
NanoGRAM: Garbled RAM with Õ(logN) Overhead

Andrew Park Wei-Kai Lin Elaine Shi*

Carnegie Mellon University

Abstract

We propose a new garbled RAM construction called NanoGRAM, which achieves an amor-
tized cost of Õ(λ·(W logN+log3N)) bits per memory access, where λ is the security parameter,

W is the block size, and N is the total number of blocks, and Õ(·) hides poly log log factors.

For sufficiently large blocks where W = Ω(log2N), our scheme achieves Õ(λ ·W logN) cost per
memory access, where the dependence on N is optimal (barring poly log log factors), in terms
of the evaluator’s runtime. Our asymptotical performance matches even the interactive state-
of-the-art (modulo poly log log factors), that is, running Circuit ORAM atop garbled circuit,
and yet we remove the logarithmic number of interactions necessary in this baseline. Further-
more, we achieve asymptotical improvement over the recent work of Heath et al. Our scheme
adopts the same assumptions as the mainstream literature on practical garbled circuits, i.e.,
circular correlation-robust hashes or a random oracle. We evaluate the concrete performance of
NanoGRAM and compare it with a couple baselines that are asymptotically less efficient. We
show that NanoGRAM starts to outperform the näıve linear-scan garbled RAM at a memory
size of N = 29 and starts to outperform the recent construction of Heath et al. at N = 213.

Finally, as a by product, we also show the existence of a garbled RAM scheme assuming only
one-way functions, with an amortized cost of Õ(λ2 · (W logN + log3N)) per memory access.
Again, the dependence on N is nearly optimal for blocks of size W = Ω(log2N) bits.

1 Introduction

Garbled circuits, originally proposed by Yao [Yao86, Yao82], is a cryptographic technique for two
parties to perform secure computation over their private data in two rounds. At a high level, a
garbler can garble some computation expressed as a circuit as well as the inputs. An evaluator who
obtains the garbled circuit and garbled inputs can securely evaluate the function over the inputs,
resulting in garbled outputs that can only be decoded using the garbler’s secret key. The evaluator
learns nothing about the garbled inputs or outputs. Subsequently, numerous works have focused on
making garbled circuits increasingly more practical [Yao86,Yao82,KS08,CKKZ12,App13,KMR14,
ZRE15,RR21,HK21b,HK20,HK21a,HKO21]. In practice, however, computations are expressed in
the Random Access Machine (RAM) model which is a mismatch for the circuit model. Converting
RAM programs to circuits in general incur polynomial overhead in the RAM’s space and time,
making it prohibitive in practice especially when the computation involves big data. To avoid
this expensive RAM-to-circuit conversion overhead, the elegant work of Lu and Ostrovsky [LO13]
suggested a new abstraction called garbled RAM, which aims to garble a RAM program directly
without converting it to a circuit. From a theoretical perspective, the goal of garbled RAM is
to garble a program incurring only poly(λ, logN) overhead where λ is the security parameter and

*Author ordering is randomized.

1



Table 1: Comparison with prior works, where Sλ denotes the circuit size of the PRF that outputs
λ bits, and CCR hash is Circular Correlation-Robust hash. See Appendix B and C for details.

Assumption Communication (bits) Blackbox

Lu and Ostrovsky [LO13] Circular GCa Õ(λSλW log2N) No

Hazay and Lilintal [HL20] OWF O(λSλ · (W logN + λ log2N + log3N) No

Garg et al. [GLO15] OWF Õ
(
λ2 · (W log4N + log6N)

)
Yes

Heath et al. [HKO21] CCR hashes O
(
λ · (W log2N + log4N)

)
Yes

OWFb O
(
λ2 · (W log2N + log4N)

)
Yes

This work CCR hashes Õ
(
λ · (W logN + log3N)

)
Yes

OWF Õ
(
λ2 · (W logN + log3N)

)
Yes

a. Circularly secure garbled circuit, see [GHL+14].
b. This is not documented in their paper, but it is a standard method to tweak their scheme.

N denotes the space of the RAM. Since the original work of Lu and Ostrovsky [LO13], a line of
works [GHL+14,GLO15,LO17,HKO21] have focused on improving garbled RAM constructions.

With the exception of the most recent work by Heath et al. [HKO21], prior works on garbled
RAM [GHL+14, GLO15, LO17] did not care about the poly factor in the poly(λ, logN) overhead,
let alone concrete performance. Nonetheless, since garbled RAM was originally motivated by
the need to speed up garbled random-access computation on big data, clearly, our dream is to
make garbled RAM practical some day. The very recent work of Heath et al. [HKO21] took
a pioneering step towards this dream: they constructed a garbled RAM scheme that achieves
O(λ · (W log2N + log4N)) overhead where W denotes the block size. Specifically, when the block
size W = Ω(log2N), their scheme achieves O(λ · W · log2N) overhead. Their scheme assumes
the existence of a circular correlation-robust hash or a random oracle — the same assumptions
as the mainstream practical garbled circuit literature, including FreeXOR [KS08, CKKZ12] and
subsequent improvements [KMR14,ZRE15,RR21].

As a baseline of comparison, imagine that we actually allowed interaction. In this case, the state-
of-the-art (for moderately large data) is running the Circuit ORAM algorithm [WCS15] on top of
an efficient garbled circuit implementation. In this case, the overhead would be O(λ · (W logN +
log3N)), which is a logarithmic factor smaller than that of Heath et al. [HKO21]. In this paper,
we ask the following natural question:

Can we have a (non-interactive) garbled RAM scheme whose asymptotical performance is com-
petitive to the interactive state-of-the-art, that is, running Circuit ORAM on top of garbled
circuits?

Our results and contributions. We answer the above question affirmatively. Following the
elegant work of Heath et al. [HKO21], we take another significant step forward towards the dream
of making garbled RAM practical. Concretely, we show a new garbled RAM construction called
NanoGRAM, that incurs Õ

(
λ·(W logN+log3N)

)
overhead where Õ(·) hides poly log log factors. In

comparison with Heath et al. [HKO21], we save almost a logarithmic factor. Our scheme makes the
same assumptions as Heath et al. [HKO21] as well as the standard literature on efficient garbled
circuits [KS08, CKKZ12, KMR14, ZRE15, RR21], i.e., either assuming circular correlation-robust
hashes or the random oracle model. Further, our garbled RAM construction is blackbox in the sense
that it does not require garbling the circuit of some cryptographic primitive such as a pseudorandom
function (PRF).

2



Theorem 1.1 (Garbled RAM from circular correlation-robust hashes). Assume circular correlation-
robust hashes or the random oracle model. There is a blackbox garbled RAM scheme where each
memory access incurs an amortized cost of Õ

(
λ · (W logN + log3N)

)
where λ is the security pa-

rameter, W is the block size, and N is the total number of blocks.
As a direct corollary, if W = Ω(log2N), then our garbled RAM scheme achieves Õ(λ ·W · logN)

amortized cost per memory access.

Modulo the poly log log factors, we believe that there may be some barriers for further improving
our asymptotical results for blackbox garbled RAMs1. First, for block sizes W = Ω(log2N), our
scheme has optimal dependence on N (barring poly log log factors) due to well-known ORAM lower
bounds [GO96,Gol87,LN18]. Second, for small block sizes, any further asymptotical improvement
would likely imply a statistically secure ORAM that breaks the O(log2N) barrier — this is arguably
the biggest open problem in the ORAM line of work, and no progress has been made for a long
time2. Although computationally secure ORAMs [PPRY18,AKL+20] are a logarithmic factor more
efficient than statistically secure ones, so far we do not know how to use computationally secure
ORAM techniques in blackbox garbled RAMs, i.e., without having to garbled the PRF employed
by the ORAM. Third, as mentioned, even when allowing interactions, we do not know any scheme
that performs asymptotically better than the Circuit-ORAM-over-garbled-circuit baseline.

Our work also gives rise to a garbled RAM scheme from OWF but it incurs an extra λ factor
in cost, as stated in the following corollary:

Corollary 1.2 (Garbled RAM from one-way functions). Assume the existence of one-way func-
tions. There exists a garbled RAM scheme that achieves Õ

(
T · λ2 · (log3N +W logN)

)
amortized

cost per memory access, where Õ(·) hides poly log log λ factors.
In particular, for large enough blocks W = Ω(log2N), the resulting garbled RAM incurs Õ

(
T ·

λ2 ·W logN)
)

amortized cost per memory access.

Table 1 compares our asymptotical result with prior garbled RAM works. Besides those listed
in the table, Gentry et al. [GHL+14] also propose a garbled RAM scheme from one-way function
and identity-based encryption with poly-logarithmic cost. Additionally, they also propose a garbled
RAM scheme from one-way function only but the asymptotical cost is N ε for some constant ε ∈
(0, 1). We did not include it in the table because the result is subsumed by Garg et al. [GLO15].

Concrete performance. In Section 8, we suggest several practical optimizations to our garbled
RAM scheme described in Theorem 1.1. We developed a simulator for our garbled RAM scheme
with these suggested optimizations. Our simulation results show that we break even with the näıve
linear scan GRAM at about N = 29 memory size, and we start to outperform the prior work
EpiGRAM [HKO21] at about N = 213 memory size.

2 Technical Roadmap

2.1 Background

Encodings. We will use the following forms of encodings.

1Although using indistinguishability-based obfuscation, we can compress the size of the garbled RAM [CCC+16,
CH16,CCHR16], these techniques do not save the evaluator’s runtime in comparison with garbled RAM.

2Garbled RAM only needs an ORAM in a relaxed model where we do not charge the cost of pre-processing, but
even in this relaxed model, it remains an open question how to construct a o(log2N) statistical ORAM.

3



� Garbling. Suppose we choose some secret key sk = ∆ = {0, 1}λ where λ is the security parameter.
Suppose every wire, which carries one bit, is assigned a label (also called a language) L ∈ {0, 1}λ.
The garbling of a bit b ∈ {0, 1} on this wire, denoted {{b}}, is computed as {{b}} = ∆ · b⊕L. This
encoding approach was first proposed in the elegant Free XOR work [KS08]. For a vector of bits
x ∈ {0, 1}k, we use {{x}} to mean the garbling of each bit one by one.

� Sharing. For efficiency purposes, we also adopt another form of encodings called sharings [HKO21]
that support only restricted forms of computation to be elaborated later. Given a random label
(also called a language) L ∈ {0, 1}k, we can create a sharing JxK of a k bit string x ∈ {0, 1}k,
that is, JxK = x⊕ L.

For the time being, the reader may imagine that all encodings are in the form of garblings. We
will explain how to use sharings to improve the efficiency later.

The language translation problem. In a garbled circuit scheme, every garbled gate essentially
performs some garbled computation over the garbled input wires, the computation result is encoded
using the language of the output wires. Since the wiring in a circuit is static, the garbler knows
the mapping between each gate’s output and input languages a-priori, and can prepare the garbled
truth table for each gate accordingly.

As prior works observed [LO13,GHL+14,GLO15,LO17,HKO21], in a garbled RAM scheme, the
key challange is that of a dynamic language translation for a memory read or write. Take memory
read for example, and henceforth, we also refer to each memory word as a block. Suppose that
some garbled block resides at some physical location α, and is therefore garbled using a language
related to the physical location α. We want to read the block back, but instead encoded using a
global-time-dependent label. Only in this way, can we successfully feed this garbled block to the
CPU’s garbled next-instruction circuit. One can imagine that the garbler prepares a garbled next-
instruction circuit for every time step t, and each such garbled circuit speaks a language dependent
on the time t. The challenge is that the physical location to read in each time step t is dynamically
generated, and cannot be determined statically at garbling time. This means that we need to
dynamically translate location-dependent encodings to time-dependent encodings.

Switch: a minimal gadget for dynamic translation. A garbled switch, proposed in the
elegant work of Heath et al. [HKO21], is a basic building block that performs dynamic translation
between a parent and two children nodes. Suppose that the parent node receives some garbled data
and a garbled direction bit indicating which of the two children should receive the data. The parent
node now wants to re-encode the data using a language that the corresponding child recognizes,
so the child can receive the data and potentially perform some garbled computation on it. The
security requirement says that the evaluator cannot learn anything about the encoded data, but it
is allowed to learn the direction bit. Imagine that each node keeps track of some local time which
corresponds to the number of times the node has been invoked. When garbled data arrives at any
node, the input data should be encoded using a label that depends on the node’s local time. To
garble such a switch, the main challenge comes from the fact that the parent and the two children
have different local clocks. When the parent routes garbled data to one of the children, it must
re-encode the data using a language that depends on the child’s local time. Unfortunately, the
garbler cannot statically predict the mapping between the parent’s local time and the destination
child’s local time.

Informally, a garbled switch has the following abstraction:

4



� Garble. The garbler receives an array of input labels denoted InL, and two stacks of output
labels denoted OutL0 and OutL1, respectively. Specifically, InL[τ ] denotes the language of
the τ -th invocation of the parent node, OutL0[τ ] denotes the language of the τ -th invocation
of the left child, and OutL1[τ ] denotes the language of the τ -th invocation of the right child.
The garbler then outputs some garbled circuitry GC and garbled memory Gmem to be consumed
later by the evaluator.

� Switch. The evaluator can consume GC and Gmem to perform garbled switch operations de-
scribed below. In every time step τ (of the parent), the parent receives {{b}} and {{data}} where
b ∈ {0, 1} is a direction bit and data denotes the data to be routed to the b-th child. The eval-
uator can securely evaluate the following functionality: pop the next unconsumed label L from
the b-th stack OutLb, re-encode data using the label L, and output the result. We allow the
evaluator to learn the direction bit b, however, it should not learn anything about the garbled
data data.

Heath et al. [HKO21] proposed an elegant idea that leverages two garbled stacks [ZRE15,
WNL+14,HKO21] to realize a garbled switch. Specifically, the garbler initializes two garbled stacks
with the encoded contents OutL0 and OutL1, respectively. Whenever a new request arrives at the
parent node, the evaluator makes a real pop from the b-th stack and makes a fake pop from the
(1−b)-th stack. The result of the real pop is an encoded label that corresponds to the current local
time of the b-th child. The result of the fake pop is simply an encoding of 0. Observe that both
popped values are encoded using labels dependent on the parent’s local time. Similarly, the input
{{data}} is also garbled using a label dependent on the parent’s local time. This makes it possible
for the garbler to prepare a garbled circuit in advance that re-encodes the input {{data}} using the
popped label instead.

The cost of garbling such a switch is directly related to how many accesses we must provision.
Suppose that each of the two children can be visited at most m times, and thus the parent can
be visited at most 2m times. In this case, the parent’s switch would need two garbled stacks
each of capacity m. Using existing garbled stack techniques [ZRE15, WNL+14, HKO21], the cost
is Oλ(w ·m logm) where w is the payload length (i.e., the bit width of data), and we use Oλ(·) to
hide factors that depend on the security parameter λ. This directly translates to an amortized cost
of Oλ(w · logm) per switch operation. Note that later on, we will actually care about minimizing
the factors that depend on λ and w; however, for ease of understanding, we ignore these factors for
the time being.

Why Heath et al. [HKO21] is inefficient. At a very high level, Heath et al. [HKO21] builds
upon this minimal switch gadget that is capable of dynamic translation, and eventually obtains
a full garbled RAM. Their blueprint is to first use garbled switches to build an access-revealing
one-time memory, and then upgrade the access-revealing one-time memory to a full-fledged garbled
RAM through a hierarchical data structure and recursion techniques. Interestingly, their usage of
the hierarchical data structure and recursion is novel and tailored specifically for garbled RAM; it
makes use of the fact that the data structure performs shufflling and the garbler is aware of the
data shuffling pattern ahead of time, since the garbler is choosing the random coins used in the
shuffling.

There are a couple of reasons why the approach of Heath et al. [HKO21] is asymptotically and
concretely non-optimal. One of the most important reasons is because their composition of garbled
switches in a tree-like fashion is inefficient. To obtain an access-revealing one-time memory of size
n, they need to garble a tree of switches with n leaves. The root node must provision for up to
n accesses, each of the root’s children must provision for n/2 accesses, . . ., and each leaf must

5



provision for one access. For simplicity, assume w ≥ log n. The total cost to garble the tree of
switches would therefore be Oλ(w ·n log2 n); which translates to an amortized cost of Oλ(w · log2 n)
for each single request to the one-time memory. This cost is pre-recursion. After applying the full
recursion, their asymptotical cost3 becomes Oλ(W · log2N + log4N).

We wish to reduce the cost by roughly a logarithmic factor, that is, we aim for Õλ(W · logN)
pre-recursion cost per memory access where Õ(·) hides poly log log factors, rather than their Oλ(W ·
log2N) cost.

2.2 Our Approach

As mentioned, with the exception of Heath et al. [HKO21], earlier works on garbled RAM [LO13,
GHL+14,GLO15,LO17] adopt a two-step compilation approach : 1) compile the RAM program to
an Oblivious RAM whose memory access patterns are safe to reveal — this approach can rely on
off-the-shelf Oblivious RAM algorithms [WCS15,CS17]; 2) compile an oblivious RAM to a garbled
RAM (where the garbling does not shield memory accesses). Each step of the compilation incurs
a separate poly-logarithmic overhead, and the two sources of overheads are multiplied. Heath et
al. [HKO21] suggested a second approach where we work at a lower level of abstraction, and design
customized garbled data structures and gadgets and then compose them into a Garbled RAM
scheme.

First attempt. We adopt the second approach. Since a garbled RAM scheme must embed some
Oblivious RAM (ORAM) scheme in it, a natural attempt is to take a state-of-the-art statistically
secure ORAM4 such as Circuit ORAM [WCS15, CS17], and ask how we can garble such a data
structure.

We briefly describe the underlying non-recursive tree-based data structure that underlies Circuit
ORAM [WCS15,CS17]. The full ORAM scheme involves creating logarithmically many such trees
through a standard recursion technique [SCSL11,SSS12]. The pre-recursion ORAM tree is a binary
tree with n leaf nodes, and each non-root node is a bucket of some capacity O(1). The root bucket
is super-logarithmic in size for storing overflowing blocks. The main path invariant is that every
block is assigned to a random path (i.e., a path from the root to a random leaf node), and the choice
of this random path is not revealed until the block is next accessed. To fetch a block, one looks up
the path where the block resides through recursion, and the path can be identified by a leaf node
often denoted leaf — we also call leaf the block’s position identifier. Then, one looks up all buckets
on the path from the root to the leaf node leaf. When a block with the requested logical address
addr is encountered, the block is removed from the corresponding bucket. At this moment, the
block is updated if the current operation is a write operation, and a new random path is chosen for
the block. The block is then added back to the root bucket tagged with its new position identifier.
After every access, we need to perform some maintenance operation that moves blocks closer to
the leaf level, such that none of the buckets will overflow except with negligible probability. We
may assume that the access patterns of the maintainance operations are a-priori fixed, e.g., using
the reverse lexicographical order eviction idea first suggested by Gentry et al. [GGH+13].

3Throughout the paper, we use capitalized letters N and W to denote the number of blocks and block size of the
final GRAM construction, and we use small letters n,m, and w to denote the size and payload length of building
blocks. The reason for this distinction is because we need to instantiate multiple instances of these building blocks
with varying parameters in the final scheme.

4Although computationally secure ORAMs can achieve asymptotically better overhead in cloud outsourcing sce-
narios, we currently do not know any way to use computationally secure ORAMs in blackbox garbled RAM schemes,
without having to securely evaluate the circuits of cryptographic primitives such as pseudo-random functions.

6



To garble such a tree-based ORAM, a main challenge is that online phase has dynamic access
patterns: every time we request a block, it goes through a random path in the ORAM tree. To
solve this challenge, we can potentially rely on the garbled switch data structure. Suppose that
every node in the tree has a garbled switch. When a memory access request arrives, it comes with
{{addr, leaf}} where addr is the block’s logical address, and leaf is the block’s position identifier;
further, the request is garbled using a global-time-dependent label which also coincides with the
local time of the root switch. Note that the cleartext value of leaf may be safely exposed to the
evaluator. Recall that during this access, each bucket on some path will search for a block with the
desired logical address addr, and if so, it returns the block’s payload; else, it returns 0. We want to
make sure that each bucket’s fetch result is encoded using some global-time-dependent language,
and the collection of all O(log n) languages are denoted L0, . . . , LO(logn). Let {{L0, . . . , LO(logn)}}
be an encoding of these languages under some global-time-dependent label that is recognized by
the root whose local clock coincides with the global clock.

Now, imagine that the root receives the information {{addr, leaf, L0, . . . , LO(logn)}}. It uses b =
leaf[0] as the direction bit, and wants to route the information it has received to the b-th child.
To achieve this, it must first re-encode the pair addr and leaf using a label that is dependent on
the local time of the b-th child — and this can be accomplished by the garbled switch. Imagine
that every node along the path does the same, and each node uses the next bit in leaf to decide
its direction. In this way, each node along the path can receive a fetch instruction garbled using a
language that matches its local time, and it can look in its own garbled memory whether a block
exists with the desired addr. The fetch result is garbled using the corresponding garbled label which
it received as part of the garbled input (i.e., L0, . . . , LO(logn)). Finally, some garbled CPU circuit
can securely aggregate all O(log n) fetched results into a final result.

This näıve scheme has two sources of inefficiency. First, the root switch must provision for n
accesses, each of the root’s children must provision for n/2 ± o(n) accesses with high probability,
and so on. Therefore, the total cost of all the switches is Oλ(w · log2 n) where w denotes the length
of the payload being routed. The second drawback is the fact that the length of the payload w is
large, since we need to route O(log n) labels each of λ bits long.

These two sources of inefficiency each incurs an extra log n factor that we want to get rid off.
Below we discuss how to overcome these two sources of inefficiency. We shall begin with the second
problem, which is a little easier than the first one.

2.2.1 Passing a Single Label with an XOR Trick

To overcome the second challenge, we introduce an XOR trick as depicted in Figure 1. Assume
that each node in the tree has a garbled bucket henceforth denoted GBkt and a garbled switch
denoted GSwitch. A garbled bucket GBkt supports a Read operation: when given a logical address
{{addr}} garbled under an local-time-dependent input label, it will output the corresponding block’s
contents {{val}} if the block is found, or output {{0}} if not found. Further, the result is garbled
using a local-time-dependent output label. Suppose that we want the final memory fetch result
to be encoded under some global-time-dependent label K. Henceforth assume that the root is at
level 0 of the tree, and let `max = O(log n) be the leaf level. As we traverse the path, each non-leaf
bucket along the way encodes its result using labels L0, L1, . . . , L`max−1, respectively (we abuse
notations where L0, L1, . . . are now local-time-dependent). Our idea is to pass an encoding of the
label L`max = K⊕L0⊕ . . .⊕L`max−1 to the leaf node, such that the leaf bucket will encode its fetch
result using the label L`max . This way, all the labels would XOR to K. This means that when we
XOR the garbling of all `max + 1 fetched results, we obtain a garbling of the fetched result encoded
under the label K. To achieve this, we can have each node in a non-leaf level ` pass an encoding

7



6

L0

L1

L2

R3= K⊕ L0⊕ L1⊕ L2

K

R1= K⊕L0

R2= K⊕L0⊕L1

R3= K⊕L0⊕L1⊕L2

L local-time-dependent output 
label of non-leaf GBkt

R intended residual label passed 
on by GSwitch

K intended global-time-dependent 
label for the read 

R3 output label of leaf GBkt

Figure 1: XOR trick.

of the residual label R` = K ⊕L0⊕ . . .⊕L`−1 to its child, encoded using a language dependent on
the child’s local time. The XOR trick saves us one logarithmic factor in cost.

2.2.2 Splitting Switches into Poly-logarithmically Sized Ones

To overcome the first challenge, our idea is to avoid using big switches that must be provisioned with
a large number of accesses. Instead, we want to break up the big switches into poly-logarithmically
sized ones. To achieve this, we observe that we can leverage ideas from the Bucket ORAM algo-
rithm [FNR+15].

Background on Bucket ORAM. At a very high level, Bucket ORAM is a tree-based ORAM
but with a hierarchical-style rebuild algorithm.

Let T be the maximum runtime of the RAM program, and let N be its space. In the Bucket
ORAM tree, each bucket has size 2B = O(log(T ·Nδ )) where δ is the statistical failure probability.
Like in any tree-based ORAM scheme [SCSL11], a bucket can store either filler blocks denoted ⊥
or real blocks of the format (addr, leaf, data) where addr is the block’s logical address, leaf denotes
its position identifier, and data denotes its payload. The read phase of the algorithm is also like any
tree-based ORAM [SCSL11,SvDS+13,WCS15,CS17]. To read a block, we first recursively look up
its position identifier denoted leaf, we then look up the path from the root leading to leaf for the
block requested. The block is removed from the corresponding bucket if found. Besides the tree
data structure, there is also a small stash that can store up to B blocks. Any memory request must
also search in the stash for the desired block. Moreover, after a block is fetched, it will be added
to the stash (possibly with an updated payload string). For the time being, one can imagine that
each bucket itself as well as the stash implement small ORAMs [DMN11, CNS18, CSLN21] such
that they can look up a block in poly log log(T ·Nδ ) time.

Interestingly, the maintainance phase of Bucket ORAM actually resembles a hierarchical ORAM [GO96,
Gol87]. Suppose that n and B are powers of 2. Let root be at level 0, and let `max = log2

n
B . Each

level i is rebuilt every 2i ·B steps. In particular, at the end of some time step t, if t+ 1 is a multiple
of n, we need to rebuild levels 0, . . . , `max into level `max and empty all remaining levels. Else, if
we can express t+ 1 as j · 2` for some odd integer j, then we need to rebuild levels 0, . . . , `− 1 into
level `, emptying the levels 0, . . . , ` − 1 in the process. Further, the rebuild process must respect

8



0 0 0 00 0 0 0

0 00 01 11 1

0 1

0 1

2 3 0 1 2 3

2 3 4 5 6 7

0

0

0

0 1 2 3 4 5 66 7

1

1

2 3

Full Empty

t = 0,     B,    2B,   3B,   4B,   5B,   6B,   7B 

GSwitch+GBkt

0

0 1

0 1

0 1

2 3

2 3 4 5 6 7

Bucket ORAM TreeGSwitch+GBkt copies over timeActive at time t = 3B + 1

Figure 2: Each node at level ` has T/(B · 2`) copies of GSwitch + GBkt, and at time t, the⌊
t/(B · 2`)

⌋
-th copy is active. The numbers show which copies of garbled circuitry correspond to

which tree node in the same level.

the position identifier each block has chosen. The Bucket ORAM work [FNR+15] shows how to
accomplish this rebuild using a circuit whose size is linear in total number of elements involved
in the rebuilding. For the purpose of this work, the details of the rebuild algorithm is not too
important. Therefore, we give a brief description below and refer the reader to the Bucket ORAM
work [FNR+15] for details. At a high level, the Bucket ORAM work suggested that this rebuild
can be accomplished through a sequence of MergeSplit operations. In each MergeSplit operation,
we take a pair of buckets as inputs and and output a pair of buckets. Each real block in the
input buckets will go into one of the output buckets, and the choice depends on the corresponding
bit in their leaf label. The MergeSplit operation essentially relies on sorting of objects with 1-bit
keys, i.e., compaction [AKL+20]. Indeed, if we use a linear-sized compaction circuit to realize each
MergeSplit, the total cost of the rebuild would be linear. For our paper, it does not matter to our
final asymptotics even if we used bitonic sort to implement the MergeSplit, since this part of the
overhead will not be the dominating factor.

Splitting switches into poly-logarithmically sized ones. As shown in Figure 2, each node
at level ` in the tree has T/(2` ·B) instances of GBkt and GSwitch. The instances are indexed from
0, 1, . . . , T/(2` · B)− 1. During time step t ∈ [0 : T ), the garbled instances indexed

⌊
t/(2` · B)

⌋
are

active. Whenever a level is rebuilt, the existing GBkt and GSwitch instances corresponding to all
tree nodes in this level finalize, and new instances are initialized.

Due to the rebuild schedule of Bucket ORAM, we know in advance for each instance at some
parent node, which instances of its children it must communicate with. In other words, the com-
munication graph between the instances are statically determined.

There are, however, some subtle challenges we need to resolve for this idea to work. Observe
that half the switches finalize together with their children — this case is a little easier to handle
since the new instances that take over can start fresh. For the other half, when they finalize,
their children do not finalize at the same time. However, their children’s local clocks have already
advanced to some dynamic value which cannot be predicted in advance. In this case, we need to
implement an explicit hand-over operation such that the new switches can inherit the necessary
states from the switches whose jobs they are taking over. To achieve this we need the help of
garbled data structures supporting dynamic finalization which we explain below.

9



2.2.3 Garbled Data Structures with Dynamic Finalization

We adopt a modular framework to present our scheme which makes it easier to verify its correctness
and security. A new abstraction we propose is a garbled data structure with a dynamic finalization
— we believe that our definitions may be of independent interest in future works on garbled data
structures and algorithms.

Consider some data structure that supports some function calls Func1, . . . ,Funcc. Additionally,
there is a special function called Finalize which is called at the end of its life cycle to output some
final garbled state — for example, the final garbled state can be an encoding of all unvisited blocks
stored in the data structure. We assume that except for the Finalize function, the call schedule for
all other functions are fixed a-priori. The Finalize function, however, may be called at any time t∗

within some a-priori known time bound tmax. No matter in which local time step t∗ the function
Finalize is invoked, the finalized states it outputs must be garbled under some fixed label (that does
not depend on t∗). To enforce that the evaluator calls Finalize at the right time, the Finalize call
has to take in a garbled signal {{1}} that explicitly authorizes the call. More specifically, a garbled
data structure supporting dynamic finalization has the following abstraction:

� Garbler. The garbler takes in some initial memory array DB, input and output labels de-
noted InL and OutL, and outputs the garbled circuit GC and initial garbled memory Gmem.
Specifically, InL and OutL provide the following labels:

InL := (I0, . . . , Itmax−1, C0, . . . , Ctmax−1, Ctmax)

OutL := (O0, . . . , Otmax−1, F )

where for τ ∈ [0 : tmax), Iτ and Oτ denote the time-dependent labels used to encode the input
and the output of the τ -th (non-Finalize) operation, respectively; for t∗ ∈ [0 : tmax], Ct∗ is the
label used to encode the finalization signal should Finalize be invoked at time step t∗; and F
denotes the label used to encode the final state st output by Finalize.

� Evaluator.

1. In each local time step τ ∈ [0 : tmax), the evaluator can call garbled operations {{outp}} ←
FuncGCiτ (Gmem, {{inp}}) where the call schedule iτ ∈ [c] is fixed a-priori. The inputs and
outputs must be garbled under labels dependent on the local time. The operations may
cause updates to the internal garbled memory.

2. At some dynamic point of time t∗ ∈ [0 : tmax], the evaluator may call s̃t← FinalizeGC(Gmem, 1̃):
The evaluator must input a garbled finalization signal 1̃ (which is garbled under a t∗-
dependent label). Intuitively, this signal forces the evaluator to evaluate Finalize in the
intended time step t∗ and not any other time step. The Finalize algorithm outputs a garbled
final state denoted s̃t, which is garbled under the fixed label F which is independent of t∗.

Garbled data structures with dynamic finalization are used in multiple places in our construc-
tion. For example,

� Each GBkt instance is visited a dynamic number of times before finalization, and when finalized,
it must output the remaining unvisited elements encoded under some fixed label. The results
will then be passed to the garbled rebuilder algorithm.

� Each GSwitch instance is also visited a dynamic number of times just like GBkt. As mentioned
earlier, for half of the switches, when they finalize, they must pass some internal state to the
next switch that takes over, such that the next switch knows the local clocks of the children.

10



� Finally, some of the building blocks (e.g., garbled stack, access-revealing one-time memory) we
use to construct our GBkt and GSwitch are also garbled data structures with dynamic finalization.

We formally define the security for such garbled data structures with dynamic finalization in
Section 3.3, and we give efficient instantiations partly relying on a building block called an expiring
vault (see Section 5.1).

The need to support dynamic finalization complicates our construction. In several cases, we
cannot use existing building blocks for this reason and have to construct our own variants. For
example, in our construction, each GBkt itself is a small garbled dictionary capable of translating a
memory fetch result from using a location-based label to using a local-time-dependent label. Since
we need a dynamic finalization capability from the GBkt, we cannot directly use prior work such
as Heath et al. [HKO21]. Similarly, for other seemingly standard building blocks such as garbled
stack, we also have to construct our own variants and prove them secure.

2.2.4 Additional Optimizations

So far, we have explained our ideas assuming that all wires are encoded using garbling. To save a
factor of λ, we adopt several ideas suggested by Heath et al. [HKO21]. In particular, we will encode
some wires using sharings rather than garblings. Unlike garblings, sharings are space-preserving
since the sharing of some string has the same length as the original string. However, sharings can
only be involved in restricted computations.

1. a shared bit can be XORed with another shared bit or a constant value known at garbling
time that is hard-wired in the garbled circuitry or garbled memory, and the outcome of such
an operation is a sharing too, i.e., (JxK, JyK)→ Jx⊕ yK;

2. a shared string may be multipled with a garbled bit whose cleartext value is known by the
evaluator, and the result of the operation is a sharing, i.e.,

(
{{bE}}, JyK

)
→ Jb · yK where y ∈

{0, 1}k. Throughout the paper, if the evaluator is allowed to know the cleartext of some garbled
value {{val}}, we often write {{valE}} to make this explicit.

The elegant work by Heath et al. [HKO21] described techniques to efficiently implement the above
operations involving shared bits, assuming the existence of a random oracle. Specifically, the first
type of operations require only 1 bit per XOR gate, the second type of operations require only
O(k + λ) bits to garble a gate that multiply {{bE}} with JyK where k is the bit-width of y.

Later on in our constructions, the data stored in garbled stacks which are part of the garbled
switches will be in the form of sharings; furthermore, the labels passed long the tree paths will also
be in the form of sharings. These optimizations save us a λ factor in the final costs.

3 Preliminaries and Definitions

3.1 Labels, Encoding and Decoding

Let sk := ∆ ∈ {0, 1}λ be some global secret that is randomly chosen upfront by calling some
key generation algorithm Gen(1λ). ∆ is also the secret key of the garbler. We will often use the
following types of encodings of bits or bitstrings:

� Garbling {{b}}: for some bit b ∈ {0, 1}, let {{b}} := ∆ · b ⊕ L where L ∈ {0, 1}λ denotes a
(pseudo-)random string. We often call L the label5 used to garble {{b}}, or write L = Lbl({{b}}).
5Prior works on garbled circuits often refer to the encodings for 0 and 1 (i.e., L and ∆⊕L, resp.) as the two labels

for a particular wire (i.e., bit). In our paper, we refer to L as the label, and we refer to L and ∆⊕ L as encodings of

11



Given a string x ∈ {0, 1}k of k bits, we often use the shorthand notation {{x}} to denote the
bit-by-bit garbling of x.

� Sharing JxK: for a bit-string x ∈ {0, 1}k, let JxK := x⊕L where L ∈ {0, 1}k is a (pseudo-)random
string. We often call L the label used to create the sharing JxK, or write L = Lbl(JxK).

Notice that unlike a garbling, a sharing does not blow up the length of the string that is
shared. The introduction of sharing can improve the efficiency of garbled circuits as shown in prior
work [HKO21]. As mentioned later, unlike garblings, sharings can only be involved in restricted
types of computations.

Decoding. Knowing the secret key sk := ∆ and the label L ∈ {0, 1}λ used to encode some
garbling {{b}}, it is easy to decrypt the bit b ∈ {0, 1} that is encoded. Similarly, knowing the label
L ∈ {0, 1}k used to encode some sharing JxK, it is easy to decrypt the bit x ∈ {0, 1}k that is
encoded.

3.2 Garbled Circuits

Garbled circuits was first proposed in the original work of Yao [Yao86,Yao82]. Since then, a line of
works have improved its practical efficiency [KS08,CKKZ12,App13,KMR14,ZRE15,RR21,HK21b,
HK20,HK21a,HKO21]. In our paper, since we allow two types of encodings, garbling and sharing.
Garbled bits can be paired up with each other and be involved either AND or XOR gates. However,
we assume that there are some restrictions on the type of computations that shared bits can be
involved in:

1. a shared bit can be XORed with another shared bit or a constant value known at garbling
time that is hard-wired in the garbled circuitry or garbled memory, and the outcome of such
an operation is a sharing too, i.e., (JxK, JyK)→ Jx⊕ yK;

2. a shared string may be multipled with a garbled bit whose cleartext value is known by the
evaluator, and the result of the operation is a sharing, i.e.,

(
{{bE}}, JyK

)
→ Jb · yK where y ∈

{0, 1}k. Throughout the paper, if the evaluator is allowed to know the cleartext of some garbled
value {{val}}, we often write {{valE}} to make this explicit.

One can mechanically verify that all the circuits we need to garble in our constructions respect the
above assumptions regarding the use of shared bits. The prior work by Heath [HKO21] described
techniques to efficiently implement the above operations involving shared bits, assuming the exis-
tence of a random oracle. Specifically, the first type of operations is free, and the second type of
operation requires only O(k + λ) bits to garble a gate that multiply {{bE}} with JyK where k is the
bit-width of y.

For deriving our asymptotical bounds, it is sufficient to assume that any AND or XOR gate that
involves only garbled bits take O(λ) bits to encode. In a practical implementation, however, one
should use the more recent techniques such as Free-XOR [KS08,CKKZ12], FleXOR [KMR14], half-
gates [ZRE15], and subsequent improvements [RR21, HK21b, HK20, HK21a, HKO21] to improve
the concrete performance. Note that we adopt the encoding scheme originally proposed in the
Free-XOR work [KS08,CKKZ12].

0 and 1, respectively. Note that once we fix the sk = ∆ and the label L for some wire, both encodings for 0 and 1
are determined.

12



3.3 Garbled Data Structure

Our building blocks involve several garbled data structures. An evaluator can invoke multiple
garbled operations of the data structure during its life cycle. Every garbled data structure has
a local time denoted τ ∈ [0 : tmax] where tmax is the maximum number of operations supported.
When the τ -th operation is called, we say that the garbled data structure is in local time τ . Unless
otherwise stated, our garbled data structures will have the following interface where we use x̃ to
denote an encoding of x which is either a garbling or sharing of x:

� Gmem,GC← Garble(1λ, sk, params,DB, InL,OutL): the algorithm takes in the security param-
eter, some secret key sk ∈ {0, 1}λ, parameters params (explained shortly), the initial memory
array DB, input and output labels denoted InL and OutL used to encode the garbled in-
puts and outputs respectively. It outputs the garbled memory Gmem and some garbled circuits
denoted GC. Here, the parameters params typically contains the word size often denoted w,
the length (often denoted m) of the initial memory array DB, and the maximum number of
operations denoted tmax.

� Gmem′, õutp← FuncGC1 (Gmem, ĩnp),
. . .,
Gmem′, õutp ← FuncGCc (Gmem, ĩnp): some functions to be called by the evaluator. We assume
that the call schedule for the functions Func1, . . . ,Funcc is known a-priori, where the call schedule
specifies exactly which of these functions will be invoked in each time step τ ∈ [0 : tmax). For
the evaluator to evalute these functions in a garbled manner, it needs to consume the garbled
circuitry GC which we write in the superscript of the procedure. Calling these garbled operations
not only outputs some encoded answer õutp, but also may result in updates to the internal
encoded memory denoted Gmem′. The inputs ĩnp and outputs õutp are garbled using labels
dependent on the data structure’s local time.

� s̃t ← FinalizeGC(Gmem, 1̃): the Finalize function can be invoked in any time step t∗ ∈ [0 : tmax],
where t∗ also denotes the number of operations invoked prior to calling Finalize. Unless otherwise
noted, exactly when Finalize will be invoked is unknown at the time of garbling. To successfully
invoke Finalize, the evaluator must input a garbled finalization signal 1̃ (which is garbled under
a t∗-dependent label). Intuitively, this signal forces the evaluator to evaluate Finalize in the
intended time step t∗ and not any other time step. The Finalize algorithm outputs a garbled
final state denoted s̃t, which is garbled under a fixed label which is independent of t∗.

The input/output labels InL and OutL fed into the Garble algorithm should contain the fol-
lowing:

InL := (I0, . . . , Itmax−1, C0, . . . , Ctmax−1, Ctmax)

OutL := (O0, . . . , Otmax−1, F )

where for τ ∈ [0 : tmax), Iτ and Oτ denote the time-dependent labels used to encode the input inp
and the output outp in the τ -th time step, respectively; for t∗ ∈ [0 : tmax], Ct∗ is the label used to
encode the finalization signal should Finalize be invoked at time step t∗; and F denotes the label
used to encode the final state st output by Finalize.

Relationship with garbled circuits. Garbled circuits can be viewed as a special case of our
garbled data structure formulation. Specifically, a garbled circuit can be viewed as a garbled data
structure that supports only one operation Func after garbling. For this reason, we do not give

13



a separate definition for garbled circuits. Later on, we will rely on garbled circuits as a building
block to construct garbled data structures.

Correctness. Suppose that there is some (insecure) data structure DS supporting the operations
f1, . . . , fc and fin. We say that a garbled data structure scheme correctly implements DS iff
for any λ ∈ N, any sk ∈ {0, 1}λ, any params = (m,w, tmax), any DB, any InL and OutL, any
1 ≤ t∗ ≤ tmax, any sequence of function calls i0, . . . , it∗−1 ∈ [c], any input sequence inp0, . . . , inpt∗−1:
let outp0, . . . , outpt∗−1, st be the correct outcomes when we initialize DS with DB and then make
the calls {fiτ (inpτ )}τ∈[0:t∗), and fin in sequence, then, the following must be true with probability
1:

� Gmem,GC← Garble(1λ, sk, params,DB, InL,OutL);

� for τ ∈ [0 : t∗): let ĩnpτ be a correct encoding of inpτ using label Iτ , let Gmem, õutpτ ←
FuncGCiτ (Gmem, ĩnpτ );

� let 1̃ be a correct encoding of the finalization signal 1 under label Ct∗ , let s̃t← FinalizeGC(Gmem, 1̃);

� then, it must be that {õutpτ}τ∈[0:t∗) and s̃t are valid encodings of the correct outputs {outpτ}τ∈[0:t∗)
and st, under the labels {Oτ}τ∈[0:t∗) and F , respectively.

Security. We define the security of garbled data structures beolow.

Definition 1 (Security of garbled data structures (and garbled circuits)). We say that a garbled
data structure scheme is secure w.r.t. some leakage function Leak(·), iff there exists probabilistic
polynomial-time (p.p.t.) simulators Sim, such that for for any λ ∈ N, any params = (m,w, tmax),
any DB, any 1 ≤ t∗ ≤ tmax, any sequence of function calls i0, . . . , it∗−1 ∈ [c], for any input
sequence inp0, . . . , inpt∗−1, any output labels OutL of appropriate length, for any subset of inputs
S ⊆ {inpτ , 1τ}τ∈[0:t∗) whose encodings are to be simulated, for any choice of InL[¬S] where InL[¬S]
denotes the part of InL used to encode the set ¬S, the outputs of the real and ideal experiments
below are computationally indistinguishable:

Real experiment. Input: λ, params, DB, t∗, function calls i0, . . . , it∗−1 ∈ [c], input sequence
inp0, . . . , inpt∗−1, subset of inputs S, subset of input labels InL[¬S], output labels OutL.

1. Sample sk← Gen(1λ), and sample the remaining unspecified input labels InL[S] at random;

2. Let {S̃, ¬̃S} = {ĩnpτ , 1̃τ}τ∈[0:t∗) be correctly encoded inputs and finalization signals using sk and
labels InL;

3. Let Gmem, GC← Garble(1λ, sk, params, DB, InL, OutL);

4. Output Gmem,GC, S̃.

Ideal experiment. Input: λ, params, DB, t∗, function calls i0, . . . , it∗−1 ∈ [c], input sequence
inp0, . . . , inpt∗−1, subset of inputs S, subset of input labels InL[¬S], output labels OutL.

1. Sample sk← Gen(1λ);

2. Let ¬̃S be correctly encoded inputs in subset ¬S using sk and labels InL[¬S];

3. Run the ideal functionality using the given DB, function calls fi0 , . . . , fit∗−1
, and input sequence

inp0, . . . , inpt∗−1, and finally, run fin. Let outp0, . . . , outpt∗−1 and st be the results correspond-
ingly;

14



4. Let {õutpτ}τ∈[0:t∗) and s̃t be correctly encoded outputs and finalized state using sk and labels
OutL;

5. Run the simulator

Sim
(

1λ, params, t∗, {iτ , õutpτ}τ∈[0:t∗), s̃t, ¬̃S, Leak({iτ , inpτ}τ∈[0:t∗))
)

and output the result.

Note that when ¬S = ∅, then the above notion is a direct adaptation of the standard security
definition for garbled circuits to garbled data structures. Therefore, the above definition can be
viewed as a generalization of standard garbled circuit security. In particular, this generalization
allows us to fix the encodings of a subset of the inputs denoted ¬S, feed these encodings ¬̃S to
the simulator, and have the simulator simulate the the rest of the garbled inputs S̃, along with the
garbled circuitry GC and garbled memory Gmem. We sometimes refer to the set of inputs ¬S whose
input labels have been fixed as the fixed set, and the set of inputs S whose input labels are not
fixed as the free set. We make this generalization for convenience later. Jumping ahead, when we
write our garbled algorithms, we often allow garbled input sharing, that is, the same garbled input
wire is fed into two or more garbled components. In this case, we will need to use the generalized
security definition in our proofs.

As mentioned earlier, we have two forms of encodings, garblings and sharings. Later in our
constructions, in fact only garbled wires (as opposed to shared wires) can be input to multiple
garbled components. Therefore, we additionally impose the following constraints to Definition 1:

� The fixed set ¬S must contain only garbled inputs variables;

� Any shared input must be in the free set S.

Existing constructions of garbled circuits [Yao86,Yao82,KS08,CKKZ12,App13,KMR14,ZRE15,
RR21], including the techniques needed from Heath et al. [HKO21] naturally satisfy the above
generalized notion too.

Encoding cleartext outputs. Later in our construction, sometimes we also have a garbled cir-
cuit or garbled data structure output cleartext rather than encoded outputs. Our above formulation
actually also captures cleartext outputs if we use the encoding scheme described in Section 3.1,
and thus we can adopt this formulation without loss of generality. In particular, a cleartext output
bit can be expressed as either a sharing whose label is 0, or a garbling whose label ends with a 0
bit. In particular, we will follow the approach mentioned in prior work [ZRE15,HKO21], where we
choose ∆ at random subject to the last bit being 1. In this way, as long as the label of a garbling
ends with a 0 bit, the last bit of the encoding will be the cleartext value of the bit.

Performance metric. We will use the size of the garbled program, measured in terms of the
number of bits, as our performance metric.

Remark 1. Unless otherwise noted, we assume the above syntax and conventions for any garbled
data structure we define. There is one slight exception, which is the data structure GSwitch defined
in Section 5.3 — in fact, this is the critical data structure for handling the non-determinism of
memory accesses. Jumping ahead a little, GSwitch is initialized with two stacks of output labels
denoted OutL0 and OutL1, and every operation, one label is popped from a stack of choice, and
this popped label will be used as the output label.

15



Remark 2. Known garbled circuits constructions [Yao86, Yao82, KS08, CKKZ12, App13,KMR14,
ZRE15,RR21,HK21b,HK20,HK21a,HKO21] also satisfy the following notion of simulation — our
proofs also make use of this simulation notion. There exists a simulator Sim′, such that for any
output labels OutL,

GC
c≡ Sim′(1λ, C)

where GC is the honest garbling of the circuit C using randomly generated input labels as well

as OutL, and
c≡ means computational indistinguishability. This notion says we can simulate the

garbled circuitry without knowing the (encoded) outputs, if we do not have to also simulate the
active encoded inputs.

3.4 Notational Conventions

Omitting Gmem and GC without risking ambiguity. In the above, we use Gmem to denote
a garbled data structure’s internal encoded memory. Since the external caller of the data structure
need not worry about Gmem, when we write our algorithms, we often omit writing the Gmem term
explicitly. Moreover, we also omit writing the GC in the superscript of the garbled function calls
without risking ambiguity. For example, suppose we use GDataStruct to denote some instance of a
garbled data structure, we often write õutp← GDataStruct.Funci(ĩnp), omitting the Gmem as well
as the GC-superscript. This means that this function call is consuming the Gmem and GC of the
GDataStruct instance.

Implicit label matching convention. We often rely on an implicit label matching convention
to describe our garbled data structures. For example, if we write the following statements as part
of the evaluator’s algorithm:

GDataStruct0.Func({{x}}) :
{{y}} ← GDataStruct1.Foo({{x}});
{{z}} ← GDataStruct2.Bar({{y}});
output {{z}};

Assuming that GDataStruct1 and GDataStruct2 are not called anywhere else, then the above implies
that

� the input label of the τ -th call to GDataStruct0.Func should match the the input label of the
τ -th call to GDataStruct1.Foo;

� the output label of the τ -th call to GDataStruct1.Foo should match the the input label of the
τ -th call to GDataStruct2.Bar;

� the output label of the τ -th call to GDataStruct0.Func should match the the output label of the
τ -th call to GDataStruct2.Bar;

Unless otherwise noted, the labels for all variables are randomly selected subject to such implicit
matching constraints (which can always be unambiguously implied by our algorithm description).

4 Building Blocks

4.1 Garbled Stash (GStash)

Let params = (m,w), where m is the number of times the GStash.Read and GStash.Add functions
will be invoked before the data structure is finalized, and w is the bit width of each block’s payload

16



val. The call schedule is a-priori fixed: the data structure will receive Read and Add calls in an
interleaved fashion, and there will be a total of m calls to each function. For GStash, we assume
that its Finalize function will always be invoked at an a-priori fixed time, that is, at time t = m,
where t is the number of Add calls that have completed so far (not including the current call if
we are now inside an Add call). This explains why the Finalize function need not take any garbled
signal as input. A GStash data structure has the following interface:

� Gmem,GC← Garble(1λ, sk, params, InL,OutL): takes in the parameters params and input/output
labels InL and OutL, and outputs the garbled circuitry GC and initial garbled memory Gmem.
We often write OutL := (RdL,FinL). where RdL denotes the labels used by the output of
Read and FinL denotes the labels used by the output of Finalize.

� Gmem′, {{val}} ← ReadGC(Gmem, {{addr}}): takes in a requested garbled address {{addr}}, and if a
block with the requested addr is found, val should be the correct value of the block; else val = 0.
Further, Lbl(val) = RdL[t] where t denotes the current time step.

� Gmem′ ← AddGC(Gmem, {{addr, val}}): receives a garbled block which contains its own logical
address {{addr}} and a payload string {{val}}, and stores the block in the data structure;

� {{stash}} ← FinalizeGC(Gmem): this function is always invoked at time m. It outputs {{stash}}
which contains all the garbled blocks that have been added but have not been read afterwards;
further, Lbl(stash) should match FinL.

Construction. We will adopt a näıve construction for GStash. We shall create a length-m garbled
array which is initialized with all {{0}}s. Every time step, to read an element we simply use a garbled
linear scan circuit which scans through the entire array to look for the requested element. To add
an element, we simply write it into position t of the garbled array. Upon finalization, the final
garbled array is output. This näıve scheme costs O(λwm) bits.

4.2 Slow BlackBox Garbled Dictionary (GDict)

A garbled dictionary implements a standard static dictionary interface. First, the data structure is
initialized with an initial array DB. Each entry of DB is either a filler denoted ⊥, or a real element
of the form (key, val). Next, one can make multiple Lookup requests where each request asks for
some key. If an entry with key is found in DB, then return the corresponding val; else, return ⊥.

Let params = (m,w, tmax) where m denotes the number of entries in the initial array DB, w
contains the bit-widths of key and val, respectively, and tmax is the maximum number of Lookup
requests. A GDict has the following interface.

� GC ← Garble(1λ, sk, params, InL,OutL): receives the input and output labels InL and OutL,
and outputs GC and Gmem;

� Gmem← InitGC({{DB}}): receives an initial array {{DB}} and outputs the initial garbled memory
Gmem;

� Gmem′, {{val}} ← LookupGC(Gmem, {{key}}): receives a request {{key}}, if key exists in DB, then
output a garbling of the corresponding value {{val}}; else, output {{⊥}}. Regardless of which
case, the garbling should use OutL[τ ] where τ is the local time, i.e., the total number of Lookup
requests so far (not counting the current one).

17



Construction. We can adopt a binary search tree and garble it using the blackbox garbled RAM
scheme proposed by Heath et al. [HKO21]. Recall that the garbled RAM scheme by Heath et
al. [HKO21] costs O(λ(w log2m+ log4m)) bits per memory access to implement a garbled memory
of size m and block size w. The cost of GDict is O(tmax ·λ · (w1 log3m+w2 log2m+log5m)) where
w1 = |key| and w2 = |val|.

If we use the standard oblivious data structure technique [WNL+14] and piggyback the binary
search tree’s index structure on top of the recursion data structure of Heath et al. [HKO21], the
cost of the GDict can be further reduced to O(tmax · λ · (w2 · log2m+ (w1 + logm) · log3m)).

4.3 Garbled Random Permutation (GPerm)

A garbled random permutation circuit implements the following functionality: takes an input
array and outputs a random permutation of it. In the garbled version, not only must the inputs
and outputs be hidden, but the permutation itself also must be hidden. Although permutation
is efficiently realizable by a circuit, GPerm implements a randomized functionality. Therefore, we
explicitly define the abstraction below. Let params = (m,w) where m denotes the number of entries
of DB, and w denotes the bit-width of each entry. A garbled random permutation denoted GPerm
has the following syntax.

� GC ← Garble(1λ, sk, params, InL,OutL): receives the intended input and output labels and
outputs a garbled circuit GC;

� {{DB′}} ← PermGC({{DB}}): takes a garbled input array {{DB}} and outputs a garbled permu-
tation of the input denoted {{DB′}}.

We require the following security and correctness definition (combined in a single definition).
We say that GPerm implements a garbled random permutation algorithm, iff there exists a p.p.t.
simulator Sim, such that for any λ ∈ N, any params = (m,w), any DB, any output labels OutL of
appropriate length,(
{{DB′}}, (GC, {{DB}})

) c≡
(
{{Fperm(DB)}}〈OutL〉, Sim

(
1λ, params, {{Fperm(DB)}}〈OutL〉

))
where sk← Gen(1λ), InL

$←{0, 1}|InL|, let {{DB}} be an honest garbling of DB using sk and labels
InL, let GC ← Garble(1λ, sk, params,DB, InL,OutL), and let {{DB′}} ← PermGC({{DB}}). In the
above Fperm(·) is an ideal functionality that outputs a random permutation of the input array it

receives, and the notation {{x}}〈OutL〉 means a garbling of each bit of x using the secret key sk and
labels OutL.

Construction. We can use Waksman’s permutation network [Wak68] which is a network of
m logm swap gates. The garbler picks a random permutation at garbling time, and this decides
the swap-or-not decision (henceforth called control bit) for every gate. The garbler can garble the
permutation network, and create garbled states for the control bits of all gates. It is not hard to see
that this construction satisfies the above security definition. The cost of GPerm is O(λwm logm).

5 Building Blocks for Garbled Memory

5.1 Expiring Vault (GVault)

An expiring vault is a simple garbled data structures used to store up to tmax secrets, henceforth
denoted S0, . . . , Stmax−1. In every time step, either an empty procedure denoted Skip is called, or

18



the Finalize procedure is invoked with some authenticated finalization signal. If Finalize is invoked
at time τ with an authenticated finalization signal garbled under the current time, then it outputs
a subset of the secrets Sτ , . . . , Stmax−1.

Let params = (tmax, w) where tmax denotes the maximum number of time steps, and w denotes
the width of the secrets. An expiring vault GVault has the following syntax:

� Gmem,GC ← Garble(1λ, sk, params, (S0, . . . , Stmax−1), InL): takes in the security parameter 1λ,
the secret key sk, the parameters params = (tmax, w) which contains the maximum time tmax

and the length of each secret w, a list of secret values (S0, . . . , Stmax−1), the input labels InL =
(C0, . . . , Ctmax), and outputs Gmem and GC;

� Gmem′,⊥ ← SkipGC(Gmem,⊥): an empty function that merely increments the local time;

� res ← FinalizeGC(Gmem, {{1}}): if the input {{1}} is a correct garbling of 1 under Cτ where τ is
the current time, then the output res should be Sτ , . . . , Stmax−1.

Construction. The garbler creates {{{1}}τ}τ∈[0:tmax) garblings of the bit 1 under the tmax input
labels of Finalize, respectively. Henceforth6, let kτ := {{1}}τ . For each τ ∈ [0 : tmax − 2], the
garbler uses kτ to encrypt Sτ and kτ+1, and let cτ , c

′
τ be the resulting ciphertexts. Finally, the

garbler uses ktmax−1 to encrypt Stmax−1, and let ctmax−1 be the resulting ciphertext. The resulting
GC := ({cτ , c′τ}τ∈[0:tmax−2], ctmax−1), and Gmem := ⊥. When the evaluator obtains kτ = {{1}}τ , it is
easy to see that it can decrypt all of Sτ , . . . , Stmax−1. The cost of the above GVault construction is
O(tmax · (λ+ w)).

The security of this construction is easy to see. We can construct a simulator in a straightforward
manner. Suppose the Finalize function is called at time t∗. The simulator is given the inputs
St∗ , . . . , Stmax−1; it may or may not be given the garbled input {{1}}t∗ (see the generalized notion of
simulation in Definition 1). If the simulator is not given the input {{1}}t∗ , it simply samples {{1}}t∗
at random. Now, for any τ ≥ t∗, it computes cτ and c′τ honestly. For any τ < t∗, it outputs simply
outputs encryptions of 0 under random keys. The simulator outputs all these encryptions, and if
it is not given {{1}}t∗ as input, it also outputs the {{1}}t∗ it has chosen. It is easy to see that the
simulated view is computationally indistinguishable from the real-world view.

5.2 Stack (GStack)

5.2.1 Definition

A garbled stack GStack is initialized with some initial memory array denoted DB, and it supports
Pop operations controlled by a flag denoted b ∈ {0, 1}. If b = 0, nothing will be popped, and if b = 1
an element will be popped from the stack. In our application later, it is actually safe to reveal the
control flag b. For GStack, we let params = (m,w, tmax), where m is the number of entries in the
initial DB, w is the bit-width of each entry, and tmax is the maximum number of Pop operations.
It is promised that at most m number of Pop calls will have the flag b set to 1, i.e., the stack will
never deplete. We shall assume that m is a power of 2, and moreover, m ≥ 16.

� Gmem,GC ← Garble(1λ, sk, params,DB, InL,OutL): takes in the security parameter λ, the
parameters params, the initial stack elements DB containing m elements each of size w, and the

6Throughout the paper, we often use the notations {{var}}τ or JvarKτ to explicitly denote the fact that var pertains
to the τ -th operation (e.g., it is either an input, output, or internal variable used in the τ -th operation); moreover,
the variable is either garbled or shared under a τ -dependent label. When the context is clear, we may also omit the
subscript τ .

19



Evaluator

� Pop({{bE}}):

1. JresK← GSlowQueue0.Pop({{bE}});
2. {{cnt}} ← GAddτ ({{cnt}}, {{bE}});

// cnt← cnt + b

{{lcnt0}} ← GAddτ ({{lcnt0}}, {{bE}});
3. let 2` be the maximum power of 2 that divides
τ + 1 where τ is the local time;

4. for i from 0 to max(`max − 1, `),

– {{βi}}, {{lcnti}} ← GNeedUpdτ,i({{lcnti}});
/* if lcnti ≥ 2, then βi ← 1 and lcnti ← lcnti − 2;

otherwise βi ← 0 */

– Jxi, yiK← GSlowQueuei+1.Pop({{βi}});
{{lcnti+1}} ← GAddτ ({{lcnti+1}}, {{βi}});

– GSlowQueuei.Push({{βi}}, JxiK, JyiK);
5. call GVault.Skip() and return JresK.

� Finalize({{1}}):

1. {{0}}τ , . . . , {{0}}tmax−1 ← GVault.Finalize({{1}});
2. for j ∈ [τ : tmax), call Pop({{0}}j);
3. {{ucnt}} ← GUnary({{cnt}}tmax−1);

4. return {{ucnt}};

Garbler

for ` ∈ [0 : `max], call GSlowQueue`.Garble
(see Equation (2) and narrative)

create the initial garbled state {{cnt = 0}},
for i ∈ [0, `max − 1], initialize {{lcnti = 0}},
and for τ ∈ [0 : tmax), create the garbled
circuit GAddτ ;

for τ ∈ [0 : tmax), for each 2i that di-
vides τ + 1, create the garbled circuit
GNeedUpdτ,i;

call GVault.Garble with {{{0}}τ}τ∈[0:tmax)

where {{0}}τ is a garbling of 0 using the
input label of the τ -th Pop call;

create a single garbled circuit GUnary
which converts binary representation to
unary representation;

Figure 3: GStack algorithm.

input/output garbling labels denoted InL and OutL respectively, and outputs some internal
garbled memory Gmem and garbled circuitry GC.

� Gmem′, JresK ← PopGC(Gmem, {{bE}}): depending on the flag b, either pop an element from the
stack or do nothing. Correctness requires that 1) if b = 1, then the result res = DB[cntτ ]
where τ is the current time step, and cntτ denotes the total number of Pop operations so far
(not counting the current one) where the flag b = 1; and 2) if b = 0, then the result res = 0.
Moreover, it must be that Lbl(JresK) is the τ -th output label contained in OutL.

� {{ucnt}} ← FinalizeGC(Gmem, {{1}}): upon receiving a garbled signal {{1}} indicating that the
data structure should be finalized in this time step, output a garbling of ucnt, the total number
of elements popped expressed in a unary format and prepended with 0s to a length of m.
Correctness also requires that Lbl({{ucnt}}) is the finalization label contained in OutL.

5.2.2 Construction

Although efficient garbled stacks have been proposed in earlier works [ZE13, ZRE15, WNL+14,
HKO21], we need a variant that supports dynamic finalization. Therefore, we extend prior schemes
with this additional feature. Our GStack algorithm employs logarithmically many garbled linear-

20



scan queues GSlowQueue described in Appendix A.1, and an expiring vault GVault described in Sec-
tion 5.1. Write m = 2α, and let `max = α−3. When the garbler receives the inputs DB, InL,OutL,
it parses the initial DB := (D0, D1, . . . , D`max) as `max + 1 levels where level 0 contains 8 elements,
and for ` ∈ [1 : `max], level ` contains 4 · 2` elements. Henceforth, for each ` ∈ [1 : `max], we may
view level ` has having 4 wide elements of width 2` ·w instead (i.e., we group 2` elements into one
wide element). It will then create logarithmically many garbled slow queues:

call GSlowQueue0.Garble(1
λ, sk, (8, w, t0 = tmax + tmax/2), D`, IL`,OL`); (1)

for ` ∈ [1 : `max], call GSlowQueue`.Garble(1
λ, sk, (4, 2` · w, t0/2`), D`, IL`,OL`) (2)

The input labels IL` and output labels OL` are otherwise chosen at random, with the constraints
that the output labels of GSlowQueue0.Pop should match the output labels of GStack.Pop, and
for each i ∈ [1 : `max], the output label of the τ -th call to GSlowQueuei.Pop should match the
input labels of the τ -th call to GSlowQueuei−1.Push. The remainder of the GStack algorithm is
described in Figure 3. Note also that the input labels to GVault.Finalize should match the input
labels to GStack.Finalize. Other implicit label alignment can directly be inferred from Figure 3 (see
Section 3.4 for an explanation of our implicit label matching convention).

It is not hard to see that our GStack construction costs O(tmax · (w + λ) · logm) bits, if we use
the efficient garbling for multiplying a garbled bit known to the evaluator with a shared value (see
Section 3.2).

5.2.3 Security Proof

Theorem 5.1. Assume that the underlying GSlowQueue and GVault constructions are secure by
Definition 1. Then, the GStack construction is secure by Definition 1.

Proof. The proof is rather mechnical. Suppose the Finalize function is called at time t∗. In reverse
topological order of the dependency graph, we can replace the real-world garbled components one
by one with simulated ones. When multiple garbled components share garbled inputs, we will need
to use our generalized notion of simulation (see Definition 1), i.e., a subset of the garbled inputs
may be fixed and fed into the simulator Sim which simulates the garbled circuitry/memory, as well
as the remaining garbled or shared inputs.

Consider the following sequence of hybrid experiments.

� Hyb0: the real-world view. More specifically, in the real world, we first fix the initial stack DB
and the inputs {bτ}τ∈[0:t∗). We fix all the output labels OutL. It is possible that some of the
input labels for the control bits {bτ}τ∈[0:t∗) or for the finalization signals in all time steps are
fixed. For the part of InL that are not fixed (i.e., the free set), we sample those labels at random.
We then run the honest garbling algorithms and output the resulting GC, Gmem, as well as the
garblings of the free set of inputs.

In the real world, we can use the resulting GC and Gmem to perform evaluation on the garblings
of the chosen {bτ}τ∈[0:t∗) as well as {{1}}t∗ . The encoding of any intermediate or final variable
derived from this honest evaluation is henceforth said to be an active encoding. By correctness
of the algorithm, the active encoding of every variable must agree with the result of applying
the encoding algorithm to the cleartext value of this variable, using the variable’s chosen labels.

� Hyb1: We first run Hyb0, which generates all the active encodings for all intermediate and
final variables. We then run the simulator GUnary.Sim which takes in the active garbled output
{{ucnt}}, and outputs GUnary.GC and the active encoding {{cnt}}tmax−1. Given the active encoding

21



{{cnt}}tmax−1 and the cleartext value of this variable, we can uniquely determine the label used to
encode this variable (which is needed by the honest garbler GAdd.Garble). At this moment, we
can call the honest garbler to garble the remaining garbled components, and output the result.

In the remaining hybrid steps, we shall replace the garbled components one by one just like this
— without risking ambiguity, henceforth we simply write the order in which we do these swaps.
The details can be expanded just like the above.

� Hyb2: otherwise identical as Hyb1 except that 1) we simulate the terms JresKt∗ , . . . , JresKtmax
at

random; and 2) we replace GSlowQueue0.GC,GSlowQueue0.Gmem, the free set of variables among
{{{b}}τ}τ∈[0:tmax], {{{β0}}}τ∈[0:tmax], and {Jx0, y0Kτ}τ∈[0:tmax] with the output of GSlowQueue0.Sim.

� Hyb3 = Hyb04: otherwise identical as Hyb2 except that we now replace GVault.GC,GVault0.Gmem
and {{1}}t∗ (if it is a free input) with the output of GVault.Sim.

� Hybj4 for j = 1 to `max−1: otherwise identical as Hybj−14 except that we now replace GSlowQueuej .GC,
GSlowQueuej .Gmem, and {{{βj}}, Jxj , yjKτ}τ∈[0:tmax] with the outcome of GSlowQueuej .Sim. Note
that we need the generalized notion of simulation here because the {{βj−1}}τ part of the input
to GSlowQueuej .Pop call is already fixed.

� Hyb`max
4 : otherwise identical as Hyb`max−1

4 except that we now replace the terms GSlowQueue`max .GC,
GSlowQueue`max .Gmem, and {{{β`max}}}τ∈[0:tmax] with the outcome of GSlowQueue`max .Sim.

� Hyb5: otherwise identical as Hyb`max
4 except that we now replace {GNeedUpdτ,i.GC}τ∈[0:tmax] and

{{{lcnti}}τ}τ∈[0:tmax] with the output of {GNeedUpdτ,i.Sim}τ∈[0:tmax].

� Hyb6: otherwise identical as Hyb5 except that we replace {GAddτ .GC}τ∈[0:tmax] with the output
of {GAddτ .Sim}τ∈[0:tmax]. We need the generalized notion of simulation here because the garbled
input {{cntτ}}, {{b}}τ , {{lcnti}}τ to GAddτ are already fixed.

Hyb1 is computationally indistinguishable from Hyb0 due to the security of garbled circuits.
Hyb2 is computationally indistinguishable from Hyb1 due to the security of GSlowQueue0. Hyb3
is computationally indistinguishable from Hyb2 due to the security of GVault. For j ∈ [1 : `max]
Hybj4 is computationally indistinguishable from Hybj−14 due to the security of GSlowQueuej . Hyb5
is computationally indistinguishable from Hyb`max

4 due to the security of garbled circuits. Hyb6 is
computationally indistinguishable from Hyb5 due to the security of garbled circuits.

Finally, observe that the experiment Hyb6 no longer calls any real-world garbler; it only needs to
call the simulators of the various garbled building blocks. Therefore, the experiment Hyb6 actually
does not need to make use of the cleartext input values any more, all it needs is the encodings of
the active outputs, as well as the encodings of the fixed set of inputs. Therefore, Hyb6 directly
gives our simulator construction and the simulated view.

5.2.4 A Slightly Different Variant of GStack

Later on in our GSwitch construction, we also need a simpler variant of GStack that does not need a
Finalize function — this is the variant that was constructed and proven in prior work [ZE13,HKO21].
This variant can be constructed in a similar manner as Figure 3, except that we no longer need the
GVault and the Finalize function. The security proof can be done in a similar manner as the proof
in Section 5.2.3.

22



5.3 Switch (GSwitch)

A switch is a two-way router. Imagine that the switch receives some message msg := (leaf, addr, L).
The first bit of leaf, that is, leaf[0], is used to determine whether the message is supposed to be
forwarded to its left child or right child. The switch has a hard-wired array denoted RdL of length
tmax, where tmax is the maximum number of times that the switch can be invoked. The switch wants
to route the transformed message (leaf[1 :], addr, L⊕RdL[τ ]) to the child selected by leaf[0], where
τ is the switch’s local time step, i.e., how many times it has been invoked before (not including the
current invocation). Later on, every node in the ORAM tree will employ such a switch to pass on
information to one of its two children during an ORAM fetch operation. Altogether, this allows us
to read and remove a block along a path from the root to some leaf node. In particular, each node
consumes the next bit in the leaf identifier to determine the routing direction. The term RdL[τ ] is
the local-time-dependent output label used by the garbled bucket paired with the switch, and we
want to xor the incoming label L with RdL[τ ] before passing it on — see Section 2.2.1 for a more
detailed explanation.

When we want to garble a switch, the main challenge is that of label translation: the input m̃sg =
({{leaf, addr}}τ , JLKτ ) is encoded using a local-time-dependent label where τ denotes the local time
of the switch. The switch needs to re-encode the transformed message (leaf[1 :], addr, L⊕RdL[τ ])
under a label that is dependent on the child’s local time. However, the child’s local time cannot be
predicted at the garble time, since it depends on the actual inputs leaf which are chosen dynamically
online. We adapt an elegant idea proposed by Heath et al. [HKO21] to solve this problem. Suppose
that we are promised that each child will be invoked at most t′max number of times. We will
create two garbled stacks each containing t′max labels (denoted OutL0 and OutL1, respectively),
corresponding to the languages of the left and right children each time they are invoked. Given
the direction bit b := leaf[0], we securely pop the next label from b-th stack, and we use this
popped label to re-encode the output message to be routed to the corresponding child. Later in
our application, we are actually allowed to leak the leaf part of the input which is related to the
memory access patterns. More specifically, leaf actually corresponds to a path in the Bucket ORAM
tree [FNR+15], and since its choice is random, it is safe to reveal leaf.

5.3.1 Definition

For GSwitch, we define params = (B,w) where 2B is the maximum number of times Switch can be
invoked, and w records the lengths of of the inputs to Switch, including the lengths of leaf, addr,
and L. The lengths of all other variables will be determined by λ, w, and B. Specifically, RdL
contains 2B entries each of |L| bits long; InL contains 2B entries each of λ(|leaf| + |addr|) + |L|
bits long; for b ∈ {0, 1}, OutLb contains 2B entries each of |InL| bits long; and FinL contains 2B
entries each of 2Bλ bits long if InitL = ∅, else it contains 2B entries each of 2λ bits long.

For each b ∈ {0, 1}, it is promised that Switch will only be invoked at most B times with the
direction bit leaf[0] = b. Later in our application, in fact, we guarantee that in expectation, Switch
is invoked only B times, and the probability that there will be 2B or more invocations is negligibly
small. A garbled switch GSwitch consists of the following possibly randomized algorithms:

� Gmem,GC← Garble(1λ, sk, params,RdL, InL,OutL0,OutL1,FinL): the Garble algorithm takes
in the security parameter 1λ, the secret key sk, parameters params a list of labels RdL to be
consumed in each time step (by the associated garbled bucket), the input labels InL, two lists
of output labels OutL0 and OutL1, as well as labels denoted FinL used to encode the output
of Finalize. It outputs the garbled circuits GC and the initial garbled memory Gmem.

23



We often write InL := (InitL,ReqL,CtrlL) where the part InitL is consumed by Init, the
part ReqL is consumed by Switch, and the part CtrlL is used to garble the finalization signals
for all time steps.

� Gmem′ ← InitGC(Gmem, {{stE}}): this function may be called at most once upfront before any
invocation of Switch. Specifically, if we parse InL := (InitL, , ) where InL was passed to
Garble, Init should be invoked if InitL 6= ∅; else it will not be invoked.

� Gmem′, {{leaf ′}}, {{addr′}}, JL′K ← SwitchGC(Gmem, {{leafE}}, {{addr}}, JLK): for correctness, the
outputs must satisfy: leaf ′ = leaf[1 :], addr′ = addr, L′ = L ⊕ RdL[τ ] where τ is the cur-
rent local time step. Moreover, let b = leaf[0], and let cntb be the number of times Switch has
been invoked with direction bit leaf[0] = b (not counting the current one); then, it must be that
Lbl({{leaf ′}}, {{addr′}}, JL′K) is the first |InL|−λ bits of OutLb[cntb] — the last λ bits are reserved
for garbling the finalization signal.

� {{st}} or {{1L, 1R}} ← Finalize(Gmem, {{1}}) :

– If InitL 6= ∅, the output should be of the form {{1L, 1R}}, where Lbl({{1L}}) is the last 2λ bits
of OutL0[cnt0] and Lbl({{1R}}) is the last 2λ bits of OutL1[cnt1]. Here, we use the subscripts
“L” and “R” are used to differentiate the two 1 bits;

– Else if InitL = ∅ the output should be of the form {{st}}; furthermore, st is of the form
st := (st0, st1), such that for b ∈ {0, 1}, each stb is a bit vector containing exactly cntb and
padded with 0s to a length of exactly B, where cntb is the total number of times Switch has
been invoked a direction bit leaf[0] = b; and moreover, Lbl({{st}}) = FinL.

Remark 3 (Two types of GSwitches depending on whether InitL = ∅). Later on in our construction
(see also Figure 2), there will be two types of garbled switches, those that correspond to empty
buckets of the Bucket ORAM (i.e., where InitL = ∅) and those that correspond to full buckets
(i.e., where InitL 6= ∅). For the latter type (InitL 6= ∅), when the switch first becomes active, its
children switches have been operating for a while, and this is why we need to call its Init procedure
to synchronize its state with its children. The input to the Init is passed down from the previous
parent of their children, i.e., the garbled switch whose role it is taking over. The former type
(InitL = ∅) need not perform initialization, since their children switches are fresh when they first
become active. When the latter type (InitL 6= ∅) finalizes, its children need to be “rebuilt” as well;
this is why it needs to pass the authenticated finalization signals {{1L, 1R}} to its children.

5.3.2 Construction

Although Heath et al. [HKO21] describe a garbled switch scheme for constructing an access-
revealing garbled one-time memory, again we need a new variant that supports 1) dynamic fi-
nalization; and 2) the XOR trick. We therefore describe a new variant supporting these features.
Our construction is explained in Figure 4 which calls the following subroutine for creating the
garbled stacks. Note that when InitL 6= ∅, we are using the variant of GStack that does not have
a Finalize call (see Section 5.2.4).

Subroutine for creating garbled stacks

� Let m = 2B and let w = |OutL0[0]|. Parse InL := (InitL, , ).

� If InitL 6= ∅, then: let tmax = 4B+1; parse InitL := (InitL0, InitL1), and let ctrlL
$←{0, 1}λ.

24



Evaluator

� Init({{stE∅ }}): // called when InitL 6= ∅

1. parse {{stE∅ }} := {{βb,i}}b∈{0,1},i∈[0:2B);
2. for b ∈ {0, 1}, i ∈ [0 : 2B), call

GStackb.Pop({{βb,i}});

� Switch({{leafE}}, {{addr}}, JLK) :

1. Call {{β0 = leaf[0]}}, {{β1 = 1− β0}},{{leaf ′ =
leaf[1 :]}}, {{addr′ = addr}}, JL′ = L⊕RdL[τ ]K
← GCSwτ ({{leaf}}, {{addr}}, JLK, JRdL[τ ]K);

2. For b ∈ {0, 1}, JKb, K← GStackb.Pop({{βb}});
// here means ignore the last 2λ bits

3. Output
(
{{leaf ′}}, {{addr′}}, JL′K

)
⊕ JK0K ⊕

JK1K⊕ TrLτ .

� Finalize({{1}}):

1. If InitL 6= ∅, call:

– {{1L, 1R}} ← Dec{{1}}(ctτ );

– J ,K ′0K← GStack0.Pop({{1L}});
– J ,K ′1K← GStack1.Pop({{1R}});
– {{1′L}} := {{1}} ⊕ JK ′0K⊕ TrL′0,τ ;

– {{1′R}} := {{1}} ⊕ JK ′1K⊕ TrL′1,τ ;

and output {{1′L, 1′R}}.
2. Else, call

– {{st0}} ← GStack0.Finalize({{1}}),
– {{st1}} ← GStack1.Finalize({{1}}),
and output {{st0, st1}}.

Garbler

Create two garbled stacks GStack0 and
GStack1 as explained in a separate
subroutine;

For each τ ∈ [0 : 2B), create the shar-
ing JRdL[τ ]K, and garble the GCSwτ cir-
cuit (whose functionality is defined on
the left);

For each τ ∈ [0 : 2B), compute the
translation label TrLτ := Lbl(JK0Kτ ) ⊕
Lbl(JK1Kτ )⊕ Lbl({{leaf ′, addr′}}τ , JL′Kτ );

If InitL 6= ∅, then, for each
τ ∈ [0 : 2B], create the ciphertext
ctτ = Enc{{1}}τ ({{1L, 1R}}τ ), and compute

TrL′0,τ := Lbl(JK ′0Kτ ) ⊕ Lbl({{1}}τ ) and
TrL′1,τ := Lbl(JK ′1Kτ )⊕ Lbl({{1}}τ ).

Figure 4: GSwitch algorithm.

25



For b ∈ {0, 1}, let ILb = InitLb||rand()||ctrlL ∈ {0, 1}m·λ+2tmax·λ; let OLb
$←{0, 1}tmax·(w+λ).

� Else, let tmax = 2B; let ctrlL
$←{0, 1}λ, for b ∈ {0, 1}, let ILb = rand()||ctrlL ∈ {0, 1}2tmax·λ;

let OLb = rand()||FinL ∈ {0, 1}tmax·w+m·λ.
// GStack0 and GStack1 share the same finalization signal labels for all time steps

� For b ∈ {0, 1}: call (GStackb.Gmem,GStackb.GC) ← GStackb.Garble(1
λ, sk, params = (m, w,

tmax), DB = OutLb, ILb, OLb).

In Figure 4, when we write the evaluator’s algorithm, we do not explicitly write the time step
τ , however, keep in mind that the inputs and outputs of Switch as well as the inputs to Finalize
are actually encoded using τ -dependent labels. When we write the garbler’s algorithm, since the
garbler must create some garbled circuitry per time step τ , we explicitly write out the current time
step τ in subscript, e.g., {{var}}τ means the variable garbled under a τ -dependent label.

It is not hard to see that the construction in Figure 4 costs O (B · (λ · w1 + w2) · logB) bits,
where w1 = |leaf|+ |addr| and w2 = |L|.

5.3.3 Security Proof

We show that there exists a p.p.t. simulator Sim such that the simulated view is computationally
indistinguishable from the real-world view. Since the syntax of GSwitch is slightly different from
the standard syntax of a garbled data structure defined in Section 3.3, we note that in the security
definition, we fix the RdL, OutL0, OutL1, and FinL parts to be arbitrary strings. The labels
InL[S] are generated at random, and the input labels InL[¬S] are fixed to be an arbitrary string.

Below we describe the proof for the case when all inputs are free inputs. The case when some
inputs are fixed inputs can be proven in a very similar manner.

Case 1: InitL = ∅. We first describe the simulator construction.

� Input: t∗, the outputs {{st0, st1}}, {{{outp}}τ}τ∈[0:t∗) where outpτ =
(
{{leaf ′}}τ , {{addr

′}}τ , JL′τ K
)
⊕

JK0Kτ ⊕ JK1Kτ ⊕ TrLτ , and the leakage {leafτ}τ∈[0:t∗);
� Output: simulated garbled inputs {{1}}t∗ , {{{leaf, addr}}τ , JLKτ}τ∈[0:t∗), and simulated garbled

circuitry and initial garbled memory including the following terms: {GCSwτ .GC, JRdL[τ ]K}τ∈[0:tmax),
{TrLτ}τ∈[0:tmax), and {GStackb.(GC,Gmem)}b∈{0,1}.

� Construction: The simulator proceeds as follows and outputs the underlined terms where
tmax = 2B:

– For τ ∈ [0 : t∗), choose {{leaf ′, addr′}}τ , JL′Kτ , JK0,K1Kτ , and TrLτ at random subject to
({{leaf ′, addr′}}τ , JL′Kτ ) ⊕ JK0Kτ ⊕ JK1Kτ ⊕ TrLτ = {{outp}}τ . Moreover, for τ ∈ [0 : t∗), choose
JK ′0,K

′
1Kτ at random. For τ ∈ [t∗, tmax), choose {{β0, β1, leaf ′, addr′}}τ and JL′Kτ at random,

choose TrLτ at random.

– Call

GStack0.(GC,Gmem), {{1}}t∗ , {{β0}}τ∈[0:t∗)
← GStack0.Sim(1λ,GStack0.params, t∗, {JK0,K

′
0Kτ}τ∈[0:t∗), {{st0}}, {leafτ [0]}τ∈[0:t∗));

– Call

GStack1.(GC,Gmem), {{β1}}τ∈[0:t∗)
← GStack1.Sim(1λ,GStack1.params, t∗, {JK1,K

′
1Kτ}τ∈[0:t∗), {{st1}}, {{1}}t∗ , {leafτ [0]}τ∈[0:t∗))

26



– For τ ∈ [0 : t∗),

GCSwτ .GC, JRdL[τ ]K, {{leaf, addr}}τ , JLKτ ← GCSwτ .Sim(1λ, {{β0, β1}}τ , {{leaf
′, addr′}}τ , JL

′Kτ );

for t ∈ [t∗, tmax), call GCSwτ .GC, JRdL[τ ]K, ← GCSwτ .Sim(1λ, {{β0, β1}}τ , {{leaf
′, addr′}}τ , JL′Kτ ).

To argue that the above simulated terms are computationally indistinguishable from the real-
world counterparts, we can do a straightforward hybrid argument. We can start with the real world
view which we denote as Hyb0. Then, we will replace each garbled component with a simulated
counterpart, and we shall do this in reverse topological order of the dependency graph.

� Hyb1: otherwise identical as Hyb0, except that now we call GStack0.(GC,Gmem), {{1}}t∗ , {{β0}}τ∈[0:t∗)
← GStack0.Sim(1λ, GStack0.params, t∗, {JK0,K

′
0Kτ}τ∈[0:t∗), {{st0}}, {leafτ [0]}τ∈[0:t∗)) to generate

the terms GStack0.(GC,Gmem), {{1}}t∗ , {{β0}}τ∈[0:t∗).

� Hyb2: otherwise identical as Hyb1, except that now we call GStack1.(GC,Gmem), {{β1}}τ∈[0:t∗)
← GStack1.Sim(1λ, GStack0.params, t∗, {JK1,K

′
1Kτ}τ∈[0:t∗), {{st1}}, {{1}}t∗ , {leafτ [0]}τ∈[0:t∗)) to

generate the terms GStack1.(GC,Gmem), {{β1}}τ∈[0:t∗).

� Hyb3: otherwise identical as Hyb2 except that now, for τ ∈ [0 : t∗), we choose {{leaf ′, addr′}}τ , JL′Kτ ,
and TrLτ at random subject to ({{leaf ′, addr′}}τ , JL′Kτ )⊕ JK0Kτ ⊕ JK1Kτ ⊕ TrLτ = {{outpτ}}. For
τ ∈ [t∗, tmax), we choose the active encodings {{β0, β1, leaf ′, addr′}}τ and JL′Kτ at random. Note
that the labels of {{leaf ′, addr′}}τ , JL′Kτ are needed in the garbling of GCSwτ .

� Hyb4: otherwise identical as Hyb3, except that now for τ ∈ [0 : tmax), we call GCSwτ .GC, JRdL[τ ]K,
{{leaf, addr}}τ , JLKτ ← GCSwτ .Sim(1λ, {{β0, β1}}τ , {{leaf ′, addr′}}τ , JL′Kτ ) to generate the terms
GCSwτ .GC, JRdL[τ ]K, {{leaf, addr}}τ , and JLKτ . Note that for τ ∈ [t∗, tmax), we only need to in-
clude GCSwτ .GC and JRdL[τ ]K in the output, and the terms {{leaf, addr}}τ , and JLKτ are thrown
away.

Due to the security of GStack, Hyb1 is computationally indistinguishable from Hyb0, and Hyb2 is
computationally indistinguishable from Hyb1. Hyb3 is identically distributed as Hyb2. Due to the
security of garbled circuits, Hyb4 and Hyb3 are computationally indistinguishable. Finally, observe
that Hyb4 is the same as our simulator construction.

Case 2: InitL 6= ∅. We first describe the simulator construction.

� Input: t∗, the outputs {{1′L, 1′R}}, {{{outp}}τ}τ∈[0:t∗) where outpτ =
(
{{leaf ′}}τ , {{addr

′}}τ , JL′τ K
)
⊕

JK0Kτ ⊕ JK1Kτ ⊕ TrLτ , and the leakage {leafτ}τ∈[0:t∗) and st∅;

� Output: simulated garbled inputs {{1}}t∗ , {{{leaf, addr}}τ , JLKτ}τ∈[0:t∗), {{st∅}} and simulated gar-
bled circuitry and initial garbled memory including the following terms: {GCSwτ .GC, JRdL[τ ]K}τ∈[0:tmax),
{TrLτ}τ∈[0:tmax), {TrL

′
0,τ ,TrL

′
1,τ}τ∈[0:tmax], {ctτ}τ∈[0:tmax], and {GStackb.(GC,Gmem)}b∈{0,1}.

� Construction: The simulator proceeds as follows and outputs the underlined terms — below,
we sometimes use {{10}}, {{1′0}} as aliases for {{1L}} and {{1′L}} respectively, and use {{11}}, {{1′1}}
as aliases for {{1R}} and {{1′R}}, respectively;

– For τ ∈ [0 : t∗), choose {{leaf ′, addr′}}τ , JL′Kτ , JK0,K1Kτ , and TrLτ at random subject to
({{leaf ′, addr′}}τ , JL′Kτ ) ⊕ JK0Kτ ⊕ JK1Kτ ⊕ TrLτ = {{outp}}τ . Moreover, choose JK0,K1Kt∗ at
random; choose {JK ′0,K ′1Kτ}τ∈[0:t∗] at random. For τ ∈ [t∗, tmax), choose TrLτ at random, and
choose the terms {{β0, β1, leaf ′, addr′}}τ , JL′Kτ at random;

27



– For b ∈ {0, 1}, choose JZb,0, . . . , Zb,2B−1K at random to represent the outputs of GStackb.Pop
inside Init;

– For b ∈ {0, 1}, call

GStackb.(GC,Gmem), {{1b}}t∗ , {{βb}}τ∈[0:t∗), {{st∅}}

← GStackb.Sim(1λ,GStackb.params, t∗, JZb,0, . . . , Zb,2B−1K, {JKb,K
′
bKτ}τ∈[0:t∗], st∅, {leafτ [0]}τ∈[0:t∗)).

– For b ∈ {0, 1}, for τ ∈ [0 : t∗], choose TrL′b,τ = JK ′bKτ ⊕ {{1b}}τ ⊕ {{1
′
b}}, and for t ∈ [t∗ : tmax],

choose TrL′b,τ at random;

– For τ ∈ [0 : tmax] and τ 6= t∗, let ctτ be encryptions of 0 under random keys. Pick some
random {{1}}t∗ , and let ctt∗ be an honest encryption of {{1L, 1R}}t∗ using the key {{1}}t∗ ;

– For τ ∈ [0 : t∗),

GCSwτ .GC, JRdL[τ ]K, {{leaf, addr}}τ , JLKτ ← GCSwτ .Sim(1λ, {{β0, β1}}τ , {{leaf
′, addr′}}τ , JL

′Kτ );

for t ∈ [t∗, tmax), call GCSwτ .GC, JRdL[τ ]K, ← GCSwτ .Sim(1λ, {{β0, β1}}τ , {{leaf
′, addr′}}τ , JL′Kτ ).

We now show that these simulated terms are computationally indistinguishable from their real-
world counterparts. To prove this, we will go through a sequence of hybrid experiments, starting
from the real-world view, and in a reverse topological order of the dependency graph, swap each
garbled component with a simulated one. Henceforth, let Hyb0 denote the real-world view.

� Hyb1: otherwise identical as Hyb0, except that now, for b ∈ {0, 1}, we call GStackb.(GC,Gmem),
{{1b}}t∗ , {{βb}}τ∈[0:t∗), {{st∅}}← GStackb.Sim(1λ, GStackb.params, t∗, JZb,0, . . . , Zb,2B−1K, {JKb,K

′
bKτ}τ∈[0:t∗],

st∅, {leafτ [0]}τ∈[0:t∗)) to generate the terms GStackb.(GC,Gmem), {{1b}}t∗ , {{βb}}τ∈[0:t∗), {{st∅}}.

� Hyb2: otherwise identical as Hyb1 except that now choose {TrLτ}τ∈[0:t∗), and {TrL′0,τ ,TrL′1,τ}τ∈[0:t∗]
subject to ({{leaf ′, addr′}}τ , JL′Kτ )⊕ JK0Kτ ⊕ JK1Kτ ⊕TrLτ = outpτ , and TrL′b,τ = JK ′bKτ ⊕{{1b}}τ ⊕
{{1′b}}. For τ ∈ [t∗, tmax), we choose TrLτ at random, and for τ ∈ [t∗, tmax], for b ∈ {0, 1}, we
choose TrL′b,τ at random.

� Hyb3: otherwise identical to Hyb2 except that now for τ ∈ [0 : tmax] and τ 6= t∗, we let ctτ be
an encryption of 0 under a randomly chosen key; additionally, we choose {{1}}t∗ at random, and
let ctt∗ be an honest encryption of {{1L, 1R}} under the key {{1}}t∗ .

� Hyb4: otherwise identical to Hyb3, except that now for τ ∈ [0 : tmax), we call GCSwτ .GC,
JRdL[τ ]K, {{leaf, addr}}τ , JLKτ ← GCSwτ .Sim(1λ, {{β0, β1}}τ , {{leaf ′, addr′}}τ , JL′Kτ ) to gener-
ate the terms GCSwτ .GC, JRdL[τ ]K, {{leaf, addr}}τ , JLKτ , where for τ ∈ [t∗, tmax), the terms
{{β0, β1}}τ , {{leaf ′, addr′}}τ , JL′Kτ ) are generated at random.

Hyb1 is computationally indistinguishable from Hyb0 due to the security of GStack, Hyb2 is
identically distributed as Hyb1, Hyb3 and Hyb2 are computationally indistinguishable due to the
semantic security of the encryption scheme, and Hyb4 and Hyb3 are also computationally indis-
tinguishable due to the security of garbled circuit. Finally, observe that Hyb4 is the same as our
simulator construction.

5.4 Leaf Switch (GLeafSwitch)

Leaf switches GLeafSwitch will later be used by leaf nodes in the ORAM tree. Leaf switches need
not perform any routing, it only outputs a translation label TrL. The syntax of GLeafSwitch is as

28



Evaluator

� Switch(JLK):
call L⊕RdL[τ ]← GCτ (JLK, JRdL[τ ]K)

Garbler

for τ ∈ [0 : tmax): create the garbled state
JRdL[τ ]K, and the garbled circuit GCτ .

Figure 5: GLeafSwitch algorithm

follows. We assume that params = (m = tmax, w) where m = tmax denotes the maximum number
of times the switch can be invoked, and it is also the length of the initial array of labels RdL; w
denotes the bit-width of each entry in RdL as well as the bit-width of L.

� Gmem,GC← Garble(1λ, sk, params,RdL): upon receiving an array of labels RdL, output Gmem
and GC;

� TrL← SwitchGC(Gmem, JLK): correctness requires that TrL = RdL[τ ]⊕L where τ is the current
local time.

Construction. The construction of a leaf switch is standard and described in Figure 5. The
cost of our GLeafSwitch construction is O(tmax · w) bits, using the efficient operations on shared
values mentioned in Section 3.2. Its security proof also follows directly from the security of garbled
circuits.

5.5 Garbled Access-Revealing One-Time Memory (GOTM)

5.5.1 Definition

A garbled access-revealing one-time memory implements a memory array such that once initialized,
it is promised that each real address will only be accessed once; further, the evaluator knows exactly
which address is being accessed. Let params = (m = tmax, w) where m = tmax denotes the number
of elements in the initial data array DB, as well as the maximum number of requests, and w is
the bit-width of each element. We allow two types of requests, real requests ask for a real logical
address, and filler requests (denoted (⊥, 0)) do not ask for anything but they must be there for
security. As mentioned, it is promised that each real address will be requested at most once.

� Gmem,GC ← Garble(1λ, sk, params, InL,OutL): receives input/output labels denoted InL and
OutL, and outputs GC,Gmem. We often write InL := (InitL,ReqL,CtrlL) where the first
part corresponds to the labels consumed by the Init procedure, the second part corresponds to
the labels consumed by up to tmax calls to Read, and the third part corresponds to the labels
consumed by a possible call to Finalize in any of the tmax time steps;

� Gmem′ ← InitGC(Gmem, {{DB}}): called once upfront before any invocation of Read, initialize
the garbled data structure with the initial memory array DB;

� Gmem′, {{res}} ← ReadGC(Gmem, {{idxE}}): it should be that res = DB[idx]; moreover, Lbl({{res}})
should be the corresponding τ -dependent output label contained in OutL;

� {{DB′}} ← FinalizeGC(Gmem, {{1}}): upon receiving some finalization signal {{1}} garbled with a
τ -dependent label, output a garbled list of elements that have not been read. Concretely, for
i ∈ [0 : m), DB′[i] = DB[i] if i has not been read; else DB′[i] = (⊥, 0). Further, Lbl({{DB′}})
should match the fixed finalization labels contained in OutL.

29



Heath et al. [HKO21] propose an efficient garbled implementation of an access-revealing one-
time memory. We modify their construction to support an additional Finalize procedure.

5.5.2 Construction

We can construct such a garbled, access-revealing one-time memory using GStack and a variant of
GSwitch. In Section 5.3, a non-leaf GSwitch has two types differentiated by whether InitL = ∅ at
the time of garbling. In this variant, there is no Init procedure or InitL label; moreover, RdL = 0,
and the input addr to the Switch function is replaced with a signal {{1}}. Finally, Finalize always
outputs two control signals {{1L, 1R}} garbled under a label popped out of the two stacks OutL0

and OutL1, respectively, to be passed to both the left and right children. More specifically, this
variant of GSwitch has the following slightly simplified syntax: let params = (m = tmax,w) where
tmax = m denotes the maximum number of times the switch can be invoked (assumed to be a power
of 2); and w contains the bit-widths of leaf and L which are inputs to the Switch procedure. InL
contains m entries each of λ · (|leaf|+ 1) + |L| bits. For b ∈ {0, 1}, OutLb contains m/2 + 1 entries
each of |L|+ λ bits long. Each entry OutLb[τ ] contains two parts: the first |L| bits are the input
label expected by the τ -th invocation of b-th child, and the last λ bits are the finalization label
expected by the b-th child during its local time step τ . It is promised that among the m number of
Switch requests, at most m/2 of them want to go left and at most m/2 of them want to go right.

� Gmem,GC ← Garble(1λ, sk, params, InL,OutL0,OutL1): creates garbled circuitry GC and ini-
tial garbled Gmem upon receiving the input labels InL, and two stacks of output labels OutL0

and OutL1;

� Gmem′, {{leaf ′}}, {{1′}}, JL′K ← SwitchGC(Gmem, {{leafE}}, {{1}}, JLK): for correctness, the output
satisfies leaf ′ = leaf[1 :], and L′ = L; further, let b = leaf[0], and cntb be the number of times
Switch has been invoked with the direction bit leaf[0] = b (not counting the current one). Then,
it must be that Lbl({{leaf ′}}, JL′K) is the first |L| bits of OutLb[cntb];

� {{1L, 1R}} ← Finalize(Gmem, {{1}}) : outputs two garbled control signals where Lbl({{1L}}) is the
last λ bits of OutL0[cnt0] and Lbl({{1R}}) is the last λ bits of OutL1[cnt1].

The construction of this slight variant of GSwitch is very similar to Figure 4. The only changes
are 1) the parameters; 2) no Init call; and 3) in Finalize, always take the branch that outputs
{{1L, 1R}}. Such a GSwitch costs O(m · (λw1 + w2) · logm) where w1 = |leaf|+ 1 and w2 = |L|.

Data structures. We will rely on a tree of GSwitches (or GLeafSwitches at the leaf level), and a
GSwitch (or GLeafSwitch) at level ` ∈ [0 : `max] of the tree is provisioned with a capacity of 2`max−`,
where `max = log2m. This means that the root (where ` = 0) is provisioned to serve up to m route
requests, each level 1 node must serve up to m/2 route requests, and so on. The leaf level will use
a leaf-type switch denoted GLeafSwitch, provisioned to serve at most 1 request.

Each leaf node not only has a GLeafSwitch instance, it also has a GOTStack instance associated
with it — we also say that each GOTStack is paired with some GLeafSwitch if the two belong to
the same leaf node. Each leaf represents a memory location, and the leaf’s GOTStack stores the
memory word at this location.

For levels [0 : `max − 2], each GSwitch’s two output label stacks OutL0 and OutL1 are filled
with labels that match the two children’s input and finalization labels over all time steps. In other
words, if GSwitch is the parent of non-leaf switches GSwitch0 and GSwitch1, then for each τ ∈ [0 :
GSwitch.m/2], GSwitch.OutLb[τ ] = GSwitchb.InLb[τ ]||GSwitchb.CtrlLb[τ ]. If GSwitch is the parent
of two leaf switches denoted GLeafSwitch0 GLeafSwitch1, let GOTStack0 and GOTStack1 be the two

30



Evaluator

� Init({{DB}}):

1. for i ∈ [0 : m): GOTStacki.Push({{DB[i]}});

� Read({{idxE}}):

1. let JL0K = JOutL[τ ]K;
2. let {{leaf0}} = {{idx}}, {{10}} = {{1}}τ ;

3. let V = root and `max = log2m;

4. for ` ∈ [0 : `max):

– {{leaf`+1}}, {{1`+1}}, JL`+1K
← GSwitchV .Switch({{leaf`}}, {{1`}}, JL`K)

– V ← V.child[idx[`]];

// V is now the idx-th leaf

5. TrL← GLeafSwitchidx.Switch(JL`maxK);
6. {{rdata}} ← GOTStackidx.Pop({{1`max}});
7. output {{rdata}} ⊕ TrL;

� Finalize({{1}}):

1. RecFinalize(root, {{1}}) defined below;

2. output {{DB′}} = {{{Di}}}i∈[0:m).

Subroutine RecFinalize(V, {{1}})

a) if V is a leaf, let i be its index:

{{Di}} ← GOTStacki.Finalize({{1}})
and return; else continue with the following;

b) {{1L, 1R}} ← GSwitchV .Finalize({{1}})
c) let UL and UR be V ’s left and right children;

d) RecFinalize(UL, {{1L}}); RecFinalize(UR, {{1R}}).

Garbler

for i ∈ [0 : m): // see narrative

call GOTStacki.Garble;

for τ ∈ [0 : m):
create the sharing JOutL[τ ]K;
create the garbling {{1}}τ ;

for each tree node V : // see narrative

call GSwitchV .Garble;

for each i ∈ [0 : m): // see narrative

call GLeafSwitchi.Garble.

Figure 6: GOTM algorithm.

31



stacks paired with these leaf switches, GSwitch.OutLb[0] = GLeafSwitch.InLb[0]||GOTStackb.F .
The output label of GOTStack matches the RdL label for the paired GLeafSwitch.

Algorithm. We describe our GOTM construction in Figure 6, where we use GSwitchV to denote
the GSwitch instance associated with tree node V , and we use GLeafSwitchi and GOTStacki to
denote the GLeafSwitch or GOTStack instance at the i-th leaf node.

Intuitively, to access a memory location denoted by idx, the root of the tree receives a shared
label JLK. This shared label is routed over a path in the tree towards the leaf node indexed by idx,
and at each level, the parent will translate the language Lbl(JLK) to an appropriate language that
depends on the child’s local time. In the end, the corresponding leaf node will receive JLK shared
using a language it can recognize, and it can output the memory word garbled under the label L.

When the GOTM is finalized, it must output the residual memory array garbled under some
fixed labels. In the residual array, every location that has been visited must be replaced with a
filler element (⊥, 0). One challenge here is that at finalization time, some leaves have been visited
and they are already in local time 1; whereas others have not been visited and are in local time 0.
To resolve this issue, we have the tree pass down a garbled finalization signal {{1}} from the root
to all leaves, and in each step, the parent node will translate the finalization signal {{1}} into the
local-time-dependent languages of its children. At the very end, all GOTStacks at the leaf level
will receive a loal-time-dependent finalization signal {{1}}. If he GOTStack is still in local time 0,
it will be able to fast forward its local clock to 1 by performing a filler Pop operation. When all
GOTStacks are in local time 1, they can all output the top of their respective stacks garbled under
a fixed label.

Our GOTM construction costs O
(
m · λ · (w + logm) · log2m

)
bits.

5.5.3 Security Proof

The security proof is again rather mechanical. We will swap each garbled component one by one —
including the garbled circuitry, garbled memory, and (part of) its garbled inputs — with a simulated
counterpart. The crux is to perform the swaps in a reverse topological order of the dependency
graph of these components. Let Hyb0 be the real-world view. We now define the following sequence
of hybrids:

� Hyb1: otherwise identical to Hyb0 except the following modification. Let {{res}}τ be the output
of the τ -th Read operation. For τ ∈ [0 : t∗), select TrLτ and {{rdata}}τ at random subject
to TrLτ ⊕ {{rdata}}τ = {{res}}τ — note that this implicitly determines the labels for TrLτ and
{{rdata}}τ . Hyb1 is identically distributed as Hyb0.

� Hyb2: otherwise identical to Hyb1 except the following modification. For every i ∈ [0 : m),
replace GOTStacki.GC, GOTStacki.Gmem, its garbled inputs {{DB[i]}}, garbled Pop signal, as
well as its garbled finalization signal with the output of GOTStacki.Sim. Hyb2 is computationally
indistinguishable from Hyb1 due to the security of GOTStack.

� Hyb3: otherwise identical to Hyb2 except the following modification. For every i ∈ [0 : m), replace
GLeafSwitchi.GC, GLeafSwitchi.Gmem, and its input JLK with the output of GLeafSwitchi.Sim.
Hyb3 is computationally indistinguishable from Hyb2 due to the security of GLeafSwitch.

� Hyb`max−1
∗ , . . . ,Hyb0∗: each of these hybrid experiments Hyb`∗ is otherwise identical to the previous

one, except that we now swap all GSwitch instances at level ` of the tree (including its garbled
circuitry, garbled memory, as well as its garbled inputs) with the outcome of GSwitch.Sim. To
prove the more generalized notion of simulation (Definition 1), for the GSwitch on the first level,

32



part of its garbled inputs might already be fixed but this does not matter if the underlying
components satisfy the generalized notion of simulation, too. Each hybrid is computationally
indistinguishable from the previous one, due to the security of GSwitch. Note that to make these
swaps, we need to make use of the leakage, which contains the index idx of each Read request.

5.6 Bucket (GBkt)

A GBkt implements an access-hiding one-time dictionary. We do not directly use the existing GDict
instantiation (Section 4.2) for two reasons: 1) we need a Finalize function that is not supported by
existing schemes; 2) our construction in this section treats metadata and data blocks separately,
and thus we improve the asymptotical performance when block size is large. The garbled data
structure should implement the following functionality. The Init function should be called once
upfront. Init receives an initial memory array DB. Each element of DB is either a real element
of the format (addr, val), where addr 6= ⊥ is the logical address of the element, and val denotes
its contents, or a filler element denoted (addr = ⊥, val = 0). The space of the addr can be larger
than the capacity of the GBkt. Each Read operation asks for an element at a specified addr, and if
such an element is found, its contents are returned; else, 0 is returned. When Finalize is called, it
returns an DB′ that is the same as DB except that every visited element is replaced with ⊥. It is
promised that each real addr will be requested at most once.

5.6.1 Definition

Let params = (m,w, tmax) where m is the number of entries in the initial array DB, w contains
the bit-widths of the addr and val fields respectively, and tmax is the maximum number of times
Read can be called.

� GC ← Garble(1λ, sk, params, InL,OutL): receives the input and output labels InL and OutL,
and outputs the garbled circuitry GC;

� Gmem ← InitGC({{DB}}): receives a garbling of the initial memory {{DB}}, and outputs the
initial garbled memory Gmem;

� Gmem′, {{val}} ← ReadGC(Gmem, {{addr}}): receives a garbling of the logical address {{addr}} and
if DB contains an element with the desired addr, return the garbled value of the element denoted
{{val}}; else if not found, simply return {{0}}. In either case, the result should be garbled under
using a τ -dependent output label specified by the list OutL;

� {{DB′}} ← FinalizeGC(Gmem, {{1}}): upon receiving a garbled finalization signal {{1}}, returns
{{DB′}}. In particular, for any i ∈ [0 : m), if DB[i] was not visited, then DB[i]′ = DB[i]; else
DB′[i] = (⊥, 0). Further, Lbl(DB′) should match the fixed finalization label contained in OutL.

We often write InL := (InitL,ReqL,CtrlL) where the part InitL is consumed by Init, the
part ReqL is consumed by Read, and the part CtrlL are the labels for the finalization signal. We
often write OutL := (RdL,FinL). where RdL denotes the labels used by the output of Read and
FinL denotes the labels used by the output of Finalize.

5.6.2 Construction

Our GBkt construction is depicted in Figure 7. The initialization function Init receives {{DB}} of
lengthm; it first appends to the array {{DB}} a total of tmax garbled filler elements {{{(⊥i, 0)}i∈[0:tmax)}}

33



Evaluator

� Init({{DB}}):

1. {{DB∗}} ← GPerm({{DB}}||{{{(⊥i, 0)}i∈[0:tmax)}});
2. GOTM.Init({{DB∗}});
3. {{{addri, i}i∈[0:m+tmax)}} ← GExtr({{DB∗}});

// addri = DB∗[i].addr

4. GDict.Init({{{addri, i}i∈[0:m+tmax)}});
// i is the “location” of addri

5. {{Fidx}} ← GFillers({{DB∗}});
// Fidx[j] = the location of the filler ⊥j

� Read({{addr}}):

1. {{idx′}} ← GDict.Lookup({{addr}});
2. idx, {{idx}} ← GSel({{idx′}}, {{Fidx[τ ]}});

// idx = Fidx[τ ] if idx′ = ⊥; else idx = idx′

3. {{ , val}} ← GOTM.Read({{idxE}});
4. output {{val}};

� Finalize({{1}}): output GOTM.Finalize({{1}}).

Garbler

create garbled circuit GPerm;
create encodings {{{(⊥i, 0)}i∈[0:tmax)}};
call GOTM.Garble;

create garbled circuit GExtr;

call GDict.Garble;

create garbled circuit GFillers which
calls a sorting network to sort the
fillers {⊥i}i∈[0:tmax);

for τ ∈ [0 : tmax), create garbled cir-
cuit GSelτ .

Figure 7: GBkt algorithm

prepared by the garbler. We assume that any filler element already in DB are encoded differently
from these newly added fillers; further, we assume that each newly added filler has a unique iden-
tifier ⊥i such that we can differentiate between them — to do this we can expand the bit width
used to encode the addr field of each entry by O(log tmax) bits. It then applies a GPerm circuit
to randomly permute this concatenated array, and obtains {{DB∗}}. It then creates an access-
revealing one-time memory GOTM initialized with {{DB∗}}. Next, it creates a garbled dictionary
GDict that stores the mapping between each addr and its physical location within {{DB∗}}. Note
that this GDict stores only metadata, and does not deal with actual data blocks. It also creates
a list {{Fidx}} containing the locations of the tmax fillers {⊥i}i∈[0:tmax). Later on, if the τ -th Read
fails to find the element requested, the next filler ⊥τ whose location is stored in Fidx[τ ] will be
read instead. It is guaranteed that each filler element will be read at most once.

During each Read request, the evaluator first looks up the GDict, and it uses GSel to post-process
the garbled result returned by GDict. At this moment, if the addr requested exists in the GOTM,
the evaluator obtains its position idx as well as a garbled version {{idx}}; if not, then, idx will be
the position of a random filler element. The evaluator now calls GOTM.Read({{idxE}}) to read the
block stored at position idx of the one-time memory.

Henceforth, let w1 = |addr| and let w2 = |val|. In our construction, GDict.|key| = w1,
GDict.|val| = log(tmax +m), GDict.m = tmax +m, GOTM.m = tmax +m, GOTM.w = w1 +w2. The
total cost of our GBkt construction is O(t̃ · λ · (w1 · log3 t̃+w2 · log2 t̃+ log4 t̃) where t̃ = tmax +m.

34



5.6.3 Security Proof

We will swap each garbled component one by one with a simulated counterpart. In our GBkt
construction, all the garbled building blocks’ input and output encodings are garblings (rather
than sharings). Therefore, using our generalized notion of simulation (Definition 1), we do not
have to strictly follow a reverse topological order for the swaps.

Consider the following sequence of hybrid experiments. For convenience, we write the proof for
the case when all the inputs are free inputs — the case when there are some fixed inputs has a very
similar proof.

� Hyb0: the real-world view. In Hyb0, the input labels of some subset of the garbled inputs {{DB}},
{{{addr}}τ}τ∈[0:t∗), and {{1}}t∗ are fixed. The output labels OutL are fixed. The labels of all
other variables are chosen at random.

� Hyb1: we first choose the labels for {{DB∗}} at random. We then choose the active values DB∗ ←
Fperm(DB||{(⊥i, 0)}i∈[0:tmax)) to be a random permutation of the array DB||{(⊥i, 0)}i∈[0:tmax).
At this moment, the active encoding {{DB∗}} is determined. We may now replace GPerm.GC
and the active encoding {{DB}} and {{{(⊥i, 0)}i∈[0:tmax)}} with the output of GPerm.Sim. The
remaining garbled components and garbled free inputs are all generated using the honest algo-
rithm. Note that knowing the cleartext inputs and the random permutation, the active values
of all the remaining intermediate or final variables are uniquely determined, including the idx
values output by GSelτ in each time step is also uniquely determined.

� Hyb2: otherwise identical to Hyb1 except the following modification. Recall that each GOTM.Read
call has two outputs addr and val. Choose all the active encodings for addr in all time steps
at random. The active encodings of the val field in all time steps are already fixed since the
OutL is fixed. Now, replace GOTM.GC, GOTM.Gmem, as well as its active garbled inputs
{{{idx}}τ}τ∈[0:t∗), {{1}}t∗ with the output of GOTM.Sim which takes in garbled (fixed subset of)
inputs {{DB∗}} as well as the encodings of the active outputs {{{addr, val}}τ}τ∈[0:t∗).

� Hyb3: otherwise identical as Hyb2 except the following modification. We now replace {GSelτ .GC,
{{idx′}}τ , {{Fidx[τ ]}}τ∈[0:t∗) with the output of {GSelτ .Sim}τ∈[0:t∗). For τ ∈ [t∗, tmax), replace
GSelτ .GC with simulated garbled circuits (see Remark 2).

� Hyb4: otherwise identical as Hyb3, except with the following modification. We now replace
GFillers.GC with the output of GFillers.Sim which takes in the garbled output {{Fidx}} and the
garbled input {{DB∗}}.

� Hyb5: otherwise identical as Hyb4, except with the following modification. We now replace
GDict.GC, GDict.Gmem, and the garbled inputs {{{addri, i}i∈[0:m+tmax)}}, {{{addr}}τ}τ∈[0:t∗) with
the output of GDict.Sim.

� Hyb6: otherwise identical as Hyb5, except with the following modification. We now replace
GExtr.GC with the output of GExtr.Sim which takes in the garbled output {{{addri, i}i∈[0:m+tmax)}}
and the garbled input {{DB∗}}.

Each time we make a swap in the above hybrid sequence, the computational indistinguishability
of the adjacent pairs of hybrids rely on the security of the relevant garbled component that is being
swapped. Finally, observe that in Hyb6, every garbled component is being simulated. We can
alternatively view Hyb6 as follows:

1. We first choose the revealed idxes of each Read query to be random but non-overlapping positions.

35



2. We then choose the garbled outputs {{DB∗}} of GPerm at random, and simulate GPerm.GC,
{{DB}}, and {{{(⊥i, 0)}i∈[0:tmax)}} using GPerm.Sim.

3. We then simulate the each of the remaining garbled components in the order of Hyb3 to Hyb6.

Using the above view, we no longer need to know the cleartext values of the inputs in the experiment;
we only need to know the active garbled outputs and then we can invoke the simulators to complete
the rest of the experiment.

5.7 Level Rebuilder (GRebuild)

Recall that in a non-recursive Bucket ORAM algorithm, 2B denotes the bucket size, and w denotes
the length of the payload string of each block. Suppose that n and B are powers of 2 and let
`max = log2

n
B . Recall that in a non-recursive Bucket ORAM of capacity n, we have `max + 1 levels

where each level ` ∈ [0 : `max] has 2` buckets, each of size 2B. Additionally, there is also a stash
that can hold at most B blocks. Let t be the current time:

1. If t+ 1 is a multiple of n, then we need to merge the stash and levels 0, 1, . . . , `max all into level
`max. The levels 0, . . . , `max − 1 are emptied in this process. We henceforth use bFinal = 1 to
indicate this case.

2. Else, if t + 1 = j · B · 2` for some odd integer j and some choice of `, we need to merge the
stash and levels 0, 1, . . . , `− 1 into level `. Further, the levels 0, . . . , `− 1 are all emptied in the
process. We use bFinal = 0 to indicate this case.

A garbled rebuilder denoted GRebuild is simply a garbled circuit that performs this rebuilding.
We may assume that each block is of the format (addr, leaf, data). Let params = (B, n,w) where
w records the length of each of the fields addr, leaf, and data. Note that the parameter `max is
determined given B and n.

� GC ← Garble(1λ, sk, params, `, bFinal, InL,OutL): takes in the relevant parameters params,
bFinal, the destination level `, the input and output labels denoted InL and OutL respectively,
outputs the garbled circuitry GC.

� {{level′i}}i∈[0:`] ← RebuildGC({{stash}}, {{leveli}}i∈[0:`)): used by the evaluator for rebuilding a level
that is not the final level, i.e., if bFinal 6= 0 during the Garble procedure. The algorithm takes in
the garbled stash {{stash}}, garbled levels {{leveli}}i∈[0:`), and outputs new garbled levels {{stash′}}
and {{level′i}}i∈[0:`] where level i ∈ [0 : `] contains 2i garbled buckets each of size 2B.

� {{level′i}}i∈[0:`max]
← RebuildGC({{stash}}, {{leveli}}i∈[0:`max]

): an alternative version of Rebuild that
is used for the final level, i.e., if bFinal 6= 1 during the Garble procedure. The algorithm takes
in the garbled stash {{stash}}, garbled levels {{leveli}}i∈[0:`max]

, and outputs new garbled levels

{{stash′}} and {{level′i}}i∈[0:`max]
where level i ∈ [0 : `max] contains 2i garbled buckets each of size

2B.

The construction of GRebuild simply uses standard garbled circuits to garbled Bucket ORAM’s
rebuild algorithm. Suppose we use a linear-sized compaction circuit [AKL+20] to perform the
MergeSplit operation that takes two buckets and outputs two buckets. Then, the size of this circuit
is proportional to the total size of all the levels being rebuilt, i.e., O(B ·2` · (|addr|+ |leaf|+ |data|)).
Therefore, the size of the garbled circuit is O(λ · B · 2` · (|addr| + |leaf| + |data|)). In practice, we
can use bitonic sort [Bat68] to implement the MergeSplit operation. In this case, the size of the

36



garbled circuit is O(λ · B · 2` · (|addr| + |leaf| + |data|) · log2 B). For the purpose of getting the
asymptotic performance of our final garbled RAM, it does not matter whether we use bitonic or
compaction circuit to instantiate the MergeSplit operation, since this part of the overhead is not
the dominating factor.

6 Non-Recursive Garbled Memory (NRGRAM)

6.1 Definition

A non-recursive garbled memory (NRGRAM) is almost an entire garbled memory, except that to
access each logical addr, one has to provide a position identifier (both garbled and in cleartext)
henceforth denoted {{leafE}}, which specifies a path in the Bucket ORAM tree that the requested
block resides on. More specifically, let params = (n,w, T ) where n denotes the total number of
blocks stored in the NRGRAM, w denotes the bit-width of each block’s payload (not including
metadata fields such as addr and leaf), and T denotes the maximum number of time steps. The
call schedule is fixed a-priori: it must be a sequence of alternating requests ReadRm, Add, ReadRm,
Add, . . ., and in total there are T number of ReadRm operations and T number of Add operations.

A non-recursive garbled memory (NRGRAM) provides the following interface:

� Gmem,GC ← Garble(1λ, sk, params, InLR, InLA,OutL): upon receiving the input labels InLR

for all the ReadRm calls and the input labels InLA for all the Add calls, as well as the output
labels OutL for the ReadRm calls, output GC and the initial Gmem;

� Gmem′, {{rdata}} ← ReadRmGC(Gmem, {{addr, leafE}}): upon receiving {{addr, leafE}}, output {{rdata}}.
If addr exists in the data structure and provided that {{leafE}} is a correct position identifier
garbled under InLR[t] where t denotes the local time, then rdata should be the value of the
block at logical address addr; else if addr is not found, then rdata = ⊥. In either case, Lbl(rdata)
should match OutL[t].

� Gmem′ ← AddGC(Gmem, {{addr, leaf, data}}): upon receiving a garbled block {{addr, leaf, data}},
add it to the data structure. Henceforth, before addr is requested again, the block should reside
on the path corresponding to leaf.

The local time t of a NRGRAM data structure is the number of times Add has been invoked (not
counting the current invocation we are currently inside an Add call). Later in our full garbled RAM
scheme, in every RAM step, each NRGRAM’s ReadRM and Add functions will be each invoked once.
Therefore, each NRGRAM’s local time t coincides with the global time t of the garbled RAM, and
each NRGRAM must support T calls which is the same as the RAM’s maximum runtime. For this
reason, we use the letter t to denote the NRGRAM’s local time, and use T to denote the maximum
number of time steps that must be supported.

Remark 4. We assume the first bit of the data field is used to encode whether the block is ⊥.
Specifically, if the first bit is 0, then the block is treated as ⊥. We assume that when the honest
evaluator calls Add({{addr, leaf, data}}), the first bit of data is set to 1.

6.2 Data Structures and Labels

Without loss of generality, we may assume the capacity of the non-recursive ORAM tree n, the
bucket capacity B, and the RAM’s runtime T are all powers of 2. Let root be at level 0, and leaf
be at level `max := log2

n
B . We assume that the RAM program starts at time t = 0, and every time

step the clock t increments by 1. Since in every RAM step, each non-recursive bucket ORAM is
invoked once, the global time t also coincides with the non-recursive ORAM tree’s local time step.

37



Garbled circuit inventory. All of the following garbled circuits are prepared by the garbler
upfront in one shot. Each node at level ` in the tree has T/(2` · B) instances (i.e., copies) of the
following garbled circuitry: 1) GSwitch or GLeafSwitch, and 2) GBkt. The instances are indexed
from 0, 1, . . . , T/(2` · B) − 1. During the fetch phase of time step t ∈ [0 : T ), the garbled instance
indexed

⌊
t/(2` · B)

⌋
will be active.

During time step t ∈ [0 : T − 2], if (t+ 1) mod n = j · (B · 2`) where j is an odd integer, then
there is some garbled circuitry that rebuilds levels 0, 1, . . . , `. In particular, if ` = `max, then the
rebuild takes as input garbled levels 0, 1, . . . , ` and outputs new garbled levels 0, 1, . . . , `; else, it
takes garbled levels 0, 1, . . . , `− 1 and outputs new garbled levels 0, 1, . . . , `.

There are in total T/B instances of GStash, indexed by 0, 1, . . . , T/B − 1. During time step t,
the bt/Bc-th GStash instance is active.

Terminology. We shall use the notation GStasht to denote the the GStash instance active at time
t. We use the notation GSwitchV,t, GLeafSwitchV,t or GBktV,t to denote the GSwitch, GLeafSwitch,
or GBkt instance associated with tree node V and active at time t. Sometimes we represent a tree
node V = (i, j) which refers to the the j-th tree node in the i-th level. Using this notation, the
same GStash, GSwitch, or GBkt instance may have multiple aliases. Similarly, we use GRebuildt to
denote the GRebulid instance to be invoked at the end of time step t.

We say that GSwitchV,t is the parent of GSwitchU,t (or GLeafSwitchU,t) if V is a parent of U
in the bucket ORAM tree; in this case, we also say that GSwitchU,t or GLeafSwitchU,t is a (left or
right) child of GSwitchV,t. Note that these two GSwitch instances must be active at the same time
for them to have a parent/child relationship. We often say that a switch instance GSwitchV,t and
a bucket instance GBktV,t are paired with each other — note that they are active at the same time
t and belonging to the same tree node V .

Choosing labels. For each GStash, GSwitch, GLeafSwitch, and GBkt instance, the garbler chooses
all of the labels (needed by the Garble procedures) at random, subject to the following constraints:

� GSwitchV,t (or GLeafSwitchV,t) and its paired GBktV,t share the same address labels (for the
{{addr}} inputs to the Read or Switch procedures) and finalization signal labels in all time steps.
Moreover, GBktV,t.RdL = GSwitchV,t.RdL (or GBktV,t.RdL = GLeafSwitchV,t = RdL for the
leaf level).

� The call at time t to GSwitchroot,t should adopt the input labels InLR[t] (of the NRGRAM); fur-
ther, GStasht, GBktroot,t, and GSwitchroot,t share the same address labels (for the {{addr}} inputs
to the Read or Switch procedure) in all time steps. Further, the call at time t to GStasht.Add
should adopt the input labels InLA[t] (of the NRGRAM);

� If non-leaf switches GSwitch0 and GSwitch1 are the left and right children of GSwitch, then, for
each τ ∈ [0 : 2B], let

GSwitch.OutL0[τ ] := GSwitch0.ReqL[τ ]||GSwitch0.CtrlL[τ ]

GSwitch.OutL1[τ ] := GSwitch1.ReqL[τ ]||GSwitch1.CtrlL[τ ]

If leaf switches GLeafSwitch0 and GLeafSwitch1 are the left and right children of GSwitch, and
moreover, GBkt0 and GBkt1 are the two buckets associated with GLeafSwitch0 and GLeafSwitch1,

38



respectively, then, for all τ ∈ [0 : 2B], let7

GSwitch.OutL0[τ ] := GBkt0.ReqL[τ ]||GLeafSwitch0.InL[τ ]||GBkt0.CtrlL[τ ]

GSwitch.OutL1[τ ] := GBkt1.ReqL[τ ]||GLeafSwitch1.InL[τ ]||GBkt1.CtrlL[τ ]

� If GSwitchV,t and GSwitchV,t+1 are not the same instance and they have the same children, then,
let GSwitchV,t.FinL = GSwitchV,t+1.InitL and let GSwitchV,t.InitL = ∅ — in this case, our
algorithm will not call GSwitchV,t.Init but will call GSwitchV,t+1.Init.

For each level rebuilder instance denoted GRebuildt, let t be the time step at the end of which
this rebuilder instance GRebuildt is invoked — it must be that (t+ 1) mod n is an odd multiple of
2`. Suppose ` 6= `max, i.e., the rebuild takes in levels 0, 1, . . . , `− 1 and rebuilds levels 0, 1, . . . , ` —
the case where ` = `max is similar. The garbler chooses the input and output labels of GRebuildt

as follows. For i ∈ [0 : `), let GBkt(i,0),t, . . . ,GBkt(i,2
i−1),t be the garbled bucket instances active

in level i at time t, and let GStasht be the garbled stash active at time t; then, GRebuild.InL =
GStasht.FinL||{GBkt(i,j),t.FinL}i∈[0:`),j∈[0:2i). For i ∈ [0 : `], let GBkt(i,0),t+1, . . . ,GBkt(i,2

i−1),t+1

be the garbled bucket instances active in level i at time t + 1, and let GStasht+1 be the garbled
stash instance active at time t+ 1. Then, GRebuildt.OutL := {GBkt(i,j),t+1.InitL}i∈[0:`],j∈[2i].

6.3 Construction

We describe our NRGRAM construction in Figure 8, where the relevant data structures and how
to choose the encoding labels were explained earlier in Section 6.2. In the step marked (♦), the same
variables {{leaf}}, {{addr}}, JLK are overwritten by the outcome of the call to GSwitchV,t.Switch({{leaf}},
{{addr}}, JLK); keep in mind that the output variables do not have the same labels as the input
variables, although the notation is the same.

The garbled data structures adopt the following parameters:

� For each GStash instance, the maximum number of operations GStash.m = B, and the word size
GStash.w = w + log2 n;

� For each GSwitch instance at level ` of the tree, let GSwitch.B = B, and the addr field has bit
width log2 n, the leaf field has bit width log2 n− `, the bit width of the L field has width λ ·w;

� Each GLeafSwitch instance is parametrized with the maximum number of invocations GLeafSwitch.tmax =
GLeafSwitch.m = 2B and the element bit-width GLeafSwitch.w = λ · w;

� Each GBkt instance adopts the parameters GBkt.m = GBkt.tmax = 2B, and the bit widths of the
addr and val fields are log2 n and w, respectively.

We now analyze the asymptotic performance of our NRGRAM scheme. One can easily verify
that the dominating cost is incurred by the GBkt instances. The total cost of our NRGRAM is

O(1) · T
B
· log n · B · λ ·

(
w · log2 B + log n · log3 B + log4 B

)
=O

(
T · log n · λ · (w + log n logB + log2 B) · log2 B

)
7The leaf switches take no {{addr}} nor Finalize, and hence the parent GSwitch outputs {{addr}} or Finalize only to

the children buckets (Figuer 8).

39



Evaluator

ReadRm
(
{{addr, leafE}}

)
:

� if t = 0, then for every tree node V , call
GBktV,0.Init({{bkt∅V }});

� , {{rdatas}} ← GStasht.Read({{addr}});

� JLK := JL∗[t]K;

� For each node V in the tree from the root to leaf,

– If V is not a leaf: let {{leaf}}, {{addr}}, JLK ←
GSwitchV,t.Switch({{leaf}}, {{addr}}, JLK); (♦)

– Else: TrL← GLeafSwitchV,t.Switch(JLK);
– {{rdata`}} ← GBktV,t.Read({{addr}}) where ` de-

notes the level of V ;

� Let {{rdata}} := TrL⊕{{rdatas}}⊕
(
⊕`max
`=0 {{rdata`}}

)
and output {{rdata}}.

Add ({{addr, leaf, data}}):
� If t+1 = T , return; else continue with the following.

� Call GStasht.Add({{addr, leaf, data}});

� If (t + 1) is a multiple of n: invoke the gar-
bled rebuilding algorithm similar to the case be-
low marked (?), except that here, we shuffle levels
0, . . . , `max into levels 0, . . . , `max;

� Else if (t + 1) mod n = j · (B · 2`) for some odd
integer j and some integer `: (?)

– Let {{stash}} ← GStasht.Finalize();

– Call RecFinalize(root, {{1∗}}t, `) described below;

– For each level i ∈ [0 : `), let {{leveli}} :=
∪j∈[0:2i){{bkti,j}} where the variables {{bkti,j}} are
output inside the RecFinalize call;

– {{leveli}}i∈[0:`] ← GRebuildt({{stash}}, {{leveli}}i∈[0:`−1]);
– For i ∈ [0 : `], parse {{leveli}} := {{bkt′i,j}}j∈[0:2i);

for j ∈ [0 : 2i), call GBkt(i,j),t+1.Init({{bkt′i,j}});

RecFinalize(V, {{1}}, `)
� {{bktV }} ← GBktV,t.Finalize({{1}});

� If ` the leaf level, then return; else let {{st}}
or {{1L, 1R}} ← GSwitchV,t.Finalize({{1}}); if
GSwitchV,t+1 has the same children switches as
GSwitchV,t, call GSwitchV,t+1.Init({{st}});

� Let UL, UR be the children of V , if the level of UL
and UR is at most `, call RecFinalize(UL, {{1L}}, `),
RecFinalize(UR, {{1R}}, `).

Garbler

for every tree node V , let bkt∅V be an
array of 0s of appropriate length, cre-
ate garbled state {{bkt∅V }};
for t ∈ [0 : T ), let L∗[t] = OutL[t] ⊕
GStasht.OutL[t mod B]; create shar-
ings JL∗K := {L∗[t] ⊕ Kt}t∈[0:T )
where Kt should match the part of
GSwitchroot,t.InL that is used for encod-
ing the input JLK at time t;

call GSwitch.Garble for all GSwitch in-
stances; call GLeafSwitch.Garble for all
GLeafSwitch instances;

call GBkt.Garble for all GBkt instances;

call GStash.Garble for all GStash
instances;

for every t ∈ [0 : T ) such that t + 1
is a multiple of B, create a garbled
finalization signal {{1∗}}t using the label
GSwitchroot,t.CtrlL[B];

call GRebuild.Garble for all GRebuild
instances;

Figure 8: Non-Recursive Garbled RAM (NRGRAM) construction.

40



6.4 Proof of Correctness and Security

The following theorem states that our NRGRAM construction is secure for any conforming request
sequence where “conforming” means that 1) every request generates a new random position iden-
tifier denoted leaf ′t; 2) every request comes with a correct position identifier leaft for the requested
address addrt, and moreover, if addrt has not been requested before, then a random leaft is provided;
3) every Add request’s addr′ field is the same as the addr parameter passed to the previous ReadRm
call.

Henceforth, we use
c≡ν to denote the following: for any non-uniform p.p.t. adversary A, there

exists a negligible function negl(·), such that the probability that A can distinguish the left-hand-
side and the right-hand-side is upper-bounded by negl(λ) + ν. We will in fact use ν to encode the
statistical failure probability in the following theorem statement.

Theorem 6.1 (Correctness and security of NRGRAM for conforming request sequences). Assume
that all the garbled building blocks employed are secure. Let ν = exp(−Ω(B)) · TB · log n

B . Then,
there exists a p.p.t. simulator Sim, such that for for any λ ∈ N, any params, any input sequence
{addrt, datat}t∈[0:T ), any output labels OutL of appropriate length,

{{{rdatat}}}t∈[0:T ), Gmem,GC, {{addrt, leaft}}t∈[0:T ), {{addr
′
t, leaf

′
t, datat}}t∈[0:T )

c≡ν Fmem({addrt, datat}t∈[0:T )), Sim
(

1λ, params, T, {{rdatat}}t∈[0:T ), {leaft}t∈[0:T )
)

where

� sk← Gen(1λ), InLR
$←{0, 1}|InLR|, InLA

$←{0, 1}|InLA|;

� for t ∈ [0 : T ), let leaf ′t
$←{0, 1}|leaf′|;

� for t ∈ [0 : T ), if addrt does not exist in the data structure, let leaft
$←{0, 1}|leaf|; else let leaft =

leaf ′r where r < t was the most recent time addrt was added;

� let {{addrt, leaft}} be a correct garbling of (addrt, leaft) using the label InLR[t] and let {{addr′t, leaf ′t, datat}}
be a correct garbling of (addrt, leaf

′
t, datat) using the label InLA[t];

� Gmem,GC← Garble(1λ, sk, params, InLR, InLA,OutL);

� for t ∈ [0 : T ), let {{rdatat}} ← ReadRm({{addrt, leaft}}), and call Add({{addr′t, leaf ′t, datat}}); and

� finally, Fmem is an ideal memory functionality that correctly outputs the result of each request.

Further, the more generalized notion of simulation also holds, that is, there is a p.p.t. simulator
Sim′, such that if any subset of the garbled inputs {{{addrt, leaft}}, {{addr′t, leaf ′t, datat}}}t∈[0:T ) are
fixed and fed into a simulator Sim′, and Sim′ otherwise receives the same inputs as Sim, then Sim′

can simulate Gmem,GC, and the remaining garbled inputs that have not been fixed.

Proof. Since the Fmem functionality is deterministic, it suffices to prove correctness and security
separately, i.e., we first prove that the real-world outputs match the ideal outputs except with
ν/2 probability (i.e., correctness), and then prove that the remaining terms on the left-hand and
right-hand sides are computationally indistinguishable with the distinguishing probability upper
bounded by ν/2 + negl(λ). Note that for security, we need to prove two notions of simulation.

We first prove correctness. Let G be the good event that none of the buckets receive more than
2B elements during rebuild. Let G′ be the good event that every bucket receives at most 2B number
of Read requests during its life cycle. As long as both G and G′ hold, correctness follows from the
correctness of the underlying garbled building blocks. It suffices to show that G and G′ hold except

41



with ν/2 probability. Due to a standard application of Chernoff bound, the probability that a fixed
bucket receives more than 2B elements during rebuild is upper bounded by exp(−Ω1(B)). Similarly,
the probability that each fixed bucket receives more than 2B requests during its life cycle is upper
bounded by exp(−Ω1(B)) too. Taking union bound over all buckets, we get the desired statement.

We next prove security. Consider the following sequence of hybrid experiments. First, let Hyb0
denote the real-world view.

Hyb1. We first execute the underlying Bucket ORAM on the cleartext inputs {addrt, leaft}t∈[0:T )
and {addr′t, leaf ′t, datat}t∈[0:T ). If the aforementioned good events G and G′ are not respected, we
also abort outputting ⊥. Else, we output the real-world view.

Claim 6.2. Hyb1 has statistical distance at most ν/2 from Hyb0.

Proof. Follows directly from the above stochastic analysis showing that G and G′ must hold except
with ν/2 probability.

Hyb2. Hyb2 is otherwise identical to Hyb1 except the following modification. For each t ∈ [0 : T ),
pick {{rdatas}}t {{rdata0}}t, . . ., {{rdata`max}}t, and TrLt at random subject to the constraint that

{{rdata}}t = TrLt ⊕ {{rdatas}}t ⊕
`max
`=0 {{rdata`}}t. Hyb2 is identically distributed as Hyb1.

Next, we define a sequence of hybrid games denoted Hybt∗ for every t = kB, (k − 1)B, . . ., 0
that is a multiple of B where k = T

B − 1. Each hybrid Hybt∗ will in turn consist of a sequence of
inner hybrids where we make swaps one by one. Through this process, we will swap each garbled
component with a simulated counterpart. The crux to making this argument work is to do the
swaps in reverse topological order of the dependancy graph among these components. This way,
whenever we are about to swap a garbled component with simulated, all of its outputs and a subset
of its garbled inputs are already determined, and then we can swap the garbled circuitry, garbled
memory, as well as the remaining garbled/shared inputs with simulated counterparts. To achieve
this, roughly speaking, we need to make the swaps in reverse chronological order [Fin08] in terms
of when each component is initialized or called.

Hybt∗. Let `′ be the least significant bit that is 0 in the binary representation of t/B − 1, let
` = min(`max, `

′). We make the following sequence of swaps:

� Simulate the GBkt and GSwitch instances active at time t in levels [0 : `]. This needs to
be done through a sequence of swaps in the reverse order of the nodes’ levels in the tree. For
i = ` down to 0, for every node (i, j) in level i of the tree,

– replace GBkt(i,j),t.GC, GBkt(i,j),t.Gmem, and its garbled inputs with the output of GBkt(i,j),t.Sim.
Note that if t = kB, we can simulate the garbled finalization outputs of all these bucket
instances at random (before calling the GBkt instance’s simulator); otherwise the garbled
finalization outputs should already be determined by a future GRebuild simulator.

– replace GSwitch(i,j),t.GC, GSwitch(i,j),t.Gmem, and its remaining garbled/shared inputs with
the output of GSwitch(i,j),t.Sim — note that if i is at the leaf level, the corresponding
GLeafSwitch instance should be used instead of GSwitch.

To make these swaps, we need to know at which global time steps t the relevant GBkt and
GSwitch instances are invoked. This knowledge can be easily inferred from the leakage which
contains the leaf identifiers of every ReadRm request.

42



� Simulate the GStasht instance. Replace GStasht.GC, GStasht.Gmem, and its remaining gar-
bled inputs (including all garbled inputs {{addr, leaf, data}} to the Add call with the output of
GStasht.Sim.

� Simulate the GRebuildt−1 instance. Replace GRebuildt−1.GC and its garbled inputs with the
output of GRebuildt−1.Sim.

One can verify that whenever we swap a garble component to simulated, its garbled/shared out-
puts have already been determined; further, if the garbled component shares garbled inputs with
other garbled components that are already simulated then part of its garbled inputs may be de-
termined too. Some parts of garbled inputs may also be determined since they correspond to the
part of garbled inputs of the NRGRAM that are fixed. Thus, we can call the corresponding garbled
component’s simulator to simulate the garbled circuitry, garbled memory, and the remaining gar-
bled/shared inputs. Each time we make a swap, we can argue that the views before and after the
swap are computationally indistinguishable due to the security of the relevant garbled component.

7 Final Construction: Garbled Memory (GRAM)

7.1 Definition

Let params = (N,W, T ) where N denotes the total number of blocks stored in GRAM, W denotes
the bit-width of each block, and T denotes the maximum number of time steps. A garbled RAM
(GRAM) scheme provides the following syntax:

� Gmem,GC ← Garble(1λ, sk, params, InL,OutL): upon receiving the input labels InL and the
output labels OutL, output GC and the initial Gmem;

� Gmem′, {{rdata}} ← AccessGC(Gmem, {{addr}}, {{wdata}}, {{bWrite}}): the input consists of the gar-
bled logical address requested {{addr}}, a garbled bit {{bWrite}} indicating whether the operation
is a write, and and the new data to overwrite with {{wdata}}. If addr has been written before,
the result rdata should be equal to the last value written; else the result rdata = 0. Further,
Lbl({{rdata}}) = OutL[t] where t denotes the current time step.

Remark 5. Just like in Section 6, we shall assume that the first bit of the payload field is used to
encode whether the block is ⊥. Specifically, if the first bit is 0, then block is ⊥. We assume that
the honest evaluator calls Access({{addr,wdata, bWrite}}), the first bit of wdata is always set to 1.

7.2 Construction

We use a standard recursion technique first suggested in Oblivious RAM constructions [SCSL11,
SSS12]. Let D = log2N , our construction creates D+1 instances of NRGRAM denoted NRGRAM0,
. . ., NRGRAMD, of geometrically growing sizes. For each d ∈ [0 : D], the d-th instance stores
NRGRAMd.n = 2d blocks. Except for NRGRAMD which stores real data blocks, all other in-
stances store metadata. More specifically, for d ∈ [0 : D], we have NRGRAMd.w = 2 logN , and
NRGRAMD.w = W where W is the size of an actual data block. For d ∈ [1 : D − 1], blocks in
NRGRAMd have logical addresses that are d bits long. Suppose that we want to know the position
identifier in the final instance NRGRAMD of some data block with the logical address addr. To do
this, we need to look up the metadata block with the address addr[0 : D− 2] in NRGRAMD−1, and
inside this metadata block we store a pair of position identifiers (p0, p1), where pb is the position

43



Evaluator

Access({{addr}}, {{wdata}}, {{bWrite}}):
� {{leaf1}}, leaf1 ← GCSel0({{p00, p01}}, {{addr[0]}}, {{rL0

∗[t]}});
// β = addr[0]; if p0β = ⊥, leaf1 = rL0

∗[t], else

leaf1 = p0β

� for d ∈ [1 : D) // let D = log2N

1. {{pd0, pd1}} ← NRGRAMd.ReadRm({{addr[0 : d)}}, {{leafd}});
2. {{leafd+1}}, leafd+1 ← GCSeld({{pd0, pd1}}, {{addr[d]}},
{{rLd∗[t]}});
/* β = addr[d]; if p0β = ⊥, then leafd+1 = rLd∗[t],

else leafd+1 = pdβ */

� {{rdata}} ← NRGRAMD.ReadRm({{addr}}, {{leafD}});

� {{data}} ← GCSel∗({{rdata}}, {{wdata}}, {{bWrite}});
// data = rdata · (1− bWrite) + wdata · bWrite;

� NRGRAMD.Add({{addr}}, {{rLD[t]}}, {{data}})

� for d = D − 1, . . . , 1:

1. {{p̃d0, p̃d1}} ← GCUpdd({{pd0, pd1}}, {{addr[d]}}, {{rLd+1[t]}});
// p̃db = rLd+1[t] ·(addr[d]⊕b⊕1)+pdb ·(addr[d]⊕b);

2. NRGRAMd.Add({{addr[0 : d)}}, {{rLd[t]}}, {{p̃d0, p̃d1}});

� {{p00, p01}} ← GCUpd0({{p00, p01}}, {{addr[0]}}, {{rL1[t]}});
// p0b = rL1[t] · (addr[0]⊕ b⊕ 1) + p0b · (addr[0]⊕ b);

� output {{data}};

Garbler

create initial garbled states
{{p00, p10}} = {{⊥,⊥}}; for t ∈ [0 : T ),
sample a random rL0

∗[t] and create
the garbled state {{rL0

∗[t]}};
for t ∈ [0 : T ), create garbled circuit
GCSel0t ;
for d ∈ [1 : D], call NRGRAM.Garble;
for t ∈ [0 : T ), for d ∈ [1 : D), sam-
ple a random rLd∗[t] and create
the garbled state {{rL0

∗[t]}}; create
garbled circuit GCSeldt ;

for t ∈ [0 : T ), create garbled circuit
GCSel∗t ;

for t ∈ [0 : T ), for d ∈ [1 : D],
sample a random rLd[t] and create
the garbled state {{rLd[t]}};
for t ∈ [0 : T ), for d ∈ [0 : D), create
the garbled circuit GCUpddt ;

Figure 9: Full Garbled RAM algorithm

identifier of the block at address addr[0 : D−2]||b in the final instance NRGRAMD. To read the block
at address addr[0 : D−2] in NRGRAMD−1, we need to recursively look up its own position identifier.
To do this, we need to look up in NRGRAMD−2 a metadata block of address addr[0 : D − 3], and
inside this metadata block we also store a pair (p′0, p

′
1) where p′b is the position identifier of the

block at address addr[0 : D− 3]||b in NRGRAMD−2, and so on. After we successfully read the data
block at address addr in NRGRAMD, we relocate the block to a new path in the underlying ORAM
tree. We need to inform the parent instance NRGRAMD−1 of this new position identifier, which in
turn triggers a sequence of updates to all NRGRAM instances. The full construction is described
in Figure 9. Specifically, the garbler will choose upfront all the random position identifiers rLd[t]
to be consumed in each time step t by the each instance NRGRAMd, garble these random choices,
and include them in the garbled memory. Similarly, the garbler also prepares garbled states rLd∗[t]
which are to be consumed if the address looked up is not found in NRGRAMd where d ∈ [0 : D), in
which case the next instance NRGRAMd+1 will look up a random path identified by leafd+1 in the
underlying ORAM tree.

44



The total cost of our GRAM construction is

O
(
T · logN · λ · log2 B · (W + logN(logN · logB + log2 B + logN))

)
= O

(
T · logN · λ · log2 B ·

(
W + log2N logB + logN log2 B

))
If we let δ denote the statistical failure probability, then, the above expression can be simplified

to the following where Õ(·) hides poly log log T ·N
δ factors:

Õ
(
T · λ · (W logN + log3N)

)
In other words, the amortized cost of each memory access is Õ

(
λ · (W logN + log3N)

)
.

7.3 Proof of Correctness and Security

Theorem 7.1 (Correctness of our GRAM scheme). Our GRAM scheme (Figure 9) achieves cor-
rectness with probability 1− δ where δ = exp(−Ω(B)) · T logN

B · log N
B .

Proof. Observe that in our GRAM algorithm, the sequence of calls to every underlying NRGRAM
respects the constraints of Theorem 6.1. Under such conforming inputs, recall that each underlying
NRGRAM has ν = exp(−Ω(B)) · TB · log n

B error probability. Taking a union bound over all O(logN)
NRGRAM instances, our GRAM construction’s correctness failure probability is upper bounded by
δ = exp(−Ω(B)) · T logN

B · log N
B .

Theorem 7.2 (Security of our GRAM scheme). Suppose that N,T,W are polynomially bounded
in the security parameter λ, and moreover, we adopt B = ω(log λ) to instantiate the underlying
NRGRAM instances. Then, the resulting GRAM scheme (Figure 9) respects Definition 1.

Proof. We prove for the case where all inputs are free inputs — the case when there are some fixed
inputs enjoys a very similar proof. Our proof goes through a sequence of hybrid experiments where
we swap each garbled component one by one with a simulated counterpart.

� Real: the real-world view.

� Hyb∗: otherwise identical as Real except that we now use the following randomized process
for sampling the labels for the input and intermediate variables. Choose {rLd∗}d∈[0:D) and

{rLd}d∈[1:D] at random. At this moment, if we know all the cleartext addresses {addrt}t∈[0:T )
requested, we can uniquely determine each leafdt for d ∈ [0 : D] and for t ∈ [0 : T ). Choose
{{{rdata}}t}t∈[0:T ) at random (which fixes the labels of these variables). Choose the active en-

codings {{{leafD}}t}t∈[0:T ) at random. All the remaining undetermined labels for inputs and
intermediate variables are chosen at random. Hyb∗ is identically distributed as Hyb0.

� HybD: consists of the following inner hybrids in which we swap garbled components one by one
with simulated counterparts:

– Replace NRGRAMD.GC, NRGRAMD.Gmem, and the inputs {{{addr, rLD[t], data}}t}t∈[0:T ) with
the output of NRGRAMD.Sim, which takes in {{{rdata}}t}t∈[0:T ), the garbled fixed set of inputs

{{{leafD}}t}t∈[0:T ), and the leakage {leafDt }t∈[0:T ).
– Replace {GCSel∗t .GC}t∈[0:T ), {{{wdata, bWrite}}t}t∈[0:T ) with the outcome of {GCSel∗t .Sim}t∈[0:T )

which takes in garbled outputs {{{data}}t}t∈[0:T ) and the garbled inputs {{{rdata}}t}t∈[0:T ).

45



� HybD−1, . . . ,Hyb0: for each d = D − 1 down to 0, Hybd in turn contains a sequence of inner
hybrids where each hybrid is otherwise identical to the previous one, except with the following
modifications:

– For each t ∈ [0 : T ), replace GCSeldt .GC, and its inputs {{pd0, pd1}}t, {{rL
d
∗[t]}} with the output

of GCSeldt .Sim, which takes in {{leafd+1}}, leafd+1 and garbled input {{addr[d]}} as input;

– Replace NRGRAMd.GC, NRGRAMd.Gmem, and the inputs {{{addr, rLd[t], data}}t}t∈[0:T ) with

the output of NRGRAMd.Sim, which takes in {{{pd0, pd1}}t}t∈[0:T ), the garbled fixed set of inputs

{{{leafd, addr[0 : d)}}t}t∈[0:T ), and the leakage {leafdt }t∈[0:T ).
– For each t ∈ [0 : T ), replace GCUpddt .GC with the output of GCUpddt .Sim, which takes in all

of its garbled inputs and outputs as input;

From HybD to Hyb0, with each swap, the computational indistinguishability of the adjacent
hybrids rely on the security of the garbled component being swapped.

� Ideal. In the Ideal experiment, we sample all the leakages leafdt for t ∈ [0 : T ) and d ∈ [0 : D] at
random. We then sample all the encodings {{leafdt }} at random too. We then call the simulator
for each garbled component and simulate them one by one, in the order of HybD to Hyb0.

Clearly, Ideal is identically distributed as Hyb0. Moreover, in Ideal, we no longer need to know
the cleartext inputs to GRAM; we only need to know the active encodings of the outputs.

8 Practical Optimizations and Concrete Performance

8.1 Practical Optimizations

We adopt the following practical optimizations and parameters when evaluating the concrete per-
formance of our scheme.

Optimization 1: use permutation rather than sorting during rebuild. Our first opti-
mization is inspired by an elegant idea described by Heath et al. [HKO21]. Except the last level
`max in the NRGRAM, we can actually replace the garbled sort with garbled permutation GPerm
during rebuild, and we instantiate the garbled permutation with Waksman’s construction [Wak68].
Observe that the garbler generates all the random coins used in the rebuild. Henceforth, imagine
that the real blocks read are not immediately marked as filler until the last level `max is rebuilt
— note that our stochastic bounds hold for this case too. Now, we refer to a block by the time
it was added, until the next time `max is rebuilt, the garbler knows a-priori where each block is in
the hierarchy of levels. Only for the last level `max do we use oblivious sorting and we instantiate
the sort with Bitonic sort [Bat68] which gives good concrete performance for small problem sizes.
Note that the last level is special since it is rebuilt “in-place”, and we need to compress by a factor
of 2 when rebuilding it.

Optimization 2: bucket capping and merged overflow pile. In our experiment, we want
to guarantee a satistical security parameter8 of at least 60 per memory access. To this end, we

8The statistical security parameter should be treated differently from the computational security parameter λ.
The statistical security parameter captures graceful degradation of privacy, whereas if the computational security
parameter is too small, the scheme can be completely broken. Typically, a statistical security parameter between
[40, 80] is considered reasonable. In our evaluation, we set the computational security parameter λ = 128 as is typical
in the standard literature.

46



adopt two sets of parameters, either bucket size 256, and the expected load of the bucket 128; or
bucket size 156 and the expected load of the bucket 64 — our simulator automatically selects the
better one of these two configurations depending on the block size. Since our buckets are small, in
practice, we do not instantiate them with the asymptotical construction described in Section 5.6.
For small problem sizes, the näıve approach of linear scan has better concrete performance. Using
linear-scan garbled buckets, our simulation shows that the garbled buckets account for the majority
of the cost at kilobyte to gigabyte data scales.

We devise a new idea that cuts the cost of the garbled buckets by a constant factor. Just like
in the first optimization, we will again rely on the fact that the garbler actually knows the data
movement schedule in the hierarchy of levels ahead of time (except for the last level). Therefore,
we can cap each bucket at some a-priori fixed capacity S that is smaller than the bucket size. In
this case, there is a small probability that each bucket may overflow, but the overflow probability
is not small enough to meet our desired statistical security parameter. We can put all overflowing
blocks into a global overflow pile. Since the number of overflowing elements per bucket has a sharp
geometric tail bound, the global overflow pile is not too large with very high probability. We use
simulation to find the right size of overflow pile to meet our desired statistical security parameter.
In particular, in our simulation, we plot the size of the overflow pile against log2(

1
δ ) where δ is the

probability that the overflow pile exceeds the specified size. Since the tail bound is exponentially
sharp, the plot shows up as a straightline, and we extrapolate it to the point where log2(

1
δ ) ≈ 65,

such that even after taking a union bound over all other failure probabilities, the final statistical
security parameter per memory access is 60 or higher. This optimization is also compatible with
optimization 1, since the garbler knows the data movement schedule ahead of time except for the
last level. With this optimization, the rebuild circuits also need to take the garbled overflow pile
as input.

Additional optimizations. Through our experiments, we find that a recursion fanout of 4
achieves the best concrete performance, i.e., each metadata block in the recursion structure stores
the position identifiers of 4 entries in the next recursion depth. We stop the recursion and use
a linear-scan garbled RAM instead whenever the problem size becomes small enough such that
linear-scan becomes more efficient. We applied this optimization to both our NanoGRAM and
EpiGRAM [HKO21].

For some of the key components that are called repeatedly such as garbled stack, we made
hand-crafted optimizations to the circuit structure to optimize the performance by a constant, in
comparison with the descriptions in earlier works [ZE13, HKO21]. Again, we applied the same
optimization to both NanoGRAM and EpiGRAM.

8.2 Concrete Performance

A simulator of NanoGRAM. To evaluate the concrete performance, we made a simulator
of NanoGRAM. Our simulator can count the following quantities for each garbled component
1) the number of AND gates needed for the garbled circuitry GC; 2) the number and sizes of
operations of the type {{bE}} · JyK → JbE · yK; 3) the number of garblings and sharings needed for
creating the initial garbled memory Gmem; and 4) any other information needed, e.g., encryptions
and translation labels. Using the state-of-the-art garbled circuit scheme [RR21] to construct the
garbled circuits, and using the efficient implementation of {{bE}} · JyK → JbE · yK type gates, we
can calculate the total communication needed. Specifically, as Rosulek and Roy showed in their
elegant work [RR21], there is a garbling scheme for boolean circuits in which XOR gates are free
and each AND gate requires 1.5λ + 5 bits of communication. Further, the elegant work of Heath

47



10 15 20 25 30
log(N)

0

50

100

150

200

250
m

eg
ab

yt
es

 p
er

 m
em

or
y 

ac
ce

ss Nanogram
Epigram
Linear scan

(a) Comparison with linear scan GRAM and
EpiGRAM: block size W = 128 bits.

M
eg

ab
yt

es
 p

er
 a

cc
es

s

0

1

2

3

4

Switch Bucket Rebuild Other

NRGRAM cost breakdown

(b) Cost breakdown of NRGRAMD, W = 128
bits, N = 215.

Figure 10: Concrete performance of NanoGRAM.

et al. [HKO21] showed that we can garble a {{bE}} · JyK → JbE · yK type gate using only |y| bits
assuming that |y| is a multiple of λ.

A simulator to estimate a lower bound of EpiGRAM. We made another simulator to
give a lower bound of the concrete performance of EpiGRAM [HKO21]. Unlike our NanoGRAM
simulator which is high-fidelity and accounts for every gate needed in an actual implementation,
our simulator of EpiGRAM is intended to give a lower bound of EpiGRAM’s performance — we
are willing to give EpiGRAM an unfair advantage in our comparison. In particular, our EpiGRAM
simulator accounted only for the concrete costs that is the dominating terms in their asymptotical
bound O(W log2N+log4N). We ignored various circuit components whose costs are asymptotically
smaller than O(W log2N+log4N). Therefore, we expect that the actual performance of EpiGRAM
in a full-fledged implementation will be slightly worse than the curves shown in our charts.

Our EpiGRAM simulator implemented all the concrete optimizations documented in the Heath
et al. work [HKO21]. Beyond these optimizations, it is outside the scope of our work to further
optimize their scheme. However, for every optimization that we made to NanoGRAM that also
applies to EpiGRAM, we did apply the same optimization to EpiGRAM. Therefore, overall, our
simulation actually made more optimizations to their scheme than those documented in their paper.

Concrete performance. In Figure 10a, we compared the performance of NanoGRAM with that
of the näıve linear-scan GRAM as well as EpiGRAM [HKO21], where the word size W = 128 bits.
In NanoGRAM, since the parameter B (i.e., average load per bucket) has to be at least 64 or 128
to get a reasonable statistical security parameter, the smallest N we used in our experiment is 28.
Just like EpiGRAM, we start to outperform the näıve linear-scan GRAM at about N = 29. Our
concrete performance is on par with EpiGRAM at small choices of N , but at about N = 213, we
start to outperform EpiGRAM, and as shown in the figure, the improvement is of an asymptotical
nature — the larger the N , the greater our speedup.

Figure 10b shows the cost breakdown for the NRGRAM for the final data level. The breakdown
suggests that the garbled buckets are the most costly, whereas the garbled switches closely follow.
This plot also shows the motivation for our optimization 2 — had we not performed this optimiza-

48



tion, the total garbled bucket cost would be more than 2× higher than the total garbled switch
cost.

Acknowledgments

This work is in part supported by a DARPA SIEVE grant, a Packard Fellowship, NSF awards
under the grant numbers 2128519 and 2044679, and a grant from ONR. We gratefully acknowledge
Wenting Zheng for helpful technical discussions during an early phase of the project.

References

[AKL+20] Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Kartik Nayak, Enoch Peserico, and
Elaine Shi. OptORAMa: Optimal Oblivious RAM. In Eurocrypt, 2020.

[App13] Benny Applebaum. Garbling xor gates “for free” in the standard model. In TCC, 2013.

[Bat68] Kenneth E. Batcher. Sorting networks and their applications. In American Federation
of Information Processing Societies: AFIPS Conference Proceedings, pages 307–314,
1968.

[CCC+16] Yu-Chi Chen, Sherman S. M. Chow, Kai-Min Chung, Russell W. F. Lai, Wei-Kai Lin,
and Hong-Sheng Zhou. Cryptography for parallel RAM from indistinguishability ob-
fuscation. In ITCS, pages 179–190. ACM, 2016.

[CCHR16] Ran Canetti, Yilei Chen, Justin Holmgren, and Mariana Raykova. Adaptive succinct
garbled RAM or: How to delegate your database. In TCC (B2), volume 9986 of Lecture
Notes in Computer Science, pages 61–90, 2016.

[CH16] Ran Canetti and Justin Holmgren. Fully succinct garbled RAM. In ITCS, pages 169–
178. ACM, 2016.

[CKKZ12] Seung Geol Choi, Jonathan Katz, Ranjit Kumaresan, and Hong-Sheng Zhou. On the
security of the “free-xor” technique. In TCC, 2012.

[CNS18] T.-H. Hubert Chan, Kartik Nayak, and Elaine Shi. Perfectly secure oblivious parallel
RAM. In TCC (2018), volume 11240 of Lecture Notes in Computer Science, pages
636–668. Springer, 2018.

[CS17] T.-H. Hubert Chan and Elaine Shi. Circuit OPRAM: unifying statistically and com-
putationally secure orams and oprams. In TCC (2), volume 10678 of Lecture Notes in
Computer Science, pages 72–107. Springer, 2017.

[CSLN21] T.-H. Hubert Chan, Elaine Shi, Wei-Kai Lin, and Kartik Nayak. Perfectly oblivious
(parallel) RAM revisited, and improved constructions. In ITC, volume 199 of LIPIcs,
pages 8:1–8:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[DMN11] Ivan Damg̊ard, Sigurd Meldgaard, and Jesper Buus Nielsen. Perfectly secure oblivious
RAM without random oracles. In TCC, pages 144–163, 2011.

[Fin08] David Fincher. The curious case of benjamin button, film, 2008.

49



[FNR+15] Christopher Fletcher, Muhammad Naveed, Ling Ren, Elaine Shi, and Emil Stefanov.
Bucket ORAM: Single online roundtrip, constant bandwidth Oblivious RAM. Cryptol-
ogy ePrint Archive, Report 2015/1065, 2015. https://ia.cr/2015/1065.

[GGH+13] Craig Gentry, Kenny A. Goldman, Shai Halevi, Charanjit S. Jutla, Mariana Raykova,
and Daniel Wichs. Optimizing ORAM and using it efficiently for secure computation.
In PETS, 2013.

[GHL+14] Craig Gentry, Shai Halevi, Steve Lu, Rafail Ostrovsky, Mariana Raykova, and Daniel
Wichs. Garbled ram revisited. In EUROCRYPT, pages 405–422, 2014.

[GLO15] Sanjam Garg, Steve Lu, and Rafail Ostrovsky. Black-box garbled RAM. In FOCS,
pages 210–229. IEEE Computer Society, 2015.

[GLOS15] Sanjam Garg, Steve Lu, Rafail Ostrovsky, and Alessandra Scafuro. Garbled ram from
one-way functions. In Proceedings of the Forty-Seventh Annual ACM Symposium on
Theory of Computing, STOC ’15, page 449–458, New York, NY, USA, 2015. Association
for Computing Machinery.

[GO96] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious
RAMs. J. ACM, 1996.

[Gol87] O. Goldreich. Towards a theory of software protection and simulation by oblivious
RAMs. In STOC, 1987.

[HK20] David Heath and Vladimir Kolesnikov. Stacked garbling - garbled circuit proportional
to longest execution path. In CRYPTO (2), volume 12171 of Lecture Notes in Computer
Science, pages 763–792. Springer, 2020.

[HK21a] David Heath and Vladimir Kolesnikov. Logstack: Stacked garbling with O(b log b)
computation. In EUROCRYPT (3), volume 12698 of Lecture Notes in Computer Sci-
ence, pages 3–32. Springer, 2021.

[HK21b] David Heath and Vladimir Kolesnikov. One hot garbling. In CCS, pages 574–593.
ACM, 2021.

[HKO21] David Heath, Vladimir Kolesnikov, and Rafail Ostrovsky. Practical garbled RAM:
GRAM with O(log2 n) overhead. Cryptology ePrint Archive, Report 2021/1519, 2021.
https://ia.cr/2021/1519.

[HL20] Carmit Hazay and Mor Lilintal. Gradual gram and secure computation for ram pro-
grams. In Security and Cryptography for Networks, pages 233–252. Springer, 2020.

[KMR14] Vladimir Kolesnikov, Payman Mohassel, and Mike Rosulek. Flexor: Flexible garbling
for XOR gates that beats free-xor. In CRYPTO (2), volume 8617 of Lecture Notes in
Computer Science, pages 440–457. Springer, 2014.

[KS08] Vladimir Kolesnikov and Thomas Schneider. Improved Garbled Circuit: Free XOR
Gates and Applications. In ICALP, 2008.

[LN18] Kasper Green Larsen and Jesper Buus Nielsen. Yes, there is an oblivious ram lower
bound! In CRYPTO, 2018.

50

https://ia.cr/2015/1065
https://ia.cr/2021/1519


[LO13] Steve Lu and Rafail Ostrovsky. How to garble ram programs. In EUROCRYPT, 2013.

[LO17] Steve Lu and Rafail Ostrovsky. Black-box parallel garbled RAM. In CRYPTO (2),
volume 10402 of Lecture Notes in Computer Science, pages 66–92. Springer, 2017.

[PPRY18] Sarvar Patel, Giuseppe Persiano, Mariana Raykova, and Kevin Yeo. Panorama: Obliv-
ious ram with logarithmic overhead. In FOCS, 2018.

[RR21] Mike Rosulek and Lawrence Roy. Three halves make a whole? beating the half-gates
lower bound for garbled circuits. In CRYPTO (1), volume 12825 of Lecture Notes in
Computer Science, pages 94–124. Springer, 2021.

[SCSL11] Elaine Shi, T.-H. Hubert Chan, Emil Stefanov, and Mingfei Li. Oblivious RAM with
O((logN)3) worst-case cost. In ASIACRYPT, 2011.

[SSS12] Emil Stefanov, Elaine Shi, and Dawn Song. Towards practical oblivious RAM. In
Network and Distributed System Security Symposium (NDSS), 2012.

[SvDS+13] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren, Xiangyao
Yu, and Srinivas Devadas. Path ORAM – an extremely simple oblivious ram protocol.
In CCS, 2013.

[Wak68] Abraham Waksman. A permutation network. J. ACM, 15(1):159–163, jan 1968.

[WCS15] Xiao Shaun Wang, T-H. Hubert Chan, and Elaine Shi. Circuit ORAM: On Tightness
of the Goldreich-Ostrovsky Lower Bound. In CCS, 2015.

[WNL+14] Xiao Shaun Wang, Kartik Nayak, Chang Liu, T-H. Hubert Chan, Elaine Shi, Emil
Stefanov, and Yan Huang. Oblivious Data Structures. In CCS, 2014.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In
FOCS, 1982.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets. In FOCS, 1986.

[ZE13] Samee Zahur and David Evans. Circuit Structures for Improving Efficiency of Security
and Privacy Tools. In IEEE S & P, 2013.

[ZRE15] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole - reducing
data transfer in garbled circuits using half gates. In EUROCRYPT (2), volume 9057
of Lecture Notes in Computer Science, pages 220–250. Springer, 2015.

A Additional Building Blocks

A.1 Slow Queue (GSlowQueue)

We describe a garbled linear-scan queue. This building block has been used in past works [ZRE15,
HKO21], so we supply the details here only for completeness. Let params = (m,w, tmax) where
m denotes the number of elements in the initial database DB and also the maximum number of
elements, w denotes the bit-width of each element, and tmax is the maximum number of operations.
A slow queue supports two operations Pop and Push, each controlled by a flag b ∈ {0, 1}. If b = 1,
then a real Pop or Push operation happens; otherwise, nothing happens. Initially, the queue is

51



Evaluator

� Pop({{b}}):

1. JresK← GMulτ (JD[0]K, {{b}}); // res = D[0] · b
2. {{bTail}} ← GLShiftτ ({{bTail}}, {{b}});
3. JDK← GLShift′τ (JDK, {{b}});

// if b = 1, left shift by 1

4. return JresK.

� Push({{b}}, JxK, JyK):
For JzK ∈ {JxK, JyK}, do:

1. {{bTail}} ← GRShiftτ ({{bTail}}, {{b}});
// if b = 1, right shift by 1

2. Jz′K← GMulτ (JzK, {{b}});
3. JSK← GMul′τ (Jz′K, {{bTail}}) // S = z′ · bTail

4. JDK← GAddτ (JDK, JSK) // D = D⊕ S

Garbler

Create a sharing JDK of DB||0w, cre-
ate a garbling {{bTail}} of the initial bit-
vector bTail = 0m−1||1||0;
For any τ ∈ [0 : tmax − 1] that is a Pop
step, create the garbled circuit GLShiftτ ,
GLShift′τ , and GMulτ ;

For τ ∈ [0 : tmax−1] that is a Push step,
create two copies of each of the follow-
ing garbled circuits: GRShiftτ , GMulτ ,
GMul′τ , and GAddτ ;

Figure 11: GSlowQueue algorithm.

assumed to be empty. We make the following assumptions: 1) the schedule of operations is known
at garbling time, i.e., the garbler knows in which time step which operation will be invoked; 2) it
is guaranteed that at runtime, Pop or and Push will not cause the stack to underflow or overflow.

� Gmem,GC← Garble(1λ, sk, params,DB, InL,OutL): takes in an initial database DB, input and
output labels InL and OutL, and outputs Gmem,GC.

� Gmem′, JresK ← PopGC(Gmem, {{bE}}): if b = 1, then pop the element at the head of the queue
denoted res; else, res = 0. Furthermore, the Lbl(JresK) must match the output label of time τ
stored in OutL.

� Gmem′ ← PushGC(Gmem, {{bE}}, JxK, JyK): if b = 1, push the elements x and y into the (logical)
queue; else do not push anything.

Construction. GSlowQueue can be constructed by näıvely performing O(1) garbled linear scans
of the queue upon every request, as shown in Figure 11. In this algorithm, we can use the efficient
garbled circuit proposed by Heath et al. [HKO21] for computing {{bE}} · JyK → Jb · yK where bE ∈
{0, 1} is known to the evaluator, and y ∈ {0, 1}k is hidden. It is not hard to see that their algorithm
can be extended to the case when the garbler is told what input labels {{bE}} and JyK should use,
and what output label Jb · yK should use.

A.2 A One-Use Stack (GOTStack)

For constructing our access-revealing one-time memory (Section 5.5), we need a special stack that
receives a single Push operation upfront, and receives at most one Pop operation afterwards before
Finalize is called.

52



Evaluator

� Push({{x}}): store {{x}};

� Pop({{b}}):

1. {{y}} ← GSel({{x}}, {{b}}); // y = (1− b) · x+ b · ⊥
2. GVault.Skip();

� Finalize({{1}}):

1. if τ = 0: {{0}} ← GVault.Finalize({{1}}); Pop({{0}});
2. Output {{y}}.

Garbler

Create GSel garbled circuit;
Call GVault.Garble with {{0}} which is
garbled under the label Ipop.

Figure 12: GOTStack algorithm.

� Gmem,GC ← Garble(1λ, sk, w, (Ipush, Ipop, Opop, F, C0, C1)): takes in input labels Ipush for the
single Push call, input and output labels Ipop and Opop for the single Pop call, output label F for
the Finalize call, and signal labels C0 and C1, where C0 is used if the stack is finalized without
any Pop calls; and C1 is used if the stack is finalized after a Pop call.

� Gmem′ ← PushGC(Gmem, {{x}}): takes in a garbled element {{x}} garbled under the label Ipush
and push it into the logical stack;

� Gmem′, {{res}} ← PopGC(Gmem, {{bE}}): depending on the flag b, either pop an element from the
stack or do nothing. Correctness requires that if b = 1, then res = x, else res = 0. Moreover, it
must be that Lbl(JresK) = Opop;

� {{res}} ← FinalizeGC(Gmem, {{1}}): upon receiving a finalization signal {{1}} garbled either under
C0 or C1 depending on whether Pop has been called before, output a garbling of res, where
res = x if the element has not been popped before; else res = ⊥. Further, Lbl({{res}}) = F .

Construction. We give a construction of GOTStack in Figure 12.

B Blackbox Construction from One-Way Functions

Our full construction of garbled memory, GRAM assumes a circular correlation-robust hash func-
tion [ZRE15, Definition 1], which is a typical assumption for efficient garble circuits. In this section,
we construct a garbled memory that employs only one-way functions in a blackbox way. Intuitively,
this construction is a modification of our former construction. Specifically, we now mechanically
instantiate each building block using Yao’s garbling [Yao86,Yao82] (instead of Free-XOR garbling),
and moreover we replace all sharings with garblings. This new instantiation introduces an extra λ
factor in cost, but is still more efficient compared to previous blackbox one-way function (OWF)
based constructions [GLO15, LO17]. Specifically, our blackbox OWF-based construction incurs
Õ
(
λ2 · (W logN + log3N)

)
cost per memory access whereas the cost of previous constructions can

be found in Table 1 of Section 1. We now sketch our blackbox OWF-based construction.

Terminologies of Yao’s garbled circuits. Recall that in Yao’s garbling scheme, each wire is
associated with a pair of two secret keys sampled uniformly at random, and the two keys represent

53



values of 0 and 1 correspondingly. Each gate is associated with ciphertexts that encrypt each
possible output of the gate represented as a secret key, and thus the gate can be evaluated when
the appropriate input keys are provided. For each wire, we say the pair of two keys (k0, k1) is
the language of the wire, and when a binary value b (either 0 or 1) is given on the wire, we call
corresponding key for b the garbling of b, denoted as {{b}}. When the value b is fixed, we also call it
a 0-garbling or 1-garbling. For multiple bits on a vector of wires, we also extend the terminology
and say the language or the garbling of the wires or bits.

In our construction, we will use a re-garbling circuit. The re-garbling circuit takes in a garbled
bit {{b}} and a garbled language {{L = (k0, k1)}}, and then it outputs the garbling kb of value b.
Later without ambiguity, the garbling kb will also denote by {{b}} in the context, but it is encoding
in another language.

Differences from our earlier construction. The construction mostly follows our former con-
struction, but there are a couple major difference. First, we replace all sharings with Yao’s garblings.
In particular, recall that in our earlier construction, we forward a sharing of a global-time-dependent
language along a tree path in our GOTM construction. In our OWF-based construction, we will
instead forward a garbling of the global-time-dependent language along the tree path. Along each
step of the way, the garbling is translated to the local-time-dependent language of each tree node
receiving it. This is the reason why the extra λ is taken in the cost: garbling of a language increases
the string by λ times. See the garbled switch for details.

The second difference is in the non-recursive garbled memory. In our OWF-based construction,
we forward a garbling of the XOR of all blocks read from all buckets so far along the tree path.
In particular, since every garbled bucket now outputs a garbling of the block fetched, we can no
longer directly use the XOR trick to XOR all of them together to obtain the final fetch result
for the entire path. One strawman solution is for each garbled bucket to output its fetched result
garbled under a global-time-dependent label; however, we would then have to forward the garblings
of logarithmically many global-time languages along the tree path, which would an additional
logarithmic factor. Our approach of forwarding along a garbling of the accumulated result avoids
this drawback. See Appendix B.2 for details.

B.1 Building Blocks

We refer the reader to Section 4 and 5 for the inputs and syntax of our building blocks, and we
focus on the modifications and the new costs of the constructions below. The only exception is
that the garbled switch is functionally different from that of Section 5.3. We also use the same
notation as in Section 4 and 5: the computational security parameter is denoted by λ, the size of
each element is denoted by w, the number of elements is denoted by n or m, and B is the statistical
security parameter (which will be chosen later in the garbled RAM).

EpiGRAM [HKO21] based on one-way function. The construction of Heath et al. [HKO21]
can be modified to use only one-way functions as follows. In their lazy permutation network,
the internal nodes in the tree can be realized similar to our GSwitch later in this section, which
costs O(n log2 n · λ · (λw + log n)), where the λw term comes from storing Yao’s languages in the
stack. Their leaf nodes cost O(nλ · (λw log n + log2 n)) because each node stores log n pairs of
“pointer and language” (that takes (λw+ log n) bits). Then, their ORAM and maintenance cost is
O(n log2 n · λ(w+ log n)). Composing these together yields a “non-recursive” garbled RAM, which
costs O(nλ log2 n · (λw + log n)) per n accesses (on n memory words, each of w bits). The full

54



construction needs log n levels of recursion, each recursion stores data in words of log n bits except
for the first recursion level. Hence, the overall cost is

O(nλ log2 n · (λw + log n)) + log n ·O(nλ log2 n(λ log n)) = O(nλ2 log2 n · (w + log2 n))

per n accesses, and that is O(λ2 log2 n · (w + log2 n)) as claimed earlier in this section.

Garbled Stash (GStash) Our construction of GStash is the same as Section 4.1. We create a
length-m garbled array which is initialized with all {{0}}s. To read an element, we use a linear scan
circuit to scan through the entire array. To add an element, we write the element into the desired
index. This construction has the same cost as Section 4.1, namely O(λ · w ·m) bits.

Slow Blackbox Garbled Dictionary (GDict) Our GDict construction is basically identical to
the GDict described in Section 4.2, except we replace the encoded sharings with garblings. Recall
that the construction follows in two steps: first, we build a binary search tree with the keys, where
each key maps to a value in a garbled array. On a lookup, the evaluator routes his request through
the search tree, finding the value with the associated key. Second, we hide the access patterns of
the search tree by using standard oblivious data structure and recursion techniques.

Recall from Section 4.2 that the routing can be accomplished using two pop-only garbled stacks.
In our construction, these stacks can now be instantiated using Yao’s garblings (instead of sharings),
which means that each w-bit language is garbled into a garbling of size λ · w bits. Everything else
in the construction remains identical, hence this construction costs O(λ2(w log2m + log4m)) bits
per memory access to implement a garbled memory of size m and block size w.

Using this garbled memory and the recursion and oblivious data structure techniques discussed
in Section 4.2, our GDict construction thus costs GDict cost of O(tmax ·λ2 · (w1 log3m+w2 log2m+
log4m)) where w1 = |key|, w2 = |val|, and tmax is the maximum number of queries.

Garbled Random Permutation(GPerm) Our GPerm construction is the same as Section 4.3.
We use Waksman’s permutation network, which has a cost of O(λ · w ·m · logm).

Expiring Vault (GVault). The construction is almost identical to that described in Section 5.1,
where the only difference is now we instantiate Yao’s garbling circuits (hence, the input languages
InL = (C0, . . . , Ctmax) shall consist of a pair of 0-garbling and 1-garbling for each Ci, but only those
1-garblings are used). The cost is the same, O(tmax · (λ+ w)).

Slow Queue (GSlowQueue). Recall that params = (m,w, tmax) denotes the maximum number of
elements, the bit-width of each element, and the maximum number of operations. The construction
is similar to that of Appendix A.1, but the elements are pushed, popped, or stored using Yao’s
garbling (instead of sharings). That is, each w-bit element is garbled into an encoding of λ ·w bits,
and the element takes O(λ ·w) during the push, store, then pop procedures. The cost is increased
by λ, which is O(λmw) per push or pop operation.

Stack (GStack). Next, we consider the pop-only stack constructed in Section 5.2. Similarly,
params = (m,w, tmax) denotes the maximum number of elements, the bit-width of each element,
and the maximum number of operations. The construction is identical to Figure 3 except that
all (GSlowQueue`)`∈[0:`max] are instantiated using Yao’s garbling as described in this section. The
construction takes overall cost O(λwtmax · logm) bits.

55



Switch (GSwitch). The switch from Yao’s garbling is conceptually similar to that of Section 5.3,
but now the output is re-garbled using the languages that are popped from one of the two stacks,
where the re-garbling makes the main difference. Specifically, the procedure to re-garble the output
of Switch follows standard Yao’s garbling for both the garbler and the evaluator. That is, the input
is a garbled bit {{b}} and a garbling of the language {{K}}, where the wire of b is represented with
a pair of garblings (L0, L1) such that {{b}} = Lb, the language K consists of a pair of secret keys
(K0,K1) representing 0 or 1 respectively; taking as input {{b}} and {{K}}, we want to reveal Kb as
the re-garbling of b. To do so, the garbler prepares a garbled circuit that computes b·K0⊕(1−b)·K1

and output the result in the clear, where the circuit size is linear in the input size. We extend this
to a string of bits and K is a sequence of languages, and we say it is re-garbling {{b}} under language
K when {{K}} is given.

Another major difference is the message forwarded by the switch. Recall that the switch of
Section 5.3 is designed to forward the encoding of L′ = L ⊕ RdL[τ ] (to the child node), where
L is encoded in the input but RdL[τ ] is hardwired in the switch (Figure 4). However in this
section, the switch now forwards only L′ = L. Looking forward, it is because in the construction
of non-recursive garbled RAM, we will aggregate and pass the read data from each bucket to the
leaf through the switches (Appendix B.2).

For completeness, we present the modified procedure in Figure 13. The construction in Figure 13
costs O (Bλ · (w1 + w2) · logB) bits, where w1 = |leaf|+ |addr| and w2 = |L|.

Garbled One-Time Memory (GOTM) Our construction of GOTM is identical to the one
presented in Section 5.5, but now composed of the GStack and GSwitch data structures presented
above. For the sake of completeness, the GOTM algorithm using Yao’s garbling is presented in
Figure 14.

Our GOTM construction has incurs a cost of λ over the construction presented in Section 5.5,
due to the blowup incurred from garbling rather than sharing the languages. Our construction thus
costs O(m · λ2 · (w + logm) · log2m) bits.

Bucket (GBkt). The construction is almost identical to that of Section 5.6, where the only
difference is that the dictionary (GDict) and the one-time memory (GOTM) are instantiated using
the variants of this section. Recall that a bucket stores m pairs of (addr, val) where |addr| = w1 and
|val| = w2. Following the construction and the analysis, the total cost of our GBkt construction is
the summation of GDict and GOTM, that is,

O
(
t̃ · λ2 · (w1 log3 t̃+ log4 t̃)

)
+O

(
t̃ · λ2 · (w2 + log t̃) · log2 t̃

)
= O

(
t̃ · λ2 · (w1 log3 t̃+ w2 log2 t̃+ log4 t̃)

)
,

where t̃ = tmax +m.

Level Rebuilder (GRebuild). Recall that a level rebuilder takes as input a stash and ` levels,
where each level i < ` consists of 2i buckets, each bucket or the stash consists of B number of
elements, and each element is a tuple (addr, leaf, data); the output is a new level ` (consisting of
2` buckets) and new empty levels i < ` (see Section 5.7 for details). Using Yao’s garbling, the
construction is composed identically as in Section 5.7, and the cost is O(λB · 2` · (|addr| + |leaf| +
|data|)).

56



Evaluator

� Init({{stE∅ }}): // called when InitL 6= ∅

1. parse {{stE∅ }} := {{βb,i}}b∈{0,1},i∈[0:2B);
2. for b ∈ {0, 1}, i ∈ [0 : 2B), call

GStackb.Pop({{βb,i}});

� Switch({{leafE}}, {{addr}}, {{L}}) :

1. Call {{β0 = leaf[0]}}, {{β1 = 1− β0}},{{leaf ′ =
leaf[1 :]}}, {{addr′ = addr}}, {{L′ = L}} ←
GCSwτ ({{leaf}}, {{addr}}, {{L}});

2. For b ∈ {0, 1}, {{Kb, }} ←
GStackb.Pop({{βb}});
// here means ignore the last 2λ bits

3. Call {{K = K0 ⊕K1}} ←
GXORτ ({{K0}}, {{K1}});

4. Re-garble {{leaf ′, addr′, L′}} under language K
using the given {{K}}.

� Finalize({{1}}):

1. If InitL 6= ∅, call:

– {{1L, 1R}} ← Dec{{1}}(ctτ );

– {{ ,K ′0}} ← GStack0.Pop({{1L}});
– {{ ,K ′1}} ← GStack1.Pop({{1R}});
– {{1′L}} := K ′0, i.e., re-garble {{1}} under K ′0;

– {{1′R}} := K ′1, i.e., re-garble {{1}} under K ′1;

and output {{1′L, 1′R}}.
2. Else, call

– {{st0}} ← GStack0.Finalize({{1}}),
– {{st1}} ← GStack1.Finalize({{1}}),
and output {{st0, st1}}.

Garbler

Create two garbled stacks GStack0 and
GStack1 as explained in a separate
subroutine;

For each τ ∈ [0 : 2B), garble the GCSwτ
circuit (whose functionality is defined on
the left);

For each τ ∈ [0 : 2B), garble the GXORτ
circuit (which computes bitwise XOR);

For each τ ∈ [0 : 2B), create the re-
garbling circuits;

If InitL 6= ∅, then, for each τ ∈
[0 : 2B], create the ciphertext ctτ =
Enc{{1}}τ ({{1L, 1R}}τ ), and create the re-
garbling circuits.

Figure 13: GSwitch algorithm from OWF.

57



Evaluator

� Init({{DB}}):

1. for i ∈ [0 : m): GOTStacki.Push({{DB[i]}});

� Read({{idxE}}):

1. let {{L0}} = {{OutL[τ ]}};
2. let {{leaf0}} = {{idx}}, {{10}} = {{1}}τ ;

3. let V = root and `max = log2m;

4. for ` ∈ [0 : `max):

– {{leaf`+1}}, {{1`+1}}, {{L`+1}}
← GSwitchV .Switch({{leaf`}}, {{1`}}, {{L`}})

– V ← V.child[idx[`]];

// V is now the idx-th leaf

5. {{rdata}} ← GOTStackidx.Pop({{1`max}});
6. re-garble {{rdata}} under L`max and then output the

result;

� Finalize({{1}}):

1. RecFinalize(root, {{1}}) defined below;

2. output {{DB′}} = {{{Di}}}i∈[0:m).

Subroutine RecFinalize(V, {{1}})

a) if V is a leaf, let i be its index:

{{Di}} ← GOTStacki.Finalize({{1}})
and return; else continue with the following;

b) {{1L, 1R}} ← GSwitchV .Finalize({{1}})
c) let UL and UR be V ’s left and right children;

d) RecFinalize(UL, {{1L}}); RecFinalize(UR, {{1R}}).

Garbler

for i ∈ [0 : m): // see narrative

call GOTStacki.Garble;

for τ ∈ [0 : m):
create the garbling {{OutL[τ ]}};
create the garbling {{1}}τ ;

for each tree node V : // see narrative

call GSwitchV .Garble;

Figure 14: GOTM algorithm from OWF.

58



B.2 Garbled Memory

Given the above building blocks, we start with the non-recursive garbled memory, and then we
describe the full construction. In the non-recursive garbled memory, we use n and w to denote the
number of elements and the bit-width of each element, and then in the recursive one, we use N
and W to denote the number of memory words and the bit-width of each word.

Non-recursive garbled memory (NRGRAM). The non-recursive garbled memory is the main
difference between variants using Free-XOR and Yao’s garbling. Recall that in the construction of
Section 6, we instantiated a Bucket ORAM tree, each tree node is associated with a bucket and a
switch; each operation on the garbled memory visits a root-to-leaf path, each bucket on the path
is visited and outputs a garbled data, but only one garbled data is real while others are garbled
zeros, so the garbled data are aggregated by XORing the garbled data, and finally the aggregation
is “re-garbled” into the desired garbling using the languages forwarded through the switches on the
path. Using Yao’s garbling, we cannot XOR the garbled data in the same way since the encodings
are no longer linearly homomorphic. One naive solution is to forward log n global-time languages
to log n buckets through the switches, each bucket consumes one language to re-garble the data,
and finally use a garbled circuit to compute the result of XOR. But this approach incurs extra
logarithmic factor on cost.

Instead, we compute a partial aggregation immediately (using XOR) when we obtained the
garbled data from the bucket, and then we forward the XORed element down the path using our
switches. That is, at each node, we firstly read the desired address from the bucket, then XOR the
newly read data with the data forwarded from the parent node, and finally forward the XORed data
to the corresponding (either left or right) child using the switch. On the same path, the switches
also forwards the global-time language (in the garbled form), so that at the leaf level we re-garble
the aggregated data under the global-time language.

The modified procedure is given in Figure 13, where the other functions (Add,RecFinalize) are
identical to that of Figure 8.

� Stash costs O(λn(w + log n)).

� For each tree node, a bucket and a switch cost

O
(
B · λ2 · (log n · log3 B + w log2 B + log4 B)

)
+O (Bλ · (log n+ λw) · logB)

= O
(
B · λ2 · (log n · log3 B + w log2 B + log4 B)

)
.

� For every n operations, we instantiate O((n/B) log n) tree nodes, which costs

O
(
n log n · λ2 · (log n · log3 B + w log2 B + log4 B)

)
.

� XOR and re-garbling cost O(λ2w log n) per operation. That is, O(λ2wn log n) per n opera-
tions.

� For every n operations, for each level `, the level rebuild is performed O(n/(B2`)) times.
Hence all levels takes O(λn log n · (log n+ w)) per n operations.

We conclude that the tree nodes is dominating, and for T > n the cost is O
(
n log n · λ2 · (log n ·

log3 B + w log2 B + log4 B)
)
.

59



Evaluator

ReadRm
(
{{addr, leafE}}

)
:

� if t = 0, then for every tree node V , call
GBktV,0.Init({{bkt∅V }});

� , {{rdata−1}} ← GStasht.Read({{addr}});

� {{rdata−1, L}} := ({{rdata−1}}, {{L∗[t]}});

� For each node V in the tree from the root to leaf,

– {{rdata′`}} ← GBktV,t.Read({{addr}}) where ` de-
notes the level of V ;

– {{rdata`}} ← GXORV,t({{rdata`−1}}, {{rdata′`}});
– If V is not a leaf: let
{{leaf}}, {{addr}}, {{rdata`, L}} ←
GSwitchV,t.Switch({{leaf}}, {{addr}}, {{rdata`, L}})
(that is, re-garble and forward the message);

� Let {{rdata}} be the re-garbling of {{rdata`max}} un-
der L and then output {{rdata}}.

Garbler

for every tree node V , let bkt∅V be
an array of 0s of appropriate length,
create garbled state {{bkt∅V }};

for t ∈ [0 : T ), let L∗[t] = OutL[t]; cre-
ate garblings {{L∗}} := {{{L∗[t]}}}t∈[0:T )
under the input languages of
GSwitchroot,t.InL and GBktroot,t.InL;

call GBkt.Garble for all GBkt instances;

call GSwitch.Garble for all GSwitch
instances;

see GSwitch for the re-garbling.

Figure 15: Non-Recursive Garbled RAM (NRGRAM) construction from OWF (see Figure 8 for
functionalities Add and RecFinalize).

Full construction: garbled memory (GRAM). The full construction follows identically the
procedures of Section 7: given N data blocks, each consists of W bits, we store the N blocks in a
non-recursive GRAM, and then recursively store the position of each block in D = logN instances
of non-recursive GRAM, where the number of blocks reduces by a factor of two in each recursion.
Notice that the size of each element in the recursion is logN bits except for the outer-most non-
recursive GRAM. Hence, per N accesses, the cost is

O
(
N logN · λ2 · (logN · log3 B +W log2 B + log4 B)

)
+

D∑
i=1

O
(
N log

N

2i
· λ2 · (log

N

2i
· log3 B + logN log2 B + log4 B)

)
=O
(
N logN · λ2 · (log2N · log3 B +W log2 B + logN log4 B)

)
.

Following Section 7 and hiding the statistical failure probability in the Õ(·) notation, we simplify
the expression to

Õ
(
T · λ2 · (log3N +W logN)

)
per T ≥ N accesses. This takes an extra λ factor compared to Section 7.

Analysis of correctness and security.

� Non-recursive garbled memory (NRGRAM). The analysis is almost identical to that of Theo-
rem 6.1, but the hybrids Hyb2 and Hyb∗t are modified as follows due to the construction.

60



Recall that we take a different approach to forward and aggregate the read data (i.e., rdata in
Figure 15). Hence in Hyb2, we sample the garbling {{rdata}}t for each t ∈ [0, T ) uniformly at
random (and skip all other garblings, including all {{rdata`}}t for all `). Next for each Hyb∗t ,
the building blocks are simulated in the ordering below.

1. Simulate the re-garbling of {{rdata`max}} (under language L);

2. for each node from `max down to 0, sequentially simulate the switch, the XOR circuit,
and then the bucket;

3. simulate the stash, and then simulate the rebuild circuit (which is identical to the proof
of Theorem 6.1).

This sketches the simulator of NRGRAM.

� Full garbled memory (GRAM). The analysis is exactly identical to Section 7.3.

The full construction is concluded as below.

Theorem B.1 (Garble RAM from one-way functions). Assume the existence of one-way functions.
Suppose that N,T,W are polynomially bounded in the security parameter λ, and moreover, we adopt
B = ω(log λ) to instantiate the underlying NRGRAM instances. Then, the resulting GRAM scheme
in this section respects Definition 1 and costs Õ

(
T · λ2 · (log3N +W logN)

)
bits, where Õ(·) hides

poly log log λ factors.

C More Detailed Comparison with Prior Work

C.1 Blackbox Garbled RAM Constructions

Garg et al. [GLO15] constructed the first blackbox garbled RAM from one-way functions. Their
work mainly focused on feasibility, and did not care about the constant-exponent in the poly log
term. For a better comparison, we sketch their construction below to calculate the exact constant-
exponent in their poly log term. We refer the reader to the original paper [GLO15] for more details.

Construction of Garg et al. [GLO15]. At a high level, the construction begins from a RAM
program already compiled with a statistical ORAM (e.g., with Circuit ORAM [WCS15, CS17]),
such that the memory is partitioned into “levels.” For each step, the program accesses a uniformly
random location inside a pre-determined level. It is then sufficient to construct a garbled RAM
scheme for programs that perform uniform memory accesses (over the whole memory) because we
can naturally instantiate one garbled RAM for each level.

To do so, they construct a binary tree in which each leaf is associated with a memory index. For
each computation time step t that accesses memory location i, the purpose of the tree is to send
from the root to the i-th leaf the language of time t, so that the memory word at location i can then
be re-garbled using the given language. Each internal node of the tree is provided with a sequence
of garbled circuits. For a fixed circuit, we denote the previous or next circuit in the sequence as the
predecessor or successor. At the evaluation, each memory access sends the language through the
circuits along the corresponding root-to-leaf path, consuming at least one circuit for each node on
the path. Because the memory accesses are uniform, the number of expected visits to any node is
half the number of visits of its parent node. If this always holds, then we could wire every pair of
circuits on the parent node to a pair of circuits on the left and right children nodes. Unfortunately,

61



because the paths are uniformly sampled at evaluation, the number of visits to the left and right
nodes can vary greatly.

Garg et al. addressed this challenge using two key insights. The first insight is to connect a
circuit from a parent node to a window of circuits on its left and right children. Concretely, for some
“window size” κ, each parent node circuit is connected to κ left-child and κ right-child circuits.
Thus, it allows for some leeway at evaluation time. Then in the evaluation, the parent node routes
its message to the next unvisited circuit of the left or right child depending on the path. As long
as the next left-child or right-child circuit lies within the window, the routing can be performed as
planned.

The second insight complements the first. In some cases, the window size may still not be
enough if the numbers of routes to the left and right child vary widely. To this end, Garg et
al. propose a “burning circuit”, which allows a node to “burn” through its circuits such that the
desired child circuit becomes part of the window for subsequent accesses. For example, suppose a
parent node u is going to visit left child v, but the right child w has been visited κ times more than
v. The parent circuit Ciu first sends a message to the next left child Ci

′
v even though i′ is not part

of the window of i, and the message is also encoded with the targeted window t′ Given t′, child
Ci
′
v checks and knows it is behind the window, so Ci

′
v chooses to burn circuits Ci

′
v , C

i′+1
v , . . . , Ct

′−1
v ,

and they forward the message through the circuits to successor circuit Ct
′
v . The circuit Ct

′
v can now

continue the routing to its child, and the later parent circuits Ci
′+1
u , Ci

′+2
u , . . . have their next left

children Ct
′+1
v , Ct

′+2
v , . . . in their windows.

Finally, to realize the above insights, each circuit is connected to its successor, and the successor
receives some tracking information. Namely, the tracking information includes the numbers of
visits to the left and right children, and the languages of the next left- and right-child circuits
(the language is needed to initiate burning). Moreover for each parent circuit i, the window is
parameterized to the children circuits in the range [(1/2 + ε) · i, (1/2 + ε) · i+ κ], where ε and κ are
chosen properly for efficiency and security.

Analysis and cost. In the above construction, the cost and failure probability depend on pa-
rameters κ and ε. Notice that the construction will still fail when one child is visited too many
times, e.g., if a parent visits the right child consecutively for 4κ times, then the parent runs out of
hardwired language to the next right circuit. For the same reason, choosing ε > 0 is necessary—
otherwise, the difference in the number of visits eventually accumulates and leads to failure. Hence,
ε is chosen to 1/ log n where n is the number of memory words, and this incurs an O(log n) factor
on the total number of circuits over the whole tree [GLO15, Section 5.1.1]. Next, for any ε > 0, the
failure probability is analyzed and bounded by exp[−(ε2κ+ε(κ−1))] in Garg et al. [GLO15, Lemma
5.2]. Hence, choosing κ = ω(log2 n) is necessary to achieve a negligible failure probability in n.

Together, there are O(n log n) circuits per n accesses, each circuit hardwires O(κ) languages,
each language must be able to encode at least a w-bit memory word and thus is O(λw) bits. Thus,
the cost is O(n log n · κλ2w), where the second λ factor comes from garbling those circuits that
hardwire languages. Recall that this is only the garbled RAM for uniformly random accesses. Given
a memory array consisting of N blocks, each block is W bits, we compile it with Circuit ORAM,
which incurs O(logN) accesses to W -bit blocks, and O(log2N) accesses to (logN)-bit words (of
metadata). Hence, the per-access cost with Circuit ORAM is

O
(
(log2N ·W + log4N) · κλ2

)
.

Plugging in κ = Õ(log2N), the cost is Õ
(
(W + log2N) · log4N · λ2

)
per access, supposing that N

and the total number of accesses are bounded by a polynomial of λ.

62



Garbled Parallel RAM programs from one-way functions. Lu and Ostrovsky [LO17] ex-
tend the above construction to garble Parallel RAM programs where M processors concurrently
access N memory words. When it comes to parallel accesses, the above construction no longer
works efficiently because each circuit on tree nodes sends only one language (while there are M
concurrent accesses). To resolve this problem, Lu and Ostrovsky proposed the technique called
“wide circuits” for those nodes near the root. For all internal nodes such that is i < log4/3M
distance from the root, their associated circuits are all activated and send messages in every access,
and the circuits are “wide” that take as input several languages and then send them to both the
left and right children, where the “width” is decreased with respect to increasing level i to reduce
the cost.9 For each internal node such that is i > log4/3M distance from the root, the circuits are
connected identically to those of the sequential garbled RAM (summarized above). Finally, at level
i = log4/3M , the circuits receive as input at most O(log4N) languages with overwhelming prob-
ability, and hence the circuits just send the languages sequentially to their children. This garbled
PRAM scheme does not improve the efficiency of garbled RAM, and hence it is less relevant to our
scheme.

C.2 Garbled RAM from Non-Blackbox One-Way Functions

For completeness, we summarize the non-blackbox constructions in this subsection. Garg et al. con-
structed the first garbled RAM from one-way functions in a non-blackbox manner [GLOS15], i.e.,
the construction involves garbling the circuits that evaluate PRF. Then, Hazay and Lilintal im-
proved the efficiency [HL20]. These works also cared mostly about feasibility, and did not care
about the exact constant-exponent in the poly log term. Hazay and Lilintal calculated exactly how
large the poly log term is but only for the number of garbled evaluations of the PRF, which is the
most expensive part of non-blackbox constructions. Below, we sketch their schemes at a high level
by listing the data and circuits, so we can derive a more exact expression of their cost. We refer
the readers to the original papers for more details. [GLOS15,HL20].

Given n memory words, a binary tree of n leaves is constructed, each internal node is associated
with a ciphertext encrypting two PRF keys (there is no circuit associated with any node), and for
each internal node, the two PRF keys are the encryption keys of the ciphertexts of the left and
right children correspondingly. That is, for a node x where the parent node is w, the left and right
children are y, z, the ciphertext associated to x is fkw(ky‖kz) (and those ciphertexts to y and z are
fky(. . . ) and fkz(. . . )).

The tree of encrypted keys is designed to securely evaluate the following garbled circuits. For
each memory access t and for each level i of the tree, a garbled circuit Cti is instantiated:

1. Circuits Ct0, . . . , C
t
logn sequentially traverse a path from the root to a leaf in the tree of

ciphertexts (the memory word to be read is stored in some node of the path).

2. Each circuit Cti takes as input the two keys kl, kr from the node at level i on the path (we
will soon explain how to obtain the keys from the ciphertext of the node).

3. Circuit Cti is hardwired with keys kti−1, k
t
i and the garbling language of Cti+1, where kti is a

fresh and independent PRF key for all t, i, and kti−1 is the same key that is hardwired in
circuit Cti−1.

9Concretely, for i < log4/3M , the level i circuit takes as input Mi languages concurrently and then sends Mi+1

languages to each of left and right children, where level 0 is the root, M0 := M , and Mi+1 is defined iteratively by
Mi+1 := (1/2 + 1/ logN)Mi + log3N [LO17, Figure 1].

63



4. Choose k∗ ∈ {kl, kr} that is encrypting the next ciphertext on level i+ 1 in the path (as kl or
kr denotes the left or right key), evaluate PRF using key k∗, and then XOR the result with
the garbling language of Cti+1. The result of XOR is called the “translate”.

5. Replace k∗ with kti in the pair (kl, kr), encrypt the new pair with kti−1 by evaluating PRF on
every bit of the pair using key kti−1.

6. Both the translate and the encryption are output by Cti .

7. To obtain the input of the next garbled circuit Cti+1, the evaluator of GRAM performs XOR
on the translate and the ciphertext on level i+ 1 in the path (which translates the ciphertext
into the garbling of the keys, as desired in Step 2). The evaluator also puts the encryption
to the level i node on the path.

The above shows only the encryption and activation of keys, but auxiliary control and data can
be incorporated (e.g., additionally store the data of a tree-based ORAM in the tree of encrypted
keys [HL20]). Notice that each garbled circuit evaluates PRF to encrypt the keys and data, but
garbling a PRF circuit is non-blackbox and costly. Suppose the key of the PRF is λ bits, let Sλ
be the circuit size of the PRF such that outputs λ bits, and suppose the ORAM tree stores and
processes w bits per node (e.g., Circuit ORAM). The hardwired language is O(λ(λ + w)) bits,
there are O(λ + w) PRF evaluations in the garbled circuit, and hence each garbled circuit costs
O(λ2(λ + w) + λSλ(λ + w)) bits. Circuit ORAM compiles each memory access into accessing (a)
O(logN) tree nodes each of O(W ) bits and (b) O(log2N) tree nodes each of O(logN) bits. Hence,
as Sλ ≥ λ, the total cost is

O(logN · λSλ(λ+W ) + log2N · λSλ(λ+ logN)) = O
(
logN · λSλ(W + λ logN + log2N)

)
bits per access.

C.3 Early Scheme Based on Circular Security

In their pioneering work, Lu and Ostrovsky proposed the first garbled RAM scheme [LO13]. Al-
though the scheme requires a complex circular use of garbled circuits and PRFs [GHL+14], we
briefly show the idea and cost of the scheme.

Very roughly, the scheme of Lu and Ostrovsky constructs a pair of circuits (CCPU , CORAM )
for each logical memory access. CCPU performs one step of computation and outputs one logical
memory address to be accessed. CORAM takes in the logical address and outputs a sequence of
O(logN) garbled circuits (each performs one physical access to emulate the ORAM). Then, each
pair (CCPU , CORAM ) is garbled and provided to the evaluator. Finally, the evaluator evaluates
garbled CCPU , garbled CORAM , obtains the sequence of garbled circuits, and then evaluates the
sequence (which completes one logical access).

To create the garbled circuits, CORAM is hardwired with a secret key (this is also why circular
security is needed). Recall that garbling a constant fan-in Boolean gate takes circuit size O(Sλ)
to evaluate PRF and encrypt all potential outputs. Because the ORAM accesses Õ(w log n) bits
per physical access, garbling each circuit takes circuit size Õ(wSλ log n). CORAM outputs O(log n)
garbled circuits, and thus it takes circuit size Õ(wSλ log2 n). The garbling of CORAM incurs another
λ factor, and hence it takes Õ(wλSλ log2 n) bits per memory access.

64


	Introduction
	Technical Roadmap
	Background
	Our Approach
	Passing a Single Label with an XOR Trick
	Splitting Switches into Poly-logarithmically Sized Ones
	Garbled Data Structures with Dynamic Finalization
	Additional Optimizations


	Preliminaries and Definitions
	Labels, Encoding and Decoding
	Garbled Circuits
	Garbled Data Structure
	Notational Conventions

	Building Blocks
	Garbled Stash (GStash)
	Slow BlackBox Garbled Dictionary (GDict)
	Garbled Random Permutation (GPerm)

	Building Blocks for Garbled Memory
	Expiring Vault (GVault)
	Stack (GStack)
	Definition
	Construction
	Security Proof
	A Slightly Different Variant of GStack

	Switch (GSwitch)
	Definition
	Construction
	Security Proof

	Leaf Switch (GLeafSwitch)
	Garbled Access-Revealing One-Time Memory (GOTM)
	Definition
	Construction
	Security Proof

	Bucket (GBkt)
	Definition
	Construction
	Security Proof

	Level Rebuilder (GRebuild)

	Non-Recursive Garbled Memory (NRGRAM)
	Definition
	Data Structures and Labels
	Construction
	Proof of Correctness and Security

	Final Construction: Garbled Memory (GRAM) 
	Definition
	Construction
	Proof of Correctness and Security

	Practical Optimizations and Concrete Performance
	Practical Optimizations
	Concrete Performance

	Additional Building Blocks
	Slow Queue (GSlowQueue)
	A One-Use Stack (GOTStack)

	Blackbox Construction from One-Way Functions
	Building Blocks
	Garbled Memory

	More Detailed Comparison with Prior Work
	Blackbox Garbled RAM Constructions
	Garbled RAM from Non-Blackbox One-Way Functions
	Early Scheme Based on Circular Security


