scheme gives is the key binding property for free; it is easy
to check this discrete log relationship within the KeyMatches algorithm. Note,
the cryptosystem of Castagnos and Laguillaumie [13] which we propose as the
linearly homomorphic encryption scheme for Fhom

VeSPa uses class groups, and has
keys in the ElGamal style.

Notice also that if we didn’t get key binding for free, we could add key
binding to any encryption scheme by including in the public key a perfectly
binding commitment to the secret key. The new key generation algorithm Gen
would do the following (building on the key generation algorithm Gen′ of the
original encryption scheme):

Gen(1κ)→ (pk, sk) :

– (pk′, sk′)← Gen′(1κ)
– Choose randomness ρ
– γ ← Commit(sk′; ρ)
– Return (pk = (pk′, γ), sk = (sk′, ρ))

The KeyMatches algorithm would then simply return accept if γ = Commit(sk′, ρ),
and reject otherwise.

A.7 Generating Public Parameters for YOSO-GLS

The public parameters of the TFHE scheme (Appendix A.4) include a uniformly
sampled matrix B, in this section we will demonstrate how to explicitly sample
such a matrix in a two round YOSO protocol. All other public parameters may
be derived deterministically. In the first committee, which may have a dishonest
majority, roles may sample random matrices, producing index-wise Shamir shar-
ings to send to the subsequent committee. The second committee which must
have an honest majority, then adds shares they have received and broadcasts the
result. Intuitively, this prevents a rushing adversary from biasing B, as it would
have to corrupt a majority of the second committee to know the contribution of
the honest roles.

Notation For the purposes of our protocol we define two committees:

S1, . . . , Sh denotes the sampling committee S (of size h).
C, . . . , Cn denotes the combining committee C (of size n).

To ensure correct behaviour of the roles in these committees we define the rela-
tions:

RShare =


φsend =

(
Bj,1, . . . ,Bj,n

)
φreceive = ⊥
φbroadcast = ⊥
w =

(
Bj , ρj

) Bj,1, . . . ,Bj,n

← Share(Bj ; ρSj )

 ,
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RCombine =


φsend = ⊥
φreceive =

(
B1,i, . . . ,Bh,i

)
φbroadcast = Bi

w = ⊥

Bi =
∑h
j=1 Bj,i

where Bj,i = ⊥ is replaced by 0

 .

We now define our protocol ΠSetup.

Protocol ΠSetup

This subprotocol is run by two sequential committees S and C, of sizes h and n respectively.

Sample: Each member Sj (j ∈ [h]) of the committee S does the following:

1. Uniformly sample a matrix Bj
$← Zu×vq

2. Computes a point-wise Shamir sharing of Bj
– Bj,1, . . . ,Bj,n ← Share(Bj ; ρSj )

3. Input (Send, Sj , ((C1,Bj,1), . . . , (Cn,Bj,n)),⊥, ρSj ) to FVeSPa

Combine: Each member Ci (i ∈ [n]) of the committee C does the following:
1. Inputs (Read, Sj , Ci, 1) for each j ∈ [h] to get (B1,i, . . . ,Bh,i), replacing any Bj,i = ⊥

with 0.
2. Defines Bi =

∑
j∈[h] Bj,i

3. Input (Send, Ci,⊥,Bi,⊥) to FVeSPa

Output: The matrix B may then be publicly computed, where each index is defined as Bα,β ←
Rec({Bα,βi }i∈R) where R ⊂ [n] of size at least t+ 1, and Bi 6= ⊥ for i ∈ R. Each Bi may be
read from FVeSPa by giving input (Read, Ci, 2). All remaining public parameters may be locally
derived given only κ, n and d. The roles may then output pp = (v, u, q, χ,Bχ, Bsmug,B).

Theorem 8. The protocol ΠSetup YOSO-realises the functionality FTFHE
Setup in the

FVeSPa-hybrid model.

The proof of Theorem 8 may be found in Appendix B.3.

B Security proofs

B.1 Security of YaOSO

To prove the protocol ΠY aOSO YOSO realises the functionality Ff with guaran-
teed output delivery, we will show that the protocol YoS(ΠY aOSO) UC realises
the functionality Ff . We may do this by constructing a simulator SY aOSO for
any given adversary A, such that:

REALYoS(ΠY aOSO),A,E(1
κ) ≈ IDEALFf ,SY aOSO,E(1κ).

Proof. For a given adversary A we define the simulator SY aOSO. SY aOSO in-
ternally uses the simulator (say Ssm) of the underlying semi-malicious protocol
Πsm. The idea is for SY aOSO to transform a malicious adversary in ΠY aOSO to
a semi-malicious adversary in Πsm. This is done by verifying the messages that
the maliciously corrupt roles use to invoke FVeSPa (which SY aOSO has access
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to). If the messages verify, they are forwarded to Ssm on behalf of semi-malicious
corrupt parties. Else, the messages are recomputed using default input and ran-
domness. In this manner, the messages corresponding to the underlying protocol
can be simulated. Additionally, SY aOSO also invokes the simulator of the adap-
tive garbling scheme (Appendix A.2) to simulate the garbled circuits and labels
of honest roles.

First, we argue regarding the correctness of the ΠY aOSO. The correctness of
the garbling scheme and threshold secret sharing ensures that the second-round
messages of Πsm obtained via the evaluation of garbled circuits would be correct.
Now, correctness of ΠY aOSO follows directly from the correctness of Πsm.

Next, we define the simulator below. The set of indices corresponding to
honest roles and corrupt roles in committee C are denoted as HC and IC re-
spectively.

Simulator SY aOSO
Let Ssm denote the simulator of the underlying semi-malicious protocol Πsm.

Input: For the input committee, the simulator:
– For each honest input role j ∈ HI ,

• Receive {msg1j} by interaction with Ssm.

• Compute the simulated garbled circuit as GCj ← simGC(1n, φ(Cj), “ckt”), where φ(Cj)
denotes the topology of the circuit (that does not depend on the hard coded values).

• When a corrupt role attempts to input (Read, Ij , 1) to FVeSPa, return the response(
msg1j , GCj

)
as computed above.

• When a corrupt computation committee role i ∈ IE attempts to in-
put (Read, Ei, Ij , 1) to FVeSPa, return as response a set of random shares

{s(0)j,l,i, s
(1)
j,l,i}l∈[L].

– On behalf of FVeSPa, verify the Send input by corrupt input roles j ∈ II . Replace the
shares with ⊥ if the verification fails.

– When a corrupt computation committee role i ∈ IE attempts to input (Read, Ei, Ij , 1)

to FVeSPa for j ∈ II , return {s(0)j,l,i, s
(1)
j,l,i}l∈[L].

At the conclusion of this round the simulator knows (xk, {msg1k}, {s
(0)
k,l,i, s

(1)
k,l,i}l∈[L],i∈[n]) (con-

sider default values in case a corrupt role aborts or the verification fails) for each corrupt input
role k ∈ II as they are leaked by FVeSPa.
The simulator may provide these inputs {xk}k∈II to the ideal functionality to receive

out = f(x1, . . . , xm). This out is provided to Ssm as the response from its ideal functionality
when invoked by Ssm.

Computation: For the computation committee the simulator:
– Interacts with Ssm as follows: Send the first-round message msg1k on behalf of corrupt

roles k ∈ II . Receive the second round messages msg2j corresponding to the honest input
roles j ∈ HI .

– For each j ∈ HI
• Compute the set of simulated garbled labels corresponding to GCj as

(Kj,1, . . . , Kj,L)← simGC(1n,msg2j , “input”)

• Compute the shares {s(bl)j,l,i}i∈HE ← SH.SimShare({s(bl)j,l,i}i∈IE , Kj,l) for l ∈ [L]

(where b1, . . . , bL = msg11|| . . .msg1m).
– When a corrupt role attempts to input (Read, Ei, 2) for i ∈ HE , return as response

{s(bl)j,l,i}j∈I,l∈[L] as computed above for j ∈ HI and leaked via FVeSPa for j ∈ II .

We prove the indistinguishability of the real and ideal world through a series
of hybrids.
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Real H0: Run everything as in the real protocol, using the honest roles
inputs. Note, through the use of FVeSPa the inputs of corrupt roles will already
be known to the simulator at this point, allowing them to be input the ideal
functionality to receive out = f(x1, . . . , xm).

Hybrid H1 (Simulate honest shares): The honest threshold shares held
by i ∈ HE corresponding to labels of GCj of honest input roles j ∈ HI
are set as {s(bl)

j,l,i}i∈HE ← SH.SimShare({s(bl)
j,l,i}i∈IE ,Kj,l) for l ∈ [L] (where

b1, . . . , bL = msg1
1|| . . .msg1

m).

Hybrid H2 (Simulate garbled circuits of honest input roles): The gar-
bled circuit and corresponding labels of honest input role j ∈ HI are com-
puted as GCj ← simGC(1n, φ(Cj), “ckt”) and (Kj,1, . . . ,Kj,L)← simGC(1n,msg2

j ,
“input”).
Hybrid H3 (Simulate the messages of Πsm): The first and second round
messages of the underlying protocol Πsm i.e. msg1

j and msg2
j for j ∈ HI are

obtained via the simulator Ssm. At this point the simulator no longer needs
access to honest party inputs.

We show that the hybrids in our sequence are indistinguishable.

H0 ≈ H1 The indistinguishability of these hybrids follows from the share simulatability
of the threshold secret sharing scheme (Appendix A.1).

H1 ≈ H2 Indistinguishability of H1 and H2 follows via reduction to the adaptive
privacy of the garbling scheme (Appendix A.2).

H2 ≈ H3 Indistinguishability of H2 and H3 follows from semi-malicious security of
πsm.

B.2 Security of YOSO-GLS

We will now prove security of the ΠY OSO−GLS protocol (Theorem 3).

Proof. To prove the protocol ΠY OSO−GLS YOSO realises the functionality Ff
with guaranteed output delivery, we will show that the protocol YoS(ΠY OSO−GLS)
UC realises the functionality Ff . We may do this by constructing a simulator S
for any given adversary A, such that:

REALYoS(ΠYOSO−GLS),A,E(1
κ) ≈ IDEALFf ,S,E(1κ).

For a given adversary A we define the simulator as follows:

Simulator S

Begin by reading public parameters leaked from FSetup. Allow the adversary to control the
corrupt roles, simulating the honest roles and FVeSPa

KGen: For honest roles Ki perform key generation as described in the protocol. At the
conclusion of this round the simulator knows skj = (skj,1, . . . , skj,n) for each corrupt role
Kj (j ∈ IK) as they are leaked by FVeSPa.
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Input: Rather than encrypting their input, each role may instead encrypt 0 under the
TFHE keys to get Ci ← Enc({pki}i∈K, 0; ρIi ) which may then be input to FVeSPa as
(Send, Ii,⊥, Ci, (0, ρIi )).
At the conclusion of this round the simulator knows input xj for each corrupt input role
Ij (j ∈ II). The simulator may provide these inputs to the ideal functionality to receive
out = f(x1, . . . , xm)

Computation: For the computation committee the simulator:
– Homomorphically derives the ciphertext C according to the protocol
– Derives partial decryptions for corrupt roles in the computation committee as di ←

PDec({pkk}k∈K, cski, C) for cski = {skj,i}j∈K .
– The simulator then produces partial decryptions for the honest roles
{dj}j∈[n]\IComputation

← SimPDec(C, {pki}i∈K, {ski}i∈IK , {(cskj , dj)}j∈IE , out)
– When a corrupt role attempts to input (Read, Ej , 3,REval) to FVeSPa for an honest role
Ej , replace the response with dj as computed above.

We prove the indistinguishability of the real and ideal world through a series
of hybrids.

Real H0: Run everything as in the real protocol, using the honest roles
inputs. Note, through the use of FVeSPa the inputs of corrupt roles will already
be known to the simulator at this point, allowing them to be input the ideal
functionality to receive out = f(x1, . . . , xm).

Hybrid H1 (Partial decryption simulation): Simulate partial decryp-
tions for honest roles as:

{dj}j∈[n]\IComputation
← SimPDec(C, {pki}i∈K, {ski}i∈IK , {(cskj , dj)}j∈IE , out),

where desired output out should be the value returned by the ideal function-
ality. These partial decryptions should then be returned whenever a corrupt
role inputs (Read, Ej , 3) to FVeSPa for j ∈ HE .
Note, this requires access to secret keys ski for corrupt key generation roles
i ∈ IK , as well as partial decryptions dj and computation keys cskj for
j ∈ IE . The simulator has these secrets as they are leaked by FVeSPa, and
may use them to deterministically compute partial decryptions. These partial
decryptions should then be returned when a corrupt role inputs (Read, Ej , 3)
for j ∈ HE .

Hybrid H2 (Encrypt 0 for honest roles): Replace encryptions of inputs
from honest roles by encryptions of 0. At this point the simulator no longer
needs access to honest role inputs.

First, we will prove correctness of the real protocol. The FSetup functionality en-
sures correct sampling of the public parameters, while commnication through the
FVeSPa functionality with RKGen enforces that all public keys used when encrypt-
ing are well-formed. All input ciphertexts are ensured to be encryptions under
some randomness by FVeSPa with REnc. As a result partial decryptions under
the correct keys, as enforced by FVeSPa with REval, will recombine to produce
f(x1, . . . , xm) following from correctness of the TFHE scheme (Definition 2).
Note, we are guaranteed to have sufficient partial decryptions by the honest ma-
jority of the computation committee.
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We will now prove that the hybrids in our sequence are indistinguishable.

H0 ≈ H1 The indistinguishablility of these hybrids follows from the partial decryption
simulatability of the TFHE scheme (Definition 4). An adversary successfully
distinguishing H0 and H1 with non-negligible probability may be used to
win the partial decryption simulatability game GameParDecSimA,n,d,f,TFHE(κ), with
the same probability. This may be done by generating secret keys for honest
roles through use of the OKGen and registering all corrupt keys sent on
FVeSPa with OKReg using the randomness leaked to the simulator. The point-
to-point messages read by corrupt roles Ei for i ∈ IE , may be replaced
by the simulator with key shares received by invoking OCorr(i). By the
threshold guarantees of the committees K and E, we are guaranteed that
the |HKGen| ≥ 1 and |IComputation| ≤ t. The partial decryptions for honest
roles in the protocol may then be set to the challenge provided in the game.
Thus, if our adversary guesses H0 we may guess b = 0 in the game, guessing
b = 1 otherwise.

H1 ≈ H2 Indistinguishability of H1 and H2 follows by a reduction to the semantic
security of the TFHE scheme (Definition 3). Encrytptions on behalf of honest
input roles may be replaced one at a time, maintaining indistinguishability.
An adversary successfully distinguishing these cases may then be used to win
GameIND−CPAA,n,t,TFHE (κ). We will again map corruptions in K to uses of theOKReg
and corruptions in E to uses of OCorr. This provides the same guarantees
that |HKGen| ≥ 1 and |IComputation| ≤ t. When replacing the input of an honest
input role Ii we may input messages (0, xi) to the game. The challenge may
then be used as the ciphertext for Ii in the protocol. If the adversary guesses
it is in the hybrid where the plaintext has been replaced, we guess b = 0 in
the game, guessing b = 1 otherwise. This allows winning the game with the
distinguishing advantage the adversary has on the hybrids.

B.3 Security of ΠSetup

Proof. We will show that YoS(ΠSetup) UC realises FTFHE
Setup in the FVeSPa-hybrid

model. For a real world adversary A we will construct ideal world adversary S
such that the real and ideal ensembles are indistinguishable, i.e.

REALYoS(ΠSetup),A,E(1
κ) ≈ IDEALFTFHE

Setup ,S,E
(1κ).

Simulator S

The ideal functionality FTFHE
Setup leaks the chosen matrix B to the simulator.

Sample: Run all honest roles in the sample committee as prescribed by the protocol.

Combine: The simulator ensures shares will reconstruct to B.
– For each corrupt role i ∈ IC compute Bi as in the protocol.
– Simulate Bi for i ∈ HC , conditioned on corrupt shares, such that they reconstruct to B.
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Shares sent to corrupt roles FVeSPa by honest roles in the sample committee
are identically distributed in the real and ideal worlds. Any set of fewer than
t shares is independent of the secret shared value. Therefore, simulated shares
will be distributed identically to real shares, as there is at least one honest role
in the sample committee.

B.4 Security of YOSO-LHSS

To prove the protocol ΠY OSO−LHSS YOSO realises the functionality Ff with
guaranteed output delivery, we will show that the protocol YoS(ΠY OSO−LHSS)
UC realises the functionality Ff . We may do this by constructing a simulator S
for any given adversary A, such that:

REALYoS(ΠYOSO−LHSS),A,E(1
κ) ≈ IDEALFf ,S,E(1κ).

We start by analyzing the correctness of an all-honest execution of the pro-
tocol.

Lemma 3 (Correctness). The protocol Π on inputs (x1, . . . , xm) produces
output value z = f(x1, . . . , xm) when all roles are honest.

Proof. Correctness follows from the evaluation of each gate producing a sharing
of the appropriate gate output. If this is the case the output may be reconstructed
from the sharing associated with the final gate by perfect correctness of the secret
sharing scheme.

Input The role giving input distributes a sharing of its input value x by construc-
tion.

Add Perfect correctness of the Shamir secret sharing ensures the output is a
sharing of z = x+ y.

Mult The values produced by MakeBeaver are valid sharings of a, b and c, where
c = ab. It follows by inspection that z = c − εb − δa + εδ = c − (a − x)b −
(b− y)a+ (a− x)(b− y) = xy.

We will now prove the security of our YOSO-LHSS protocol.

Proof. We start by defining a simulator S which may be composed with any
PPT real-world adversary A to produce an ideal world adversary S ′ such that for
every PPT environment E , it holds that REALΠ,A,E(x) and IDEALFf ,S,E(x)
are indistinguishable. We prove indistinguishability through a series of hybrids,
each indistinguishable from the last, starting in the real world and arriving in
the ideal world with our complete simulator.

We define the simulator S below. We denote the set of honest and corrupt
roles asH and I respectively; we letHC and IC represent the honest and corrupt
roles within a committee C.
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Simulator S

Input: For the input committee, the simulator:
– When a corrupt role Ci attempts to input (Read, Ci, Ij , 1) to Fhom

VeSPa for honest input role
j ∈ HI , return (x̃j,i,⊥) where x̃j,i is a random share.

– On behalf of Fhom
VeSPa, verify the Send input by corrupt input roles j ∈ II and store the

shares (xj,1, . . . , xj,n). Replace the shares with ⊥ if the verification fails.

– When a corrupt role Ci attempts to input (Read, Ci, Ij , 1) to Fhom
VeSPa for corrupt input

role Ij , return (xj,i).
At the conclusion of this round the simulator knows the input (xk) (consider default values
in case a corrupt role aborts or the verification fails) for each corrupt input role k ∈ II as

they are leaked by Fhom
VeSPa. The simulator may provide these inputs {xk}k∈II to the ideal

functionality to receive out = f(x1, . . . , xm).

Decrypt: 1. If the value being decrypted corresponds to the ε or δ values during compu-
tation of multiplication gate, set plaintext x as a random value. Otherwise, this value
corresponds to decryption of the final output and the plaintext x is set to out.

2. Simulating the honest role shares. Let {xi}i∈IC denote the shares held by corrupt roles
in C (which the simulator knows because these can be deduced using the values leaked

via the Fhom
VeSPa). Compute the shares on behalf of honest roles such that they would be

consistent with x as follows: Compute {x′i}i∈HC ← SH.SimShare({xi}i∈IC , x).

Add: S uses the values learned earlier to deduce the shares of the output of the addition gate,
i.e., z = x+y (where x and y denote the inputs to the addition gate) held by corrupt roles in C.

MakeBeaver: 1. S does the following with respect to the Al helper committee:

– When a corrupt role Ml,i attempts to input (Read,Ml,i, Al,j , l + 2) to Fhom
VeSPa for

j ∈ HAl , return (al,j,i) where al,j,i is set as a random share.

– When a corrupt role Ol,i attempts to input (Read, Ol,i, Al,j , l + 2) to Fhom
VeSPa for

j ∈ HAl , return (a′l,j,i) where a′l,j,i is set as a random share.

– On behalf of Fhom
VeSPa, verify the Send input by corrupt helper roles j ∈ IAl and store

the shares {al,j,i, a′l,j,i}i∈[n]. Replace the shares with ⊥ if the verification fails.

Return the relevant share as response on behalf of Fhom
VeSPa when corrupt roles in Ml

and Ol invoke the Fhom
VeSPa with Read with respect to Al,j .

2. With respect to the Bl helper committee, the S executes steps similar to the above (for
values {bl,j,i, b′l,j,i}i∈[n]), except that the c′l,j,i values also need to be simulated in a

similar manner (i.e. set to random shares when honest roles in Bl are involved and as
per the protocol when corrupt roles in Bl are involved).

3. Using the leakage from Fhom
VeSPa and the shares sent on behalf of honest roles, the simulator

can deduce the shares of al, bl held by the corrupt roles in Ml and Ol and cl held by
corrupt roles in Ol.

Mult: 1. Deduce the shares of εl and δl held by corrupt roles in Ml using the values learned
earlier.

2. Execute the simulation steps in Decrypt to open εl and δl on behalf of honest roles in Ml.
3. Deduce the shares of the output of the multiplication gate, i.e., xlyl (where xl and yl

denote the inputs to the multiplication gate) held by corrupt roles in Ol using the values
learned earlier.

Output: Using leaked values from Fhom
VeSPa, S deduces the shares of the output held by the

corrupt roles in the output committee. Finally, S executes the simulation steps in Decrypt to
open the final output out.

We describe a series of hybrid simulators allowing us to arrive at the full
simulator described above. The final simulator does not require access to the
inputs of honest roles, relying only on the ideal functionality.
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Real H0: The simulator does everything as in the real protocol. FVeSPa leaks
inputs from corrupt roles to the simulator, allowing these to be input to the
ideal functionality to receive the output out = f(x1, . . . , xm).

Hybrid H1 (Simulate output shares): Replace honest shares broadcast
through Fhom

VeSPa in final call to the Decrypt procedure with simulated shares
produced as {outi}i∈HC ← SimShare({outi}i∈IC , out).

Hybrid H2 (Pick ε, δ Randomly, Simulate Honest Roles’ Shares) When
multiplication committee Ml decrypts ε and δ choose ε and δ uniformly at
random and simulate honest shares:

– {εl,i}i∈HC ← SimShare({εl,i}i∈IC , ε),
– {δl,i}i∈HC ← SimShare({δl,i}i∈IC , δ).

Ideal H3 (Replace shares of honest inputs with random) Rather than
sharing honest inputs, provide random shares to corrupt roles when they in-
put (Read, Ii, Cj , 1) to Fhom

VeSPa.

We now prove that each pair in our sequence of hybrids is indistinguishable.

H0 ≈ H1 We will prove indistinguishablility from the real world through an invariant
over the evaluation of the circuit. The shares of honest inputs held by honest
roles make up a uniform sharing conditioned on the shares of corrupt roles.
For simplicity, we assume our circuit contains at least one multiplication
gate. After the first multiplication the corresponding held by honest roles
are independent of the view of the adversary. The process for beaver triple
generation ensures this as both the A and B committees contain at least
one honest role, resulting in the sum of their produced shares making up a
uniformly random sharing of a uniform value, conditioned on corrupt shares.
The honest shares of ε and δ are defined as εl,i = al,i − xl,i and δl,i =
bl,i − yl,i for i ∈ HM . Both al,i and bl,i are uniform shares conditioned
on the shares of the adversary, rendering the same true for εl,i and δl,i.
As c′l,i is produced through the use of the homomorphism of Fhom

VeSPa with
an added fresh sharing of 0 the result of c′l,i − εlb′l,i − δla′l,i + εlδl for i ∈
HO will be similarly uniform shares conditioned on the shares of corrupt
roles. Addition requires no communication, and produces new shares which
are again distributed as part of a uniformly chosen sharing conditioned on
the shares of the adversary. When decrypting for the final gate the shares
for the honest roles may therefore instead be simulated by invoking share
simulatability, here the output of the functionality may be used relying on
the correctness of the protocol.

H1 ≈ H2 As argued previously the values ε and δ are uniformly random, while the
shares of these values held by the honest roles constitute a uniform sharing
conditioned on the corrupt shares. Once again, the shares which are broad-
casted by honest roles may be replaced by simulations, by invoking share
simulatability.
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H2 ≈ H3 Finally, as the decryptions of honest shares throughout the circuit do not
depend on honest shares of honest inputs the simulator may simply choose
uniform random shares to provide to the corrupt roles. This results in an
identical distribution and eliminates the need for the inputs of honest roles.

C Compilation with Verifiable State Propagation

We recap the high level approach for compiling abstract to natural YOSO. Pro-
tocols are first recast in the Simple YOSO (SYOSO) model, where rounds are
unrolled, such that parties act sequentially. The security of our protocols is in the
presence of a rushing adversary, and is therefore unaffected by unrolling rounds.
The protocols we consider are in the FVeSPa-hybrid model, thus we may assume
each role performs computation on its public and private inputs, after which it
inputs messages to a FVeSPa functionality receiving a Spoke token.

A SYOSO protocol may then be compiled to a natural protocol using a timed
ledger with role assignment. In our case this transformation requires introducing
an additional committee where each role contributes a multi-string NIZK CRS,
allowing subsequent zero-knowledge proofs. For a sufficiently large set of ma-
chines relative to the number of roles, ensuring the required corruption bounds,
the ideal world adversary for the SYOSO protocol may be used to produce the
ideal world simulation for ΠNatural.

C.1 Computational Simple YOSO

We recall the Simple YOSO (SYOSO) model of [24] (which was defined for
the information-theoretic setting in [24]), introducing minor modifications to al-
low compiling computationally secure protocols communicating through FVeSPa.
SYOSO unrolls each round of a YOSO protocol, such that roles are executed
in a publicly known order. Let ActSeq be a sequence of tuples, each containing
a role and broadcast message, as each role is executed its tuple is appended to
the sequence. Consider a function UpNext, which outputs the next role to be
executed when given the current public state:

(R, IR,OR) = UpNext(ActSeq).

The UpNext function additionally outputs which roles R should receive messages
from, and which roles it should send messages to, denoted IR andOR respectively.
The protocol may be executed by looping through the defined activation order,
executing roles one by one.

The roles are partitioned into three sets, the fixed input and output roles,
RoleIn and RoleOut, and the randomly assigned computation roles RoleCmp. The
adversary is allowed chosen static corruptions in the input and output sets, and
restricted to uniformly random corruptions in the computation roles.

The key difference for our computational setting, compared to the informa-
tion theoretic setting of [24], is the verification of messages according to the
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relation map as defined for FVeSPa. In our real execution below, roles addition-
ally output a witness for the verification of its messages, checked in Step 7 and
Step 9.

Execstatic,t
Γ,A,E (1κ)

1. Allow A to choose any number of static corruptions in RoleIn and RoleOut. Pick t uniformly
random corruptions in RoleCmp. Let Corrupt denote the set of corrupted roles and let
Honest = Role \ Corrupt. Let the environment E and A interact as in the UC framework.

2. Run E to get inputs xi for Ii ∈ Honest
3. Let ActSeq = ()
4. Let (R, IR,OR) = UpNext(ActSeq)
5. If R = Ii and Ii ∈ Honest let x = xi, otherwise let x = ⊥
6. If R ∈ Honest compute

(out, x, {(S, xR,S)}S∈OR
, wVeSPa)← ExecRole(ActSeq, x, {(S, xS,R)}S∈IR ),

otherwise compute
(x, {(S, xR,S)}S∈OR

, wVeSPa)← A.

7. Let φsend = ((S, xR,S))S∈OR
, φreceive = ((S, xS,R))S∈IR and φbroadcast = x.

8. Collect broadcast messages from previous rounds from ActSeq into φpublic.
9. If ((φsend||φreceive||φbroadcast||φpublic), wVeSPa) 6∈ R(R): set x = NoMsg and xR,S =

NoMsg.
10. Append (R, x) to ActSeq and input x to A.
11. For S ∈ OR, if S ∈ Corrupt input xR,S to A, otherwise input |xR,S| to A.
12. If R = Oj and R ∈ Honest let outj = out and input outj to E.
13. If R 6= Ow go to Step 4.
14. Run E to get b ∈ {0, 1} and output b.

We additionally define the ideal execution, which requires no modification.

Idealstatic,tf,S,E (1κ) from [24]

1. Allow the simulator S to specify static corruptions in RoleIn and RoleOut. Let Corrupt
denote the set of corrupted roles and let Honest = Role \ Corrupt. Let the environment E
and S interact as in the UC framework.

2. Run E to get inputs xi for Ii ∈ Honest
3. If the simulator outputs xi for each Ii ∈ Corrupt compute (out1, . . . , outw) =

f(x1, . . . , xm) and input outj to S for each Oj ∈ Corrupt.
4. For j = 1, . . . , w and Oj ∈ Honest input outj to E.
5. Run E to get b ∈ {0, 1} and output b.

A SYOSO protocol is secure if for all PPT adversaries A there exists a PPT
ideal world adversary S such that

Idealstatic,tf,S,E (1κ) ≈ Execstatic,t
Γ,A,E (1κ).

As synchronous YOSO protocols are secure in the presence of a rushing
adversary unrolling each round only requires applying a straightforward wrapper
to the YOSO simulator, preserving security. Note, the relations checked in FVeSPa

and the real world execution are identical, providing identical guarantees in both
settings.
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C.2 Toy ledger with role assignment

We compile our protocols to run in a simplified blockchain setting. This provides
parties an ordered broadcast functionality, where they may post messages which
will sequenced into an ordering within some time ∆Post. The ledger additionally
provides key generation for roles, generating decryption and signing keys for the
machines chosen to perform roles.

For a detailed discussion of the simplifying assumptions made in defining
FRA we refer the reader to [24], however, we emphasise that neither of the role
assignment protocols in [7] or [25] UC realise FRA.

Functionality FRA from [24]

Init: Let Machine be the set of parties allowed to use the ledger, these parties may be
partitioned into MachineFixed with fixed roles and MachineRand with randomly assigned roles.
The functionality has an, initially empty, set posted of messages Posted, from which placed
into a sequence Ordered. In any round let τNow denote the current time.

Post: On input (Post,msg) from pid ∈ Machine, add (pid, τNow,msg) to Posted and leak
(Post, pid,msg) to the adversary.

Order: On input (Order, pid,msg) from the adversary, where there exists τ such that
(pid, τ,msg) ∈ Posted and no τ ′ where (pid, τ ′,msg) ∈ Ordered, append (pid, τNow,msg) to
Ordered.
For (pid, τ,msg) ∈ Posted where there is no (pid, τ ′,msg) ∈ Ordered append (pid, τNow,msg)
automatically when τ = τNow −∆Post

Read: On input (Read) from pid ∈ Machine output Ordered to pid and leak (Read) to the
adversary.

Generate: On input (Generate,R) from the adversary, generate encryption and signing keys
(ekR, dkR)← Enc.Gen(), (vkR, skR)← Sig.Gen().

– If R ∈ RoleFixed then let pid = R
– Otherwise sample a uniformly random pid ∈ MachineRand

Let msg = (Generate,R, ekR, vkR) and add (RA, τNow,msg) to Posted. When (RA, τNow,msg) is
added to Ordered output (Generate,R, ekR, dkR, vkR, skR) to pid.

C.3 Compilation

To achieve the verification provided by the FVeSPa we employ an additional
committee which non-interactively produces a reference string used for multi-
string NIZK proofs. Multi-string NIZK provides our needed security properties,
such as completeness, zero-knowledge and simulation extractability, given an
honest majority among the parties generating the CRS (Appendix A.6). Using
such a CRS, the machines can ignore the messages that are not accompanied by
valid proofs and obtain a common view of messages ordered by the ledger.

When a machine should prove it has behaved correctly performed its role, it
must first prove that it is computing on the correct inputs. The decrypted plain-
text for a receiving party should always match the plaintext encrypted by the
sending party, for this we require perfect correctness of the encryption scheme.
We additionally need our encryption scheme to have a key binding property,
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such that for a fixed public key makes it intractable to generate an alternate se-
cret key satisfying the KeyMatches predicate (Appendix A.6). A machine should
also prove that it correctly encrypts its outgoing messages. The relationship be-
tween incoming and outgoing messages, i.e. correct computation, for R is then
enforced by membership in the relation R(R) as specified when using the FVeSPa

functionality. We exploit that roles provide a witness in their input to FVeSPa.
We group the required properties into the relation

RVeSPa =



φ =


(R(R), ekR,
vkR, x,
{(S, CS,R)}S∈IR ,
{(S, CR,S)}S∈OR

)



w =

 (wVeSPa, dkR,
{(xR,S, ρR,S)}S∈OR

,
{xS,R}S∈IR)



> = KeyMatches(ekR, dkR)
∀S ∈ IR : xS,R = Dec(dkR, CS,R)
∀S ∈ OR : CR,S = Enc(ekS, xR,S; ρR,S)

φsend = ((S, xR,S))S∈OR

φrec = ((S, xS,R))S∈IR
φbc = x
((φs||φr||φb), wVeSPa) ∈ R(R)


.

While roles act sequentially in the compiled protocol, any roles acting in the
same round originally could in fact be executed in parallel.

Protocol ΠNatural = Compile(ΓAbstract)

Role assignment: When a machine M receives (Generate,R, ekR, dkR, vkR, skR) it stores
keys (R, dkR, skR).

Ready to recieve: A machine is ready to receive if (RA, τ ′, (Generate,R, ekR, vkR))
appears in Ordered.

Ready to send: A machine is ready to send when a message (·, τ ′,msg) is added to Ordered
causing UpNext(ActSeq) = (R, IR,OR).

Ready to execute: A machine which is ready to send becomes ready to execute when all
S ∈ OR are ready to receive.

Time out: If a role R was ready to execute at time τ , and local time for maching M is
τNow = τ + ∆Post, if ordered does not contain exactly one message of the form (R, x, C, π, σ)
such that Sig.Ver(vkS, (x,C, π)) = >, a party should behave as if Ordered contains a message
(R,NoMsg,NoMsgNoMsg,NoMsg) injected at time τ +∆Post.

CRS generation: When a role R in RoleCRS is ready to execute, which has been assigned R
and has keys (R, dkR, skR) proceeds as follows:

1. Generate a multi-string NIZK CRS, crs← mNIZK.Gen().
2. Compute, σ ← Sig.Sign(skR, crs).
3. Erase all internal values used during the previous computation, except (R, crs, σ).
4. Post (R, crs, σ) to FRA.

All machines may gather the multi-string NIZK CRS’s posted with valid signatures by roles
in RoleCRS to produce a set crs.

Having produced crs each party may maintain the same sequence Valid as a virtual view
of Ordered which excludes any out of order or invalid messages. More precisely an element
(S, x, C, π, σ) in Ordered is omitted if:

– It is out of turn according to UpNext in Ordered.
– Sig.Ver(vkS, (x,C, π)) = ⊥
– When parsing C as {(R′, CS,R′ )}R′∈OS

, the proof does not verify, i.e. for φ =

(R(S), ekS, dkS, x, {(S, CR′,S)}R′∈IS , {(R
′, CS,R′ )}R′∈OS

, φpublic), mNIZK.Ver(crs, φ, π) =

⊥.
Missing messages in the sequence are replaced by (S,NoMsg,NoMsg,NoMsg,NoMsg)
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Role execution: When a role R is ready to execute at time τ , the machine which has been
assigned R and has keys (R, dkR, skR) proceeds as follows:

1. For each role in S ∈ IR find (S, x, C, π, σ) in Valid.
2. If the role is an input role, i.e. R = Ii, let y = yi. Otherwise let y = ⊥
3. Compute (out, x, {(S, xR,S)}S∈OR

, wVeSPa)← ExecRole(ActSeq, x, {(S, xS,R)}S∈IR )

4. For S ∈ OR encrypt messages CR,S ← Enc.Enc(ekS, xR,S; ρR,S). Let C = {(S, CR,S)}S∈OR
5. Collect broadcast messages from previous rounds from ActSeq into φpublic.
6. Prove the role was computed correctly φ =

(R(R), ekR, vkR, x, {(S, CS,R)}S∈IR , {(S, CR,S)}S∈OR
, φpublic), w =

(dkR, {ρR,S}S∈OR
, wVeSPa), π ← mNIZK.P(crs, φ, w)

7. σ ← Sig.Sign(skR, (x,C, π))
8. If the role is an output role, i.e. R = Oi, let outi = out
9. Erase dkR and skR and all internal values used during the previous computation, except

(R, x, C, π, σ).
10. Post (R, x, C, π, σ) to FRA.

Proof sketch of Theorem 1 We provide a proof sketch for Theorem 1, showing
that static security in the YOSO model implies UC security of the compiled
protocol.

– Unforgeability of the signature scheme ensures that messages from honest
roles in Valid were indeed sent by honest roles.

– Assuming an honest majority in the CRS committee, Zero-Knowledge of
multi-string NIZK allows simulating proofs for all honest roles.

– Simulation Extractability of the multi-string NIZK then ensures that the
simulator can extract a valid witness for the messages sent by corrupt roles.

– Using the extracted witness, key binding of the encryption scheme then
ensures the adversary must use the decryption key provided by FRA, which
along with perfect correctness of the encryption scheme enforces that incom-
ing messages to a receiver match the outgoing messages which the sender
proved were well-formed.

– For sender S the statements φsend, φreceive, φbroadcast, φpublic in RVeSPa and
FVeSPa are therefore guaranteed to be identical. As ((φsend||φreceive||φbroadcast
||φpublic), wVeSPa) ∈ R(S), communication using FRA provides identical guar-
antees to the communication in Execstatic,t

Γ,A,E (κ).

Due to the equivalence between the real SYOSO execution and FRA we can
use the simulator from Idealstatic,tf,S,E (κ) to simulate the corrupt roles in ΠNatural.

It remains to appropriately map roles to machines in a manner which is
indistinguishable to the adversary. For the above strategy of simulation to work,
an adversary corrupting a fraction t′ of the machines should not be able to
corrupt more than a fraction t of the roles. For a uniform mapping [24] observe
that this requires bounding the number roles which collide being assigned to
the same role. Requiring the number of machines |Machine| ≥ |Role|2+c, for a
positive integer c ensures the expected number of collisions is less than |Role|−c.
For |Role| linear in the security parameter the thresholds may be set, such that
corrupting a fraction t′ machines does not corrupt more than a fraction t roles
except with negligible probability.

To complete our analysis we must additionally consider corruption thresholds
on a per-committee basis, arguing that they achieve their necessary thresholds
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for security. For simplicity, we may restrict ourselves to the setting where no
two roles are assigned to a single machine, this is easily generalised to a con-
stant number of collisions. The assignment of roles is independent of the chosen
corruptions, an adversary corrupting a fraction t of the roles would expect to
corrupt the same fraction t of a committee. As the number of roles in a com-
mittee n grows, the number of corrupt roles may be bounded by tn + δ < n/2
for some small constant δ, except with negligible probability. A similar analysis
may be done to ensure a single honest role, or any smaller fraction of honest
roles, these cases would allow for smaller committees. ut
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