
Simplified MITM Modeling for Permutations:
New (Quantum) Attacks ?

André Schrottenloher and Marc Stevens

Cryptology Group, CWI, Amsterdam, The Netherlands
firstname.lastname@cwi.nl

Abstract. Meet-in-the-middle (MITM) is a general paradigm where in-
ternal states are computed along two independent paths (’forwards’ and
’backwards’) that are then matched. Over time, MITM attacks improved
using more refined techniques and exploiting additional freedoms and
structure, which makes it more involved to find and optimize such at-
tacks. This has led to the use of detailed attack models for generic solvers
to automatically search for improved attacks, notably a MILP model de-
veloped by Bao et al. at EUROCRYPT 2021.
In this paper, we study a simpler MILP modeling combining a greatly
reduced attack representation as input to the generic solver, together
with a theoretical analysis that, for any solution, proves the existence
and complexity of a detailed attack. This modeling allows to find both
classical and quantum attacks on a broad class of cryptographic permuta-
tions. First, Present-like constructions, with the permutations from the
Spongent hash functions: we improve the MITM step in distinguishers
by up to 3 rounds. Second, AES-like designs: despite being much simpler
than Bao et al.’s, our model allows to recover the best previous results.
The only limitation is that we do not use degrees of freedom from the
key schedule. Third, we show that the model can be extended to target
more permutations, like Feistel networks. In this context we give new
Guess-and-determine attacks on reduced Simpira v2 and Sparkle.
Finally, using our model, we find several new quantum preimage and
pseudo-preimage attacks (e.g. Haraka v2, Simpira v2 . . . ) targeting the
same number of rounds as the classical attacks.

Keywords: MITM Attacks · Permutation-based hashing · Preimage attacks ·
Merging algorithms · Quantum cryptanalysis.

1 Introduction

Meet-in-the-middle is a general attack paradigm against cryptographic primi-
tives where internal states are computed along two independent paths (’forwards’
and ’backwards’) that are then matched to produce a complete path solution.

? ©IACR 2022. This article is the full version of the paper submitted by the authors
to the IACR and to Springer-Verlag in June 2022.



MITM attacks can be traced back to Diffie and Hellman’s time-memory trade-
off on Double-encryption [26]. Since then, they have been successfully applied
over the years on block ciphers and hash functions [29,16,40,41,2,37]. Moreover,
MITM attacks have been improved using more refined techniques and exploiting
additional freedoms and structure (e.g., using internal state guesses [29], splice-
and-cut [2,37], bicliques [43], 3-subset MITM [16]), which also makes it more
involved to find and optimize such attacks.

An important trend in cryptanalysis is the application of automatic tools
to search for improved attacks. The search of an attack of a certain form is
translated into a search or optimization problem, which is solved using an off-the-
shelf SAT, constraint programming (CP), Mixed Integer Linear Programming
(MILP) solver. Thus the difficulty of finding an attack by hand is replaced by
that of finding a proper modeling of the attack search space into a corresponding
search/optimization problem. This has naturally led to a bottom-up modeling
including low-level attack details, such that any solution directly corresponds to
an instantiation of the attack.

MITM attacks on hash functions. Hash functions are often built from a compres-
sion function, using a simple domain extender such as Merkle-Damgård [47,24].
This compression function, in turn, can be built from a block cipher Ek using
one of the twelve secure PGV modes [50], usually one of the three most com-
mon: Davies-Meyer (DM), Matyas-Meyer-Oseas (MMO) and Miyaguchi-Preneel
(MP). A preimage attack on the hash function can be reduced to one on the
compression function.

In [51], Sasaki introduced a MITM preimage attack on AES hashing modes
targeting as much as 7 rounds. This attack already integrates advanced tech-
niques such as the initial structure and matching through MixColumns, which
is reviewed later. Bao et al. [4] improved the attacks of [51] by making use
of degrees of freedom from the key-schedule path; that is, allowing a varying
chaining value instead of considering a fixed one. In [5], an MILP framework for
automatic search of MITM attacks was introduced. It applies to all AES-based
hash functions, whose internal state is defined as an array of fixed-size cells and
whose operations mimic the operations of the AES block cipher. This modeling
led to many improved results; in particular, the first 8-round preimage attack
on a hash function using AES-128. Later on, this modeling was improved in [6]
and [28]. The former introduced the technique of guess-and-determine in the
solver, while the latter extended the search to collision attacks and key-recovery
attacks against block ciphers.

Limits of Rule-based Modeling. In AES-based hash functions, internal states are
represented as an array of cells corresponding to the S-Boxes. The MITM attack
can entirely be specified by a certain coloring of these cells (backwards, forwards,
unspecified). Propagation rules can then be defined, which specify the admissible
coloring transitions at each stage of the cipher, while computing the parameters
which give the time and memory complexities of the MITM attack. This is a
bottom-up approach, as the validity of the path is enforced locally.

2



However, the definition of these rules is quite involved, and the follow-up
works [28,6] added even more rules to capture new techniques. This increases,
in turn, the complexity of the model, which (as reported in [6]) requires more
human intervention to limit the search space.

Furthermore, the rule-based modeling in [5] is limited to AES-like ciphers.
These primitives have the property that the linear layer is strongly aligned with
the S-Box layer, and all the operations can be defined at cell-level (bytes in the
case of AES), instead at bit-level. Extending the rule-based modeling to other
primitives was one of the main open questions in [5], which would typically
require moving to a bit-level and increasing model complexity. Our goal is to de-
velop a powerful model that is both broadly applicable and significantly simpler
than rule-based models.

Quantum Preimage Attacks. It is well-known that Grover’s quantum search al-
gorithm [34] halves the bits of preimage security that one can expect from a hash
function, e.g., instead of requiring 2128 computations of a 128-bit hash function,
Grover’s search can find a preimage in about 264 evaluations of a quantum cir-
cuit for the function. However, Grover search is only a generic algorithm. There
might exist dedicated quantum attacks that, for a given design, find a preimage
in less time. Such attacks determine the security margin of a hash function in
a post-quantum context, especially for hash-based signature schemes [3]. But
to date, while quantum collision attacks have been significantly studied [38,39],
little is known on quantum preimage attacks.

1.1 Our Contributions

Top-down modeling. In this work we do not follow the detailed bottom-up mod-
eling where any solution directly corresponds to an instantiation of the attack.
Ideally, the modeling should remain simple, and lead to feasible search times,
while at the same time, cover a large space of potential attacks. Hence instead,
we study a simpler top-down modeling paradigm in which we search for a greatly
simplified attack representation excluding many details, for which we are able to
prove the existence of an optimized attack instantiation and its corresponding
complexity (see Lemma 2 and Theorem 1 in Section 4). This has several bene-
fits. First, the abstract representation makes it more generically applicable to a
wide set of designs. Second, it enables analysis of not only classical attacks, but
quantum attacks as well with minor changes. Third, the resulting model input to
the solver is significantly smaller, which typically means it can be solved faster
and thus it is more practical to cover larger primitives and/or more rounds.

MITM preimage attacks. We apply this top-down modeling paradigm to MITM
preimage attacks. Our representation is close to the dedicated solvers introduced
in [18,25], and complementary to the bottom-up modeling developed in [5,28,6].
Instead of defining local rules for the propagation of cell coloring between cells,
we consider a global view of the MITM attack capturing only which cells belong
to the forward and the backward paths, and optimize the attack time complexity

3



as a function of the cells. This view has two advantages: first, its simplicity.
Second, its genericity, as it is not limited to strongly aligned designs and allows to
target a larger class than AES-based hashing. In fact, we start with applications
to “Present-like” permutations, and only later, rewrite AES-based primitives
as “Present-like”, using the Super S-Box.

Our approach is so far limited to permutations: we do not use degrees of
freedom of the key-schedule. This restriction makes our tool oblivious to the most
advanced attacks on hashing using AES. However, many recent hash functions,
especially small-range hash functions like Simpira v2 [35] or Haraka v2 [45], or
more generally, Sponge designs like SHA-3, are only based on permutations.

Our modeling also admits a generic translation of classical MITM attacks into
quantum attacks. We find these attacks using our automatic tool, by a mere
change in the optimization goal. In fact, the valid paths for quantum attacks
correspond to classical paths under new memory constraints. When applicable,
our quantum attacks reach the same number of rounds as the classical ones.

Outline and Results. In Section 2, we recall previous results and elaborate on
the definition and modeling of a MITM attack in [5,28,6]. The rest of the pa-
per follows our new approach. We define our cell-coloring representation, and
merging-based MITM attacks, in Section 3. In Section 4, we simplify this rep-
resentation and detail our MILP modeling for classical and quantum attacks.
Next, we demonstrate the versatility of our approach and obtain existing and
new state-of-the-art attacks.

In Section 5, we study the class of Present-like permutations, which have
the same operations as the block cipher Present: individual S-Boxes, followed
by a linear layer which exchanges bits between pairs of S-Boxes. We improve the
MITM step in the distinguishers on the permutations of the Spongent family.

In Section 6, we study the class of AES-like permutations. With the Super
S-Box, AES itself becomes a small Present-like cipher. We recover previous re-
sults on these permutations and give new quantum preimage attacks on reduced-
round AES, Haraka v2 and Grøstl (these results are summarized in Table 1).

In Section 7, we study an extended class of permutations in which the lin-
ear layer contains XORs. In particular, we study Generalized Feistel Networks
and obtain generic and practical guess-and-determine distinguishers on GFNs,
reduced-round Simpira permutations, and reduced-step Sparkle permutations
(summarized in Tables 3 and 4). The distinguishers on Simpira are converted
into preimage attacks (see Table 1).

Our code is available at: github.com/AndreSchrottenloher/mitm-milp. We
used the MILP solver of the SCIP Optimization Suite [33].

2 Preliminaries

In this section, we describe the families of Present-like, AES-like and Feistel-
like permutations targeted in this paper. We recall MITM problems and the

4

https://github.com/AndreSchrottenloher/mitm-milp


Table 1. Our new (pseudo)-preimage attacks, with points of comparison to previous
works. QRAQM = quantum-accessible quantum memory. The generic time given can
be higher than the security claims of the design.
|n: A partial preimage attack over n-bits. (Q): Using QRAQM.

Target Type Rounds Time Generic time Memory Source

AES-128 Classical 8 2120 2128 240 [5]
AES-128 Quantum 7 263.34 264 28 (Q) Section 6.1

Haraka-256 v2 Classical 4.5 / 5 2224 2256 232 [5]
Haraka-256 v2 Quantum 4.5 / 5 2115.55 2128 232(Q) Section 6.2
Haraka-512 v2 Classical 5.5 / 5 2240 2256 2128 [5]
Haraka-512 v2 Classical 5.5 / 5 2240 2256 216 Section 6.2
Haraka-512 v2 Quantum 5.5 / 5 2123.34 2128 216(Q) Section 6.2

Haraka-512 v2 |32 Classical 5.5 / 5 216 232 216 Section 6.2
Haraka-512 v2 |64 Classical 5 / 5 232 264 232 Section C
SPHINCS+-Haraka Quantum 3.5 / 5 264.65 285.33 negl. Section 6.2

Grøstl-256 OT Classical 6 / 10 2224 2256 2128 [6]
Grøstl-256 OT Quantum 6 / 10 2123.56 2128 2112(Q) Section 6.3
Grøstl-512 OT Classical 8 / 14 2472 2512 2224 [6]
Grøstl-512 OT Quantum 8 / 14 2255.55 2256 256(Q) Section 6.3

Simpira-2 Classical 5 / 15 2128 2256 negl. Section 7.2
Simpira-2 Quantum 5 / 15 264 2128 negl. Section 7.2
Simpira-4 Classical 9 / 15 2128 2256 negl. Section 7.2
Simpira-4 Quantum 9 / 15 264 2128 negl. Section 7.2

rule-based framework studied in [51,4,5,28,6]. We choose to focus only on single-
target pseudo-preimage attacks, and refer to [4] for a clear depiction of generic
techniques to convert pseudo-preimage to preimage attacks.

2.1 Families of Designs

Present-like. We name this family after the block cipher Present [15]. It is a
Substitution-Permutation Network (SPN) with an internal state of b = 16 cells
of 4 bits. Its round function applies in order: (1) the round key addition, (2) the
Present S-Box on each cell independently, and (3) the linear layer defined by
the bit-permutation:

P (j) =

{
4b− 1 if j = 4b− 1;

(j · b) mod 4b− 1 otherwise.

That is, the j-th bit of the state after an S-Box layer is moved to the P (j)-th
bit of the state before the next key addition. In particular, each cell at a given
round connects to 4 cells at the next round. Thus, Present is an SPN in the
strict sense that the “permutation” is a permutation of bits. In this paper, we
consider the analysis of Present in the known-key setting (see e.g. [12]), where
the key is fixed, which turns the cipher into a permutation. The Spongent-π

5



family of permutations1, which are used in the Spongent hash function [13] is
a generalization of the Present design to larger state sizes, with b ranging from
22 to 192. By abstracting out the S-Box, other designs such as Gimli [10] can
be considered as Present-like.

AES-like. The AES, designed by Daemen and Rijmen [23], is the standardized
version of the candidate Rijndael [22] which was chosen in an open competition
organized by the NIST. It is a block cipher with a state of 16 bytes (128 bits).
The bytes are arranged in a 4 × 4 array, where the byte at position (i, j) is
numbered 4j + i. Each round contains the following operations in order: (1)
AddRoundKey (ARK): the subkey is XORed to the state, (2) SubBytes (SB): the
8-bit S-Box is applied to each byte independently, (3) ShiftRows (SR): the row
number i (starting from 0) is shifted by i bytes left, and (4) MixColumns (MC):
the columns of the state are multiplied by an MDS matrix. Importantly, all these
operations can be defined at byte level (strong alignment).

The class of AES-like designs studied in previous works [5] can then be
defined as follows: the internal state is an array of cells (not necessarily bytes)
and the round function combines ARK, SB, MC and operations that swap cells
(SR, or MIX in Haraka). In general the mixing function must be MDS, though the
extension in [28] does not require this. Since we are interested in permutations,
the ARK layer is replaced by AddConstant (AC).

Feistel-like. We consider permutations based on Generalized Feistel Networks
(GFNs). The state of a GFN is formed of b ≥ 2 branches. We denote branches
by Si. Apart from swapping branches, the basic operation in a GFN is to apply a
round function F on a well-chosen pair (Si, Sj): (Si, Sj) 7→ (Si, Sj⊕F (Si)). Our
main example is the Simpira v2 [35] family of permutations, where the branches
are AES states, and the round functions apply two rounds of AES. This is an
instance of the double-SP structures defined in [17], and a case in which the F
functions are permutations.

More generally, we can extend the class of GFN to Feistel-like permuta-
tions by allowing permutations to be applied in place on branches, and not
only through round functions: Si 7→ Π(Si). This does not make a difference
from our modeling perspective. In particular, the Sparkle family of permuta-
tions [8] adopts such a Feistel-like structure, but with non-linear permutations
on the branches, and linear mixing layers. Though it is not strictly a GFN, our
modeling captures it as well.

2.2 Generic Depiction of MITM Attacks

We consider the MITM attack framework as represented in Figure 1 using the
splice-and-cut and initial structure techniques. The key schedule is ignored due
to our restriction to permutations, and we reason only with the internal states.
1 This denomination is from [11] . Previously the permutation did not have a name,
or was named “Spongent” by metonymy.

6



round 1 round r

s0 sr = π(s0)

Initial

structure

•

Matching

point

I J

Wrapping

Forward

path

I

Backward

path

J

Fig. 1. MITM attack depiction with the splice-and-cut and initial structure techniques.

The goal of the MITM attack is to find a sequence of internal states which
satisfy a closed computational path: there is a relation between the value before
the first round and the value after the last round. In order to do so, one starts
by separating the path in two chunks (splice-and-cut): the backward chunk J
and the forward chunk I. Both chunks form independent computation paths.
One then finds a partial match between them at some round.

In addition, one usually starts at some initial structure • which fixes some
part of the internal state to constant values. The total complexity depends on
(1) the amount of these global guesses, (2) the degree of freedom of both chunks,
and (3) the amount of matching. All these parameters are completely determined
by the definition of chunks. As an example, we detail the 7-round attack on AES
of Sasaki [51] in Appendix B.3.

2.3 Rule-based Modeling and Limits

A MILP model for searching MITM attacks on AES-like designs has been intro-
duced in [5] and further improved in [28,6].

Given the byte-level structure of the design, one fixes a starting round and
an ending round where the matching occurs (all possibilities are enumerated).
Then, each byte is ‘colored’ like in Figure 1. There are four ‘colors’ (backward,
forwards, initial, unknown), which are encoded on two Boolean variables. Only
the ARK (if the key-schedule is used) and MC operations change the colors. A
series of rules is then enforced, as constraints, on the coloring transitions through
these operations. For example, going through MC forwards, one “unknown” byte
in input implies all bytes “unknown” in output; if all bytes are “initial” in input,
then they are all “initial” in output, etc. Other constraints have to be enforced
if we go backwards.

At the starting states, there are “initial degrees of freedom” which count
the number of forward and backward bytes. The forward computation path,
respectively backwards, consume these degrees of freedom under an enforcement
of the propagation rules. There must remain enough degrees of freedom at the
ending round, in order to ensure some matching.

This representation captures a large number of possible paths (including the
key-schedule, contrary to this paper). However, there are several downsides. First

7



of all, the rule-based modeling is complex, and the set of paths depends crucially
on the implementation of the propagation rules. For example, the introduction
of Guess-and-determine in [6] required to add more rules to take into account
this additional technique. The approach so far is bottom-up in the sense that the
set of possible paths is defined by the local propagation rules. (In contrast, in
this paper we use a global approach, in which the objective function is directly
computed from the coloring. Advanced techniques such as Guess-and-determine
are covered by design and without the need for new rules.)

Second, the above model [5] works only for AES-like designs, and extending it
to bit-oriented ciphers is far from obvious, as stated in [28]. Notably, it becomes
unclear how the S-Box and linear layer will interact. Our model overcomes this
problem, albeit restricted to permutations.

3 Cell-coloring Representation of MITM Attacks

In this section, we define the classes of designs under study, and the class of
merging-based MITM attacks which we are interested in. These attacks have
been previously studied in [18,25] in a very generic setting in combination with
a dedicated search tool. Although the search space is similar, our approach differs
by using MILP instead. The basis of our representation is Present-like designs.
We extend it in two directions: AES-like designs on the one hand, more complex
linear layers on the other hand. These are referred in this work as the “Present-
like setting”, the “AES-like setting” and the “extended setting”.

3.1 Cell-based Representations

Let π = πr−1 ◦ . . . ◦ π0 be an r-round permutation. We consider the application
of π to an initial state s0, and write si the state before round i. Thus sr is the
final state and we have: ∀i ≥ 0, si+1 = πi(si).

For now π is assumed to be a Substitution-Permutation Network (SPN). We
can cut each si into b cells of w bits, denoted as sij where 0 ≤ j ≤ b − 1. Each
round applies individual S-Boxes S to the cells (substitution), then a linear layer
between them (permutation). By abuse of notation, we also name “cell” the pair
xij = (sij , S(s

i
j)). Thus cells are 2w-bit words, which can only take 2w values.

The linear layer of round i relates the cells xij to the cells xi+1
j . We have now

completely unfolded the equation sr = π(s0), into a system of linear equations
on the cells. So far this view is the same as in [18,25].

Present-like Setting. The archetype of a Present-like design is represented
on Figure 2. Here we have two rounds with 4 cells each, of 4 bits. The linear
layer merely swaps bits. Thus, it can be entirely represented by pairwise linear
relations between the cells. All the information necessary for finding attacks then
holds in a simple directed, weighted graph G = (N,E):

• a node x ∈ N is a cell x with a width parameter wx;

8



x00 x01 x02 x03

x10 x11 x12 x13

Fig. 2. Example of a 4-cell Present-like design.

• an edge (x, x′) ∈ E is a linear relation between a cell x at a given round,
and a cell x′ at the next round, with a width wx,x′ (we use purposefully the
same term as for cells).

The width of a cell corresponds to the combined width that a set of edges needs
to have to determine the cell’s value. Hence, the widths of cells and edges are
relative to each other. We set the width of cells to 1, and the width of edges
to a fraction (0.25 in Figure 2). It follows from the Present-like structure that
the combined width of incoming edges, resp., of outgoing edges, is equal to the
width of the cell:

∀x ∈ N,
∑

x′|(x,x′)∈E

wx,x′ =
∑

x′|(x′,x)∈E

wx′,x = wx . (1)

To simplify, we make the following assumption on the S-Boxes similar to the
“heuristic assumption” in Section 4.1 of [18]. It would be true on average if the
S-Boxes were drawn at random, and it is not true for fixed S-Boxes. Our final
complexity estimates rely in fact on a global heuristic, rather than this local one.

Assumption 1 (S-Boxes) Given fixed edges with a combined width u ≤ 1, a
cell x of w bits can take exactly 2w(1−u) values.

AES-like Setting. Our cell-based representation of AES-like designs is different
from the one in previous works like [18,25,5]. These works considered the S-
Boxes as individual cells. Instead, we want to represent AES-like operations in
a way that looks like a Present-like design, with linear relations between pairs
of cells. For this we use the Super S-Box representation.

In the analysis of AES, the Super S-Box consists in considering the MC
operation, followed by SB, as a single, large S-Box of 4 × 8 = 32 bits. In our
representation, the cells are the columns of a given AES-like state, as represented
on Figure 3 (or the rows, if MixColumns were to be replaced by MixRows). In
that case, the MC operation is the one of the previous round, and the SR oper-
ation becomes an exchange of bytes between super-cells: two rounds of AES can
then be represented as in Figure 2. The relative widths of cells and edges are
unchanged; each edge represents a byte, and each cell a column of 32 bits.

Extended Setting. In order to target even more designs, we show how to model
any linear layer for which a bit of xi is obtained by XORing several bits of xi−1.

9



SB◦
SR

x0 (round 0)
MC◦
AC

z0 (round 0)
SB◦
SR

x1 (round 1) z1 (round 1)

Fig. 3. 2 rounds of AES, with a single (super-)cell.

This allows for example to model the permutation Ascon [27] (though we did
not obtain interesting results on this design). This XOR operation requires the
introduction of new cells:

• b-branching cells: a cell x of width wx = v, with one incoming edge and b
outgoing edges of width v each;

• b-XOR cells: a cell x of width wx = bv, with b incoming edges and one
outgoing edge of width v each. The inputs are b bits, and the output is the
XOR of them.

These cells allow to keep a graph structure, where the width of a cell still corre-
sponds to a combined width of edges that allows to determine the cell’s value.
In b-branching cells, all edges have the same value, and in b-XOR cells, knowing
b edges allows to deduce the remaining one. The difference with Present-like
designs is that Eq. 1 is not satisfied anymore. In order to separate successive
rounds, three layers for a single round (S-Box, branching, XOR) may be needed.

3.2 Meet-in-the-middle Problems

The goal of a MITM attack is, using the cell-based representation, to find values
for all cells such that a given equation system is satisfied. The starting equa-
tion system encoding sr = π(s0) is trivial, where sr can be computed from s0

and vice-versa. By adding new linear relations between s0 and sr, this becomes
a closed computational path. The relations between s0 and sr can also be en-
coded into the undirected graph of Section 3.1. We mostly consider wrapping
constraints, where we put new edges between cells s0 and sr, and input-output
constraints, where we fix some bits in the s0 and sr to arbitrary constants.

Problem 1 (Meet-in-the-middle problem). Consider a permutation π(s0) = sr.
Then given either uw bits of wrapping constraints L(s0, sr) = 0; or instead ui
bits of input constraints L(s0) = 0 together with uo bits of output constraints
L(sr) = 0, find a pair of states (s0, sr) that satisfy these constraints. (Here each
L is a linear function over F2.)

Given query access (forwards and backwards) to a random permutation, an
adversary must make respectivelyO(2uw) andO

(
2min(ui,uo)

)
queries to solve Prob-

lem 1. These complexities are to be multiplied by the number of requested solu-
tions. This defines the generic difficulty of the problem. Note that for solutions

10



to exist, uw (resp. ui+uo) cannot exceed the state size of the permutation. The
number of solutions of the problem (in log2) can be computed by:(∑

x∈N
wx −

∑
(x,x′)∈E

wx,x′

)
− ui − uo , (2)

where the sum over all edges includes wrapping constraints (if applicable).

3.3 Merging-based MITM Attacks

Now that we have defined the cell-based representation, we can move on to the
definition of merging-based attacks. This class of attacks is borrowed from [18,25].
However, while they persue a dedicated bottom-up solver to automatically search
for attacks, we follow a top-down MILP modeling approach. We focus for now
on the basic Present-like setting.

Reduced Lists. Let us consider a set of cells X = (xij)(i,j)∈IJX , i.e., nodes in
the directed graph G = (N,E) that represents the MITM equation system. We
define the reduced list R[X] as the set of all value assignments (vij)(i,j)∈IJX to
X that satisfy all linear constraints between the cells of X.

E.g., we may consider in Figure 2 a reduced list R[x00, x10], which contains all
assignments (s00, S(s00)), (s10, S(s10)) such that (S(s00))|1 = (s10)|0 (the second bit of
S(s00) is equal to the first bit of s10). In particular, the list has size |R[x00, x10|] = 27.

A reduced list is entirely determined by its defining set of cells. It forms the
set of solutions to a subsystem of equations. Our goal can now be rephrased as
follows: Compute an element from the reduced list of all cells: R[{x|x ∈ N}].
Indeed, by definition, this is a solution to the MITM equation system.

Base Lists. We start with base lists: reduced lists R[{xij}] of individual cells.
These are simply the list of all input-outputs through the S-Box: (sij , S(sij)). In
extended mode, base lists for branching and XOR cells are likewise trivial.

Merging Lists. Merging is the fundamental algorithmic operation to construct
bigger lists. It corresponds to the “recursive combinations of solvers” considered
in Section 4.2 of [18], where the “solvers” produce the solutions of a given equation
subsystem: merging the lists corresponds to merging two subsystems.

Lemma 1. Let R[X1] and R[X2] be two reduced lists. From them, the reduced
list R[X1 ∪X2] can be computed in time:

max(|R[X1 ∪X2]|, |R[X1]|, |R[X2]|) . (3)

Proof. Let Y be the set of linear equations of the system whose support is
included in X1 ∪X2, but not in X1 nor X2. Then by definition of reduced lists,
we have: |R[X1 ∪X2]| = |R[X1]| × |R[X2]|/(

∑
L∈Y width(L)).

We separate each linear equation L of Y into its X1-part L1 and its X2-
part L2: the equation becomes L(X) = L1(X1) ⊕ L2(X2) = 0. We compute

11



L1(X1) for all cell assignments in R[X1], likewise we compute L2(X2) for all cell
assignments in R[X2]. We then sort both lists with respect to these values, and
we look for collisions. The collision pairs are computed efficiently by iterating
over both lists, and give the matching cell assignments of R[X1 ∪X2]. ut

Remark 1. The merging operation is the same in the extended setting. In the
AES-like setting, there can be implicit linear relations between cells. This corre-
sponds to matching through MixColumns; we explain how we model this in Sec-
tion 4.3.

It can be shown by a trivial induction that, if Assumption 1 holds for indi-
vidual cells, then the sizes of all reduced lists are exactly powers of 2. Of course
this is true only on average if we consider S-Boxes drawn at random. In practice,
the S-Boxes are fixed, but the deviation from this average is small.

Definition. A merging-based MITM attack is a merging strategy represented by
a binary tree T , whose nodes are identified by sets of cells X, such that: • the
leaves contain individual cells; • the root contains the set of all cells; • the set
of cells of a given node is the union of the set of cells of its children. Then each
node represents a reduced list. The attack consists in computing the reduced
lists in any order consistent with the tree. By Lemma 1, its time complexity is
given by maxX∈T |R[X]| .

The strategy of [18,25] is an exploration of the merging strategies, starting
from individual cells and computing the complexity of reduced lists until enough
cells are covered. Paths stop when the complexity exceeds the generic one. Thus,
the dedicated solver that they use is also bottom-up, not in the definition of
constraints like [5], but in the way it computes the complexity of possible attacks.

3.4 Global Edges

In all settings (Present, AES, extended), an important extension of merging-
based MITM attacks is the ability to guess globally the value of an edge. We use
global edges in three cases.

Input-Output Constraints. To model input-output constraints, we create wrap-
ping constraints and make these edges global. With this view, we remark that
a MITM problem always has same or lower complexity with a given amount of
wrapping constraints compared to the same amount of input-output constraints.

Reducing the Number of Solutions. In the Present and AES-like setting, it can
be seen that when the system admits more than 1 solution, we can set global
edges of a combined width equal to the quantity of Equation 2. As long as the
width of global edges on a given cell does not exceed 1, there is on average a
solution. (This is not true in the “extended” setting, where global edges can a
priori create inconsistencies in the system and more care is required.)

12



x0
0

x0
1

x0
2

x0
3

x1
0

x1
1

x1
2

x1
3

x2
0

x2
1

x2
2

x2
3

x3
0

x3
1

x3
2

x3
3

x4
0

x4
1

x4
2

x4
3

x5
0

x5
1

x5
2

x5
3

Fig. 4. 12-round MITM attack on Gimli. The matching edges between the two final
lists are highlighted in cyan.

Reducing the Memory. Global edges allow to reduce the size of intermediate lists
in the merging strategy. We can easily prove that they do not allow to reduce
the time complexity. If we consider a system with α global edges, that admits
a solution with probability 2−α, we can redo any merging strategy by removing
these global edges: the size of lists increases by a factor 2α at most. Since the
time complexity is the maximum of list sizes (multiplied by the loop on global
guesses), it stays the same in both cases.

Global edges correspond to the initial structure in previous works on MITM
attacks. An interesting consequence of this remark is that the initial structure
is actually not necessary to obtain the best time complexity: it suffices to share
its components between the backward and forward paths.

3.5 Example: Gimli

Before we elaborate on our MILP modeling, we detail a simple example of a
merging-based attack: the state-recovery on 12-round Gimli-Cipher of [31].

Gimli [10] is a cryptographic permutation with 384-bit state divided into 4
cells of 96 bits each. The full permutation has 24 rounds that apply an SP-Box
to each cell individually, and then, every two round, perform a linear layer. The
linear layer is either a small swap (32 bits are exchanged between cell 0 and 1, and
between 2 and 3) or a big swap (32 bits are exchanged between cell 0 and 2, and
between 1 and 3). In the cell-based representation, each cell has width 1, three
input and three output branches of width 1/3 each, as can be seen in Figure 4.
We do not need to consider the details of the SP-Box.

The attack of [31] targets Gimli-Cipher, where Gimli is used in a Duplex
mode. The recovery of the internal state can be reduced to the following problem.
Given the cell-based representation of Figure 4, where a single edge is fixed in
the 4 input and output cells, the goal is to find the list of size 24×32 = 2128

(4/3 cells) of all possible values of the full state, in time less than 2256 (8/3 cells).
The merging strategy is given in Figure 5, where the list sizes are computed in
log2 and relatively to a cell. The time and memory complexities are 2192 (2 cells).

13



All cells
Size 2 + 2− 8/3 = 4/3

Up cells
Size 2 + 2− 2 = 2

Bottom cells
Size 2 + 2− 2 = 2

x30, x
4
0, x

5
0

x31, x
4
1, x

5
1

x00, x
1
0, x

2
0

x01, x
1
1, x

2
1

Size 4/3 + 4/3− 2/3 = 2

x01, x
1
1, x

2
1

x00, x
1
0, x

2
0

Size 1 + 1− 2/3 = 4/3

x20
x00, x

1
0

Size 2/3 + 1− 2/3 = 1

Fig. 5. Merging strategy for the 12-round attack against Gimli-Cipher of [31]. Some
lists are omitted by symmetry.

4 Simplification and MILP modeling

In Section 3 we have given a very generic definition of merging-based MITM
attacks. We postulate that this definition contains all structural MITM attacks
on permutations known to date. Unfortunately, this search space is too large for
MILP solvers to be practical. Hence we consider a subset of these attacks, using
only two lists, a forward list and a backward list. We motivate this definition
in Section 4.1 and show how to obtain the list sizes from their cells. Then, we
show in Section 4.2 how to obtain a MITM attack with a complexity determined
by the list sizes. Finally in Section 4.3 we detail the MILP model itself.

4.1 A Simpler Definition

In line with the “Meet-in-the-middle” terminology, we consider a merging strat-
egy made of only three reduced lists: a forward list R[XF ], a backward list R[XB ]
and a merged list R[XF ∪XB ].

Forward and Backward Lists. Ultimately, the time complexity of the MITM
attack is computed as a function of the list sizes, so we must define sets XB and
XF in such a way that the list sizes |R[XF ]| and |R[XB ]| are simple functions
of XF and XB respectively. In the generic binary trees, we used the fact that
the size of leaves can be trivially computed (a list with a single cell of width w
contains 2w elements). Here we are simply making these leaves more complex,
so that only two leaves are needed in the end.

Lemma 2. Let X be a set of cells such that: (1) there is at least one round
0 ≤ i ≤ r − 1 such that no cell xij belongs to X; (2) for every global linear

14



constraint connecting cells xij1 and xi+1
j2

, then only one of these two cells can be
in X, and always either the one of the lower round number (backward case) or
the upper round number ( forward case). Let ` be the quantity:

` =
∑
x∈X

(
wx −

∑
(x,x′)∈E
x′∈X

w(x,x′)

)
−

∑
(x,x′)∈E
x∈X∨x′∈X

(x,x′) is global

w(x,x′) , (4)

then R[X] is of size exactly 2`. In the Present-like / AES-like setting, it can
be constructed in time 2` with negligible memory.

Here, forward and backward lists follow the same intuition as in standard
MITM attacks, where there are two computational paths going into different
directions. But this direction is only enforced because of global edges.

Proof. The size of a list is given by the sum of all widths of the cells, minus the
linear constraints between them, minus the globally fixed edges. Since at least
one round is cut, we can reorder the terms and associate all linear constraints
(x, x′) between round i and i+1 to the cell x at round i: we obtain the formula
for `. Let us consider the backward list. We have:

`B =
∑
x∈X

(
wx −

∑
(x,x′)∈E
x′∈X

w(x,x′) −
∑

(x,x′)∈E
(x,x′) is global

w(x,x′)

)
, (5)

and we remark that each term is greater than zero: indeed, we cannot have
x′ ∈ X and (x, x′) global at the same time, by assumption, and in the Present-
like setting, we have wx ≥

∑
(x,x′)∈E w(x,x′). This is not true in the extended

setting (due to branching cells), but we can work around this in practice.
One constructs R[X] follows: separate X into Xr−1, . . ., X0, assuming that

no cell is covered at round r. We start at round r−1: we take values for all edges
(x, x′) ∈ E with x ∈ Xr−1 that are not already global. Next, at round r − 2,
we take values for all edges (x, x′) with x ∈ Xr−2 that are neither connected
to x′ ∈ Xr−1, nor global. Each time, the number of bits to guess corresponds
precisely to another term in `. For the forward list, we rewrite ` as:

`F =
∑
x∈X

(
wx −

∑
(x′,x)∈E
x′∈X

w(x′,x) −
∑

(x′,x)∈E
(x′,x) is global

w(x,x′)

)
, (6)

and we change the direction of the procedure. This is a streaming procedure,
which outputs the list elements without requiring any storage. In both cases, the
list size corresponds exactly to the number of bits that we have to guess. ut

Simple Condition of Success. Initially, we required the merging strategy to com-
pute the reduced list of all cells. However, we can stop as soon as all cells can

15



be deduced from the current list. That is, given a valid sequence of values for the
cells of XF ∪XB , we can deduce all the others without guessing new edges. Since
we are studying a permutation, a sufficient condition (that we enforce) is that
XF ∪ XB covers a complete round. (Intuitively, we dismiss the trivial merging
steps consisting in adding the remaining cells one by one.)

Disjoint Paths. In the Present- and AES-like settings (but not the “extended”
setting), the sets XF and XB can be made disjoint at no loss. Since any inter-
section between XF and XB can either be removed from XF , or from XB , and
in at least one case both list sizes decrease (the merged list remains unchanged).

4.2 From a Coloring to an Attack

Now we show that to any valid triple of setsXB ,XF ,XF∪XB , there corresponds
a MITM procedure whose time and memory complexities are determined solely
by the size of the three lists involved. We use `B , `F , `M to denote the log2
of these list sizes, counted relatively to a cell. Our goal is to minimize this
complexity. We assume for simplicity that the merging problem admits a single
solution; it is easy to generalize this to multiple solutions in the classical setting.

Theorem 1. Assume that XB and XF are defined as in Lemma 2, and XF∪XB

covers at least one round completely. let g be the sum of all widths of global
edges. Then there exists a classical and a quantum algorithm solving the MITM
problem with the following complexities in log2, relatively to a cell size. The
classical algorithm has memory complexity mc = min(`F , `B) and time complex-
ity tc = g +max(`F , `B , `M ). The quantum algorithm has memory mq = mc =
min(`F , `B) and time complexity tq = g

2 +max
(
min(`F , `B),

1
2 max(`F , `B , `M )

)
.

Proof (sketch). In the classical setting, both leaf lists can be computed on the
fly, we only need to store one of them (the smallest). The memory complexity
is thus (in log2) min(`F , `B) and the time complexity g + max(`F , `B , `M ) (we
must repeat the merging for every choice of global edges). One should note that
by the definition of the leaf lists, there is no variance in their size. There can be a
variance in the merged list size, which is usually dismissed in classical analyses.

Given a path for a two-list MITM attack, we can also write down a quan-
tum algorithm to solve it. In short, this algorithm creates the smallest list (e.g.,
the forward one), then performs a Grover search in the merged list for a so-
lution. We refer to Appendix A for technical details. The algorithm requires
quantum-accessible quantum memory (QRAQM). Assuming a single solution,
the quantum time complexity can be bounded by:

2
(π
4
2g/2 + 1

)(
2`F +

(π
4

√
2`B + 1

)( π√
2
max

(
1,

√
2`M

2`B

)
+ 6

))
(7)

quantum evaluations of the attacked permutation, for a 1/2 chance of success.
Asymptotically, this formula can be simplified into 2tq , where:

tq =
g

2
+ max

(
min(`F , `B),

1

2
max(`F , `B , `M )

)
, (8)

16



which concludes the proof. ut

Criterion for a Quantum Attack. By comparing the quantum and classical time
exponents, one can see that quantum attacks require an additional constraint
compared to classical attacks: One can see that a classical MITM procedure
constitutes an attack if tc < t where t is the generic time exponent to solve
the MITM problem; in the quantum setting, this time is reduced by a square-
root factor due to Grover search, so we need tq < t/2. Unsurprisingly, any
quantum MITM attack turns into a classical attack: tq ≤ t/2 =⇒ tc ≤ t. In the
other direction, if we have a valid classical path, and if the following additional
constraint is satisfied: min(`F , `B) ≤ 1

2 max(`F , `B , `M ) , then it also gives a
valid quantum attack. This is true in particular when `M = 0 and `F ≤ 1

2`B .

4.3 MILP Modeling

From the analysis above, we can see that we want to solve the problem:

Minimize the complexity formulas of Theorem 1, under the con-
straints on XF and XB given by Lemma 2, and the constraint that
XF ∪XB covers at least one round completely.

Our MILP model essentially uses boolean variables to represent XF and XB ,
continuous variables to represent global edges, and expresses the list sizes `F ,
`B , and `M depending on these variables. This model can be generated from the
weighted graph (N,E) defined in Section 3.

Present-like Setting: Variables. We start with the basic Present-like constraints
and explain afterwards the extensions. For each cell x, we introduce boolean
coloring variables colF [x], colB [x] and colM [x] to represent the sets XF , XB and
XM := XF ∪XB . We have the constraint colM [x] = max(colF [x], colB [x]).

We constrain some round to be absent from XF (resp. XB), it can be chosen
manually or not. For each edge (x, x′), we introduce a variable global[x, x′] which
is 1 if the edge is globally guessed, 0 otherwise. It can be relaxed to a continuous
variable. We constrain XF ∪ XB to cover at least one round entirely (chosen
manually or not). Finally, we impose that for each edge (x, x′):

colF [x] ≤ 1− global[x, x′] colB [x
′] ≤ 1− global[x, x′]

colB [x] ≥ global[x, x′] colF [x
′] ≥ global[x, x′]

Here the two constraints on the first line ensure that the conditions of Lemma 2
are satisfied. The second line is not required, but it simplifies the formula for `
of Lemma 2. Since each global constraints reduces the size of both the forward
and the backward lists, we can introduce a term of global reduction:

g =
∑

(x,x′)∈E

global[x, x′]wx,x′ , (9)

which contains all of their contribution. At this point, we have defined a valid
MITM strategy, and it only remains to compute the list sizes.

17



List Sizes. The list sizes are computed in log2 and relatively to the width of a cell
(in practice cells may have different widths). For each list, there are two terms
that intervene: the contribution of individual cells and the global reduction. For
the forward list, following Equation 6, we define the variables:

contribF [x] ≥ wxcolF (x)−
∑

(x′,x)∈E

wx′,xcolF (x
′) , (10)

and we have: `F =
(∑

x∈N contribF [x]
)
− g. For the backward list, we define:

contribB [x] ≥ wxcolB(x)−
∑

(x,x′)∈E

wx,x′colB(x
′) (11)

and we have similarly `B =
(∑

x∈N contribB [x]
)
− g. For the merged list, we can

go either forwards or backwards, for example:

contribM [x] ≥ wxcolM (x)−
∑

(x,x′)∈E

wx,x′colM (x′), `M =
∑
x∈N

contribM [x]− g .

(12)
Since we have now expressed the list sizes, we implement the time and memory
complexities using the formulas of Theorem 1, e.g., classically:

memory = min(`F , `B), time = g +max(`F , `B , `M ) .

The primary optimization goal is the time and the secondary goal is the memory.

Extended Setting. In the extended setting, we must allow a negative contribution
of the cells in each list. We have lower bounds: contribF [x] ≥ wx−

∑
(y,x)∈E wx,y

and contribB [x] ≥ wx−
∑

(x,y)∈E wy,x which can be negative for branching cells.
This is the only required change.

AES-like Setting. So far, our model considers the AES Super S-Box as a com-
pletely unknown function. We make two modifications to allow two techniques.

First, matching through MC. When we know u ≥ 4 bytes in the input and
output of an AES Super S-Box, we can reduce the merged list size by u − 4.
Indeed, these edges are individual S-Boxes, and we can write linear equations
between them using MixColumns. In order to model this, we modify the defi-
nition of colM [x]. We authorize a cell of the merged list to be covered even if
it does not belong to XF ∪XB , as soon as enough input and output edges are
covered. This should not, however, happen at two successive rounds.

Second, optimizing the memory through MC. This is important for reaching
better memory complexities on AES-like designs, but also, better quantum times.
Assume that there exists a cell that belongs to the merged list but not the
forward and backward ones. Assume that there are fi input edges from the
forward list, fo output edges from the forward list, and respectively bi and bo
such edges for the backward list. Recall that each edge here corresponds to an
individual S-Box. Then we can add some shared constraints on these cells and

18



make these constraints global. Indeed, if we know that: `1(x0, x1, x2, x3, y0) = 0
and `2(x0, x1, x2, x3, y1) = 0, we can create a global constraint `′1(x0, x1, x2) = t
and `′2(y0, y1) = t. Going through MC, we can add up to fi + fo + bi + bo − w
such linear constraints, where w is the cell width in number of edges (4 in the
case of AES). Furthermore, we need to have less such new constraints than fo
and bi respectively: this ensures the existence of a streaming procedure for the
lists and the validity of an adapted version of Lemma 2.

Practical Improvements. Our code is more optimized than the presentation given
in this section. In particular, we removed the global[x, x′] variables attached to
edges and replaced them by “global reduction” variables attached to each cell.
These variables unify the Present-like and AES-like settings, since they account
both for the global edges and the reduction through MC.

Reducing the Search Space There are several ways to reduce the search space
without affecting the optimality. First, we can prune the graph by removing
cells that do not have both input and output edges (for example in the MITM
attack on Present of Section 5, many cells from the first and last rounds can
be removed). Second, when two cells in the graph have the same forward and
backward connections, their colorings can always be exchanged without changing
the list sizes. This reduces massively the search space size in the case of highly
symmetric AES-like designs, for example Grøstl-256 (see Section 6.3).

5 Application to Present-like Permutations

Gimli. With our tool, we can prove the optimality of the 12-round state-recovery
attack recalled in Section 3.5. Here our 2-list MILP model is not enough, since
the two lists merged at level 1 in the tree span all the rounds. So, contrary to
most of our examples, we used an extension to 4 lists.

Present and Spongent. The current best distinguishers on known-key Present [12]
and reduced-round Spongent-π [55] combine a MITM layer and a truncated dif-
ferential layer. By improving the MITM layer, we improve indirectly the number
of rounds that can be targeted.

In a nutshell, the goal is to construct the list of 256 input states that satisfy a
4-bit input constraint and a 4-bit output constraint, in time less than 260. In [12]
the constraint is put at position 13; for Spongent-π we tried the position 0. We
conjecture that due to the high amount of symmetries in the design, the number
of attacked rounds should remain the same independently of this position.

The MITM layer for [12] reaches 7 rounds, in time 256 and memory 232. The
time is optimal, but we improve the memory to 212. Next, we find an attack with
one more round. The time complexity then rises to 258 (14.5 cells) and the mem-
ory complexity to 243 (10.75 cells). In order to make the optimization converge,
we used the following simplification: we merged pairwise the cells of the middle
rounds. These pairs of cells thus have the same coloration; this simplification
reduces greatly the number of variables, while still allowing interesting results.

19



Table 2. Versions of Spongent, results from [55] and our improvements.

State size
(bits)

Rounds
Attacked / full Cells r0 r1 New r0

Present 64 31 / 31 16 7 24 8 (+ 1)
Spongent-88/80/8 88 30 / 45 22 7 23 8 (+ 1)

Spongent-128/128/8 136 43 / 70 34 7 36 8 (+ 1)
Spongent-π[160] 160 80 40 9

Spongent-160/160/16 176 53 / 90 44 7 46 9 (+ 2)
Spongent-160/160/80 240 69 / 120 60 7 62 10 (+ 3)

Spongent-88/176/88 264 77 / 135 66 9 68 10 (+ 1)
Spongent-256/256/16 272 68 / 140 68 9 69 10 (+ 1)
Spongent-224/224/112 336 95 / 170 84 9 86 10 (+ 1)

Spongent-128/256/128 384 109 / 195 96 11 98 11
Spongent-160/320/160 480 132 / 240 120 9 123 12 (+ 3)

Spongent-224/448/224 672 181 / 340 168 9 172 12 (+ 3)
Spongent-256/512/256 768 192 / 385 192 11 194 12 (+ 1)

Spongent. This strategy was extended in [55] to the Spongent-π permutations,
which are used in the hash function Spongent [13] and the permutation-based
AEAD Elephant [11] (in the “Dumbo” version). Following [55, Table 1], we denote
the number of rounds of both phases (truncated differential and MITM) by r0
and r1 and report them in Table 2, where our new results appear in bold in
the last column. The table contains all state sizes specified in [13,14,11]. Here
the notation Spongent-n/c/r refers to [14], where n is the output hash size, c
the capacity and r the rate, while Spongent-π refers to the permutation itself.
The 160-bit version used in Elephant [11] was not studied previously, because
Spongent-π[160] does not appear among the different parameterizations of the
Spongent hash functions.

As in [12], the MITM layer finds all the input-output pairs such that: 4 bits
of an S-Box are fixed in input, and in output, to arbitrary values. The generic
complexity would be 2b−4 evaluations of the permutation. The lowest complexity
possible is 2b−8 since this is the number of solutions. Since the state size becomes
quite large, we do not use our tool as an optimization, but rather as a solver:
we set the minimal complexity 2b−8 as optimization goal and kill the process if
it runs for too long (say, 500 seconds). By our experiments, we expect solutions
to be found quite quickly, if they exist.

6 Application to AES-based Permutations

As remarked above, our model does not include degrees of freedom of the key-
schedule, and some of the previous preimage attacks on AES-like hashing cannot
be recovered. However, all known results on AES-based permutations [4,5,6,28],

20



J x0
0

x0
1

J x0
2

x0
3

� x1
0

� x1
1

� x1
2

� x1
3

I x2
0

I x2
1

I x2
2

J x2
3

I x3
0

I x3
1

I x3
2

x3
3

� x4
0

� x4
1

x4
2

� x4
3

J x5
0

x5
1

J x5
2

x5
3

Fig. 6. AES 7-round quantum attack. J: backward, I: forward, �: matching
through MC (new cells in the merged list), ↔: global edges.

except the non-linear computation of neutral words proposed in [6] (see the
example of Grøstl below), can be recovered by our simplified modeling. We only
present new attacks obtained by our tool in this section. In the classical setting,
we improve the attack on Haraka-512 v2 of [5]. In the quantum setting, we give
attacks on reduced-round AES, Haraka and Grøstl.

Note that an AES-like state is an n×m matrix of bytes, which we represent
as m cells with n input and output edges. The SR operation moves individual
bytes between the cells. When the last MC operation is omitted, and round
r − 1 is connected to round 0, then round 0 can actually be bypassed. Indeed,
the columns at the beginning of round 1 (before SB), which correspond to the
cells at round 1 in our representation, can immediately be linked to the columns
at round r − 1 (which correspond to the cells at round r − 1). Though MC has
been removed, we usually keep the last SR operation; this creates a special round
in which bytes are exchanged between pairs of cells only.

6.1 Quantum Attack on 7-round AES

On this example, like the following ones, our attack is a pseudo-preimage attack
that, given a target t, finds x such that x ⊕ AES(x) = t. None of the attacks
known classically can be adapted in the quantum setting (they don’t satisfy the
condition given in Section 4.2), so we use our tool to find a new optimization.
The path is displayed in Figure 6.

Details of the Attack. We count the complexities in cells. The attack has 2.75
global guesses, with 0.75 global edges and 2 additional reductions through MC
at round 1. For each of these 2.75 choices, we compute the three lists.

First, the backward J list is of size 0.25. We start by x23 which contributes
only to 0.25. We move to x00 and x02 which are entirely determined by the reduc-
tion through MC of round 1. We deduce x50, x52. Second, the forward I list is
of size 1. We start by x20, x21, x22, which have only 3− 2 = 1 degree of freedom by
the reduction through MC of round 1. We deduce x30, x31, x32. Third, the merged
list is of size ≤ 1. We match through MC at round 4, each cell gives 0.25 degree
of matching, so one would be enough.

21



This corresponds to an attack of classical time 2120 and memory 28, so equiv-
alent to the attack of [51]. However, using Equation 8, we obtain a quantum time
260, and with the precise formula of Equation 7, we have a time of 263.34 quantum
evaluations of the primitive (Grover search would stand at 264.65).

6.2 New Attacks on Haraka v2

Haraka v2 [45] is a short-input AES-like hash function intended for use within
post-quantum signature schemes based on hash functions, such as SPHINCS+ [3].
There are two variants: (1) Haraka-256 v2 hashes 256 bits to 256 using a 256-bit
permutation in feed-forward mode: x 7→ π256(x)⊕x; (2) Haraka-512 v2 hashes 512
bits to 256 using a 512-bit permutation with a truncation: x 7→ trunc(π512(x)⊕x).
The internal state of Haraka-256 v2 (resp -512) is the concatenation of 2 (resp. 4)
AES states. The columns of these states are numbered from 0 to 7 (resp. 0 to 15).
Each Haraka round (total 5) applies two AES rounds (AC, SB, SR, MC) individ-
ually on the states, followed by a MIX operation which permutes the columns:

MIX512 : 0, . . . , 15 7→ (3, 11, 7, 15), (8, 0, 12, 4), (9, 1, 13, 5), (2, 10, 6, 14)

MIX256 : 0, . . . , 7 7→ (0, 4, 1, 5), (2, 6, 3, 7)

The truncation trunc extracts the columns (2, 3, 6, 7, 8, 9, 12, 13).

Integration in SPHINCS, SPHINCS+ and Attacks. In [44], Kölbl proposed to
integrate Haraka into SPHINCS. Here both Haraka-256 v2 and Haraka-512 v2
need 256 bits of classical preimage security and 128 bits of quantum preimage
security (see [44], Section 3). In [5], the authors found a classical 4.5-round preim-
age attack on Haraka-256 v2 and a 5.5-round attack (extended by 0.5 round) on
Haraka-512 v2. None of the attacks of [5] apply directly to the post-quantum sig-
nature scheme SPHINCS+ [3], an “alternate” finalist of the NIST post-quantum
standardization process. Here Haraka-512 is used in a Sponge with 256 bits of rate
and 256 bits of capacity. The targeted security level is 128 bits due to a generic
second-preimage attack. We obtain a classical MITM attack on 4.5 rounds of
complexity 2192, and a quantum preimage attack on 3.5 rounds of complexity
264. The details are provided in Appendix B.5.

New Quantum Attack on Haraka-256 v2. The attack path of [5] does not meet
our criteria for quantum attacks, since both the forward and backward lists have
size 1 cell, and the total time complexity is 7 cells. However, a reoptimization
allows to reach an attack with 5 global guesses, a forward list of size 2, a backward
list of size 1 and a merged list of size 2 (details in Appendix B). By Eq. 7, this
gives a quantum time 2115.55 against a generic 2128.

Improved Attack on Haraka-512 v2. The 5.5 round attack of [5] has time com-
plexity 2240 (7.5 cells) and memory complexity 2128 (4 cells). In order to make
our optimization converge faster, we constrain the pattern in the first and last

22



xa
0

JJJJ

JJJJ

JJJJ

JJJJ

xb
0 xc

0

SBR

xd
0 za0

JJJJ

JJJJ

JJJJ

JJJJ

zb0 zc0

MC

zd0 wa
0

JJJJ

JJJJ

JJJJ

JJJJ

wb
0 wc

0

J
J

J
J

AC

wd
0

R0

xa
1

JJJJ

JJJJ

JJJJ

JJJJ

xb
1 xc

1

J
J

J
J

SBR

xd
1 za1

JJJJ

JJJJ

JJJJ

JJJJ

zb1 zc1
JJJJ

MC

zd1 wa
1

JJJJ

JJJJ

JJJJ

JJJJ

wb
1

JJJJ

wc
1

JJJJ

JJJJ
MIX

AC

wd
1

JJ JJJJ
R0.5

xa
2

JJJJ

JJJJ

xb
2

JJJJ

JJJJ

JJJJ

JJJJ

xc
2

JJJJ

JJJJ

JJJJ

JJJJ
SBR

xd
2

JJJJJJ

J

J

JJ
za2

JJJ

JJJ
JJ

zb2
JJJJ

JJJJ

JJJJ

JJJJ

zc2
JJJJ

JJJJ

JJJJ

JJJJ
MC

zd2
J

J

JJJJ

JJJJ

wa
2

••••••

•

•JJ

J

J

JJJJ

wb
2

JJJJ

JJJJ

JJJJ

JJJJ

wc
2

JJJJ

JJJJ

JJJJ

JJJJ

AC

wd
2

IIIIJJ

J

J

JJJJ••

•

•
R1

xa
3

••••••

•

•JJ

J

J

JJJJ

xb
3

JJJJ

JJJJ

JJJJ

JJJJ

xc
3

JJJJ

JJJJ

JJJJ

JJJJ
SBR

xd
3

IIIIJJ

J

J

JJJJ••

•

•

za3
••••

••••

JJJJ

JJJJ

zb3
JJJJ

JJJJ

JJJJ

JJJJ

zc3
JJJJ

JJJJ

JJJJ

JJJJ
MC

zd3
JJJJ

JJJJ

IIII

IIII

wa
3

JJJJ

JJJJ

IIII

IIII

wb
3

JJJJ

JJJJ

JJJJ

JJJJ

wc
3

JJJJ

JJJJ

JJJJ

JJJJ
MIX

AC

wd
3

JJJJ

JJJJ

IIII

IIII
R1.5

xa
4

IIII

IIII

••••

••••

xb
4

IIII

IIII

••••

••••

xc
4

JJJJ

JJJJ

JJJJ

JJJJ
SBR

xd
4

JJJJ

JJJJ

JJJJ

JJJJ

za4
I

III
II
II••
•••

•••

zb4

II
III

III

•

•••
••
••

zc4
JJJJ

JJJJ

JJJJ

JJJJ
MC

zd4
JJJJ

JJJJ

JJJJ

JJJJ

wa
4

IIII

IIII

IIII

IIII

wb
4

IIII

IIII

IIII

IIII

wc
4

JJJJ

JJJJ

JJJJ

JJJJ

AC

wd
4

JJJJ

JJJJ

JJJJ

JJJJ
R2

xa
5

IIII

IIII

IIII

IIII

xb
5

IIII

IIII

IIII

IIII

xc
5

JJJJ

JJJJ

JJJJ

JJJJ
SBR

xd
5

JJJJ

JJJJ

JJJJ

JJJJ

za5
IIII

IIII

IIII

IIII

zb5
IIII

IIII

IIII

IIII

zc5
JJJJ

JJJJ

JJJJ

JJJJ
MC

zd5
JJJJ

JJJJ

JJJJ

JJJJ

wa
5

IIII

IIII

IIII

IIII

wb
5

IIII

IIII

IIII

IIII

wc
5

JJJJ

JJJJ

JJJJ

JJJJ
MIX

AC

wd
5

JJJJ

JJJJ

JJJJ

JJJJ
R2.5

xa
6

IIII

IIII

JJJJ

JJJJ

xb
6

IIII

IIII

JJJJ

JJJJ

J JJJ

xc
6

IIII

IIII

JJJJ

JJJJ

J
J

SBR

xd
6

IIII

IIII

JJJJ

JJJJ
J

J

za6
I
III

I
III

J
J

J
JJJ

J
J

zb6

I
I

I
III

I
I

J
JJJ

J
JJJ

zc6

I
I

I
III

I
I

J
JJJ

J
JJJ

MC

zd6
I
III

I
III

J
J

J
JJJ

J
J

wa
6

I
I

I
I

wb
6

I
I

I
I

wc
6

I
I

I
I

AC

wd
6

I
I

I
I R3

xa
7

I
I

I
I

xb
7

I
I

I
I

xc
7

I
I

I
I

SBR

xd
7

I
I

I
I

za7
IIII

zb7
IIII

zc7
IIII

MC

zd7
IIII

wa
7

IIII

wb
7

IIII

wc
7

IIII
MIX

AC

wd
7

IIII
R3.5

xa
8

IIII

IIII

IIII

IIII

xb
8 xc

8

SBR

xd
8 za8

IIII

IIII

IIII

IIII

zb8 zc8

MC

zd8 wa
8

IIII

IIII

IIII

IIII

wb
8 wc

8

AC

wd
8

R4

xa
9

IIII

IIII

IIII

IIII

xb
9 xc

9

SBR

xd
9 za9

IIII

IIII

IIII

IIII

zb9 zc9

MC

zd9 wa
9

JJ

wb
9

J

J

wc
9

JJ
MIX

AC

wd
9

JJ R4.5

xa
10

JJJJ

J

J

JJ
xb
10 xc

10

SBR

xd
10 za10

JJJJ

JJJJ

zb10 zc10

MC

zd10 wa
10

JJJJ

JJJJ

wb
10 wc

10 wd
10

R5

Fig. 7. Path of our improved attack on Haraka-512 v2. J: backward, I: forward, •:
guessed

23



rounds to contain full active AES states, like in [5]). We obtain the path of Fig-
ure 7, which reduces the memory down to 0.5 cell (216). The main difference with
the framework of [5] is that the matching occurs in several rounds separately.

We first guess 28 bytes •: xa3 [0, 1, 5, 6, 10, 11, 12, 15], xd3[10, 11, 12, 15], xa4 [4−
11], xb4[0, 1, 2, 3, 12, 13, 14, 15], and we precompute two linear relations between
the first and second columns of zd2 and wd2 , and one linear relation for each
column between z6 and w6. The total is 46 bytes, i.e., 11.5 cells, of global guesses
(including 8 for free). Then for the forward I list (size 0.5 cells), we start
from wd2 . We have 4 bytes and two precomputed linear relations, thus 2 bytes
of freedom. We continue to compute until z6. In each column, we have one byte
of precomputed linear relation, thus we can deduce all the blue bytes in w6

immediately. We continue until x9. Next, for the backward J list (size 4 cells),
we start from z6. There are 32 red bytes and 16 precomputed linear relations,
thus 16 bytes (4 cells) of freedom. From there we can compute backwards until
w2. We deduce zd2 [0, 7] using the two precomputed relations, and the rest by
direct computation. We compute until wa10. Finally, a matching of more than 2
bytes occurs between rounds 9 and 10. With these lists, the classical time stays
at 2240. By Equation 7, the quantum time is 2123.34, against 2128 generically.

This attack of large complexity also yields a practical partial preimage at-
tack that finds x such that MC−1(x ⊕ π(x)) has 32 bits to zero, in about 216

evaluations of Haraka-512 v2. We just have to run a single merging step, fix-
ing the global variables. For each choice of forward and backward values in the
merged list, we recompute the initial state x. This x is such that the two cells
MC−1(x ⊕ π(x))a[10, 13] are zero. Since the merged list is of size 216, by enu-
merating it in times 216, we will find an element with 16 more zero bits.

6.3 Quantum Attack on Grøstl OT

The output transformation (OT) of Grøstl-256 [32] is an AES-like permutation
P operating on an 8× 8 matrix of bytes (thus 512 bits in total). The goal is to
find a state x such that trunc256(P (x)⊕ x) = t for some target value t, say zero.
The generic complexity is 2256.

With our tool, we can recover the 6-round attack of [28, Appendix D]. We
can also recover the improved time complexity of [6] (2224, 3.5 cells), but not
its memory complexity, because their procedure for the backward list is more
complex than a streaming procedure. We obtain only a memory 2224.

New Quantum Attack. We do not know if the approach of [6] could lead to a
quantum attack, as they require a memory of size 2128: in the quantum setting,
one cannot afford a precomputation of time 2128 since it already becomes larger
than the limit given by Grover search. By optimizing for the quantum time
complexity, our tool finds the path of Figure 8. There are 4.25 global guesses
(including 4 free guesses), with 2.5 cells of global linear constraints and 0.25
reduction through MixColumns in each of the 7 green cells at round 4. First,
the forward H list (1.75 cells): we start from x20. We deduce immediately the
blue cells at round 3 and 4. Then using the 1.75 cells of precomputed equations

24



Hx0
4 x0

5 x0
6 x0

7

�x1
0 �x1

1 �x1
2 �x1

3 �x1
4 �x1

5 �x1
6 �x1

7

Hx2
0 Nx2

1 Nx2
2 Nx2

3 Nx2
4 Nx2

5 Nx2
6 Nx2

7

Hx3
0 Hx3

1 Nx3
2 Nx3

3 Nx3
4 Nx3

5 Nx3
6 Nx3

7

Hx4
0 �x4

1 �x4
2 �x4

3 �x4
4 �x4

5 �x4
6 �x4

7

Hx5
0 Hx5

1 x5
2 x5

3 x5
4 x5

5 x5
6 x5

7

Fig. 8. Path of the quantum attack on Grøstl-256 OT. N: backward, H: forward, �:
matching through MC (new cells in the merged list), ↔: global edges.

at round 4, we deduce completely x50 and x51. There remains 6 bytes (0.75 cells)
to guess to obtain x04. Second, the backward N list (3.5 cells): we start from
round 3. With the 1.75 precomputed equations and 0.75 guessed values, there
remain 3.5 cells of freedom. We deduce completely the cells at round 2. Finally,
matching: there is 0.75 cell of matching between round 2 and 3 and 1 cell of
matching through MC between round 0 and round 2, so 1.75 in total, which
gives a merged list of size 3.5 cells. By Equation 7, the quantum time is 2123.56,
against 2128 generically.

For 8 rounds of Grøstl-512, there are no symmetries anymore, and the model
becomes quite large. We simplify it by merging the cells in groups of 4. Then,
we use the results as “hints” for the detailed version. We reobtain the time com-
plexity of [6] with a corresponding memory complexity of 2304 (instead of 2224),
and we find a quantum attack detailed in Appendix B.6.

7 Applications to Feistel Networks

7.1 GFNs and Simpira

The extended setting that we defined in Section 3 allows to model a large class
of permutations, and in particular, GFNs and Sparkle.

Simpira v2 (simply Simpira in what follows) is a family of permutations pro-
posed in [35]. For each b ≥ 2, Simpira-b is a b-branch GFN where each branch is a
128-bit AES state. (Though in contrast to a GFN, the branches are not swapped
and the round functions are simply applied in place). Simpira-2 is a standard FN,
Simpira-3 a 3-branch type-I GFN in the classification of [56], Simpira-4 a type-II
4-branch GFN, Simpira-6 and Simpira-8 have structures taken from [54]. Each
round function performs 2 complete rounds of AES with a certain round con-
stant; we use Πi to denote them (where i indicates the current round constant).
Examples for Simpira-2, -3 and -4 are depicted in Appendix B.7.

25



Table 3. Distinguishers on Simpira: number of rounds attacked (rounds / total rounds)
by our automatic MITM tool, and by a dedicated GAD approach.

b 2 3 4 6 8

MITM (automatic) Inapplicable 8 / 21 7 / 15 9 / 15 9 / 18
GAD 5 / 15 11 / 21 9 / 15 9 / 15 9 / 18

For b ≥ 2, we can use any permutation in the family to define a small-range
hash function Gb by feed-forwarding:

Gb :

{
{0, 1}b×128 → {0, 1}256
x 7→ trunc(Simpira-b(x) + x)

(13)

where trunc is the truncation to the first 256 bits. The proposal SPHINCS-
Simpira [36] uses G2 and G4 in SPHINCS+.

The authors of Simpira claim only 128-bit preimage security for the functions
Gb, although the generic classical preimage search would stand at a time 2256.
SPHINCS-Simpira [36] also claims 128-bit quantum preimage security. The quan-
tum security of Simpira was studied in [48], but only regarding collision attacks.
Among the known results on unkeyed GFNs, e.g. a 5-round distinguisher on a
2-branch FN [21] and a 8-round distinguisher on the 4-branch, type-II GFN [20],
we did not find immediate preimage attacks on the Gb.

Results of the Extended Model. By making no structural assumption on the
round functions, our model represents any GFN as a directed graph of 2-XOR
cells (corresponding to round functions) and 2-branching cells. We may add
dummy cells (1-branching cells) to separate clearly the rounds. The round func-
tions do not need to be permutations; the attacks have a complexity at least the
size of one branch, which is the cost of inverting a round function by brute force.

In order to maximize the number of rounds attacked, we consider a full
wrapping constraint. We remove the memory optimization: we look for attacks
of time and memory complexity 2(b−1)w against generic 2bw, where w is the
branch width. Then, we run our tool with a 4-list MILP model. The results are
reported in Table 3.

7.2 Guess-and-determine Attacks on GFNs

We remarked that, with the Simpira-b structures for b ≤ 8, we could attack the
same number of rounds, and more, using much simpler Guess-and-determine
(GAD) attacks. These results are also given in Table 3. The increased number of
rounds is due to the linearity of the XOR, which is not captured by our cell-based
modeling (see Simpira-2 below).

These attacks are partial preimage attacks on the hash functions Gb. We
find x such that Gb(x) = 0128|∗. From there, we have a full preimage of Gb
in classical time 2128 and quantum time 264, still valid if we replace the Πi by
random functions Fi (we can invert the Fi by brute force).

26



Table 4. Distinguishers on Sparkle. * The attacks from Table 4.9 in [7], can be
extended by one step when attacking the permutation instead of the AEAD mode.

Target Type Steps Time Generic time Memory Source

Sparkle-256 Classical 5 / 10 296 2128 296 [7] *
Sparkle-384 Classical 5 / 11 2128 2192 2128 [7] *
Sparkle-512 Classical 5 / 12 2192 2256 2160 [7] *
Sparkle-256 Practical 4 / 10 negl. 264 negl. This paper
Sparkle-384 Practical 4 / 11 negl. 264 negl. This paper
Sparkle-512 Practical 5 / 12 < 232 264 negl. This paper

Example: Simpira-2. We explain our strategy with a 5-round attack on Simpira-
2 (see Figure 16 in Appendix B.7). We index the branches as follows: first,
the initial state is named S0, . . . , Sb−1. Then, each time a new operation Si ←
Si ⊕ F (Sj) is applied, the resulting state is named Sk, with the current index k
(which is then incremented). So we want to solve the following equation system:

S1 ⊕ S2 = Π1(S0), S2 ⊕ S4 = Π3(S3) S0 ⊕ S3 = Π2(S2)

S0 ⊕ S3 = Π4(S4), S4 ⊕ S6 = Π5(S5), S0 = S5 (wrapping) .

As we can see, there are 6 equations and 7 variables, since we have put a wrapping
constraint on one branch. We can simplify this system by removing all variables
that intervene in a single equation, i.e., S6 and S1. We obtain:

S0 ⊕ S3 = Π2(S2), S2 ⊕ S4 = Π3(S3), S0 ⊕ S3 = Π4(S4) .

From this we obtain the new equation Π4(S4) = Π2(S2), which is not captured
by our cell-based modeling. Guessing S4 (our only degree of freedom) we can
deduce S2, and all the other variables follow. After trying for b = 2, 3, 4, 6, 8, we
found that this expansion of the equation system was only useful for Simpira-2
and Simpira-4. The appropriate internal guesses are found automatically using
another automated tool, which would work for any GFN construction.

7.3 Application to Sparkle

Sparkle is a family of permutations upon which the NIST LWC candidate
Schwaemm / Esch (respectively for AEAD and hashing) [8] is based. We refer
to the submission document [7] for a complete specification of Sparkle, since
we abstract out most of its components.

There exists three variants Sparkle-256, -384 and -512, with respectively b =
4, 6 and 8 branches of 64 bits. One step of Sparkle has the following operations:
(1) an ARX-box (using round constants to disrupt symmetries) is applied to all
branches. (2) a linear function of the b/2 left branches is computed (noted `′

in [7], and L here). (3) each left branch i ≤ b/2 is XORed to branch i+ b/2; the
output of L is also XORed to each branch i + b/2. (4) the b/2 right branches

27



are swapped following a standard GFN pattern, and then, the groups of left and
right branches are swapped.

Sparkle is not a GFN since the “round function” is actually linear, and
the non-linear functions (the ARX boxes) are computed alongside the branches.
But this makes no difference for our extended representation. We obtain results
similar to Simpira: the MILP solver finds 4-step MITM distinguishers on the 3
variants of the permutation, and these can be simplified and improved with a
GAD strategy. The details are given in Appendix B.8.

Our results are summarized in Table 4. We found a GAD distinguisher of
complexity 1 for 4-step Sparkle-256 and -384, and a practical 5-step distin-
guisher for Sparkle-512, which combines the GAD strategy with SAT solving.
It highlights another limitation of our automatic approach: the ARX boxes are
viewed as random permutations, although solving some ARX equations can be
done practically.

As a comparison, the birthday-differential GAD attacks given in the NIST
submission document [7], which break 4 steps in the authenticated encryption
mode Schwaemm, can also be turned into 5-step distinguishers for the permu-
tation. But they have large complexities, and our distinguishers are the first
practical ones.

Acknowledgments. We want to thank Patrick Derbez and Léo Perrin for help-
ful discussions, and Xavier Bonnetain for contributing to the code used for
generating some figures of this document. A.S. is supported by ERC-ADG-
ALGSTRONGCRYPTO (project 740972).

References

1. Ambainis, A.: Quantum lower bounds by quantum arguments. J. Comput. Syst.
Sci. 64(4), 750–767 (2002)

2. Aoki, K., Sasaki, Y.: Preimage attacks on one-block MD4, 63-step MD5 and more.
In: Selected Areas in Cryptography. LNCS, vol. 5381, pp. 103–119. Springer (2008)

3. Aumasson, J.P., Bernstein, D.J., Beullens, W., Dobraunig, C., Eichlseder, M.,
Fluhrer, S., Gazdag, S.L., Hülsing, A., Kampanakis, P., Kölbl, S., Lange, T., Lau-
ridsen, M.M., Mendel, F., Niederhagen, R., Rechberger, C., Rijneveld, J., Schwabe,
P., Westerbaan, B.: SPHINCS+: Submission to the NIST post-quantum project

4. Bao, Z., Ding, L., Guo, J., Wang, H., Zhang, W.: Improved meet-in-the-middle
preimage attacks against AES hashing modes. IACR Trans. Symmetric Cryptol.
2019(4), 318–347 (2019)

5. Bao, Z., Dong, X., Guo, J., Li, Z., Shi, D., Sun, S., Wang, X.: Automatic search of
meet-in-the-middle preimage attacks on AES-like hashing. In: EUROCRYPT (1).
LNCS, vol. 12696, pp. 771–804. Springer (2021)

6. Bao, Z., Guo, J., Shi, D., Tu, Y.: MITM meets guess-and-determine: Further im-
proved preimage attacks against aes-like hashing. IACR Cryptol. ePrint Arch.
2021, 575 (2021)

7. Beierle, C., Biryukov, A., dos Santos, L.C., Großschädl, J., Perrin, L., Udovenko,
A., Velichkov, V., Wang, Q.: Schwaemm and Esch: lightweight authenticated
encryption and hashing using the Sparkle permutation family. Submission to the
NIST lightweight standardization process (second round). (2019)

28



8. Beierle, C., Biryukov, A., dos Santos, L.C., Großschädl, J., Perrin, L., Udovenko,
A., Velichkov, V., Wang, Q.: Lightweight AEAD and hashing using the Sparkle
permutation family. IACR Trans. Symmetric Cryptol. 2020(S1), 208–261 (2020)

9. Berger, R.M., Tiepelt, M.: On forging SPHINCS+-Haraka signatures on a fault-
tolerant quantum computer. In: LATINCRYPT. LNCS, vol. 12912, pp. 44–63.
Springer (2021)

10. Bernstein, D.J., Kölbl, S., Lucks, S., Massolino, P.M.C., Mendel, F., Nawaz, K.,
Schneider, T., Schwabe, P., Standaert, F., Todo, Y., Viguier, B.: Gimli: A cross-
platform permutation. In: CHES. LNCS, vol. 10529, pp. 299–320. Springer (2017)

11. Beyne, T., Chen, Y.L., Dobraunig, C., Mennink, B.: Dumbo, jumbo, and delirium:
Parallel authenticated encryption for the lightweight circus. IACR Trans. Symmet-
ric Cryptol. 2020(S1), 5–30 (2020)

12. Blondeau, C., Peyrin, T., Wang, L.: Known-key distinguisher on full PRESENT.
In: CRYPTO (1). LNCS, vol. 9215, pp. 455–474. Springer (2015)

13. Bogdanov, A., Knezevic, M., Leander, G., Toz, D., Varici, K., Verbauwhede, I.:
Spongent: A lightweight hash function. In: CHES. LNCS, vol. 6917, pp. 312–325.
Springer (2011)

14. Bogdanov, A., Knezevic, M., Leander, G., Toz, D., Varici, K., Verbauwhede, I.:
SPONGENT: the design space of lightweight cryptographic hashing. IEEE Trans.
Computers 62(10), 2041–2053 (2013)

15. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher.
In: CHES. LNCS, vol. 4727, pp. 450–466. Springer (2007)

16. Bogdanov, A., Rechberger, C.: A 3-subset meet-in-the-middle attack: Cryptanaly-
sis of the lightweight block cipher KTANTAN. In: Selected Areas in Cryptography.
LNCS, vol. 6544, pp. 229–240. Springer (2010)

17. Bogdanov, A., Shibutani, K.: Double SP-functions: Enhanced Generalized Feistel
Networks - extended abstract. In: ACISP. LNCS, vol. 6812, pp. 106–119. Springer
(2011)

18. Bouillaguet, C., Derbez, P., Fouque, P.: Automatic search of attacks on round-
reduced AES and applications. In: CRYPTO. LNCS, vol. 6841, pp. 169–187.
Springer (2011)

19. Brassard, G., Hoyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification
and estimation. Contemporary Mathematics 305, 53–74 (2002)

20. Chang, D., Kumar, A., Sanadhya, S.K.: Security analysis of GFN: 8-round distin-
guisher for 4-branch type-2 GFN. In: INDOCRYPT. LNCS, vol. 8250, pp. 136–148.
Springer (2013)

21. Coron, J., Patarin, J., Seurin, Y.: The random oracle model and the ideal cipher
model are equivalent. In: CRYPTO. LNCS, vol. 5157, pp. 1–20. Springer (2008)

22. Daemen, J., Rijmen, V.: AES Proposal: Rijndael. Submission to the NIST AES
competition (1999)

23. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography, Springer (2002)

24. Damgård, I.: A design principle for hash functions. In: CRYPTO. LNCS, vol. 435,
pp. 416–427. Springer (1989)

25. Derbez, P., Fouque, P.: Automatic search of meet-in-the-middle and impossible
differential attacks. In: CRYPTO (2). LNCS, vol. 9815, pp. 157–184. Springer
(2016)

26. Diffie, W., Hellman, M.E.: Special feature exhaustive cryptanalysis of the NBS
data encryption standard. Computer 10(6), 74–84 (1977)

29



27. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2. Submission
to NIST-LWC (2nd Round) (2019)

28. Dong, X., Hua, J., Sun, S., Li, Z., Wang, X., Hu, L.: Meet-in-the-middle attacks
revisited: Key-recovery, collision, and preimage attacks. In: CRYPTO (3). LNCS,
vol. 12827, pp. 278–308. Springer (2021)

29. Dunkelman, O., Sekar, G., Preneel, B.: Improved meet-in-the-middle attacks on
reduced-round DES. In: INDOCRYPT. LNCS, vol. 4859, pp. 86–100. Springer
(2007)

30. Flajolet, P., Odlyzko, A.M.: Random mapping statistics. In: EUROCRYPT. LNCS,
vol. 434, pp. 329–354. Springer (1989)

31. Flórez-Gutiérrez, A., Leurent, G., Naya-Plasencia, M., Perrin, L., Schrottenloher,
A., Sibleyras, F.: Internal symmetries and linear properties: Full-permutation dis-
tinguishers and improved collisions on Gimli. J. Cryptol. 34(4), 45 (2021)

32. Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C.,
Schläffer, M., Thomsen, S.S.: Grøstl-a SHA-3 candidate. Submission to the SHA-3
competition (2011)

33. Gleixner, A., Bastubbe, M., Eifler, L., Gally, T., Gamrath, G., Gottwald, R.L.,
Hendel, G., Hojny, C., Koch, T., Lübbecke, M.E., Maher, S.J., Miltenberger, M.,
Müller, B., Pfetsch, M.E., Puchert, C., Rehfeldt, D., Schlösser, F., Schubert, C.,
Serrano, F., Shinano, Y., Viernickel, J.M., Walter, M., Wegscheider, F., Witt, J.T.,
Witzig, J.: The SCIP Optimization Suite 6.0. Technical report, Optimization On-
line (2018)

34. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: STOC.
pp. 212–219. ACM (1996)

35. Gueron, S., Mouha, N.: Simpira v2: A family of efficient permutations using the
AES round function. In: ASIACRYPT (1). LNCS, vol. 10031, pp. 95–125 (2016)

36. Gueron, S., Mouha, N.: SPHINCS-Simpira: fast stateless hash-based signatures
with post-quantum security. IACR Cryptol. ePrint Arch. p. 645 (2017)

37. Guo, J., Ling, S., Rechberger, C., Wang, H.: Advanced meet-in-the-middle preim-
age attacks: First results on full tiger, and improved results on MD4 and SHA-2.
In: ASIACRYPT. LNCS, vol. 6477, pp. 56–75. Springer (2010)

38. Hosoyamada, A., Sasaki, Y.: Finding hash collisions with quantum computers by
using differential trails with smaller probability than birthday bound. In: EURO-
CRYPT (2). LNCS, vol. 12106, pp. 249–279. Springer (2020)

39. Hosoyamada, A., Sasaki, Y.: Quantum collision attacks on reduced SHA-256 and
SHA-512. In: CRYPTO (1). LNCS, vol. 12825, pp. 616–646. Springer (2021)

40. Isobe, T.: A single-key attack on the full GOST block cipher. In: FSE. LNCS,
vol. 6733, pp. 290–305. Springer (2011)

41. Isobe, T., Shibutani, K.: All subkeys recovery attack on block ciphers: Extending
meet-in-the-middle approach. In: Selected Areas in Cryptography. LNCS, vol. 7707,
pp. 202–221. Springer (2012)

42. Jaques, S., Naehrig, M., Roetteler, M., Virdia, F.: Implementing Grover oracles
for quantum key search on AES and LowMC. In: EUROCRYPT (2). LNCS, vol.
12106, pp. 280–310. Springer (2020)

43. Khovratovich, D., Rechberger, C., Savelieva, A.: Bicliques for preimages: Attacks
on skein-512 and the SHA-2 family. In: FSE. LNCS, vol. 7549, pp. 244–263.
Springer (2012)

44. Kölbl, S.: Putting wings on SPHINCS. In: PQCrypto. LNCS, vol. 10786, pp. 205–
226. Springer (2018)

30



45. Kölbl, S., Lauridsen, M.M., Mendel, F., Rechberger, C.: Haraka v2 - efficient short-
input hashing for post-quantum applications. IACR Trans. Symmetric Cryptol.
2016(2), 1–29 (2016)

46. Kuperberg, G.: Another subexponential-time quantum algorithm for the dihedral
hidden subgroup problem. In: TQC. LIPIcs, vol. 22, pp. 20–34. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2013)

47. Merkle, R.C.: One way hash functions and DES. In: CRYPTO. LNCS, vol. 435,
pp. 428–446. Springer (1989)

48. Ni, B., Dong, X., Jia, K., You, Q.: (Quantum) collision attacks on reduced Simpira
v2. IACR Trans. Symmetric Cryptol. 2021(2), 222–248 (2021)

49. Nielsen, M.A., Chuang, I.: Quantum computation and quantum information (2002)
50. Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers:

A synthetic approach. In: CRYPTO. LNCS, vol. 773, pp. 368–378. Springer (1993)
51. Sasaki, Y.: Meet-in-the-middle preimage attacks on AES hashing modes and an

application to Whirlpool. In: FSE. LNCS, vol. 6733, pp. 378–396. Springer (2011)
52. Schrottenloher, A., Stevens, M.: Simplified mitm modeling for permutations: New

(quantum) attacks. Cryptology ePrint Archive, Report 2022/189 (2022)
53. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic prob-

lems. In: SAT. LNCS, vol. 5584, pp. 244–257. Springer (2009)
54. Suzaki, T., Minematsu, K.: Improving the Generalized Feistel. In: FSE. LNCS,

vol. 6147, pp. 19–39. Springer (2010)
55. Zhang, G., Liu, M.: A distinguisher on PRESENT-like permutations with applica-

tion to SPONGENT. Sci. China Inf. Sci. 60(7), 72101 (2017)
56. Zheng, Y., Matsumoto, T., Imai, H.: On the construction of block ciphers provably

secure and not relying on any unproved hypotheses. In: CRYPTO. LNCS, vol. 435,
pp. 461–480. Springer (1989)

31



Appendix

A On Quantum MITM Attacks

In this section, we give technical details relative to quantum MITM attacks,
and in particular, a precise formula for their complexity, that can be applied
immediately for practical examples.

A.1 Preliminaries

All quantum algorithms studied in this paper are ultimately written in the quan-
tum circuit model, and we refer to [49] for an in-depth definition of qubits and
quantum gates. Our algorithms can be described at a higher level, as the com-
position of quantum search subroutines.

Quantum Complexities. The time complexity of a quantum algorithm, described
as a quantum circuit, is the number of gates in the circuit. Such a circuit can also
be seen as a collection of small processors running in parallel, and if a paralleliza-
tion factor of S is authorized, then S quantum gates can be applied concurrently
(and will be counted as 1 only for the wall-clock time). The space complexity
is counted in qubits (if the memory holds quantum states) and classical bits (if
most of the memory is classical).

The analysis of quantum attacks is simplified by counting the time and space
complexities in multiples of a quantum circuit implementing the primitive at-
tacked. This factor usually exceeds largely the other operations in the attack.
As an example, a quantum evaluation of the permutation in Haraka-512 v2 is
estimated in [9] to require 219.2 T-gates, 220.4 CNOT gates and 212.2 single-qubit
Clifford gates, thus 221.5 gates in total, with 1144 qubits (including inputs and
outputs). One of the quantum implementations of AES-256 given in [42] (see
Table 8 in this paper) costs 216.2 T-gates, 218.6 CNOT gates, 216.8 single-qubit
Clifford gates, and 2305 qubits (largely due to the key-schedule expansion).

Quantum Search. In this paper, we use the generic term of quantum search
to refer to the framework of Amplitude Amplification [19], which generalizes
Grover’s algorithm [34].

Theorem 2 ([19], Theorem 2). Let A be a quantum algorithm that uses no
measurements, let f : X → {0, 1} be a boolean function that tests if an output of
A is “good”. Let O0 be the “inversion around zero” operator that does: O0 |x〉 =
(−1)x6=0 |x〉 and Of a quantum oracle for f : Of |x〉 = (−1)f(x) |x〉. Let a be the
success probability of A and θa = arcsin

√
a. Let t =

⌊
π

4θa

⌋
. Then by measuring

(AO0A†Of )tA |0〉, we obtain a “good” result with success probability greater than
max(1− a, a).

32



The cost of the O0 operator is usually negligible, and since, for any a ≤ 1,
arcsin a ≥ a, we can lower bound the number of iterations by: t =

⌊
π

4θa

⌋
≤

π
4θa
≤ π

4
√
a
. The quantum algorithm thus runs in less than π

2
√
a
iterations of A

and π
4
√
a
evaluations of f (as a quantum circuit). Another property of Amplitude

Amplification is that, if the success probability of the “amplified” algorithm A is
known exactly, then the procedure can be made exact. This is done by performing
a final partial iteration.

Theorem 3 ([19], Theorem 4). Consider the setting of Theorem 2, and as-
sume that a is known exactly. Then there exists a quantum algorithm running
in less than π

4
√
a
+ 1 iterations, that obtains a good result with probability 1.

Quantum Preimage Search. If H : {0, 1}n → {0, 1}n is a random function or
permutation, any quantum algorithm needs at least O

(
2n/2

)
evaluations of H to

invert it [1]. The generic pseudo-preimage search on a compression function uses
simply a single instance of Amplitude Amplification. To simplify the analysis,
we can assume that exactly a single solution exists (in this case, as in the MITM
attacks). For a random function, this happens with probability e−1 ' 0.37 '
2−1.44 [30].

Thus, we use a single instance of Exact Amplitude Amplification (Theorem 3)
on an algorithm A that consists simply in computing H on a random input, and
a test f that consist in comparing the output with the target. If TA and Tf are
the respective gate counts of quantum circuits for A and f , the search needs:
(π2 2

n/2 + 1) (2TA + Tf ) operations.

Quantum Memory. Most cryptanalytic algorithms must access dynamically mem-
ory cells whose position is known only at runtime. It is usually assumed that
this operation can be performed in time O(1): this is standard random-access
memory model. It is justified experimentally by the balance between the cost of
random-access in hardware (especially at small scales) and the cost of perform-
ing operations. However, we might also adopt another model to compare our
algorithms, for example a sequential-access memory, a large tape where moving
to read the next or previous memory cell costs time O(1).

In the quantum setting, there exists even more memory models, because both
the data stored and the indices to be read can be classical, or in superposition.
We then abstract out memory access with a generic random-access gate:

|i〉︸︷︷︸
Index

|m0, . . . ,mt−1〉︸ ︷︷ ︸
Data

|y〉︸︷︷︸
Result

→ |i〉 |m0, . . . ,mt−1〉 |y ⊕mi〉 ,

and assume that this gate costs O(1) (we add it to our universal gate set), with
some restrictions that depend on the model. Following the terminology from [46]:

• If i is classical and the mj are classical, this is classical random-access mem-
ory (RAM)

33



• If i is classical and the mj are superposed, this is the standard quantum
circuit model: it simply says that we can apply CNOT gates between any
qubits in the circuit without overhead.

• If i is superposed and the mj are classical, this is classical memory with
quantum random-access (QRACM).

• If i is superposed and the mj are superposed, this is quantum memory with
quantum random-access (QRAQM).

It should be noted that all these models are non-trivial, the QRAQM model
being the most powerful of all. At the moment, only small-scale architectures
with a small number of logical qubits are envisioned, so QRACM and QRAQM
remain theoretical models.

A.2 Quantum Two-list Merging

In our quantum attacks, we will always assume that a single solution exists: if
there is a single one on average, then with some probability (see above), a single
one exists exactly. Recall that the classical attack has a loop on global guesses,
then computes a small list, then computes the merged list on the fly.

Let us assume for now that this global guess G is given, and belongs to a
space of size 2g. We also assume without loss of generality, that the forward list
Lfwd is smaller. Our goal is to determine if there is an element in the merged list
that yields a solution (by recomputation of the path). Let Umerge be the unitary
operator that computes this:

Umerge |G〉 |b〉 = |G〉 |b⊕ f(G)〉 where f(G) =

{
1 if a solution occurs
0 otherwise

.

Since we assume a single solution exactly, we do an Exact Amplitude Am-
plification on G to find the choice of guesses that yields it.

Lemma 3. Assume that there exists an implementation of Umerge with time com-
plexity T (in quantum gates). Then there is a quantum MITM attack of com-
plexity: (π4 2

g/2 + 1)× T .

Proof. We apply Theorem 3. The search can be made exact because the size of
the space of global guesses is exactly known. ut

We know focus only on Umerge. Its quantum complexity will be roughly
|Lfwd|+

√
max(|Lmerged|, |Lbwd|) , where the first step is the computation of |Lfwd|

and the second, the (quantum) search in the merged list. However, because we
consider a non-asymptotic setting, we need to be careful about the sizes of the
lists. While Lfwd and Lbwd have always the same sizes, independently of G, the
size of the merged list Lmerged varies. Meanwhile, our quantum search in Lmerged

can only admit a fixed number of iterates.

34



Lemma 4. Let G be the good guess, let u be the value of the precomputed linear
conditions in |Lfwd| that lead to the solution. Assume that for this G, there are
xbwd elements of Lbwd that match this value u. Let T ′ be the time required to
either compute an element in the lists, or recompute the path given a match (out
of place). Then there is an implementation of Umerge with time complexity at
most:

2T ′
(
2|Lfwd|+

(π
4

√
|Lbwd|+ 1

)(π
2

√
xbwd + 6

))
. (14)

Proof. First of all, note that Umerge cannot create false positives: to confirm a so-
lution, we recompute and check the whole path. So the main problem is to ensure
that the solution, when it exists, is found. We use the following implementation.

1. We compute Lfwd and we store its elements in QRAQM. We index them
by the precomputed linear conditions, and we order them in a radix tree.
This ensures that for each value of u, we know the exact number of elements
having this value (which form a subtree of our radix tree).

2. We do a quantum search in |Lbwd|: we can use an Exact Amplitude Amplifi-
cation here, as the size of |Lbwd| is exactly known in advance, and we assume
a single solution at most. After the search, we simply test the state: this
gives the result of Umerge.
• Given an element of |Lbwd|, we must find if it yields the solution. For this,

we compute the linear conditions u. We find the matching subtree and its
number of elements. We do a quantum search inside this subtree for the
solution. Here again, we can use Exact Amplitude Amplification, since
the size of the subtree is exactly known, and we expect exactly zero or
one solution. However, the number of iterations depends on the current
element of |Lbwd|. So we actually set a maximal number of iterations,
which is

⌊
π
4

√
xbwd

⌋
+ 1 ≤ π

4

√
xbwd + 1; the circuit always performs this

number of iterations, controlled on the actual size of the subtree.
Note that depending on the size of Lmerged, the subtree might be actually
empty or contain a single element, but the complexity formula remains valid.
The algorithm is correct as long as we do not underestimate the size of the
subtree that contains the solution.

All these computations must be uncomputed afterwards, and the quantum search
in the subtree has another uncomputation level. We obtain a complexity:

2
(
|Lfwd| × T ′ + (

π

4

√
|Lbwd|+ 1)×

(
2
(
(
π

4

√
xbwd + 1)× 2T ′

)
+ 2T ′

))
≤ 2T ′

(
|Lfwd|+

(π
4

√
|Lbwd|+ 1

)(π
2

√
xbwd + 6

))
which gives the result. ut

To upper bound the complexity of the full MITM atack, we multiply Equa-
tion 14 by π

4 2
g/2 +1. The resulting formula depends only on g, |Lfwd| = 2`F and

|Lbwd| = 2`B (fixed parameters of the path) and our estimate of xbwd. Though
we cannot compute it with certainty without finding the solution itself, we will
use the following heuristic.

35



Heuristic 1 The g, u that lead to the solution are selected uniformly at random
from all possibilities.

In other words, the good g, u should not be anomalous values, with much
greater intermediate list sizes than expected. This assumption is enough for
the correctness of the quantum attack; in short, we can handle the problem of
variance in the list sizes directly using Markov’s inequality.

Theorem 4. Under Heuristic 1, and under the assumption of a unique solution,
there is a quantum attack of complexity:

2T ′
(π
4
2g/2 + 1

)(
|Lfwd|+

(π
4

√
|Lbwd|+ 1

)( π√
2
max

(
1,

√
|Lmerged|
|Lbwd|

)
+ 6

))
,

(15)
that succeeds with probability 1/2.

Proof. In the final Grover search, there are max(|Lmerged|/|Lbwd|, 1) elements on
average. The classical attack complexity is computed using this average value.
We use Markov’s inequality to bound xbwd for the solution g, u:

P (xbwd ≥ 2max(|Lmerged|/|Lbwd|, 1)) ≤ 1/2 .

Then, an attack using 2max(|Lmerged|/|Lbwd|, 1) as the bound will succeed with
probability at least 1/2. ut

If we remove the constant factors, we obtain the following simplified formula
for the quantum time complexity exponent, which we used in our MILP model
(Section 4):

tq =
g

2
+ max

(
min(`F , `B),

1

2
max(`F , `B , `M )

)
.

B Details on Some Applications

In this section, we regroup some details on the applications of our tool.

B.1 7-round Present

Here we describe the 7-round MITM attack on Present from Section 5; the
path is given in Figure 9. There are 12 cells of global constraints (i.e. 48 edges),
including the input-output constraints on x013 and x713.

The three lists (backwards N, forwards H, merged) have size 3.

• Forward list procedure: we start from round 2; we need to guess 3× 4 = 12
bits here, and with this we can deduce all the blue cells.

• Backward list procedure: this is symmetric. We start from round 5, and from
here we can deduce all the red cells.

36



Hx0
13

Nx1
3 Nx1

7 Nx1
11 Nx1

15

Nx2
0 Nx2

1 Nx2
2 Nx2

3 Hx2
4 Hx2

5 Hx2
6 Hx2

7 Nx2
8 Nx2

9 Nx2
10 Nx2

11 Nx2
12 Nx2

13 Nx2
14 Nx2

15

Nx3
0 Hx3

1 Nx3
2 Nx3

3 Nx3
4 Hx3

5 Nx3
6 Nx3

7 Nx3
8 Hx3

9 Nx3
10 Nx3

11 Nx3
12 Hx3

13 Nx3
14 Nx3

15

Hx4
0 Hx4

1 Hx4
2 Hx4

3 Hx4
4 Hx4

5 Hx4
6 Hx4

7 Hx4
8 Hx4

9 Hx4
10 Hx4

11 Nx4
12 Nx4

13 Nx4
14 Nx4

15

Hx5
0 Hx5

1 Hx5
2 Nx5

3 Hx5
4 Hx5

5 Hx5
6 Nx5

7 Hx5
8 Hx5

9 Hx5
10 Nx5

11 Hx5
12 Hx5

13 Hx5
14 Nx5

15

Hx6
4 Hx6

5 Hx6
6 Hx6

7

Nx7
13

Fig. 9. 7-round MITM attack on Present. In order to simplify the figure, we have
not represented the linear layers, and only colored the input and outputs of each cell.
Red N cells represent the backward list; Blue H cells the forward list. The matching
points are colored in cyan, and global guesses in green.

Hx0
13

Hx1
3 x1

7 x1
11 Hx1

15

Hx2
0 x2

1 x2
2 Hx2

3 Nx2
4 x2

5 x2
6 Hx2

7 Hx2
8 x2

9 x2
10 Hx2

11 Hx2
12 x2

13 x2
14 Hx2

15

Nx3
0 Nx3

1 Nx3
2 Nx3

3 Nx3
4 Nx3

5 Nx3
6 Nx3

7 Hx3
8 Hx3

9 Hx3
10 Hx3

11 Hx3
12 Hx3

13 Hx3
14 Hx3

15

Nx4
0 Nx4

1 Hx4
2 Hx4

3 Nx4
4 Nx4

5 Hx4
6 Hx4

7 Nx4
8 Nx4

9 Hx4
10 Hx4

11 Nx4
12 Nx4

13 Hx4
14 Hx4

15

Nx5
0 Nx5

1 Nx5
2 Nx5

3 Nx5
4 Nx5

5 Nx5
6 Nx5

7 Nx5
8 Nx5

9 Nx5
10 Nx5

11 Hx5
12 Hx5

13 Hx5
14 Hx5

15

Nx6
0 Nx6

1 Nx6
2 Hx6

3 Nx6
4 Nx6

5 Nx6
6 Hx6

7 Nx6
8 Nx6

9 Nx6
10 Hx6

11 Nx6
12 Nx6

13 Nx6
14 Hx6

15

Nx7
4 Hx7

5 Nx7
6 Nx7

7

Nx8
13

Fig. 10. 8-round MITM attack on Present. The drawing conventions are the same
as in Figure 9.

37



• Matching points: there are three points of matching: between round 0 and
round 1 (4 bits), between round 3 and round 4 (4 bits) and between round
6 and round 7 (4 bits). Thus the merged list has also size 3.

All elements of the merged list are solutions of the MITM problem. By re-
peating this for all values of the guesses, we obtain a time 11 + 3 = 14 (hence
256).

B.2 8-round Present

Here we describe the 8-round MITM attack on Present from Section 5. The
path is given in Figure 10.

Observe that in conformity with our simplification, the cells in the middle
rounds have the same color two by two. There are 17 global edges in total
(counting the input-output constraint), thus 4.25 global linear constraints. The
lists do not have all the same size.

• The forward list depends on 3 × 9 + 8 × 2 = 43 bits guessed at rounds 1, 2
and 3, and is thus of size 10.75.
• The backward list depends on 9 bits at round 7 and 12 × 3 = 36 bits at

round 6, for a size 11.25
• The merging happens at 4 different rounds: there are 1 bit of matching

between round 1 and 2, 7× 2 = 14 bits between round 2 and 3, 8× 3 = 24
bits between round 4 and 5, 3 bits between round 6 and 7, 1 bit between 7
and 8. The total is 43 bits, thus 10.75, and gives a merged list of expected
size 11.25 as well.

Since this must be repeated for all 3.25 internal global guesses, we obtain the
complexity 11.25 + 3.25 = 14.5.

B.3 Representation of an AES-like Design

In Figure 11 and Figure 12, we represent the attack on 7-round AES of [51].
The first reproduces the figure given in [51] and the second is our corresponding
Super S-Box representation. We denote by xi the state at the beginning of round
i, before SubBytes, and by xij its 4 columns numbered from left to right; these
columns are our cells. Note that in Figure 11, the rounds are numbered starting
at -1, since the first round is skipped in the Super S-Box representation.

In Figure 12, we only display a subset of the edges for more clarity, which
correspond to individual S-Boxes exchanged between the Super S-Boxes. With
the optimizations specific to the AES-like designs (notably, matching through
MC), this path belong to our search space.

• Global constraints ↔: the global linear constraints are displayed in green
in Figure 12. They correspond to the 12 green • bytes in Figure 11. The
merging operation has to run for all choices of these 12 bytes.

38



SB

x−1

I
I
I
I

I
I
I
I

SR
I
I
I
I

I
I
I
I

MC
I

I
I

I

I
I

I
I

I
I
I
I

I
I
I
I

Round -1

ARK

SB

x0

I
I
I
I

I
I
I
I

SR
I
I
I
I

I
I
I
I

MC
I

I
I

I

I
I

I
I

J
J
J

J
J
J

J
J
J

J
J
J Round 0

ARK

SB

x1

J
J
J

J
J
J

J
J
J

J
J
J

SRJ
J
J

J
J
J

J
J
J

J
J
J

MC
J
J
J
J

J
J
J
J

J
J
J
J

J
J
J

J
J
J

J
J
J

J
J
J

•
•
•

Round 1

ARK

SB

x2

J
J
J

J
J
J

J
J
J

J
J
J

•
•
•

SRJ
J
J

J
J
J

J
J
J

J
J
J

•
•
•

MC•
•
•

J
J
J
J

J
J
J
J

J
J
J
J

I
I
I
I

•
•
•

•
•
•
•
•
•

J
J

J
Round 2

ARK

SB

x3

I
I
I
I

•
•
•

•
•
•
•
•
•

J
J

J
SR

I
I
I
I

•
•
•

•
•
•
•
•
•

J
J

J
MC

I

I
I
I•

•
•

•
•
•
•
•
•

J
J
J

I
I
I
I

I
I
I
I

I
I
I
I
I
I

Round 3

ARK

SB

x4

I
I
I
I

I
I
I
I

I
I
I
I
I
I

SR
I
I
I
I

I
I
I
I

I
I
I
I
I
I

MC
I
I
I
I

I
I
I

I
I
I
I
I
I
I

I
I
I
I

I
I
I
I

Round 4

ARK

SB

x5

I
I
I
I

I
I
I
I

SR
I
I
I
I

I
I
I
I

I
I
I
I

I
I
I
I

Round 5

Fig. 11. 7-round MITM attack on AES, from [51].

39



H x0
0 x0

1 H x0
2 x0

3

� x1
0 � x1

1 � x1
2 � x1

3

x2
0 N x2

1 N x2
2 N x2

3

H x3
0 N x3

1 N x3
2 N x3

3

H x4
0 H x4

1 H x4
2 � x4

3

H x5
0 x5

1 H x5
2 x5

3

Fig. 12. Path of Figure 11 in a Present-like representation. Each cell is a column and
round -1 is omitted. N: backward, H: forward, �: matching through MC (new cells
in the merged list), ↔: global edges.

40



• Matching through MC �: in this path, there are 5 cells with 5 or more
in- and outgoing edges, which can then be added to the merged list: x20, x21,
x22, x23, x53.

• Additional constraints: among these, the cell x53 satisfies the conditions
for reducing the memory through MC: it has 6 blue and red edges in total,
and among them, there are 2 outgoing edges from the forward H list and
3 ingoing edges from the backward N list. Thus there is room for as much
as min(2, 3, 2) = 2 additional constraints.

• Forward H list: the forward list contains the cells x10, x12, x40, x50, x51, x52, x60, x62.
The cut round is round 2 (there are no cells at this round). It is of size 0.25
cells, when accounting for all the constraints, and can be computed as fol-
lows, going forwards:
• Start from cell x40. With the three ingoing fixed edges, there is only 0.25

choice.
• Deduce x50, x51, x52
• Select a value of the two blue edges from x53 that agrees with the two

additional constraints of this node (since the ingoing blue edge is fixed,
there is only a single choice)

• Deduce x60, x62
• Deduce x10, x12

• Backward N list: the backward list contains the cells x31, x32, x33, x41, x42, x43.
The cut round is round 2. It is of size 0.25 cells and can be computed by
going backwards:
• Start from cells x41, x42, x43. Select a value of the three outgoing edges that

agrees with the constraints on cell x53: there is only 0.25 choice remaining.
Deduce the three cells.

• Deduce x31, x32, x33.
• Merged list: it is easy to see that the merged list is of size smaller than

0.25 (here there are actually 4 new constraints through MC at round 2, so
the expected size is -1).

B.4 Quantum Attack on Haraka-256

The path of our quantum attack on Haraka-256 v2 is given in Figure 13. Here
are the details.

• Global •: we have a total of 20 bytes (5 cells) to globally guess. We guess
8 bytes in xb3, we guess 8 bytes by precomputing linear relations between
columns of za2 and wa2 (2 bytes per column), and 4 bytes by precomputing
linear relations between columns of za4 and wa4 (1 byte per column).

• Forward I list (4 bytes, 1 cell): we start from wa2 . Since 8 bytes of linear
relations have been precomputed through MC, we have only 4 bytes to select.
We advance until z4. At this point, since we have precomputed 4 linear
relations through MC, we deduce immediately the values of the 4 forward
bytes in wa4 . We advance until z6.

41



• Backward J list (8 bytes, 2 cells): we start from za4 . There are 12 bytes,
and 4 precomputed relations, so only 8 bytes to select. We compute until
w2. The required bytes of zb2 are immediately deduced. The 8 bytes of za2 are
deduced thanks to the 8 precomputed linear relations. We can then compute
until w6.

• Matching: the matching through MC happens at rounds 1, 2, and 3, but it
is entirely precomputed in rounds 1 and 2. At round 3, we have 1 byte of
linear relation between each column of za6 and wa6 . Thus the merged list is
of size 2 cells as well.

B.5 Attacks on Haraka-512 with Input-Output Constraints

The post-quantum signature scheme SPHINCS+ [3] uses Haraka-512 to define
a Sponge with 256 bits of rate (the first two AES substates) and 256 bits of
capacity (the last two AES substates). The targeted security level is level 2 of
the NIST post-quantum standardization process, which corresponds to 256 bits
of collision security. Indeed, there is a generic (second-) preimage attack on such
a Sponge of complexity 2128, that looks for a collision in the capacity.

The MITM problem that we want to solve in this context is a 256-bit input-
output constraint, where these 256 bits are either the rate or the capacity. Such
a problem should admit one solution on average. For example, if the Sponge
hashes two message blocks m0,m1 of 256 bits into a single hash block h of 256
bits with the permutation π512, then we have:

s0 := m0‖0256, s1 := (m1‖0256)⊕ π512(s0), h = trunc256(π512(s1)) .

Thus we can guess the value of the capacity part in s1, solve a MITM problem
to obtain s0, solve another MITM problem to obtain s1, and deduce m1 and m0.
The generic complexity of this MITM problem is 2256 classically and 2128 quan-
tumly. Thus, procedures of complexity between 2128 and 2256 are valid MITM
attacks, but do not yield valid preimage attacks for the Sponge itself.

We ran our tool with these adapted constraints. By symmetry, the results are
the same whether we choose to fix the rate (first two substates) or the capacity
(last two substates). We find two MITM attacks:

• A classical attack of time complexity 2192 (6 cells) on 4.5-round Haraka-512.
The path is given in Figure 14. The forward I list is of size 24×32, since
computing the whole forward path requires only to guess 4 new columns at
round 1. The backward J list is of size 26×32, since 6 new columns have
to be guessed at round 3.5.

• A quantum attack of time complexity 264 (2 cells) on 3.5-round Haraka-512.
The path is similar as Figure 14, with the same forward I list, and a
backward J list of size 1 (no additional columns need to be guessed).

Both the attacks are quite simple since the matching (through MC) occurs at a
single round in the middle. Though they have both classical complexities larger

42



xa
0

SB

xb
0

J

J
J
JJ
J

J
JJ
J
J

JJ
J
J
J

ya
0

SR

yb
0

J

J
J
JJ
J

J
JJ
J
J

JJ
J
J
J

za0

MC

zb0
J

J
J
JJ

J

J
JJ

J
J

JJ
J
J
J

wa
0

AC

wb
0

J

J
J
JJ
J

J
JJ
J
J

JJ
J
J
J

R0

xa
1

SB

xb
1

J

J
J
JJ
J

J
JJ
J
J

JJ
J
J
J

ya
1

SR

yb
1

J

J
J
JJ
J

J
JJ
J
J

JJ
J
J
J

za1

MC

zb1
J

J
J
JJ

J

J
JJ

J
J

JJ
J
J
J

wa
1

MIX

AC

wb
1

J
J
J
J

J
J
J
J

J
J
J
J

J
J
J
J

R0.5

xa
2

J
J

J
J

J
J
J
J

SB

xb
2

J
J

J
J

J
J
J
J

ya
2

J
J

J
J

J
J
J
J

SR

yb
2

J
J

J
J

J
J
J
J

za2

J
J

J
J

J
J
J
J

MC

zb2

J
J

J
J

J
J
J
J

wa
2

J
J
J

J

I II
I II
III
III

AC

wb
2

JJ
JJ
JJ
JJ

•
•
• •
• •
•
•

R1

xa
3

J
J
J

J

I II
I II
III
III

SB

xb
3

JJ
JJ
JJ
JJ

•
•
• •
• •
•
•

ya
3

J
J
J

J

I II
I II
III
III

SR

yb
3

JJ
JJ
JJ
JJ

• •
••

• •
• •

za3

I
I
I
I

I
I
I
I

I
I
I
I

J
J
J
J

MC

zb3
•
•
•
•

•
•
•
•

J
J
J
J

J
J
J
J

wa
3

I
I
I
I

I
I
I
I

I
I
I
I

J
J
J
J

MIX

AC

wb
3

I
I
I
I

I
I
I
I

J
J
J
J

J
J
J
J

R1.5

xa
4

I

I
I
IJ
J

J
JJ
J
J

JJ
J
J
J

SB

xb
4

I

I
I
II
I

I
II
I
I

II
I
I
I

ya
4

I

I
I
IJ
J

J
JJ
J
J

JJ
J
J
J

SR

yb
4

I

I
I
II
I

I
II
I
I

II
I
I
I

za4

I

I
I
IJ

J

J
JJ

J
J

JJ
J
J
J

MC

zb4
I

I
I
II

I

I
II

I
I

II
I
I
I

wa
4

I
I
I
I

AC

wb
4

I

I
I
II
I

I
II
I
I

II
I
I
I

R2

xa
5

I
I
I
I

SB

xb
5

I

I
I
II
I

I
II
I
I

II
I
I
I

ya
5

I
I
I
I

SR

yb
5

I

I
I
II
I

I
II
I
I

II
I
I
I

za5

I
I
I
I

MC

zb5
I

I
I
II

I

I
II

I
I

II
I
I
I

wa
5

I
I
I
I

MIX

AC

wb
5

I
I
I
I

I
I
I
I

I
I
I
I

I
I
I
I

R2.5

xa
6

I

I
I
II
I

I
I

I
I
I
I

SB

xb
6

I
I

I
I

I
I
I
I

ya
6

I

I
I
II
I

I
I

I
I
I
I

SR

yb
6

I
I

I
I

I
I
I
I

za6

I

I
I
II

I

I
I

I
I
I
I

MC

zb6

I
I

I
I

I
I
I
I

wa
6

JJ
JJ

JJ
JJ

AC

wb
6

JJ
JJ

JJ
JJ

R3

xa
7

JJ
JJ

JJ
JJ

SB

xb
7

JJ
JJ

JJ
JJ

ya
7

JJ
JJ

JJ
JJ

SR

yb
7

JJ
JJ

JJ
JJ

za7

J
J
J
J

J
J
J
J

MC

zb7
J
J
J
J

J
J
J
J

wa
7

J
J
J
J

J
J
J
J

MIX

AC

wb
7

J
J
J
J

J
J
J
J

R3.5

xa
8

SB

xb
8

J

J
J
JJ
J

J
JJ
J
J

JJ
J
J
J

ya
8

SR

yb
8

J

J
J
JJ
J

J
JJ
J
J

JJ
J
J
J

za8

MC

zb8
J

J
J
JJ

J

J
JJ

J
J

JJ
J
J
J

wa
8 wb

8

J

J
J
JJ
J

J
JJ
J
J

JJ
J
J
J

R4

Fig. 13. New attack path for Haraka-256 v2, that is applicable to the quantum setting.
J: backward, I: forward, •: guessed.

43



than or equal to 2128, and so, do not invalidate the classical security claims, the
second attack has a quantum time complexity approximately 264 with negligible
memory, which is below NIST level 2. So this one applies to the security analysis
of SPHINCS+.

B.6 Quantum Attack on Grostl-512 OT

The path of our attack on the Output Transformation (OT) of Grøstl-512 is given
in Figure 15. The OT is an AES-like permutation on a state of 16× 8 bytes; we
number the columns from 0 to 15 (left to right) and the bytes from 0 to 7 (up
to down). The goal is to find an input state x such that trunc512(x⊕ P (x)) = 0
where the truncation takes columns 8 to 15, in time less than the generic 2512

(2256 quantumly).

• Global •: we guess 19 bytes in round 1, 52 bytes in round 2, 13 bytes in
round 3, for a total of 84 bytes. There are 64 degrees of freedom in the path,
this leaves 20 bytes that must be repeated. Furthermore, we reduce through
MC: • at round 3, respectively 4, 3, 3, 2, 2 bytes for columns 11-15 (so we
precompute these linear relations), for a total of 14 bytes. • at round 0,
respectively 4, 4, 3, 2 bytes for columns 12-15, and 1 byte for columns 0-1,
for a total of 15 bytes. All in all, there are 20 + 14 + 15 = 49 global guesses
to be repeated.

• Backward J list (7 bytes): we start at round 3. Due to the precomputed
linear relations, there are only 19 − 14 = 5 bytes of freedom backwards in
z3. Using the global guesses, we compute backwards the red bytes until w0

without making new guesses. Then we can deduce columns 8-12 of z0. The
13 red bytes in columns 12-15 of z0, and the 2 red bytes in columns 0-1,
have zero degree of freedom due to the reduction through MC, so we deduce
their values immediately without making new guesses, and go on until x7.
We guess 2 other bytes to deduce columns 14 and 15 in w6, then the bytes
of w5. In total we had to guess 7 bytes.

• Forward I list (14 bytes): we start at round 1. There are 29 blue bytes
in x1, but only 14 degrees of freedom due to the reduction through MC
at round 0. We compute forwards until z3. Due to the reduction through
MC, the new bytes of columns 11-15 of w3 have no degrees of freedom. We
advance until z5 without making new guesses.

• Matching: the matching through MC in round 0 and round 3 has been en-
tirely precomputed. The only other places of matching are: round 1, with 4
bytes that belong both to the forward and the backward lists; round 5, with
3 bytes of matching through MC in columns 0,1,2. Thus the merged list is
of size 7 + 14− 7 = 14 bytes.

Since each cell corresponds to 8 bytes (a column), the memory complexity is
0.875 cell, the backward list is 0.875 cell, the forward and merged list 1.75, and
there is a loop of 6.125 cells. The classical time complexity is 7.875 cells (2504)
instead of 8 (2512). By Equation 7, the quantum time is at most 2255.55 instead
of 2256 generically.

44



xa
0

IIII

IIII

IIII

IIII

xb
0

IIII

IIII

IIII

IIII

xc
0

SBR

xd
0 za0

IIII

IIII

IIII

IIII

zb0
IIII

IIII

IIII

IIII

zc0

MC

zd0 wa
0

IIII

IIII

IIII

IIII

wb
0

IIII

IIII

IIII

IIII

wc
0

AC

wd
0

R0

xa
1

IIII

IIII

IIII

IIII

xb
1

IIII

IIII

IIII

IIII

xc
1

SBR

xd
1 za1

IIII

IIII

IIII

IIII

zb1
IIII

IIII

IIII

IIII

zc1

MC

zd1 wa
1

IIII

IIII

IIII

IIII

wb
1

IIII

IIII

IIII

IIII

wc
1

IIII

IIII
MIX

AC

wd
1

IIII

IIII
R0.5

xa
2

IIII

IIII

IIII

IIII

xb
2

IIII

IIII

xc
2

IIII

IIII
SBR

xd
2

IIII

IIII

IIII

IIII

za2
IIII

IIII

IIII

IIII

zb2

I
I

I
III

I
I

zc2

I
I

I
III

I
I

MC

zd2
IIII

IIII

IIII

IIII

wa
2

IIII

IIII

IIII

IIII

wb
2 wc

2

AC

wd
2

IIII

IIII

IIII

IIII
R1

xa
3

IIII

IIII

IIII

IIII

xb
3 xc

3

SBR

xd
3

IIII

IIII

IIII

IIII

za3
IIII

IIII

IIII

IIII

zb3 zc3

MC

zd3
IIII

IIII

IIII

IIII

wa
3

IIII

IIII

IIII

IIII

wb
3 wc

3

MIX

AC

wd
3

IIII

IIII

IIII

IIII
R1.5

xa
4

IIII

IIII

xb
4

IIII

IIII

xc
4

IIII

IIII
SBR

xd
4

IIII

IIII

za4
I

III
II
II

zb4

II
III

III

zc4

II
III

III
MC

zd4
I

III
II
II

wa
4

JJJ

J
JJ

JJ
J

JJJ

wb
4

JJJ

J
JJ

JJ
J

JJJ

wc
4

JJJ

J
JJ

JJ
J

JJJ

AC

wd
4

JJJ

J
JJ

JJ
J

JJJ R2

xa
5

JJJ

J
JJ

JJ
J

JJJ

xb
5

JJJ

J
JJ

JJ
J

JJJ

xc
5

JJJ

J
JJ

JJ
J

JJJ
SBR

xd
5

JJJ

J
JJ

JJ
J

JJJ

za5
JJJJ

JJJJ

JJJJ

zb5
JJJJ

JJJJ

JJJJ

zc5
JJJJ

JJJJ

JJJJ
MC

zd5
JJJJ

JJJJ

JJJJ

wa
5

JJJJ

JJJJ

JJJJ

JJJJ

wb
5

JJJJ

JJJJ

JJJJ

wc
5

JJJJ

JJJJ

JJJJ

JJJJ
MIX

AC

wd
5

JJJJ

JJJJ

JJJJ

JJJJ
R2.5

xa
6

JJJJ

JJJJ

JJJJ

JJJJ

xb
6 xc

6

JJJJ

JJJJ

JJJJ

JJJJ
SBR

xd
6

JJJJ

JJJJ

JJJJ

JJJJ

za6
JJJJ

JJJJ

JJJJ

JJJJ

zb6 zc6
JJJJ

JJJJ

JJJJ

JJJJ
MC

zd6
JJJJ

JJJJ

JJJJ

JJJJ

wa
6

JJJJ

JJJJ

JJJJ

JJJJ

wb
6

JJJJJJ

J

J

wc
6

JJJJ

JJJJ

JJJJ

JJJJ

AC

wd
6

JJJJ

JJJJ

JJJJ

JJJJ
R3

xa
7

JJJJ

JJJJ

JJJJ

JJJJ

xb
7

JJJJJJ

J

J

xc
7

JJJJ

JJJJ

JJJJ

JJJJ
SBR

xd
7

JJJJ

JJJJ

JJJJ

JJJJ

za7
JJJJ

JJJJ

JJJJ

JJJJ

zb7
JJJJ

JJJJ

zc7
JJJJ

JJJJ

JJJJ

JJJJ
MC

zd7
JJJJ

JJJJ

JJJJ

JJJJ

wa
7

JJJJ

JJJJ

wb
7

JJJJ

JJJJ

wc
7

JJJJ

JJJJ
MIX

AC

wd
7

JJJJ

JJJJ
R3.5

xa
8

JJJJ

JJJJ

JJJJ

JJJJ

xb
8

JJJJ

JJJJ

JJJJ

JJJJ

xc
8

SBR

xd
8 za8

JJJJ

JJJJ

JJJJ

JJJJ

zb8
JJJJ

JJJJ

JJJJ

JJJJ

zc8

MC

zd8 wa
8

JJJJ

JJJJ

JJJJ

JJJJ

wb
8

JJJJ

JJJJ

JJJJ

JJJJ

wc
8 wd

8

R4

Fig. 14. Classical MITM attack on 4.5-round Haraka-512 with fixed input-outputs,
corresponding here to fixed rate values in the SPHINCS+ Sponge mode. The quantum
attack on 3.5 rounds consists in keeping the same forward list, and making no guesses
in the backward list (which is then of size 1).

45



SB
◦

SR

x0

JJJJJ

J

J

JJ

J

JJJ

J

JJJJ

J

JJJJJ
J

JJJJJJ

JJJJJJJJ

JJJJJJJJ

JJJJJJJJ

JJJJJJJJ

JJJJJJJJ

JJJJJJJJ

JJJJJJJJ

JJJJJJJJ

MC

z0

JJ

JJJJJJJJ

JJJJJJJJ

JJJJJJJJ

JJJJJJJJ

JJJJJJJJ

JJJJJJJJ

JJJJJJJJ

JJJJJJJJ

JJJJJJJJ

JJJJJJJJ

JJJJ
JJJ

J

JJ

J

J

J

AC

w0

IIII
III

IIIII

IIIIII

IIIIII

IIIII

JJJ

J

JJJJ

J

JJJJJ
J

JJJJJJ

JJJJJJJ

JJJJJJJ

JJJJJJJ

JJJJJJJ

JJJJJJ

JJJJJJ

JJJJJ
JJJJ
JJJJJ

J

J

JJ

J
••••••••

•

•

•••••
•••• Rd. 0

SB
◦

SR

x1

IIII
III

IIIII

IIIIII

IIIIII

IIIII

JJJ

J

JJJJ

J

JJJJJ
J

JJJJJJ

JJJJJJJ

JJJJJJJ

JJJJJJJ

JJJJJJJ

JJJJJJ

JJJJJJ

JJJJJ
JJJJ
JJJJJ

J

J

JJ

J
••••••••

•

•

•••••
•••• MC

z1

III
IIII

IIIII

IIIIII

IIIIII

IIIII

JJJJJJJJ

JJJJJJJJ

JJJJJJJJ

JJJJJJJJ

JJJJJJJJ

JJJJJJJJ

JJJJJJJJ

JJJJJJJJ

JJJJJJJJ

JJJJJJJJ

••••

•

•••

•

••

•

•

•••
•••

AC

w1

IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII

JJJ
JJJJ
JJJJ
JJJJ
JJJJ
JJJJJJ JJJJ

JJJ
•••••
••••

•

•••

••

••

•••

•

••••

•

•••••
•

••••••
•

•••••••

••••••

Rd. 1

SB
◦

SR

x2

IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII

JJJ
JJJJ
JJJJ
JJJJ
JJJJ
JJJJJJ JJJJ

JJJ
•••••
••••

•

•••

••

••

•••

•

••••

•

•••••
•

••••••
•

•••••••

••••••

MC

z2

IIII
II
III
IIII

IIIII

IIIIII

IIIIII

IIIII

IIII
III
III

III

JJJJJJJJ

JJJJJJJJ

JJJJJJJJ

JJJJJJJJ

••••••

•••••
•

••••

•

•••

•

••

•

•

•••
•••
••••

•••••

••••••

••••••

AC

w2

IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII

JJJJJ
JJJJJ

JJJJ
JJJJJ

•

••

••

•
••••
•••

Rd. 2

SB
◦

SR

x3

IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII

JJJJJ
JJJJJ

JJJJ
JJJJJ

•

••

••

•
••••
•••

MC

z3

IIIIII

IIIIIII

IIIIIIII

IIIIIII

IIIIIII

IIIIIII

IIIIIII

IIIIIIII

IIIIII
I

IIIII
I

IIII

I

III

I

II

II

I

III
IIII

IIIII

JJJJ

JJJJ

JJJJ

JJJJ
JJJ

••

••

•

•••
•••••

AC

w3

IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII
IIII
III

I

II

I

I

I

I

Rd. 3

SB
◦

SR

x4

IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII
IIII
III

I

II

I

I

I

I

MC

z4IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII

III

I

II

I

I

II
III
IIII

IIIIIIII

IIIIII

IIIIIII

AC

w4

IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII

Rd. 4

SB
◦

SR

x5

IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII

IIIIIIII

MC

z5IIIIIII

IIIIIII

IIIIII
I

IIIII

IIII
III

I

II

I

I

II
I
I
I
I

I
II

I
III

I
IIII

I
IIII

IIIII

IIIIII

AC

w5

JJJJ

J

JJ
J

JJJJJ

JJJ
Rd. 5

SB
◦

SR

x6

JJJJ

J

JJ
J

JJJJJ

JJJ
MC

z6 JJJJJJJJ

JJJJJJJJ

AC

w6

JJJJJJJJ

JJJJJJJJ

Rd. 6

SB
◦

SR

x7

JJJJJJJJ

JJJJJJJJ

JJJJJJJ J

JJJJJJJ J

JJJJJJJ J

JJJJJJJ J

JJJJJJJ J

JJJJJJJ J

MC

z7JJJJJJJJ

JJJJJJJJ

JJJJJJJJ

JJJJJJJJ

JJJJJJJJ

JJJJJJJJ

JJJJJJJJ

JJJJJJJJ

w7

JJJJJJJJ

JJJJJJJJ

JJJJJJJJ

JJJJJJJJ

JJJJJJJJ

JJJJJJJJ

JJJJJJJJ

JJJJJJJJ

Rd. 7

Fig. 15. Quantum attack on Grøstl-512 OT. J: backward, I: forward, •: guessed.

46



B.7 Details on Simpira

We give here more details on our attacks on Simpira. In Figure 16, we give a
depiction of several rounds of different Simpira versions. We emphasize that the
branches are not swapped, contrary to a standard GFN depiction, but that the
round functions are applied in place. In Table 5, we give numerical values for our
partial-preimage attacks on different versions (they were obtained automatically,
by guessing 0 for appropriate internal states and deducing the initial state by
unfolding the equation system).

Attack on Simpira-3. We give the details of our GAD strategy for Simpira-3,
referring to Figure 16 for the state naming. The equation system that we want
to solve is:

S1 ⊕ S3 = Π1(S0), S2 ⊕ S4 = Π2(S3), S0 ⊕ S5 = Π3(S4)

S3 ⊕ S6 = Π4(S5), S4 ⊕ S7 = Π5(S6), S5 ⊕ S8 = Π6(S7)

S6 ⊕ S9 = Π7(S8), S7 ⊕ S10 = Π8(S9), S8 ⊕ S0 = Π9(S10)

S9 ⊕ S12 = Π10(S0), S10 ⊕ S13 = Π11(S12)

This can be simplified by removing all states that intervene in a single equation,
and all equations in which such states intervene. The simplified system is:

S0 ⊕ S5 = Π3(S4), S4 ⊕ S7 = Π5(S6) S5 ⊕ S8, = Π6(S7)

S6 ⊕ S9 = Π7(S8), S7 ⊕ S10 = Π8(S9) S8 ⊕ S0, = Π9(S10)

Here we can XOR three equations to obtain:

Π3(S4)⊕Π6(S7)⊕Π9(S10) = 0 . (16)

Since we can afford to guess two states, we guess S4 = 0 and S7 = 0 and deduce
S10 from this equation. From there, we deduce everything.

Attack on Simpira-4. For 9 rounds of Simpira-4, the simplified system of equa-
tions is:

S0 ⊕ S7 = Π4(S5) S5 ⊕ S8 = Π5(S6) S7 ⊕ S10 = Π7(S8)

S6 ⊕ S11 = Π8(S9) S9 ⊕ S12 = Π9(S10) S8 ⊕ S13 = Π10(S11)

S11 ⊕ S14 = Π11(S12) S10 ⊕ S15 = Π12(S13) S13 ⊕ S16 = Π13(S14)

S15 ⊕ S0 = Π15(S16)

Again, we will sum multiple equations to obtain a sum of Π outputs to zero:

Π4(S5)⊕Π7(S8)⊕Π12(S13)⊕Π15(S16) = 0 . (17)

Since we can afford three guesses, we guess S5 = 0, S8 = 0, S13 = 0 and deduce
S16 from this equation. Then we can deduce everything. In other cases (b = 6, 8),
we can still write a similar equation as Equation 16 and Equation 17. However,
once we have obtained the states that intervene in this equation, we still need
to guess more states to deduce the whole pattern. This is why we observed no
application of this technique on b /∈ {2, 3, 4}.

47



S0 S1

Π1

S2

Π2

S3

Π3

S4

Π4

S5

Π5

S6

S0 S1 S2

Π1

S3

Π2

S4

Π3

S5

Π4

S6

Π5

S7

Π6

S8

Π7

S9

Π8

S10

Π9

S11

Π10

S12

Π11

S13

S0 S1 S2 S3

Π1

S4

Π2

S5

Π3

S6

Π4

S7

Π5

S8

Π6

S9

Π7

S10

Π8

S11

Π9

S12

Π10

S13

Π11

S14

Π12

S15

Π13

S16

Π14

S17

Π15

S18

Π16

S19

Π17

S20

Π18

S21

Fig. 16. Left: 5 rounds of Simpira-2, 11 rounds of Simpira-3; right: 9 rounds of Simpira-4.

48



S0 S1 S2 S3 S4 S5 S6

Π1

S7

Π2

S8

Π3

S9

Π4

S10

Π5

S11

Π6

S12

Π7

S13

Π8

S14

Π9

S15

Π10

S16

Π11

S17

Π12

S18

Π13

S19

Π14

S20

Π15

S21

Π16

S22

Π17

S23

Π18

S24

Π19

S25

Π20

S26

Π21

S27

Π22

S28

Π23

S29

Π24

S30

Π25

S31

Π26

S32

Π27

S33

Π28

S34

Π29

S35

Π30

S36

Π31

S37

Π32

S38

Π33

S39

Π34

S40

Π35

S41

Π36

S42

Π37

S43

Π38

S44

Π39

S45

Π40

S46

Fig. 17. Simpira-7 reduced to 20 calls of the “double-F” function, i.e., appproximately
two thirds of the rounds.

49



Table 5. Results of our attacks on reduced-round Simpira.

x P (x)

b = 2
5 / 15

S0 3ade53a3 2cee6bdc 16557374 7010a5a7 3ade53a3 2cee6bdc 16557374 7010a5a7
S1 b27d466f 1203fe5a dfff326 332fcc48 58f3c4c f6c0b51b 63b33762 d8e98203

b = 3
11 / 21

S0 fdecc3ab 1b3d4dba ce27cee 5fbdb5d5 fdecc3ab 1b3d4dba ce27cee 5fbdb5d5
S1 c9473a98 8ec7bf56 f148e825 2dd45de0 449cef32 1e9f57cc 4cd53ec8 6f9b96ce
S2 1d1fde81 afa8d014 74cb131b 233996ea f6abf7ac 7926e6da 9b483591 6cf418ea

b = 4
9 / 15

S0 fdfe4516 7e74489f 2b7b3cb5 8f746ffd fdfe4516 7e74489f 2b7b3cb5 8f746ffd
S1 bee7e904 15932665 52af84b0 212ee4fa f21c473f 46882da7 14665112 e6e4ba46
S2 79922add 1e0223eb e06609a3 f4ad8be2 a36fc9a1 5c0ffafa e76d263f ddb7d6c3
S3 af0641f3 56e848d0 5495a2e1 a39b31ed 30c00dec bfba5785 4aefa7fb 58a1bc4a

b = 6
9 / 15

S0 9a62829d b2e61776 55f984a8 381a7167 9a62829d b2e61776 55f984a8 381a7167
S1 6c8127af ea711baf 4eb6be1f bc6e39db 942dce98 80f4d39b 8d593ebe 4c631e3d
S2 55d1830f b0e206af 49a2d590 2b4c1dcf 87f98b8c 492ab55 c0d2968f a03f206b
S3 fedac948 2b61071b 4e81311b d3faca97 e4621ae6 bbc60c4a b2ee2e89 563ac027
S4 6dd77dd9 c69564aa c80e247c 702883cc 9f8bac14 95cb4712 2d2cfa24 532dc57d
S5 8de84326 2198b8a2 82fe4b45 56193e25 e6617516 6b5f3e7d eedf944f d2a8e17c

b = 8
9 / 18

S0 56f09a42 bda78227 10b24126 9b0ee87 56f09a42 bda78227 10b24126 9b0ee87
S1 0 0 0 0 f420edd2 7cab9952 95c91718 ddb5afca
S2 a1bc3c59 d1d2509 5a742fb1 f9ba3c33 c5ab6147 51d46b8f bc572752 ee2753fa
S3 5e578355 b0e7b0dc 32b0063f f3c4c5a4 8ab549da df9a794d 112e8ffc 8f7357c8
S4 927f340a 36fa35fc 6bdf63e2 d3d4d9da bef2d57e 2603c774 697966e6 99769599
S5 485d5ace 5038872e ccef1b28 891edaa3 7a5abc7d e7fc7ed2 e389c6c2 27a5168b
S6 c2989e84 705e192e 7ee9d250 c715cc4c 48fd9f81 b990a548 99715be7 1df4ac30
S7 99e62293 3e20db10 25cbeca5 15426c59 e770870e 8b2a0d71 1d2a9ffd affeed5c

Larger b values. For larger values of b, a double-Π function (corresponding to
two rounds of a simple Feistel) is applied on pairs of branches using an X-shaped
pattern that ensures full diffusion, which is repeated three times. An example for
Simpira-7 is shown in Figure 17, where we reduced it to 20 double-Π functions
instead of 33. A simple GAD attack applies when the pattern is applied only
almost twice, so that the first branch intervenes only in three double-Π functions.
In that case, by starting from the middle, we can find in time 1 a value x such
that x ⊕ P (x) is equal to any target in the first branch (and in particular 0).
This is true for any value of b and yields simple attacks on the permutations
reduced to 2/3 of the rounds.

We can note that for b ≥ 14, there always exist trivial “full wrapping” distin-
guishers of complexity at most 2128×12. Indeed, due to the X-shaped structure,
any branch depends at most on 13 values of 128 bits: its initial value, the 6
values it received from the branch on the left, and the 6 values it received from
the branch on the right. Thus, we can compute a fixpoint (if it exists) with the
following trivial strategy: we take lists of possible values for each branch sepa-
rately, so that the input and output value is equal. Each of these lists has size
212×128. We merge these lists pairwise, until we have a list with all the branches.
The list size never increases above 212×128.

This is a simple way of showing that, if one wants to avoid all structural dis-
tinguishers on a GFN permutation with b branches, it should have at least O

(
b2
)

round functions. It also highlights the fact that there exists MITM distinguish-

50



ers on GFN permutations that are strictly stronger than GAD distinguishers,
although this is not the case of the practical examples studied in this paper.

B.8 Details on Sparkle

In this section, we give the complete paths and strategies of our GAD distinguish-
ers on Sparkle variants. These distinguishers are practical, while the generic
complexity is 264 in all cases (we have implemented them and example results
are given in Table 6). However, we emphasize that they do not lead immediately
to attacks on sponge-based AEAD and hashing [7]. Notably, the fixed input and
output branches are not placed on the same part (rate or capacity) of the per-
mutation. Equivalently, we skip the last branch permutation, and this essentially
allows to append one step for free.

Our cell-based representation of Sparkle is exemplified in Figure 18. Recall
that each cell with i > 1 input edges and 1 output edge is an i-XOR cell (in-
cluding the cell LX for the linear function L, which behaves as such). Each cell
with 1 input edge and i > 1 output edges is an i-branching cell. Otherwise these
are dummy cells.

The ARX-boxes and round constant additions are applied at the beginning
of a round, so we use Sij to denote the value after the ARX box at step i in
branch j. In all cases, we can also apply another layer of ARX-boxes in the end
(0.5 round) for free.

GAD Distinguisher on 4-step Sparkle-256. The path of our practical 4-step GAD
distinguisher on Sparkle-256 is represented in Figure 18. The attack starts by
guessing the 4 values that we are allowed: S0

0 , S
1
0 , S

1
1 , S

3
0 . We can fix the input and

output values to 0. Then, we propagate these guesses to obtain S2
1 , s

2
2, S

2
3 , and

finally, T 2
3 = S2

3 ⊕S2
1 . Since we know S3

0 , we can deduce the value of L(S2
0 ⊕S2

1),
which is the output of LX2/LB2. We invert L, and since we know S2

1 , we can
deduce S2

0 . We have then the complete state before Step 2, which finishes the
attack. Note that in this 4-step distinguisher, there always exists a single solution
regardless of the 4 guesses (similarly as in our attacks on Simpira). Note that
this path can be trivially adapted for Sparkle-512, in which case we will have
two branches fixed in input and output.

GAD Distinguisher on 4-step Sparkle-384. The distinguisher on Sparkle-384
is similar, and represented in Figure 19. Similarly as before, we fix S0

0 in input
and S3

1 in output. The 4 other internal guesses are S1
0 , S

1
1 , S

1
2 , S

2
0 . Each choice for

these 6 branches admits exactly one solution. We compute directly S1
3 , S

2
2 , T

2
5 ,

and match with S3
1 to obtain the value of L(S2

0 ⊕S2
1 ⊕S2

2 . From there we deduce
S2
1 , and we have a complete state.

Improved GAD Attack on Sparkle-512. Though our model does not find any
attack on 5 steps of Sparkle-512, we found (by hand) a better strategy which
combines GAD and SAT solving. It relies on the fact that the ARX-box of

51



HS0 S1 S2 S3

LX0 T 2 T 3

LB0

HV 0 V 1 V 2 V 3

S1
0 S1

1 HS1
2 S1

3

LX1 HT 1
2 T 1

3

LB1

V 1
0 V 1

1 HV 1
2 V 1

3

S2
0 HS2

1 S2
2 S2

3

LX2 T 2
2 HT 2

3

LB2

V 2
0 V 2

1 V 2
2 V 2

3

NS3
0 S3

1 S3
2 S3

3

LX3 T 3
2 T 3

3

LB3

NV 3
0 V 3

1 V 3
2 V 3

3

Fig. 18. Cell-based representation of Sparkle-256 and path of a 4-step GAD attack.

52



S0
0 S0

1 S0
2 S0

3 S0
4 S0

5

LX0 T 0
3 T 0

4 T 0
5

LB0

V 0
0 V 0

1 V 0
2 V 0

3 V 0
4 V 0

5

S1
0 S1

1 S1
2 S1

3 S1
4 S1

5

LX1 T 1
3 T 1

4 T 1
5

LB1

V 1
0 V 1

1 V 1
2 V 1

3 V 1
4 V 1

5

S2
0 S2

1 S2
2 S2

3 S2
4 S2

5

LX2 T 2
3 T 2

4 T 2
5

LB2

V 2
0 V 2

1 V 2
2 V 2

3 V 2
4 V 2

5

S3
0 S3

1 S3
2 S3

3 S3
4 S3

5

LX3 T 3
3 T 3

4 T 3
5

LB3

V 3
0 V 3

1 V 3
2 V 3

3 V 3
4 V 3

5

Fig. 19. Cell-based representation of Sparkle-384 and path of a 4-step GAD attack.

53



S0
0 S0

1 S0
2 S0

3 S0
4 S0

5 S0
6 S0

7

LX0 T 0
4 T 0

5 T 0
6 T 0

7

LB0

V 0
0 V 0

1 V 0
2 V 0

3 V 0
4 V 0

5 V 0
6 V 0

7

S1
0 S1

1 S1
2 S1

3 S1
4 S1

5 S1
6 S1

7

LX1 T 1
4 T 1

5 T 1
6 T 1

7

LB1

V 1
0 V 1

1 V 1
2 V 1

3 V 1
4 V 1

5 V 1
6 V 1

7

S2
0 S2

1 S2
2 S2

3 S2
4 S2

5 S2
6 S2

7

LX2 T 2
4 T 2

5 T 2
6 T 2

7

LB2

V 2
0 V 2

1 V 2
2 V 2

3 V 2
4 V 2

5 V 2
6 V 2

7

S3
0 S3

1 S3
2 S3

3 S3
4 S3

5 S3
6 S3

7

LX3 T 3
4 T 3

5 T 3
6 T 3

7

LB3

V 3
0 V 3

1 V 3
2 V 3

3 V 3
4 V 3

5 V 3
6 V 3

7

S4
0 S4

1 S4
2 S4

3 S4
4 S4

5 S4
6 S4

7

LX4 T 4
4 T 4

5 T 4
6 T 4

7

LB4

V 4
0 V 4

1 V 4
2 V 4

3 V 4
4 V 4

5 V 4
6 V 4

7

Fig. 20. GAD attack on 5 steps of Sparkle-512.

54



Sparkle is not a random function, and some equations between inputs and
outputs of ARX-boxes can be solved efficiently using a SAT solver.

We start with the following guesses: the target value in one input and one
output branch fixes S0

3 and S4
1 . Internally, we guess S2

4 = 0 and S2
5 = c3 where

c3 is the round constant XORed to the branch 0 at the beginning of step 3. (In
general, we would need S2

4 ⊕ S2
5 = c3). We also guess L(S1

0 ⊕ S1
1 ⊕ S1

2 ⊕ S1
3) = 0

and L(S2
0⊕S2

1⊕S2
2⊕S2

3) = 0, which allows to simplify two linear layers into mere
XORs of branches. Finally, we guess S2

2 = S2
3 that we set to a random value. We

have now consumed all our degrees of freedom. From L(S2
0 ⊕S2

1 ⊕S2
2 ⊕S2

3) = 0,
we deduce that L(S2

0 ⊕ S2
1) = 0 =⇒ S2

0 = S2
1 , which will be important in what

follows.
Our guesses allow to deduce all the cells highlighted in Figure 20 (the colors

here only emphasize the subsequent steps). In particular, at step 2, we obtain
S2
2 to S2

7 and at step 3 we obtain S3
1 , S

3
2 and L(S3

0 ⊕S3
1 ⊕S3

2 ⊕S3
3), which allows

to deduce S3
0 ⊕ S2

3 .
At this point, we have an equation over S := S2

0 = S2
1 : S3

0 ⊕ S2
3 = C for

some known constant C, which turns into: A0(S)⊕ A3(S) = C, where A is the
ARX-box, thanks to our guesses of S2

4 , S
2
5 , S

2
2 and S2

3 . Using the CryptoMinisat
5 solver [53], we can find solutions to this equation (when there are) in less than
two minutes. Note that we did not manage to solve in practice an equation of
the form A0(S) ⊕ A3(S ⊕ C ′) = C, but it can be certainly solved in less time
than 264 evaluations of Sparkle.

Having the two inputs of the ARX-boxes equal essentially allows to bypass
the first round of modular addition, out of 4, because this modular addition
is applied before the constant addition which makes A0 different from A3. So
essentially the equation A0(S) ⊕ A3(S) = C becomes A′0(S′) ⊕ A′3(S′) = C for
ARX-boxes reduced to three rounds, and three modular additions, out of 4, and
this makes the system easy to solve.

Discussion. Solving an equation with a single ARX-box layer allows to reach one
more step than the simple GAD distinguisher. After trying to extend the path
by one round, we found that we had to solve an equation with two nested ARX-
boxes, and this was impractical. Besides, we tried a similar 5-step strategy for
Sparkle-384, but we fell down on an equation combining L and the ARX-box,
which we have not been able to solve practically.

Though the situation is different from Simpira, the conclusion is the same:
there are improved GAD attacks that are not captured by the merging-based
MITM strategy. For Simpira, these attacks used combinations of XORs, and here,
they use the specific implementation of the round functions.

C Partial Preimage Attack on Haraka-512 v2

As we have seen in Section 6, a full MITM preimage attack of impractical com-
plexity, but with sufficiently low memory, can sometimes be turned into a partial
preimage attack of practical complexity. In this section, we demonstrate it with

55



Table 6. Results of our distinguishers on reduced-round Sparkle.

Sparkle-256 (4 steps) Sparkle-384 (4 steps) Sparkle-512 (5 steps)

x

0
99f01957026ed90d
73e1a8153929092a
27459efe4cc6fe40

0
35a978aeac9d93c4
fee2080ed7f418e
827e7a6fb38909fe
4b5470dd1716eefd
84657d8e3b91b230

39e36476cd60e20c
ffa3eb06e05890e7
67c29622ea41092

0
4b264d04c373b44e
2287af09b84165cb
3f20785e81eb0cf9
46c58a3878ca2dd6

P (x)

400633cc6a7e9a6b
3059267edaa72517

0
caffbf326212b13c

aceb511cd27086ab
d17be8d7c0d28c25
2cb5a16ddba4128f
96799bd2f138d3b

0
7f3ff6c50df1375a

c3715a01706ced14
281a0b6a0b773407
9e2df786ee3614b0
ddb4f60a409ada99
4eb1230a5ac01145

0
5f04a7b2c809dfd8
7f4e94ca6d0facf4

a partial preimage attack on the full Haraka-512 v2. The attack has time and
memory complexity about 232, and finds a 64-bit partial preimage, i.e., an input
x such that trunc(π(x)⊕x) has 64 bits set to an arbitrary value. We implemented
it, and our unoptimized C++ code can find a result in a few hours on a laptop
with 8GB of RAM. Below is an example:

Input as an internal state:

e7 d4 9f 2d 16 f6 53 65 cd 99 33 01 d5 2a 66 a1
3f 05 c4 94 7a 61 37 17 6b 8c 47 1f 1f 10 08 cc
2e 53 f6 6a 5e 83 a9 6d f0 7a b2 b9 69 a4 45 f4
b2 5c 0b 93 7a ee e2 c6 17 52 b3 74 e9 e4 79 f3

Output bytes (256 bits)
4d 35 de 97 63 ba c0 f0 4c dc 64 6b d1 e6 19 15
00 00 00 00 cb 51 f8 2b 9d 3e 50 e1 00 00 00 00

The zero bytes correspond to two columns of the internal state. They could
be set to any arbitrary value instead.

Path of the Attack. We use the path of Figure 21. It is different than the one
from Section 6, but if was also found using our tool. It corresponds to a full
preimage attack on the 5-round version of Haraka-512 that would run in time
2224. There are a total of 56 bytes which are globally fixed:

• 8 bytes of linear relations between za2 and wa2 , through the MC operation of
Round 1, that we explicit in Equation 18;

56



• 48 bytes of global guesses in x3, x4 and x5.

In our implementation, we assigned 0 to each of these bytes, except a single
degree of freedom in the linear relations in order to re-run the attack with sev-
eral choices. The backward, forward and merged lists are of size 232. Each for-
ward computation path is determined by 4 bytes of wa2 , which we choose to be
wa2 [1, 6, 11, 12]. All the other I forward bytes in wa2 can be deduced from them
by Equation 18. Each backward computation path is determined by the 4 bytes
xc5[0, 5, 10, 15].

Correctness. The 232 × 232 = 264 pairs of forward and backward paths define
a set of 264 initial states x0. We can expect that one of them will be such that
it matches with its image π(x0) in the 8 bytes corresponding to the two J
backward columns in wc9. By computing backwards the last round, we see that
the 8 bytes in wc8 in the closed path match the 8 bytes in wc8 for the actual path.
In other words, this solution state is such that zc8, obtained from the forward
path, and wc8, obtained from the backward path, satisfy the 4 bytes of linear
relations through MC of round 4.

The strategy is then simple. We define two functions:

• From 4 bytes f0, f1, f2, f3, Forward returns the value values of 4 bytes
which will determine the matching through MC at round 4.
• From 4 bytes b0, b1, b2, b3, Backward does the same for the backward path.

We must then produce claws between Forward and Backward, i.e., pairs of
forward and backward paths that match at round 4. We are ensured that the
solution, if there is one, will be among these pairs. In our code, we created a
table of size 229 for the forward paths (due to limitations of RAM) and accessed
this table afterwards to look for matching pairs.

Algorithms. We detail the procedure Forward in Algorithm 1, the procedure
Backward in Algorithm 2, and the full attack in Algorithm 3. Note that once
the forward and backward degrees of freedom have been set, computing the
initial state x0 is a trivial matter, since we can compute x5. The technicality
in the definitions of the two functions lies in the equations of matching through
MC. We use t0, . . . , t7 to denote the 8 bytes of global guesses through MC in
round 2, where t0, t1 are from column 0, t2, t3 from column 1, etc. More precisely,
we have:

t0 := 9 · wa2 [0] + 14 · wa2 [1] + 11 · wa2 [2] = za2 [1] + 13 · wa2 [3]
t1 := 11 · wa2 [0] + 13 · wa2 [1] + 9 · wa2 [2] = za2 [3] + 14 · wa2 [3]
t2 := 11 · wa2 [5] + 13 · wa2 [6] + 9 · wa2 [7] = za2 [4] + 14 · wa2 [4]
t3 := 9 · wa2 [5] + 14 · wa2 [6] + 11 · wa2 [7] = za2 [6] + 13 · wa2 [4]
t4 := 9 · wa2 [8] + 11 · wa2 [10] + 13 · wa2 [11] = za2 [9] + 14 · wa2 [9]
t5 := 11 · wa2 [8] + 9 · wa2 [10] + 14 · wa2 [11] = za2 [11] + 13 · wa2 [9]
t6 := 14 · wa2 [12] + 11 · wa2 [13] + 9 · wa2 [15] = za2 [12] + 13 · wa2 [14]
t7 := 13 · wa2 [12] + 9 · wa2 [13] + 11 · wa2 [15] = za2 [14] + 14 · wa2 [14]

(18)

57



xa
0 xb

0 xc
0

JJJJ

JJJJ

JJJJ

JJJJ
SBR

xd
0

JJJJ

JJJJ

JJJJ

JJJJ

za0 zb0 zc0
JJJJ

JJJJ

JJJJ

JJJJ
MC

zd0
JJJJ

JJJJ

JJJJ

JJJJ

wa
0 wb

0

J
J J
J

wc
0

JJJJ

JJJJ

JJJJ

JJJJ

AC

wd
0

JJJJ

JJJJ

JJJJ

JJJJ
R0

xa
1 xb

1

J
J J
J

xc
1

JJJJ

JJJJ

JJJJ

JJJJ
SBR

xd
1

JJJJ

JJJJ

JJJJ

JJJJ

za1 zb1
JJJJ

zc1
JJJJ

JJJJ

JJJJ

JJJJ
MC

zd1
JJJJ

JJJJ

JJJJ

JJJJ

wa
1

JJJJ

wb
1

JJJJ

JJJJ

wc
1

JJJJ

JJJJ

JJJJ

JJJJ
MIX

AC

wd
1

JJJJ

JJJJ

JJJJ

JJJJ
R0.5

xa
2

JJJJ

JJJJ

xb
2

JJJJ

JJJJ

JJJJ

JJJJ

xc
2

JJJJ

JJJJ

JJJJ

JJJJ
SBR

xd
2

JJJJ

JJJJ

JJJJ

JJJJ

za2

J
J

J
JJJ

J
J

zb2
JJJJ

JJJJ

JJJJ

JJJJ

zc2
JJJJ

JJJJ

JJJJ

JJJJ
MC

zd2
JJJJ

JJJJ

JJJJ

JJJJ

wa
2

IIIIII

I
II

II
I

J
J

J
J

wb
2

JJJJ

JJJJ

JJJJ

JJJJ

wc
2

JJJJ

JJJJ

JJJJ

JJJJ

AC

wd
2

JJJJ

JJJJ

JJJJ

JJJJ
R1

xa
3

IIIIII

I
II

II
I

J
J

J
J

xb
3

J

J

JJJJJJ
••••

•

•

••
xc
3

J
JJ

JJ
J

JJJJJJ
•
•

•
•

SBR

xd
3

JJ

J

J

JJJJ
••••••

•

•

za3
IIII

IIII

IIII

JJJJ

zb3••••

••••

JJJJ

JJJJ

zc3
••••

JJJJ

JJJJ

JJJJ
MC

zd3••••

••••

JJJJ

JJJJ

wa
3

IIII

IIII

IIII

JJJJ

wb
3••••

••••

JJJJ

JJJJ

wc
3

••••

JJJJ

JJJJ

JJJJ
MIX

AC

wd
3••••

••••

JJJJ

JJJJ
R1.5

xa
4

IIII

••••

••••

••••

xb
4

IIII

••••

••••

••••

xc
4

JJJJ

JJJJ

JJJJ

JJJJ
SBR

xd
4

IIII

••••

••••

••••

za4
IIII

IIII

IIII

IIII

zb4
IIII

IIII

IIII

IIII

zc4
JJJJ

JJJJ

JJJJ

JJJJ
MC

zd4
IIII

IIII

IIII

IIII

wa
4

IIII

IIII

IIII

IIII

wb
4

IIII

IIII

IIII

IIII

wc
4

JJJJ

JJJJ

JJJJ

JJJJ

AC

wd
4

IIII

IIII

IIII

IIII
R2

xa
5

IIII

IIII

IIII

IIII

xb
5

IIII

IIII

IIII

IIII

xc
5

JJJJ
•••

•
••

••
•

•••
SBR

xd
5

IIII

IIII

IIII

IIII

za5
IIII

IIII

IIII

IIII

zb5
IIII

IIII

IIII

IIII

zc5
IIII

IIII

IIII
MC

zd5
IIII

IIII

IIII

IIII

wa
5

IIII

IIII

IIII

IIII

wb
5

IIII

IIII

IIII

IIII

wc
5

IIII

IIII

IIII
MIX

AC

wd
5

IIII

IIII

IIII

IIII
R2.5

xa
6

IIII

IIII

IIII

IIII

xb
6

IIII

IIII

IIII

xc
6

IIII

IIII

IIII

IIII
SBR

xd
6

IIII

IIII

IIII

IIII

za6
IIII

IIII

IIII

IIII

zb6

III

III
II
I

I
II

zc6
IIII

IIII

IIII

IIII
MC

zd6
IIII

IIII

IIII

IIII

wa
6

IIII

IIII

IIII

IIII

wb
6 wc

6

IIII

IIII

IIII

IIII

AC

wd
6

IIII

IIII

IIII

IIII
R3

xa
7

IIII

IIII

IIII

IIII

xb
7 xc

7

IIII

IIII

IIII

IIII
SBR

xd
7

IIII

IIII

IIII

IIII

za7
IIII

IIII

IIII

IIII

zb7 zc7
IIII

IIII

IIII

IIII
MC

zd7
IIII

IIII

IIII

IIII

wa
7

IIII

IIII

IIII

IIII

wb
7 wc

7

IIII

IIII

IIII

IIII
MIX

AC

wd
7

IIII

IIII

IIII

IIII
R3.5

xa
8 xb

8 xc
8

IIII

IIII

IIII
SBR

xd
8 za8 zb8 zc8

III
II
I

I
II
III

MC

zd8 wa
8 wb

8 wc
8

JJ

J

J

JJJJ

AC

wd
8

R4

xa
9 xb

9 xc
9

JJ

J

J

JJJJ
SBR

xd
9 za9 zb9 zc9

JJJJ

JJJJ
MC

zd9 wa
9 wb

9 wc
9

JJJJ

JJJJ
MIX

AC

wd
9

R4.5

Fig. 21. Path of our practical attack on Haraka-512 v2. J: backward, I: forward,
•: guessed

58



by the formulas of the inverse MC operation, where + and · denote the addition
and multiplication in the finite field (· is precomputed with lookup tables). We
also use RCar [i] to denote the value of the round constant added to the byte
i in substate a (resp. b, c, d) after the MC operation of round r. The constant
addition happens at the end of each half-round, and before the MIX operation
when there is one. Each pair of equations gives a linear system on two bytes
of wa2 . By inverting this system, and adding the next round constant, we can
express 8 bytes in xa3 [0] depending solely on wa2 [1, 6, 11, 12]:

xa3 [0] = 201 · t0 + 68 · t1 + 203 · wa2 [1] +RCa2 [0]

xa3 [2] = 68 · t0 + 201 · t1 + 71 · wa2 [1] +RCa2 [2]

xa3 [5] = 68 · t2 + 201 · t3 + 203 · wa2 [6] +RCa2 [5]

xa3 [7] = 201 · t2 + 68 · t3 + 71 · wa2 [6] +RCa2 [7]

xa3 [8] = 201 · t4 + 68 · t5 + 71 · wa2 [11] +RCa2 [8]

xa3 [10] = 68 · t4 + 201 · t5 + 203 · wa2 [11] +RCa2 [10]

xa3 [13] = 68 · t6 + 201 · t7 + 71 · wa2 [12] +RCa2 [13]

xa3 [15] = 201 · t6 + 68 · t7 + 203 · wa2 [12] +RCa2 [15]

(19)

In the attack, the valid pairs are those for which the tuples of Equation 20
and Equation 22 coïncide, which is the case if w8 = MC(z8), by definition of
MC (and so, this will happen for the solution state).

Algorithm 1 Forward computation from 4 bytes.
Global: t0, . . . , t7 and other global guesses
Input: 4 bytes for wa

2 [1, 6, 11, 12]
Output: 4 bytes for matching in round 4

1: procedure Forward(f0, f1, f2, f3)
. Deduction of all forward bytes in xa3

2: wa
2 [1, 6, 11, 12] = f0, f1, f2, f3

3: Compute xa3 [1, 6, 11, 12] by xa3 [i] = wa
2 [i] +RCa[i]

4: Compute xa3 [0, 2, 5, 7, 8, 10, 13, 15] by Equation 19
5: Include the guesses to complete the state x3

. From now on, the states are only partially known, but we can compute
complete rounds for simplicity

6: Compute x4, include the global guesses
7: Compute x5, include the global guesses
8: Compute zc8
9: Return the 4-byte tuple:(

7 · zc8[0] + zc8[1] + 7 · zc8[2], zc8[4] + 2 · zc8[5] + 3 · zc8[7],
7 · zc8[8] + 7 · zc8[10] + zc8[11], 3 · zc8[13] + zc8[14] + 2 · zc8[15]

)
(20)

10: end procedure

59



Algorithm 2 Backward computation from 4 bytes.
Global: t0, . . . , t7 and other global guesses
Input: 4 bytes for xc5[0, 5, 10, 15]
Output: 4 bytes for matching in round 4

1: procedure Backward(b0, b1, b2, b3)
2: xc5[0, 5, 10, 15] = b0, b1, b2, b3
3: Complete xc5 with the global guesses
4: Compute backwards until w2

. At this point, we must deduce the 8 bytes in za2 from the precomputed relations
5: Deduce the 8 bytes in za2 as follows:

za2 [1] = t0 + 13 · wa
2 [3]

za2 [3] = t1 + 14 · wa
2 [3]

za2 [4] = t2 + 14 · wa
2 [4]

za2 [6] = t3 + 13 · wa
2 [4]


za2 [9] = t4 + 14 · wa

2 [9]

za2 [11] = t5 + 13 · wa
2 [9]

za2 [12] = t6 + 13 · wa
2 [14]

za2 [14] = t7 + 14 · wa
2 [14]

(21)

6: Compute backwards until wc
8

7: Return the 4-byte tuple:(
2 ·wc

8[2] + 3 ·wc
8[3], wc

8[4] +wc
8[7], 2 ·wc

8[8] + 3 ·wc
8[9], wc

8[13] +wc
8[14]

)
(22)

8: end procedure

Algorithm 3 Full attack. By setting M smaller than 232, we cannot expect a
solution to always exist, and so we will run the attack several times.

Global: t0, . . . , t7 and other global guesses
Global: memory parameter M ≤ 232

1: Initialize a table T of 232 buckets indexed by 4-byte values
2: for all i = 0, . . . ,M − 1 do
3: Parse i as a 4-byte tuple f0, f1, f2, f3
4: m0,m1,m2,m3 ← Forward(f0, f1, f2, f3)
5: Add (f0, f1, f2, f3) to the bucket T [m0,m1,m2,m3]
6: end for
7: for all i = 0, . . . , 232 − 1 do
8: Parse i as a 4-byte tuple b0, b1, b2, b3
9: m0,m1,m2,m3 ← Backward(b0, b1, b2, b3)
10: for all Entry (f0, f1, f2, f3) in T [m0,m1,m2,m3] do

. There is a match
11: Recompute the whole state x0 and π(x0)
12: if π(x0)⊕ x0 is zero in columns 8 and 13 then

. Note that these two columns are kept during the truncation, so
the result is indeed observed in the actual Haraka hash function, and not only the
internal permutation.

13: Return x0
14: end if
15: end for
16: end for

60


	Simplified MITM Modeling for Permutations: New (Quantum) Attacks  

