
OptRand: Optimistically Responsive Reconfigurable
Distributed Randomness

Adithya Bhat*
abhatk@purdue.edu
Purdue University

Nibesh Shrestha*

nxs4564@rit.edu
Rochester Institute of Technology

Aniket Kate
aniket@purdue.edu

Purdue University / Supra

Kartik Nayak
kartik@cs.duke.edu

Duke University

Abstract—Public random beacons publish random numbers
at regular intervals, which anyone can obtain and verify. The
design of public distributed random beacons has been an exciting
research direction with significant implications for blockchains,
voting, and beyond. Distributed random beacons, in addition
to being bias-resistant and unpredictable, also need to have
low communication overhead and latency, high resilience to
faults, and ease of reconfigurability. Existing synchronous random
beacon protocols sacrifice one or more of these properties.

In this work, we design an efficient unpredictable synchronous
random beacon protocol, OptRand, with quadratic (in the num-
ber n of system nodes) communication complexity per beacon
output. First, we innovate by employing a novel combination
of bilinear pairing based publicly verifiable secret-sharing and
non-interactive zero-knowledge proofs to build a linear (in n)
sized publicly verifiable random sharing. Second, we develop a
state machine replication protocol with linear-sized inputs that
is also optimistically responsive, i.e., it can progress responsively
at actual network speed during optimistic conditions, despite the
synchrony assumption, and thus incur low latency. In addition, we
present an efficient reconfiguration mechanism for OptRand that
allows nodes to leave and join the system. Our experiments show
our protocols perform significantly better compared to state-of-
the-art protocols under optimistic conditions and on par with
state-of-the-art protocols in the normal case. We are also the
first to implement a reconfiguration mechanism for distributed
beacons and demonstrate that our protocol continues to be live
during reconfigurations.

I. INTRODUCTION

The use of public random numbers is fundamental to
many secure privacy-preserving systems where protocol par-
ties have tamper-proof access to these random values (or
common coins). Voting, lotteries, blockchains, and financial
services depend on public randomness, and generating public
randomness [47] has been an active area of research for the
last four decades [55], [26], [49], [50], [14], [35], [34], [21],
[33], [46], [18], [10]. Among these efforts, NIST’s randomness
beacons project [22] and Drand organization’s beacon [28]
have emerged in the last few years as real-world systems
towards catering to this need for randomness beacons.

Informally, these systems offer random beacons, which
are regular outputs of bias-resistant and unpredictable public
random numbers. Bias-resistance ensures that the adversary
cannot affect any future beacon value, say, for instance, affect
the beacon to win a lottery, and unpredictability ensures that
the adversary cannot predict any future beacon value, say, for
example, bet on a favorable number in a lottery.

*Contributed equally and listed alphabetically

Distributing trust across multiple nodes such that only a
minority of those can be compromised allows us to mitigate
single-point-of-failures. Here, a distributed coin-tossing proto-
col combines randomness from multiple nodes to generate ran-
dom beacons, which has been explored both theoretically [29],
[15], [14], [32] and on the systems front [55], [50], [28], [10],
[49], [35].

A common approach to designing random beacons involves
a set of n nodes each sharing a random value such that a
random value is computed by combining a subset of these in-
dividual values. To share the value, protocols typically require
every node (called a dealer or leader) to use a verifiable secret
sharing (VSS) scheme where the node commits to a value with
the guarantee that if it is successful, it can be reconstructed by
honest nodes even if the dealer is malicious (Byzantine). By
utilizing at least t+ 1 such dealers, where t is the maximum
number of compromised nodes, we are guaranteed that the
reconstructed value is uniformly random since the contribution
from an honest node is uniformly random.

There are several ideal properties that protocols in the
literature have aimed to optimize. In an n-node system tol-
erating t Byzantine faults, a secure coin-tossing protocol
should aim for (i) bias-resistance, (ii) unpredictability, (iii)
optimal resilience, (iv) low latency, (iv) high scalability, and
(v) friendliness towards reconfiguration (allowing efficient
addition and removal of nodes). In this work, we focus on
the synchronous network setting where messages sent by the
sender will arrive at the receiver within a known bounded delay
∆. Synchronous protocols have the advantage of tolerating up
to a minority corruption. While a myriad of random beacon
protocols [14], [55], [50], [10], [49] have been proposed in
this setting, existing solutions fall short in one or more of
these directions. For example, Cachin et al. [14] is efficient
in terms of communication complexity with O(κn2), but their
distributed (cryptographic) setup makes its expensive in term
of reconfiguration especially as n increases. Randrunner and
similar approaches instead employ the use of verifiable delay
functions (VDFs) frequently to generate beacons and possibly
tolerate dishonest majority of faults. However, VDFs are com-
putationally expensive and these protocols cannot offer low
latency [26], [49]. HydRand [50], with its use of publicly ver-
ifiable secret sharing (PVSS) [16] can be made reconfiguration-
friendly while simultaneously achieving quadratic communi-
cation complexity in the best case; however, it works in a
synchronous network and its resilience to faults, t < n/3, is
sub-optimal. Finally, Randpiper set of protocols [10], while
offering quadratic communication complexity in the best case

1

TABLE I: Comparison of related works on Random Beacon protocols.

Protocol Net. Res. Comm. Compl. Unpred. Reusable
Resp.

Crypto Setup

Best Worst Setup Assumption* Assumption†

Cachin et
al./Drand [14],
[28]

sync 50% O(κn2) O(κn2) 1 ✗ ✗ Uniq. Sig, CDH SRS

Dfinity [35], [2] sync. 50% O(κn2) O(κn3)‡ O(κ) ✗ ✗ Uniq. Sig, CDH SRS
HERB [21] sync. 33% O(κn3) O(κn3) 1 ✗ ✗ DDH SRS
RandHerd [55] sync. 33% O(κc2 logn)§ O(κn4) O(κ) ✗ ✗ DL SRS
RandChain [34] sync. 50% O(κn2) O(κn2) O(κ) ✗ ✗ VDF, PoW SRS
RandHound [55] sync. 33% O(κc2n)¶ O(κc2n2)¶ 1 ✓ ✗ DL SRS
RandShare [55] async. 33% O(κn3) O(κn4) 1 ✓ ✓ DL SRS
RandRunner [49] sync. 50% O(κn2) O(κn2) O(κ) ✓ ✗ tVDF, DL SRS
HydRand [50] sync. 33% O(κn2) O(κn3) min(κ, t+1) ✓ ✗ DDH CRS
SPURT [23] psync. 33% O(κn2) O(κn2) 1 ✓ ✓ DBS CRS
GULL [17] sync. 50%|| O(κn3) O(κn3) 1 ✗ ✗ DDH CRS
STROBE [7] sync. 50% O(κn2) O(κn2) 1 ✗ ✓ RSA, DL SRS
GRandPiper [10] sync. 50% O(κn2) O(κn2) min(κ, t+1) ✓ ✗ q-SDH, SXDH SRS
BRandPiper [10] sync. 50% O(κn2)|| O(κn3) 1 ✓ ✗ q-SDH, SXDH SRS

OptRand sync. 50% O(κn2) O(κn2) 1 ✓ ✓** q-SDH, SXDH SRS

Net. refers to the network assumption. Res. refers to the number of Byzantine faults tolerated in the system. Unpred. refers to the unpredictability of the
random beacon, in terms of the number of future rounds a rushing adversary can predict. Reusable Setup refers to a setup that can be reused when a node is
replaced in the system. Resp. refers to responsiveness, i.e., if commit latency is a function of the network speed δ. *All of these protocols assume Random
oracles. †All of these protocols assume Public Key Infrastructure (PKI). ‡probabilistically O(κn3) when Θ(n) consecutive leaders are bad. §c is the average
(constant) size of the groups of server nodes. ¶c is is a client specified parameter to obtain client-specific randomness. ||in conditions where the actual number
of faults f = O(1) ≤ t. **optimistically responsive during optimistic conditions.

and reconfiguration-friendliness, is communication-inefficient
in the presence of faults and outputs a beacon value every 11∆
time.

A natural question is whether we can achieve all of
the above mentioned desirable properties simultaneously. Our
work, OptRand, answers this question affirmatively. In par-
ticular, OptRand is a bias-resistant and unpredictable random
beacon, with an O(κn2) communication complexity and toler-
ating one-half Byzantine faults in a synchronous network. In
fact, under optimistic conditions when the number of faults are
< n/4 and a “leader” is honest, the protocol is responsive, i.e.,
it advances at the speed of the network, thus achieving low
latency. Compared to the state-of-the-art in the synchronous
setting, RandPiper [10], this protocol has better communication
complexity (always O(κn2)) and optimistically-responsive la-
tency.

A. Our Approach, Key Ideas and Results

Our protocol is a novel combination of aggregatable PVSS
and a state machine replication (SMR) to achieve an optimisti-
cally responsive random beacon protocol. We elaborate on the
key features of OptRand and our approach to achieving them.

Towards an always quadratic communication random
beacon protocol. An approach to obtaining random values
is to combine random secrets from more than t nodes, at least
one of whom is honest. Thus, every node commits to its secrets
using a publicly verifiable secret sharing (PVSS) scheme [16],
which, naı̈vely, requires sharing O(κn)-sized information per
node with every other node, making the communication com-
plexity at least cubic. Thus, the crux of the challenge is to
route this information through a “leader” such that the (i)
communication complexity is quadratic while (ii) still allowing

nodes to verify the correctness of the shares (iii) even when
the number of faults is t < n/2. We achieve this using
the aggregation property of PVSS [16] employing bilinear
pairings: in particular, unlike non-interactive zero-knowledge
(Σ protocol) proofs, pairing-based aggregate verification can
be an efficient local process.

While the approach of routing the PVSS instance through
the leader has been considered recently [23] to tolerate t < n/3
faults, the higher resilience of t < n/2 forces us to solve the
problem differently. For instance, SPURT [23] can tolerate t
honest nodes from never receiving a share. However, when
n = 2t + 1, this is not-acceptable. In particular, to deal
with Byzantine leaders efficiently, similar to [10], we take a
two-pronged approach: (i) we employ pipelined state machine
replication (SMR) that piggybacks consecutive consensus in-
stances, and (ii) we buffer secrets shared using PVSS for
each node, and reconstruct the last shared secret/beacon for
the Byzantine leader before removing it from subsequent
proposals.

Towards optimistically responsive random beacons. While
using the above discussed cryptographic approach and substi-
tuting it in RandPiper can offer us always quadratic commu-
nication complexity, RandPiper [10] still requires 11∆ latency
in each epoch (a duration coordinated by a distinct leader)
for beacons – even under optimistic conditions, their beacon
protocol cannot progress at the network speed.

The key challenges to obtain responsiveness are (i) efficient
propagation of large messages, and (ii) efficient synchroniza-
tion of all the nodes when some nodes move to the next
epoch. RandPiper [10] uses erasure coding and cryptographic
accumulators along with waiting for Ω(∆) time to check for
possible misbehavior from the current leader to efficiently

propagate large messages. In OptRand, we design a new tech-
nique to efficiently propagate large messages without checking
for misbehavior from the current leader; hence, do not require
Ω(∆) wait to ensure propagation.

In synchronous protocols, synchronization refers to all the
nodes starting the protocol within ∆ of each other. When com-
mitting responsively at speeds independent of ∆, the nodes can
easily go out-of-sync. Typically, such synchronization between
all the nodes is performed by multicasting synchronization
proofs to all other nodes [24], [1]; in the absence of threshold
signatures, these proofs tend to be O(n)-sized, making the
communication cubic again. In OptRand, we instead broadcast
reconstructed secrets opened in a verifiable manner in an epoch
to synchronize all the nodes. The size of the reconstructed
secret is O(κ) bits and thus, the communication complexity
stays quadratic.

In particular, OptRand combines this ability to move re-
sponsively to the next epoch with responsive propagation of
large messages to obtain an optimistically responsive random
beacon. The resulting random beacon protocol can output
beacon values responsively whenever more than 3n/4 nodes
and the leader of the epoch are honest, and otherwise, emits
the next beacon value every 11∆ time.

Reconfiguration mechanism. Additionally, we also present a
reconfiguration mechanism that allows a new node to enter the
system with a latency of t+1 epochs, which is 2t+2 epochs
(explained later) faster than RandPiper [10]. The added benefit
of responsiveness means the t + 1 epochs can be responsive
leading to even faster reconfiguration. A key improvement is
in the synchronization mechanism [24], [1] to allow the new
node to synchronize with all the existing honest nodes; while
prior work required 2t + 2 epochs to perform this, we use a
more efficient synchronization mechanism at the end of every
epoch to synchronize the new node.

Implementation and Evaluation. We implement and eval-
uate the performance of our protocols and compare it with
state-of-the-art synchronous random beacon protocols. In our
evaluation, we observe that our protocol generates beacons at
significantly higher rate than other protocols under optimistic
conditions. Under non-optimistic cases, our protocol offers
comparable performance. Additionally, we also implement and
evaluate our reconfiguration protocol. We find that our system
can seamlessly generate beacons even when removing and
adding new nodes with good performance.

In summary,

✓ We present an efficient random beacon protocol assuming
broadcast channels in Section IV.

✓ We present an optimistically responsive random beacon
protocol with O(κn2) communication in Section V. The
resulting protocol is reconfiguration-friendly and can be
used as an optimistically responsive BFT SMR protocol.

✓ We present our reconfiguration scheme in Section VI.
✓ We evaluate our OptRand protocol in Section VII.

Related Work. Table I compares the related beacon proto-
cols comprehensively. Although several protocols with always
quadratic communication complexity exist [14], [34], [49],
[23], [7], [10], they lack responsiveness or reconfiguration-
friendliness. Most protocols [14], [35], [21], [34], [49], [17],

[7] are not reconfiguration-friendly and assume a threshold
setup that needs to be re-generated every time any node in the
system changes. To the best of our knowledge, our study shows
that responsive and reconfiguration-friendly synchronous ran-
dom beacons with optimal communication complexity and
fault-tolerance were not explored previously and OptRand is
the first protocol to achieve them.

II. RELATED WORK

A. Related Works in the Random Beacon Literature

There has been a long line of work on distributed public
randomness starting from Blum’s two-node coin-tossing proto-
col [11]. Due to its practical application, the problem has been
studied under various system models [55], [26], [17], [49],
[50], [14], [35], [34], [21], [23]. We review the most recent and
closely related works below. Compared to all of these proto-
cols, OptRand has optimal resilience, perfect unpredictability,
incurs O(κn2) communication per beacon output and has a
reusable setup. Moreover, OptRand is optimistically responsive
i.e., it can make progress at the speed of actual network delay
δ during optimistic conditions despite synchrony assumption.

The protocols by Cachin et al. [14], Drand [28] and
Dfinity [35] require DKG [54] to setup threshold keys among
participating nodes. STROBE [7] uses a similar threshold-RSA
based setup to generate beacons. Although these protocols
have optimal resilience, perfect unpredictability, and quadratic
communication complexity per beacon output, these protocols
do not have reusable setup i.e., replacing a single node in
the system involves re-running the setup all over again which
blows up communication.

HERB [21] and GULL [17] use partial homomorphic
ElGamal encryption scheme to generate random numbers.
HERB [21] tolerates only t < n/3 failures despite synchrony
assumption and uses bulletin boards to post random shares. Mt.
Random [17] uses PVSS and threshold ElGamal, protocols
from Cachin et al. [14], VRG and assumes bulletin boards
to realize their random beacons. Instantiating bulletin boards
using Byzantine Consensus primitives trivially incurs O(κn3).
Moreover, both protocols use a variant of threshold setup and
thus lack a reusable setup.

RandShare [55] assumes an asynchronous network and
requires executing n concurrent instances of Byzantine Agree-
ment with a worst case communication of O(κn4). Rand-
Herd [55] improves on RandShare by sampling the system into
smaller groups of size c resulting in a communication com-
plexity of O(κc2 log n) in the common case. RandHound [55]
further improves on RandHerd by building tree-based hier-
archy among the nodes and executes leader-based Byzantine
Consensus among sub-trees. The resulting construction has a
communication of O(κc2 log n) when all leaders are honest.
With a sequence of Byzantine leaders, the communication
worsens to O(κn3).

RandChain [34] has optimal resilience of t < n/2, and
incurs O(κn2) per beacon output. However, they use com-
putationally expensive sequential Proof-of-Work, and VDFs
along with Nakamoto consensus for consistency and has high
computation cost.

RandRunner [49] uses trapdoor Verifiable Delay Functions
- VDFs with strong uniqueness properties that produces unique
values efficiently for the node that has the trapdoor, but takes
time T to produce an output for the nodes that do not have
the trapdoor. This allows the beacon to output bias-resistant
outputs in every round. While RandRunner has qudratic com-
munication per round, it has worst case unpredictability of t+1
rounds.

Most relevant to our protocol are Hydrand [50], Rand-
Piper [10] and SPURT [23]. HydRand [50] tolerates only
t < n/3 faults despite assuming synchrony. While Hydrand
has low computation overhead and a reusable setup due to its
use of PVSS scheme, it incurs O(κn3) communication in the
worst case and an unpredictability of t+1 rounds in the worst
case.

RandPiper [10] improved upon Hydrand by designing a
communication efficient BFT SMR protocol. Using the SMR
protocol, they obtain a random beacon protocol with optimal
resilience, quadratic communication and reusable setup but
with worst case unpredictability of t + 1 rounds. To provide
perfect unpredictability, they propose BRandPiper [10] using
VSS scheme to share n secret in each round. The resulting
construction has O(κfn2) communication where f < t is
the actual number of faults. However, when f = Θ(n), the
communication is O(κn3). Moreover, their construction incur
large latency to generate random beacons.

Recently, Das et al. proposed SPURT [23] in the par-
tial synchronous model with perfect unpredictability, reusable
setup and responsiveness and an always O(κn2) communica-
tion. They use aggregatable PVSS scheme to combine t + 1
PVSS vector in each round and provide perfect unpredictability
with O(κn2) communication.

B. Related Works in the BFT SMR Literature

There has been a long line of work in improving communi-
cation complexity of consensus protocols [37], [29], [1], [57],
[4], [43] and round complexity of consensus protocols [25],
[1], [8], [29], [31], [37], [47]. We review the most recent
and closely related works below. Compared to all of these
protocols, our protocol incurs O(κn2) communication per con-
sensus decision while avoiding the use of threshold signatures.
Moreover, our protocol is optimistically responsive with a
responsive commit latency of 4δ and synchronous commit
latency of 4∆+3δ in common case (or 7∆ in the worst case).
Our protocol follows rotating leader paradigm and can change
leaders in optimistically responsive manner.

With respect to the communication complexity, the state-of-
the-art synchronous BFT SMR protocols [1], [3], [52], [5], [6]
incur quadratic communication per consensus decision while
using threshold signatures. Without threshold signatures, they
incur cubic communication per consensus decision. To the
best of our knowledge, the only optimally resilient protocol to
achieve O(κn2) communication without threshold signature is
BFT SMR protocol of RandPiper [10]. However, their protocol
is not responsive even under optimistic conditions and commits
a decision every 11∆ time.

With respect to optimistic responsiveness, protocols due
to Thunderella [45] and Sync HotStuff [3] are presented in

a back-and-forth slow-path–fast-path paradigm. If started in
the wrong path, these protocol cannot commit responsively.
Recent work such as PiLi [19], OptSync [52] and Hybrid-
BFT [42] achieve simultaneity between responsive and syn-
chronous modes. However, they incur cubic communication
without the use of threshold signatures. Ours is the first work
that achieves simultaneity under synchrony assumption with
O(κn2) communication while avoiding threshold signatures.

OptSync. OptSync [52] presents an optimistically responsive
protocol with optimal 2δ latency during responsive commit and
2∆ synchronous latency. However, their protocol follow stable
leader paradigm and incur synchronous delay of 2∆ while
changing leaders. They also provide a separate protocol that
support changing leaders in optimistically responsive manner
in O(δ) time. Compared to their protocol, our protocol can
change leaders responsively only when the new leader has
highest ranked certificate; otherwise our protocol incurs 2∆
wait.

Hybrid-BFT. Hybrid-BFT [42] presents an optimistically re-
sponsive protocol with both responsive and synchronous com-
mit paths existing simultaneously. They also follow rotating
leader paradigm and has responsive commit latency of 2δ and
synchronous commit latency of 2∆+2δ. Similar to our work,
their protocol can also change leaders in responsive manner
only when the new leader has highest ranked certificate;
otherwise the protocol waits for 2∆ time.

III. SYSTEM MODEL AND DEFINITIONS

We consider a system P := {p1, . . . , pn} consisting of n
nodes with reliable, authenticated point-to-point links, where
up to t < n/2 nodes can be Byzantine faulty and can behave
arbitrarily. We assume static corruption. A node that is not
corrupted is considered to be honest and executes the protocol
as specified.

Communication links between nodes are synchronous. If an
honest node pi sends a message x to another node pj at time
τ , pj receives the message by time τ+δ. The delay parameter
δ is upper bounded by ∆. The upper bound ∆ is known, but δ
is unknown to the system. δ can be regarded as an actual delay
in the real-world network. We assume all honest nodes have
clocks moving at the same speed. They also start executing
the protocol within ∆ time from each other. This can be easily
achieved by using the clock synchronization protocol [1] once
at the beginning of the protocol.

We employ digital signatures and public-key infrastructure
(PKI) to prevent spoofing and validate messages. Message x
sent by a node pi is digitally signed by pi’s private key and
is denoted by ⟨x⟩i. We use H(x) to denote the invocation of
the random oracle hash H on input x.

A. Definitions

Pairings. We assume a Type-III pairing e : G1 × G2 → GT ,
where G1, G2 and GT are cyclic groups of prime order q. Let
Zq be its scalar field. We will use the multiplicative notation

of groups for group operations in this paper. Let g1 ∈ G1 and
g2, g

′
2 ∈ G2 be independent generators1.

State Machine Replication—SMR. We consider a SMR
protocol defined as follows:

Definition III.1 (Byzantine Fault-tolerant SMR [51]). A
Byzantine fault-tolerant SMR protocol commits client requests
as a linearizable log to provide a consistent view of the log
akin to a single non-faulty server, providing the following two
guarantees:

1) Safety. Honest nodes do not commit different values at
the same log position.

2) Liveness. Each client request is eventually committed by
all honest nodes.

Random beacon. We consider the following definition of a
secure random beacon:

Definition III.2 (Secure random beacon [23]). A random bea-
con protocol is secure if for any PPT adversary A corrupting
at most t nodes in an epoch, A has a negligible advantage in
the following security game played against a challenger C.

1. C sends the setup parameters of the system.
2. A compromises up to t nodes and notifies C of these nodes.
3. C creates the remaining public parameters (such as public

keys) and sends them to A.
4. A sends the remaining public parameters (such as public

keys).
5. C and A execute the protocol per epoch:

– C sends messages on behalf of the honest nodes to A
– A decides on the delivery of messages, and sends (or

does not send) its messages.
– The above steps are run interactively until an epoch

ends and an honest node outputs the protocol transcript
transcript.

6. C samples a random bit b ∈ {0, 1} and sends either
the beacon output based on transcript or a random GT

element.
7. A outputs a guess bit b′

The advantage of A is defined as |Prob [b = b′]− 1/2|.

While we define all notations as we introduce them, we
also include a notations summary in the appendix in Table II.

B. Employed Primitives

1. Linear erasure and error correcting codes. We use
standard (n, b) Reed-Solomon (RS) codes [48]. This code
encodes b data symbols into code words of n symbols using the
ENC function and can decode the b elements of code words
to recover the original data using the DEC function defined as
follows:

• ENC. Given inputs m1, . . . ,mb, an encoding function
ENC computes (s1, . . . , sn) = ENC(m1, . . . ,mb), where
(s1, . . . , sn) are code words of length n. A combination of
any b elements of the code word uniquely determines the
input message and the remaining of the code word.

1By independent generators, we mean that the adversary controlling t nodes
does not know a value x ∈ Zq such that e(g1, 1G2

)x = e(1G1
, g2) and

similarly a value y ∈ Zq such that gy2 = g′2.

• DEC. The function DEC computes (m1, . . . ,mb) =
DEC(s1, ..., sn), and is capable of tolerating up to c errors
and d erasures in code words (s1, . . . , sn), if and only if
n− b ≥ 2c+ d.

In our protocol, we instantiate the RS codes with n equal
the number of all nodes, and b equal to ⌊n/4⌋+ 1.

2. Cryptographic accumulators. An accumulator scheme
constructs a value called the accumulator to prove membership
of elements using the Eval function, and produces a witness for
each value in the accumulator using the CreateWit function.
Given the accumulation value and a witness, any node can
verify if a value is indeed in the set using the Verify function.
An example accumulator is Merkle trees, where the root is
the accumulator, and the paths are witnesses to leaves. In this
paper, we employ collision-free bilinear accumulators from
Nguyen [44] which generates constant-sized witness and accu-
mulators. The bilinear accumulators of Nguyen [44] requires q-
SDH assumption. Merkle trees [41] can be used instead, at the
expense of O(log n) multiplicative communication complexity.

Formally, given a parameter κ, and a set D of n values
d1, . . . , dn, an accumulator has the following interface:

• Gen(1κ, n): takes a parameter κ and an accumulation thresh-
old n (an upper bound on the number of values that can be
accumulated securely), returns an accumulator key ak. The
accumulator key ak is part of the trusted setup and therefore
is public to all nodes.
• Eval(ak,D): takes an accumulator key ak and a set D of

values to be accumulated, returns an accumulation value z
for the value set D.
• CreateWit(ak, z, di,D): takes an accumulator key ak, an

accumulation value z for D and a value di, returns ⊥ if
di ∈ D ,and a witness wi if di ∈ D.
• Verify(ak, z, wi, di): takes an accumulator key ak, an accu-

mulation value z for D, a witness wi and a value di, returns
true if wi is the witness for di ∈ D, and false otherwise.

The bilinear accumulator satisfies the following property:

Lemma 1 (Collision-free accumulator [44]). The bilinear
accumulator is collision-free. That is, for any set of size n
and a probabilistic polynomial-time adversaryA, the following
function is negligible in κ:

Pr

 ak ← Gen(1κ, n),
({d1, . . . , dn}, d′, w′)←

A(1κ, n, ak),
z ← Eval(ak, {d1, . . . , dn})

∣∣∣∣∣∣∣ (d′ ̸∈ {d1, ..., dn})∧
(Verify(ak, z, w′, d′) = 1)


3. Discrete log proof of knowledge. Let g, u ∈ G be public
values with Zq as the scalar field. A prover P who knows
the value x ∈ Zq such that u = gx, and wants to prove this
non-interactively in zero-knowledge runs the algorithm π ←
NIZKPK(x, g, u) to generate a non-interactive zero-knowledge
(NIZK) proof π. The proof π can be verified using {0, 1} ←
Verify(π, g, u) by anyone.

We will also use the same notation π ←
NIZKPK(x, g1, u1, g2, u2) to prove knowledge of s ∈ Zq

for public values g1, u1 ∈ G1 and g2, u2 ∈ G2 and
{0, 1} ← Verify(π, g1, u1, g2, u2). The same proof technique

from [20] is used to prove discrete log equality of logarithms,
i.e., prove that logg1 u1 = logg2 u2.

4. SCRAPE PVSS [16]. OptRand relies on a modified
version of the pairing based PVSS scheme introduced in
SCRAPE ([16, Section 4]). We refer interested readers to
the full version [9, Appendix] for a summary of the original
SCRAPE pairing-based PVSS scheme.

Setup: Let e : G1×G2 → GT be an efficient pairing group with
independent generators1 g1 ∈ G1, g2, g

′
2 ∈ G2 which can be

derived assuming a common reference string assumption [40].
Every node pi ∈ P has a secret key ski ← Zq and public
keys pki = gski

1 . We denote the public keys of all the nodes
as follows pk := {pk1, pk2, . . . , pkn}. The setup for keys is
realized using a PKI assumption.

The protocol consists of the following algorithms:

Sharing phase: Here, the dealer L ∈ P chooses a random
value s ∈ Zq and creates a polynomial p(x) ∈ Zq[x] of degree
t with p(0) = s. Without loss of generality, we employ indices
from 1, . . . , n such that the shares si for node pi is p(i).

Commitment: In SCRAPE, the dealer commits to poly-
nomial p(x) by producing a commitment vector: v =
{gs12 , gs22 , . . . , gsn2 }. SCRAPE [16, Section 2] observes that if
C = {p(1), . . . , p(n)} where p(x) is a degree t polynomial,
then there exists a dual code C⊥ = {µ1f(1), . . . , µnf(n)},
where µi =

∏n
i=1,i̸=j

1
i−j and f(x) is a random polynomial

of degree up to n− t, such that their dot-product is zero.

This check easily ensures that the commitment vector v is
also a commitment to a t degree polynomial by checking the
following:

n∏
i=1

v
c⊥i
i = 1G2 , {c⊥1 , c⊥2 , . . . , c⊥n } ∈ C⊥ (1)

Encryption: Along with the commitments, the dealer creates
encryptions c = {pks11 , pks22 , . . . , pksnn } for all the nodes.
Nodes check the correctness of the encryptions by checking
e(pki, vi) = e(ci, g2) both of which are e(g1, g2)

skisi .

Decryption: Every node computes di ← c
sk−1

i
i = gsi1 . Nodes

verify decryptions dj from others by checking e(dj , g2) =
e(g1, vj) both of which are e(g1, g2)

sj .

Reconstruction: In this phase, the nodes reconstruct B ← gs1 =

g
p(0)
1 and compute S ← e(gs1, g

′
2) as the secret S. The IND1-

secrecy definition requires that an adversary is not able to tell
whether the sharing is for the secret S even if S was provided
to the adversary. Thus, it is important the secret is defined as
S ∈ GT and not gs2, as the latter directly reveals whether the
sharing is for S.

IV. WARM-UP: RANDOM BEACONS USING A BROADCAST
CHANNEL

In this section, we will describe a warm-up random bea-
con protocol using a pairing-based publicly verifiable secret-
sharing scheme in the broadcast-channel model with the fol-
lowing security properties:

Definition IV.1 (Warm up beacon). Let L ∈ P be a dealer.
The warm-up beacon guarantees the following:

1) Weak agreement. Let B be the space of all beacon values.
Then all honest nodes output the same value in B ∪ ⊥.

2) Value validity. If an honest node outputs v ̸= ⊥, then v is
uniformly random in B.

3) Validity. If L is honest, then the value v output by all the
honest nodes satisfies v ̸= ⊥.

In Fig. 1 we describe our broadcast channel based protocol
satisfying Definition IV.1. Weak agreement allows honest
nodes to output ⊥ if the leader is Byzantine. Value validity
guarantees that if an honest node outputs v ̸= ⊥, then it must
uniformly random even if the leader is Byzantine. The scheme
in Fig. 1, which is a combination of techniques from Gurkan
et al. [32], Das et al. [23], and SCRAPE [16], allows us to
realize OptRand in Section IV.

We consider Fig. 1 to be a warm-up as it misses two
factors: first, the honest nodes can output ⊥ when L is
Byzantine; secondly, we also need to implement the broadcast
channel using a responsive SMR with the constraint that the
communication complexity cannot exceed O(κn2) in an epoch.
We will overcome these limitations using rotating leaders,
buffering of shares, and a novel optimistically responsive SMR
with the desired properties in the next section.

A. Our Protocol

Our protocol (Fig. 1) satisfies Definition IV.1 and consists
of a designated leader L ∈ P , who acts as the coordinator.
When the leader is honest, all the honest nodes obtain a
secret share, which when used for reconstruction outputs a
unique and unpredictable element S ∈ GT . When the leader
is Byzantine, either all the honest nodes commit shares for
an element gs1 from which we build a random unpredictable
element S ∈ GT , or all the honest nodes abort, i.e., output ⊥.

Decomposition proofs. When using a leader as the coordi-
nator, if we use SCRAPE naively, we need a mechanism to
prevent the possibility that a leader can simply cancel the
contributions of honest nodes by proposing a PVSS vector
where every element is raised to −1. We mitigate this by
adding a simple cryptographic proof of knowledge of the
shared secret π̃ called decomposition proof. Here, a node
proves that it knows the secret (or p(0)) using the discrete
log proof of knowledge [20] algorithm NIZKPK discussed in
Section III-B. This proves to everyone non-interactively that
the proposer knows the secret being shared without revealing
it.

Our protocol forces the leader to propose the combined
commitments and encryptions and produce at least t+1 proofs
of knowledge π̃ values. These proofs are O(1) sized making
the whole proposal O(n) sized. Since n− t > t, we know that
there must always be t + 1 valid shares. So an honest leader
will always have sufficient proofs to propose. Therefore, if a
leader does not propose, it must be Byzantine. Since any valid
proposal from a leader must include t+1 proofs of knowledge,
at least one of them is a sharing for a random number, we can
intuitively guarantee Value validity (Property 2).

Sharing phase. The sharing phase consists of three steps:
(i) Commitment, (ii) Aggregation, and (iii) Commit steps. We
detail the steps below.

Let L ∈ P be the leader. Every node pi ∈ P does the following:
Sharing Phase

Commitment
1. Generate a random degree t polynomial pi(x) and compute the

shares for every j ∈ [n] as follows:

sj ← pi(j), vj ← g
sj
2 , cj ← pksi

i

vi ← {v1, . . . , vn}, ci ← {c1, . . . , cn}
(2)

2. Compute a signed knowledge proof π̃i using

π̃i ← ⟨gpi(0)2 ,NIZKPK(pi(0), g2, g
pi(0)
2)⟩i (3)

3. Send (vi, ci, π̃i) to the leader L.
Aggregation

The leader does the following:
1. Collect t+ 1 Sj := (vj , cj , π̃j) from pj satisfying the

following:

a)
n∏

i=1

v
c⊥i
i = 1G2 , {c⊥1 , c⊥2 , . . . , c⊥n } ∈ C⊥

b) e(pki, g2) = e(ci, vi)
c) Verify(yb, g2, ya) with π̃j := (ya, yb)
d) ya = Interpolate(vj) with π̃i := (ya, yb)
e) Verify signed π̃j with verification key of node pj

2. Aggregate valid shares as follows:

v← v1 + · · ·+ vt+1,

c← c1 + · · ·+ ct+1,

π ← {π1, . . . , πt+1}
(4)

3. Post (v, c,π) on the broadcast channel.
Commit

1) For the aggregated sharing (v, c,π), check

a)
n∏

i=1

v
c⊥i
i = 1G2 , {c⊥1 , c⊥2 , . . . , c⊥n } ∈ C⊥

b) e(pki, vi) = e(ci, g2)
c) Verify(ybi, g2, yai) with π̃i := (yai, ybi)∀π̃i ∈ π
d) ∀π̃i := (yai, ybi) ∈ π,

∏
i yai = Interpolate(v)

e) Verify signed π̃i ∈ π with verification key of node pi
2) If a valid (v, c,π) is posted in time, commit (v, c).

Otherwise, commit ⊥.

Reconstruction Phase
1. Send di ← c

sk−1
i

i to all the nodes.
2. Collect t+1 shares dj which satisfy e(dj , g2) = e(g1, vi) from

node pj ∈ P in the set S.
3. Using Lagrange interpolation compute B ← Interpolate(S).
4. Compute the beacon value S ← e(S, g′2).

Fig. 1: A warm up beacon protocol using a modified pairing bases
SCRAPE PVSS [16] and broadcast-channels.

1. Commitment. In this step, each node pi computes the
publicly-verifiable shares for every nodes using Step 1 in
the sharing phase in Fig. 1. The node also signs and sends
the decomposition proof π̃i. Finally, all the nodes send their
commitments and encryptions to the leader L.

2. Aggregation. The leader receives valid t+ 1 PVSS vectors
from nodes in set I . In this step, the leader combines it
to produce the final PVSS vector for a random polynomial
P . This consists of the combined commitments, combined
encryption and aggregated proofs (Eq. (4)) for j ∈ I and for
all the nodes pi ∈ P .

After combining the PVSS vectors, the leader broadcasts
(v, c, π̃). Note that this post has a size of O(n).

3. Commit. In the commit step, all the nodes observe the
sharing (or its lack thereof within sufficient time) on the
broadcast channel and decide to commit, or to abort by
checking (i) the v is a valid (n, t) sharing, (ii) the shares for
all the nodes are correct, (iii) all the constituent decomposition
proofs are valid, and finally (iv) the interpolated values for v
and the product of all the first elements in π are the same. If
the leader was honest, then all the honest nodes commit. If the
leader was Byzantine, the sharing will still include at least one
honest node’s contribution and if committed by all the honest
nodes, is secure.

Reconstruction phase. The nodes decrypt their shares by
cancelling the secret key ski from the exponent in ci. The
decrypted share di is then sent to all the nodes who can
non-interactively verify the validity. On collecting t+ 1 valid
decryption shares, the nodes reconstruct B ← gs1 using to
obtain the final secret S ← e(B, g′2).

Verifiable beacon. The pairing-based PVSS scheme allows
for any node to verify the correctness of the reconstructed
unpredictable secret. In particular, on reconstructing B ← gs1,
any node can confirm that this is the correct beacon value
against a sharing, by checking e(B, g2) = e(g1, g

s
2), where

gs2 can be generated using Lagrange interpolation on v. This
property is critical to obtain optimistic responsiveness in the
next section.

Security analysis. We defer the security analysis to Ap-
pendix A and Appendix A.

Note that the protocol described in Fig. 1, can result
in nodes aborting the beacon generation when the leader is
Byzantine. This can make the protocol violate guaranteed
output delivery. In the next section, we overcome the problem
while maintaining quadratic communication complexity using
pipelined SMRs [57], [3] and pre-processing.

V. OPTIMISTICALLY RESPONSIVE RANDOM BEACON

In this section, we present OptRand, an optimistically
responsive random beacon protocol. Our protocol is a novel
combination of a state machine replication (SMR) protocol
and a random beacon protocol to achieve an optimistically
responsive random beacon. Our protocol uses the generated
random beacons to achieve responsiveness. In particular, we
use aggregated secrets to synchronize between honest nodes
and achieve responsiveness.

The underlying SMR protocol includes an optimistic path
that can make progress at the network speed i.e., in O(δ) time
during optimistic condition when the leader and > 3n/4 nodes
behave honestly. A quorum of ⌊3n/4⌋+ 1 nodes are required
for an optimistically responsive protocol [45]. Under standard
conditions, i.e., when only > n/2 nodes behave honestly,
the SMR protocol makes progress in Ω(∆) time. We follow
the optimistic responsive paradigm of OptSync [52], i.e., our
protocol does not require explicit back-and-forth switching
between slow synchronous mode and fast optimistic mode
employed in [45], [3]. Similar to the optimistically responsive
view-change protocol in OptSync, our protocol changes leaders
in an optimistically responsive manner.

Epochs. Our protocol progresses through a series of numbered
epochs with epoch r coordinated by a distinct leader Lr

rotated in a round-robin manner every epoch. During optimistic
conditions, the system progresses through epochs responsively,
i.e., in O(δ) time; otherwise each epoch lasts for O(∆) time.

Blocks and block format. We represent a proposal in an epoch
in the form of a block. Each block references its predecessor
to form a blockchain with the exception of the genesis block
which has no predecessor. We call a block’s position in the
blockchain as its height. A block Bh at height h has the
format, Bh := (bh, H(Bh−1)) where bh denotes the proposed
payload at height h and H(Bh−1) is the hash digest of Bh−1.
The predecessor for the genesis block is ⊥. In our protocol,
the payload bh is set to the aggregated PVSS commitment
and encryption. A block Bh is said to be valid if (1) its
predecessor block is valid, or if h = 1, predecessor is ⊥,
and (2) the payload in the block is a valid PVSS vector, i.e.,
the verification algorithm outputs a 1 (discussed in Commit
step in Fig. 1). A block Bh extends a block Bl (h ≥ l) if Bl

is an ancestor of Bh.

Certified blocks, and locked blocks. A block certificate
represents a set of signatures on a block in an epoch by a
quorum of nodes. We use two types of signed vote messages:
a responsive vote resp-vote and a synchronous vote sync-vote.
Accordingly, we consider two types of block certificates. A
responsive certificate C3/4r (Bh) for a block Bh consists of
⌊3n/4⌋ + 1 distinct resp-vote on Bh in epoch r. Similarly,
a synchronous certificate C1/2r (Bh) consists of t + 1 distinct
sync-vote on Bh in epoch r. Whenever the distinction is not
important, we will represent the certificates by Cr(Bh).

Certified blocks are ranked by epochs, i.e., blocks certified
in a higher epoch have a higher rank. We do not rank between
responsive and synchronous certificate from the same epoch.
During the protocol execution, each node keeps track of all
certified blocks and keeps updating the highest ranked block
certificate to its knowledge. Nodes will lock on highest ranked
block certificate and do not vote for blocks that do not extend
highest ranked block certificates to ensure safety of a commit.

Equivocation. Two or more messages of the same type but
with different payload sent by an epoch leader are considered
an equivocation. In this protocol, the leader of an epoch r sends
propose, resp-cert, and sync-cert messages (explained later)
to all other nodes. In order to facilitate efficient equivocation
checks, the leader sends the payload along with signed hash of
the payload. When an equivocation is detected, broadcasting
the signed hash suffices to prove equivocation by Lr.

Background: Dissecting BFT SMR protocol of Rand-
Piper [10]. A key component of RandPiper is a communication
efficient BFT SMR protocol that incurs O(κn2) communi-
cation per decision to decide on O(n)-sized input without
using threshold signatures. The efficient communication was
achieved by making use of erasure coding schemes, crypto-
graphic accumulators and broadcast of equivocating hashes
(if any). In their protocol, they use (n, t + 1) RS codes to
encode large messages. When a node receives a valid proposal
from the leader, they use RS codes to encode the proposal
into n code words (s1, . . . , sn) and compute corresponding
cryptographic witnesses (w1, . . . , wn), and send each code
word and witness pair (si, wi) to node pi ∀pi ∈ P . A
node votes for the proposed block only if it does not detect
any equivocation for 2∆ time. The 2∆ wait before voting

ensures (i) no honest node received an equivocating proposal
and conflicting (s′i, w

′
i) before receiving (si, wi) (ii) all honest

nodes receive at least t+1 code words for the proposed block
sufficient to reconstruct the proposal.

To ensure safety of a committed block, in general, SMR
protocols ensure that all honest nodes receive and lock a
certificate for the proposed block. A certificate consisting of
t+ 1 signatures for the proposed block is linear in size in the
absence of threshold signatures. Thus, an all-to-all broadcast of
the certificate trivially incurs cubic communication. The BFT
SMR protocol of RandPiper solves the issue using following
technique. First, nodes send their vote only to the leader.
The leader is expected to collect t + 1 votes, form a single
certificate and send it to all nodes. Second, in order to ensure
the certificate is propagated among all honest nodes, instead
of broadcasting it to all nodes, they use RS codes to encode
the certificate, send the code word and witnesses and wait for
2∆ to check for an equivocation before making a commit.

Achieving optimistic responsiveness. The techniques em-
ployed by the BFT SMR protocol enables communication effi-
cient consensus on O(n)-sized input. However, their technique
requires waiting for Ω(∆) time to detect equivocation before
making a decision.

In this paper, we propose a new technique that allows
us to responsively make decision and change leaders without
relying on equivocation detection. We modify RandPiper in the
following manner: First, we use (n, ⌊n/4⌋ + 1) RS codes to
encode large messages (in the Deliver primitive in Fig. 2). This
allows decoding with ⌊n/4⌋+1 code words at the expense of
doubled code word size. Second, a node sends a responsive
vote to the leader as soon as it receives a valid block proposal.
The node also sends the RS coded code words and witnesses to
all other nodes. The leader collects ⌊3n/4⌋+1 votes to form a
responsive certificate and sends the responsive certificate to all
nodes. The nodes broadcast an ack message in response to the
responsive certificate and commit on receiving > 3n/4 distinct
ack messages. In addition, they also send RS coded code words
and witnesses for the responsive certificate. The existence
of > 3n/4 ack messages ensures that all honest nodes can
decode the proposed blocks and the responsive certificate.
In particular, at least ⌊n/4⌋ + 1 honest nodes must have
received the block proposal and the responsive certificate for
the committed block and they have forwarded their code words
to all nodes. Thus, all honest node must receive ⌊n/4⌋ + 1
code words sufficient to decode the proposed blocks and the
responsive certificate.

Responsively changing epochs. The above technique allows
an honest node to responsively commit a decision. In order
to responsively change epochs, a synchronization primitive
is required to signal all honest nodes to move to a higher
epoch. Prior works [3], [52], [5] perform an all-to-all broadcast
of certificates to synchronize between epochs which incurs
cubic communication without threshold signatures. In this
protocol, we broadcast aggregated secret opened in an epoch
to synchronize all the nodes. The size of aggregated secret
is O(1) bits and all-to-all broadcast of O(1)-sized aggregated
secret does not blow up communication.

In cases when optimistic conditions are not met, the
underlying consensus mechanism works similar to the BFT

Deliver(mtype,m, zr, r):

1) Partition input m into ⌊n/4⌋ + 1 data symbols. Encode the
⌊n/4⌋+1 data symbols into n code words (s1, . . . , sn) using the
ENC function. Compute witness wj ∀sj ∈ (s1, . . . , sn) using
CreateWit function. Send ⟨codeword,mtype, sj , wj , zr, r⟩pi to
node j ∀j ∈ [n].

2) If jth node receives the first valid code word
⟨codeword,mtype, sj , wj , zr, r⟩ for the accumulator zr ,
forward the code word to all the nodes.

3) Upon receiving ⌊n/4⌋ + 1 valid code words for a common
accumulator zr , decode m using the DEC function.

Fig. 2: Deliver function

SMR in RandPiper except we use (n, ⌊n/4⌋+ 1) RS codes.

A. Protocol Details

Deliver function. We first present a Deliver function (re-
fer Fig. 2) that is used by an honest node to propagate long
messages received from the epoch leader. The Deliver function
enables efficient broadcast of long messages using erasure
coding techniques and cryptographic accumulators. The input
parameters to the function are a keyword mtype, long message
m, accumulation value zr corresponding to message m and
epoch r in which Deliver function is invoked. The input
keyword mtype corresponds to message type containing long
message m sent by leader Lr. In order to facilitate efficient
leader equivocation, the input keyword mtype, hash of long
message m, accumulation value zr, and epoch r are signed by
leader Lr.

This function is similar to that in RandPiper [10] except
that we use (n, ⌊n/4⌋ + 1) RS codes instead of (n, t + 1)
RS codes used in [10]. As a result, the size of code word is
doubled and the communication is increased by a factor of 2.
However, this does not linearly blow up the communication
complexity and the communication complexity still remains
O(κn2).

Our beacon protocol is described in Fig. 3. Nodes maintain
a chain of blocks to add blocks proposed by leaders, a queue
Q() to store a recently committed PVSS vector proposed by an
epoch leader and set Pr to keep track of removed nodes. The
queue Q() holds one PVSS vector per node. Before the start of
the beacon protocol execution, a setup phase is executed where
we establish PVSS parameters (namely g1 ∈ G1, g2, h2 ∈ G2),
and public keys pki for every node pi ∈ P . We also buffer one
secret share for aggregated PVSS tuples for every node pi, i.e.,
fill Q(pi) for pi ∈ P . This ensure the beacons are generated
from the first epoch. The nodes in P\Pr are selected as leaders
in a round-robin manner.

After the setup phase, the nodes execute following steps in
each epoch r.

Epoch advancement. Each node keeps track of epoch duration
epoch-timerr for epoch r. A node pi enters epoch r (i) when its
epoch-timerr−1 expires, or (ii) when it receives a round r− 1
aggregated secret Rr−1 and a round r − 1 block certificate
Cr−1(Bl). Upon entering epoch r, node pi generates PVSS
vector (vi, ci, π̃K,i) (defined in Commitment phase of Fig. 1)
and sends the PVSS tuple and its highest ranked certificate to
the leader Lr. In addition, it aborts all timers below epoch r
and sets epoch-timerr to 11∆ and starts counting down.

Propose. Upon entering epoch r, if Leader Lr has Cr−1(Bl),
it proposes as soon as it receives t + 1 PVSS tuples; oth-
erwise, it waits for 2∆ time to ensure it can receive the
highest ranked certificate from all honest nodes. Upon re-
ceiving t + 1 PVSS tuples from I ⊂ [n], it aggregates
the PVSS tuples to obtain aggregated PVSS committments
v, aggregated encrypted secret shares c and NIZK proofs
{π̃K,i}i∈I denoted as π̃K . The leader Lr constructs a block
Bh by extending on the highest ranked certificate Cr′(Bl)
known to Lr with payload bh set to (v, c, π̃K) and sends
proposal pr := ⟨propose, Bh, Cr′(Bl), zpa, r⟩Lr

to node pj ,
∀pj ∈ P . Here, zpa is the accumulation value for the
pair (Bh, Cr′(Bl)). While conceptually, the leader is send-
ing ⟨propose, Bh, Cr′(Bl), zpa, r⟩Lr , to facilitate equivocation
checks it instead sends ⟨propose, H(Bh, Cr′(Bl)), zpa, r⟩Lr

with (Bh, Cr′(Bl)) sent separately. The size of the signed
message is O(1) and hence can be broadcast during equivo-
cation or while delivering proposal pr without incurring cubic
communication overhead.

Vote. If node pi receives a proposal pr :=
⟨propose, Bh, Cr′(Bl), zpa, r⟩Lr

it first checks PVSS
verification for (v, c, π̃K) is valid (refer Commit step
in Fig. 1). We call such a proposal valid. If node pi
receives a valid proposal and the proposed block Bh

extends the highest ranked certificate known to the
node such that its epoch-timerr ≥ 7∆, then it invokes
Deliver(propose, pr, zpa, r) and sends a responsive vote
⟨resp-vote, H(Bh), r⟩pi

immediately to Lr. In addition,
the node sets its vote-timerr to 2∆ and starts counting
down. When vote-timerr reaches 0 and detects no
epoch r equivocation, the node sends a synchronous vote
⟨sync-vote, H(Bh), r⟩pi

to Lr. If block Bh does not extend
the highest ranked certificate known to the node or node pi
does not receive a proposal pr when its epoch-timerr < 7∆,
the node simply ignores the proposal and does not vote for
Bh.

Resp cert. When the leader Lr receives ⌊3n/4⌋ +
1 distinct resp-vote messages for the proposed block
Bh in epoch r, denoted by C3/4r (Bh), Lr broadcasts
⟨resp-cert, C3/4r (Bh), zra, r⟩Lr to all nodes where zra is the
accumulation value of C3/4r (Bh). Similar to the proposal, the
hash of the certificate C3/4r (Bh) is signed to allow for efficient
equivocation checks. Since our protocol requires the certificate
to be delivered to all nodes in case of a commit, we require
two different certificates for the same block shared by a leader
to be considered an equivocation.

Sync cert. When leader Lr receives t + 1 distinct sync-vote
messages for the proposed block Bh in epoch r, denoted by
C1/2r (Bh), Lr broadcasts ⟨sync-cert, C1/2r (Bh), zsa, r⟩Lr to all
nodes where zsa is the accumulation value of C1/2r (Bh). Again,
the hash of the certificate C1/2r (Bh) is signed to allow for
efficient equivocation checks.

Ack. When a node pi receives a responsive certificate
rc := ⟨resp-cert, C3/4r (Bh), zra, r⟩Lr

while in epoch r, it in-
vokes Deliver(resp-cert, rc, zra, r) to deliver rc and broadcasts
⟨ack, H(Bh), zra, r⟩pi to all nodes. If epoch-timerr ≤ 3∆,
node pi sets commit-timerr to 2∆ and starts counting down.

Commit. The protocol includes two commit rules that commits

Let r be the current epoch, Lr be the leader of epoch r and Pr be the set of removed nodes. For each epoch r, node pi ∈ P
performs following operations:

1) Epoch advancement. Node pi advances to epoch r using following rules:
a) When epoch-timerr−1 reaches 0, enter epoch r.
b) On receiving aggregated secret Rr−1, broadcast Rr−1. Wait until Cr−1(Bl) is received and enter epoch r.
Upon entering epoch r, send PVSS tuple (vi, ci, π̃K,i) and highest ranked certificate Cr′(Bl) to Lr. Set epoch-timerr to
11∆ and start counting down.

2) Propose. Wait for t+ 1 PVSS tuples and either Cr−1(Bl) or 2∆ time after entering epoch r. Upon receiving t+ 1 valid
PVSS tuples, Lr aggregates them to obtain (v, c, π̃K) (refer Aggregation Step in Fig. 1). Set bh := (v, c, π̃K) and send
⟨propose, Bh, Cr′(Bl), zpa, r⟩Lr to node pj ∀pj ∈ P where Bh extends Bl and Cr′(Bl) is the highest ranked certificate
known to Lr.

3) Vote. If epoch-timerr ≥ 7∆ and node pi receives the first proposal pr := ⟨propose, Bh, Cr′(Bl), zpa, r⟩Lr
, check the

validity of the aggregated PVSS tuple (refer Commit Step in Fig. 1). If valid and Bh extends a highest ranked certificate,
invoke Deliver(propose, pr, zpa, r) and send ⟨resp-vote, H(Bh), r⟩pi

to Lr. Set vote-timerr to 2∆ and start counting down.
When vote-timerr reaches 0, send ⟨sync-vote, H(Bh), r⟩pi

to Lr.
4) Resp cert. On receiving ⌊3n/4⌋+ 1 resp-vote for Bh, Lr broadcasts ⟨resp-cert, C3/4r (Bh), zra, r⟩Lr

.
5) Sync cert. On receiving t+ 1 sync-vote for Bh, Lr broadcasts ⟨sync-cert, C1/2r (Bh), zsa, r⟩Lr

.
6) Ack. Upon receiving the first responsive certificate rc := ⟨resp-cert, C3/4r (Bh), zra, r⟩Lr

, invoke
Deliver(resp-cert, rc, zra, r) and broadcast ⟨ack, H(Bh), zra, r⟩pi

.
7) Commit. Node pi commits using one of the following rules:

a) Responsive. If epoch-timerr ≥ 2∆ and node pi receives ⟨ack, H(Bh), zra, r⟩ from ⌊3n/4⌋ + 1 distinct nodes and
detects no equivocation, commit Bh and all its ancestors.

b) Synchronous. If epoch-timerr ≥ 3∆ and node pi receives the first certificate (either responsive or syn-
chronous), set commit-timerr to 2∆ and start counting down. If the received certificate is synchronous i.e.,
sc := ⟨sync-cert, C1/2r (Bh), zsa, r⟩Lr , invoke Deliver(sync-cert, sc, zsa, r). When commit-timerr reaches 0, if no epoch-
r equivocation has been detected, commit Bh and all its ancestors.

8) Update, reconstruct and output. When node pi commits or when epoch r ends, perform following operations:
a) Commit block Bℓ proposed in epoch r − t if the highest ranked chain extends Bℓ (if Bℓ has not been committed).
b) If block Bℓ proposed by Lr−t has been committed by epoch r, update Q(Lr−t) with (v, c, π̃K) shared in bℓ. Otherwise,

remove Lr−t from future proposals, i.e., Pr ← Pr ∪ {Lr−t}.
c) Obtain (v, c, π̃K) corresponding to block committed in Dequeue(Q(Lr)). Broadcast decrypted share di. On receiving

share dj from another node pj , ensure that ShVrfy(pkj , cj , dj) = 1. On receiving t + 1 valid shares in S, reconstruct
B and Rr ← Recon(S). Broadcast (B,Rr). On receiving (B,Rr) from others, accept Rr if Rr = e(B, h2) and
e(B, g2) = e(g1, g

s
2).

d) Compute and output Or ← H(Rr).
9) (Non-blocking) Equivocation. Broadcast equivocating hashes signed by Lr and stop performing epoch r operations,

except Step 8. If epoch-timerr > 2∆, reset epoch-timerr to 2∆ and start counting down.

Fig. 3: Optimistically responsive random beacon protocol with O(κn2) bits communication per epoch.

proposals made in the same epoch and an additional commit
rule that commits proposals made t+1 epochs earlier. A replica
commits using the rule that is triggered first. In responsive
commit, a replica commits block Bh and all its ancestors im-
mediately when it receives at least ⌊3n/4⌋+1 ack messages for
a responsive certificate C3/4r (Bh) with a common accumulation
value zra such that its epoch-timerr is large enough (2∆). Note
that a responsive commit happens at the actual speed of the
network (δ).

In synchronous commit, when node pi receives a
valid epoch r certificate when its epoch-timerr is large
enough (3∆), it sets commit-timerr to 2∆ and starts
counting down. If the received certificate is synchronous
i.e., sc := ⟨sync-cert, C1/2r (Bh), zsa, r⟩Lr

, it invokes
Deliver(sync-cert, sc, zsa, r) and sets commit-timerr to 2∆.
When commit-timerr reaches 0, if no epoch-r equivocation
has been detected, node pi commits Bh and all its ancestors.
Invoking Deliver() on the sync-cert ensures that all honest
nodes have received Cr(Bh) before quitting epoch r.

In addition to above commit rules, we include an additional
commit rule. We consider a block Bℓ proposed in epoch r −
t proposed by Lr−t committed if the highest ranked chain
at the end of epoch r extends Bℓ even though none of the
blocks that extends Bℓ proposed after epoch r − t have been
committed using either of the above commit rules. This commit
rule helps in committing safe blocks possibly uncommitted due
to responsively moving to higher epoch.

We note that if an honest node commits a block Bh in
epoch r using one of the commit rules, it is not necessary that
all honest nodes commit Bh in epoch r using the same rule, or
commit Bh at all. Depending on how Byzantine nodes behave,
only some honest nodes may receive > 3n/4 ack messages
and commit using responsive commit rule while some other
honest nodes may commit using synchronous commit rule. It
is also possible that only some honest node commits Bh while
no commit rules are triggered for rest of the honest nodes. For
example, an honest node commits a block Bh responsively
but all other nodes detect equivocation in the epoch. In such
a case, we ensure that all honest nodes receive and lock on a

certificate for Bh, i.e., Cr(Bh), to ensure safety of a commit.
Eventually after t + 1 epochs, all honest nodes will commit
Bh using our third commit rule.

Equivocation. At any time in epoch r, if a node pi detects
an equivocation, it broadcasts equivocating hashes signed by
leader Lr. Node pi also stops performing epoch r operations
except update, reconstruct and output steps described below. In
addition, if epoch-timerr > 2∆, node pi resets epoch-timerr
to 2∆ to assist in terminating a faulty epoch faster.

Update. The update step ensures that the leaders failing to
commit a block in t + 1 epochs are removed the active set
of nodes, i.e., if the leader Lr−t of epoch r − t fails to add
a new block by the end of epoch r, Lr−t is removed from
future proposals, i.e., Pr ← Pr∪{Lr−t}. On the other hand, if
block Bℓ proposed by Lr−t−1 has been committed by epoch r,
update Q(Lr−t) with (v, c, π̃K) shared in bℓ. This step ensures
that our protocol produces a random beacon in each epoch.

Reconstruct and output. Node pi starts to reconstruct ag-
gregated secret Rr when node pi commits or when its
epoch-timerr expires. It obtains (v, c, π̃K) corresponding to
block committed in Dequeue(Q(Lr)) and decrypts the share
by computing di = c

sk−1
i

i . It then broadcasts di to all other
nodes. On receiving share dj from another node pj , it verifies it
using ShVrfy(g1, g2, ej , dj). On receiving a set S of t+1 valid
shares, it reconstructs Rr ← Recon(g1, g2,S). In addition,
it also broadcasts the aggregated secret Rr. Any node can
verify the correctness of beacon value without reconstruction
by checking e(g1, Rr) = e(gs1, g2). An epoch r beacon output
Or is the hash of the aggregated secret Rr, i.e., Or ← H(Rr).

Observe that the size of aggregated secret Rr is O(1) and
all-to-all broadcast of the aggregated secret does not blow up
communication. Moreover, the aggregated secret Rr cannot be
reconstructed without an honest node sending its secret share.
Thus, we use the aggregated secret Rr to synchronize all other
nodes and responsively change epochs.

Latency and communication complexity. When the epoch
leader is Byzantine, not all honest nodes may be locked on
a certificate for a common block at the end of the epoch.
When the epoch leader is honest, at least one honest node
commits block Bh proposed by an honest epoch leader and all
honest nodes lock on a certificate for common block Bh and do
not act on block proposals that do not extend Bh afterwards.
Thus, block Bh and all its ancestors are finalized in an honest
epoch. Due to round-robin leader selection, there will be at
least one honest leader every t+1 epochs and all honest nodes
finalize on common blocks up to the honest epoch. Thus, our
protocol has a commit latency of t + 1 epochs. Our protocol
has communication cost of O((κ+ w)n2) bits per epoch.

Why is it safe to commit a block Bℓ proposed t + 1
epochs earlier if the highest ranked chain extends Bℓ?
The round robin leader selection policy ensures that there will
be at least one honest leader in last t + 1 epochs. An honest
epoch leader Lr ensures it extends the highest ranked block
certificate from all honest nodes. Our protocol ensures that the
block Bh proposed by the leader Lr is committed by at least
one honest node in epoch r and all honest nodes receive and
lock on a certificate for block Bh. Thus, no honest node acts
on the future block proposals that do not extend Bh and the

highest ranked chain after epoch r always extends Bh, and all
its ancestors. This concludes that if block Bℓ proposed t + 1
epochs earlier is extended by the highest ranked chain, there
will never be an equivocating chain that does not extend Bℓ

and it is safe commit a block Bℓ.

Optimistically responsive BFT SMR for free. While our
protocol designs an optimistically responsive random beacon
protocol, the same protocol can be used as optimistically
responsive rotating leader BFT SMR protocol by simply
adding additional payload that meets application level validity
conditions to bh. Rotating leader protocols provide better
fairness and censorship resistance compared to stable leader
protocols [3], [52]. Compared to prior optimistically responsive
schemes, our BFT SMR protocol has a communication cost of
O(κn2) without using threshold signatures.

An example execution is presented in Fig. 4. Due to space
constrains, we present detailed security analysis in the full
version of the paper [9].

VI. RECONFIGURATION

In this section, we present a reconfiguration scheme for
our beacon protocol to restore the resilience of the protocol
after some Byzantine nodes have been removed. We adapt the
reconfiguration scheme of RandPiper [10] and make efficiency
improvements in terms of the number of epochs before a new
joining node becomes an active participant in the system. We
make following modifications to obtain this efficiency.

A reconfiguration scheme for a synchronous protocol re-
quires new joining nodes to synchronize with all other nodes
such that the clocks of all honest nodes differ by at most
∆ time. In RandPiper, they designed a clock synchronization
primitive to sychronize the joining nodes. In the clock synchro-
nization primitive, they first secret shared t + 1 secrets from
distinct leaders using verifiable secret sharing (VSS) scheme.
To ensure all the nodes agree on the shared secret, the clock
synchronization protocol had to be executed for 2t+2 epochs.
The agreed upon t+1 secrets were homomorphically combined
to obtain a aggregated secret that is used to synchronize
new joining nodes. In our protocol, the reconstructed secret
is already a aggregated secret combined using t + 1 secrets
from different nodes. Moreover, we are generating and using
the aggregated secret to synchronize in every epoch. Thus,
the same aggregated secret can be used to synchronize the
new joining nodes and avoid the need to execute a separate
clock synchronization primitive. In the process, the new joining
nodes can become active 2t+2 epochs earlier than RandPiper.
In addition, due to optimistic responsiveness, the length of
each epoch is considerably shorter during optimistic conditions
and new nodes can join the system much quicker. In this
regard, our reconfiguration scheme is strictly better compared
to RandPiper.

Observe that in OptRand, nodes in P \ Pr are rotated in
round robin manner and when some node pj becomes an epoch
leader in an epoch, the secrets node pj shared the last time it
became an epoch leader is used. To be specific, the secrets
in Q(pj) is used. Thus, our reconfiguration scheme needs to
ensure that when some node pk joins the system, all nodes
P \ Pr have Q(pk) filled with aggregated PVSS tuple before
pk becomes an epoch leader. We accomplish this by having

Fig. 4: An example execution of two epochs of OptRand. Here, epoch r is responsive and epoch r+1 is synchronous. send-all implies a node
sending different messages to different nodes. This differs from multicast as multicast involves sending same message to all nodes.

A new node pk that intends to join the system uses following procedure to join the system.
1) Inquire. Node pk inquires all nodes in the system to send the set of active nodes, i.e., P \ Pr. Upon receiving the inquire

request, an honest node pi responds to the request only if nt > 0. Node pi sends set P \ Pr along with PVSS tuple
(vi, ci, π̃K,i) at the end of some epoch r′ in which the inquire request was received. Node pk waits for at least t + 1
consistent responses from the same epoch r′ and forms an inquire certificate. An inquire certificate is valid if it contains
t + 1 inquire responses that belong to the same epoch r′ and contains the same set of active nodes. In addition, node pk
aggregates t+ 1 PVSS tuples to obtain (v, c, π̃K) (refer Aggregation Step in Fig. 1).

2) Join. Node pk sends a join request with the inquire certificate and aggregated PVSS tuple (v, c, π̃K) to node pj ∀pj ∈ P\Pr.
3) Accept. Upon receiving the join request with valid inquire certificate and aggregated PVSS tuple (v, c, π̃K) , node pi checks

the validity of the received PVSS tuple (refer Commit Step in Fig. 1). If valid, send ⟨accept, H(v, c), r⟩pi
to node pk.

4) Accept Cert. Upon receiving t+ 1 accept messages, node pk broadcasts the accept certificate to all nodes P \ Pr.
5) Propose. Upon receiving the join request with valid inquire certificate, aggregated PVSS tuple and accept certificate, the

leader Lr of current epoch r adds the join request containing inquire certificate, PVSS tuple and accept certificate in its
block proposal Bh if (i) Lr does not observe a block proposal with a join request in last t+1 epochs in its highest ranked
chain and (ii) no new node has been added since epoch r′.

6) Update. If the block Bh with the join request from node pk proposed in epoch r gets committed by epoch r + t, update
nt ← nt − 1 in epoch r+ t, update Q(pj) with aggregated PVSS tuple (v, c) and send set P \Pr to node pk. Henceforth,
node pk becomes a passive node and receives all protocol messages from active nodes.

7) Synchronize. The first time node pi receives a valid aggregated secret Rr+t, it
- resets its epoch-timerr+t+1 to the beginning of epoch r + t+ 1.
- broadcasts aggregated secret Rr+t to all other nodes.

Node pk becomes an active node when it has Q(pj) ̸= ⊥∀pj ∈ P \ Pr.
If node pk fails to join the system, it restarts reconfiguration process again after some time.

Fig. 5: Reconfiguration protocol

the joining node aggregate t+1 PVSS tuple and send it to all
nodes P \ Pr before it can join the system.

The reconfiguration protocol is presented in Fig. 5. Each
node maintains a variable nt that records the number of
additional nodes that can been added to the system. Variable
nt is incremented each time a Byzantine node is added to set
Pr and is decremented by one when a new node joins the
system. The value of nt can be at most t.

Node pk that intends to join the system uses the reconfig-
uration protocol to join the system. All nodes update Q(pk)
with the aggregated PVSS tuple provided by node pk once the
join request from node pk get committed.

Node pk becomes an active node when it has Q(pj) ̸=
⊥∀pj ∈ P\Pr. This happens when all nodes in P\Pr becomes
a leader at least once after node pk joins the system. Due to

round robin leader election, node pk will have a full queue
after n+ t+ 1 epochs.

Due to space constraints, we present detailed security
analysis in the full version [9].

VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proto-
cols at various system sizes. For OptRand, we evaluate the
throughput for fast optimistic mode and slow synchronous
mode. For reconfiguration, we evaluate throughput and latency
when nodes leave and join the system. We also compare the
performance of our protocols with state-of-art synchronous
random beacon protocols Drand [28] and RandPiper [10].

A. Implementation Details

We implement a prototype of OptRand in C++. We also
implement our reconfiguration scheme. Our implementation
is publicly available at our github repository [53] for artifact
evaluation. Our implementation uses the open source imple-
mentation of HotStuff [57] and their networking library.

Instantiation. We instantiate pairings with the Type-III pairing
BN128 [38] family by the team at Zcash. We use the provided
default values for g1 and g2. We generate and use config files
with the PVSS public keys and secp256k1 [56] public keys
for digital signatures. We also pre-populate n PVSS sharing
for queue Q.

Optimizations. We make the following optimizations:

(1) Swap groups. BN128 curve being a Type III pairing,
has two different groups G1 and G2. A point in G2 is roughly
equal to 2 G1 points, and the underlying curve for G2 is more
complex than the curve in G1. Thus, computations in G2 are
more expensive, and our protocol if implemented as is, will be
inefficient. We swap the groups in our implementation leading
to improved performance.

(2) Share buffering. In every epoch r, the leader Lr needs
to collect t + 1 PVSS sharings and aggregate them before
proposing. This is an O(nt) computational overhead in the
critical path of the protocol. We remove this computation from
the critical path by buffering the aggregate PVSS vectors for
each node. Nodes send PVSS vector for a future epoch r′

and the leader Lr′ will verify and aggregate the PVSS vectors
over the course of n epochs. The leader Lr′ then proposes
these aggregated PVSS vectors in epoch r′.

(3) Multi-exponentiation. Multi-exponentiation is a tech-
nique where

∏
gxi for 1 ≤ i ≤ n for g ∈ G can be computed

efficiently using pre-computation involving g for any n scalars
xi. We use this for efficient commitment generation, and for
reconstruction by pre-computing tables for g1, g2 and g′2.

(4) Reduce pairings. We significantly reduce the overhead
of pairings from the critical path of the consensus by replacing
a pairing check with a discrete log proof of equality. A pairing
check for decryption e(di, g2) = e(g1, vi) can be replaced with
a discrete log proof of equality NIZKPK(ski, di, ei) thereby
reducing the pairing operations performed. Where pairings
cannot be avoided, we use a partial pairing optimization. A
pairing consists of two almost equally expensive steps: (i)
miller loop, and (ii) full exponentiation. To check pairing
equalities, it is sufficient to perform two miller loops, and then
subtracting the partial results and then finally performing the
final exponentiation once and checking if it is 1GT

, reducing
computational overheads by ≈ 25%.

(5) Merkle trees as cryptographic accumulators. We use
computationally efficient Merkle trees as a cryptographic
accumulator instead of bilinear accumulator at the cost of
increasing communication complexity by O(κ log n) factor.

B. Experiments

Experimental setup. We evaluate our implementation of
OptRand and the baselines on Amazon Web Services (AWS)
t3-medium Ubuntu 18.04 virtual machine (VM) with one node
per VM. All VMs have two vCPUs and 4 GB RAM. We

distributed the n nodes equally across eight different AWS
regions: N. Virginia, Ohio, Oregon, N. California, Canada,
Ireland, Singapore, and Tokyo. When spawning n nodes, we
spawn node 1 in region 1, node 2 in region 2, and so on.

Baselines. We compare OptRand with the two state-of-the-art
random beacon protocols: BRandPiper [10] and Drand [28].

Drand. Drand is a synchronous random beacon protocol
inspired by Cachin et al. [14]. It is a synchronous protocol
using the unique-signature and random oracle assumptions.
It implements the protocol in Golang over BLS-12-381 [13]
family of curves. We use their open-source public implemen-
tation [27] for comparison.

BRandPiper. BRandPiper is a synchronous random beacon
protocol offering immediate unpredictability with an amortized
communication complexity of O(fκn2) where f ≤ t is the
actual number of faults. BRandPiper also has a constant latency
of 11∆ per beacon. We used their Rust implementation [39]
for comparison.

C. Random Beacon Performance

Fig. 6 shows the performance of OptRand and the base-
lines.

Drand. Drand uses a parameter period; in every period
one beacon is produced. Their practical deployment uses a
period of 30 seconds using a system consisting of n = 9
nodes. To more accurately capture what their system could
achieve, we measure a value logged by the protocol called time
discrepancy ms, which is documented to be the time from the
start of the epoch until the beacon is reconstructed. Giving the
benefit of doubt, we use 99% percentile of this number across
all the nodes to estimate the throughput of the system. Note
that the actual performance at this high throughput can vary
as the implementation is in Go-lang whose garbage collector
can violate synchrony.

We observe that Drand generally has constant throughput,
except when n = 9. As shown in Fig. 6, in this case, the time
discrepancy was lower. We repeated the experiment several
times but got the same anomaly. A possible reason for this
could be the centralization of the servers towards the American
sub-continent due to the presence of 6 nodes.

5 9 17 33 65

Number of nodes (n)

0

50

100

150

200

250

300

350

400

T
h

ro
u

g
h

p
u

t
(B

p
m

)

OptRand-Opt
OptRand-Sync
Drand(99%)
BRandPiper

Fig. 6: Performance of random beacon protocols: Drand and
BRandPiper in contrast to OptRand. Drand uses time discrep-
ancies, i.e., time from the start of a proposal to the time the beacon
is produced to indirectly measure throughputs.

BRandPiper. BRandPiper produces a beacon every 11∆
similar to OptRand in the slow mode. We run the experiments

for decreasing values of ∆ until no warnings show up in
the logs, indicating with high confidence that the chosen ∆
is correct and safe. We use this value of ∆ to estimate the
throughput. We observe that as n increases, the throughput
drops. This is due to increased synchronization overheads and
cryptographic overheads incurred by the round-robin nature of
the protocol as a single slow node can slow the system down.

0 15 30 45 60 75 90 105 120 135 150 165

Time(s)

0

10

20

30

40

50

B
ea

co
n
s

p
er

1
5

se
co

n
d
s

OptRand-NR-n9
OptRand-R-n9
OptRand-NR-n17
OptRand-R-n17

Fig. 7: Throughput in beacons per 15 seconds during reconfigu-
ration.

OptRand. Compared to both baselines, our protocol gen-
erates beacons at significantly higher rate during optimistic
conditions (denoted by OptRand-Opt in Fig. 6). This is because
our protocol progresses at the network speed while other
protocols depend on pessimistic delay ∆ for their progress.
The throughput is significantly higher in proportion when
n = 5. This is because all the nodes are in US and Canada
and have low network latency between them.

For the non-optimistic mode (denoted by OptRand-Sync
in Fig. 6), our protocol generates a beacon every 11∆ time. To
learn the best throughput we can obtain, similar to Drand, we
choose value of ∆ where the system does not report any timing
errors. In this mode, our protocol performs slower than Drand,
as Drand can output a beacon in every round (which is 2∆
time) whereas our protocol outputs a beacon every 11∆ time.
The performance of our protocol in non-optimistic mode is
similar compared to BRandPiper which also generates beacons
every 11∆ time.

D. Reconfiguration

While reconfiguration-friendliness is discussed by recent
random beacon protocols [10], [23], the treatment was theo-
retical in nature. We implement and measure throughput and
latency of reconfiguration in the optimistic path.

There are two important aspects of our implementation.
First, while our reconfiguration scheme expects t+1 identical
responses from the same epoch as a response to the inquiry, in
the optimistically responsive mode, we may not get responses
from the same epoch. In our implementation, the new joining
node just waits for a consistent set of active nodes from t +
1 nodes, irrespective of the epoch. This is sufficient if the
churn in active nodes is not a lot. Second, the new joining
node needs to download the entire blockchain from the genesis
from the active nodes. In our implementation, this happens
online causing other nodes to wait until the blockchain has
been downloaded. Consequently, to account for this wait and
prevent active nodes from removing the new joining node due
to delay in proposing, we set ∆ to be slightly larger (e.g., 2
seconds). In practice, this deficiency can be fixed by requiring
the joining node to download the blockchain ahead of time.

Additionally, we remove an optimization where nodes send
their PVSS transcripts to the leader some k epochs earlier.
This is because as the active set of nodes change, the leaders
for future epochs can not be determined beforehand. Hence,
the leaders need to verify the PVSS transcripts and perform
aggregation in the critical path of the protocol; thus reducing
the throughput.

In the evaluation, we show latency and throughput when an
old node leaves and a new node joins the system. We evaluate
the performance of our implementation during reconfiguration
and in steady state when no reconfiguration occurs. In the
reconfiguration experiment, we first remove an active node
after around 100 beacons have been generated and then add a
new node. Our evaluation shows that we can seamlessly add
and remove nodes without halting the system. Fig. 7 shows the
throughput as a function of time under steady state (denoted
by OptRand-NR) and when reconfiguration occurs (denoted by
OptRand-R) for system sizes of 9 and 17. As shown in Fig. 7,
the throughput decreases slightly during reconfiguration, this
is because when the old node leaves the system, it does
not propose in its epoch and the system cannot progress
optimistically; thus incurring 11∆ in an epoch. Additionally,
the new joining node needs to download the blockchain before
it proposes. Afterwards, the throughput is similar to the steady
state.

Fig. 8a shows the throughput with no reconfiguration
(denoted by OptRand-NR) and when the reconfiguration oc-
curs (denoted by OptRand-R). As shown in Fig. 8a, the
throughput of the system remains consistent before and after
reconfiguration as the beacons are generated with minimal
interruption. However, for n = 5, the throughput reduces
slightly. This is because the first 5 active nodes are in US
and Canada while the new joining nodes is in Ireland and the
node in Ireland has higher network latency.

Additionally, we also measure the time taken for a new
joining node to be active from the time it sends its inquire
request at various system sizes. As shown in Fig. 8b, the nodes
join the system in a matter of seconds. The latency to join the
system varies slightly across various system sizes and depends
on various factors such network latency of the joining node and
the time taken to download the prior blockchain.

VIII. ACKNOWLEDGEMENTS

We thank Sourav Das and Ling Ren for helpful discussions
on SPURT [23]. This research was supported in part by grants
by VMware Research and Novi Research. This work has been
partially supported by the Army Research Laboratory (ARL)
under grant W911NF-20-2-0026, the National Institute of Food
and Agriculture (NIFA) under grant 2021-67021-34251, and
the National Science Foundation (NSF) under grant CNS-
1846316.

5 9 17 33

Number of nodes (n)

0

50

100

150

200

250

300

B
ea

co
n

s
p

er
m

in
u

te

OptRand-NR
OptRand-R

(a) Throughput vs n

5 9 17 33

Number of nodes (n)

0

5

10

15

20

25

L
a
te

n
cy

(s
)

OptRand-R

(b) Latency of reconfiguration vs n.
Fig. 8: Throughput and latency of reconfiguration at various system sizes.

REFERENCES

[1] Ittai Abraham, Srinivas Devadas, Danny Dolev, Kartik Nayak, and Ling
Ren. Synchronous byzantine agreement with expected O(1) rounds,
expected O(n2) communication, and optimal resilience. Financial
Cryptography and Data Security (FC), 2019.

[2] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, and Ling Ren. Dfinity
consensus, explored. IACR Cryptol. ePrint Arch., 2018:1153, 2018.

[3] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Maofan
Yin. Sync hotstuff: Simple and practical synchronous state machine
replication. In 2020 IEEE Symposium on Security and Privacy (SP),
pages 654–667, 2020.

[4] Ittai Abraham, Dahlia Malkhi, and Alexander Spiegelman. Asymp-
totically optimal validated asynchronous byzantine agreement. In
Proceedings of the 2019 ACM Symposium on Principles of Distributed
Computing, pages 337–346, 2019.

[5] Ittai Abraham, Kartik Nayak, Ling Ren, and Zhuolun Xiang. Optimal
good-case latency for byzantine broadcast and state machine replication.
arXiv preprint arXiv:2003.13155, 2020.

[6] Ittai Abraham, Kartik Nayak, and Nibesh Shrestha. Optimal good-
case latency for rotating leader synchronous bft. In 25nd International
Conference on Principles of Distributed Systems (OPODIS 2021).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2021.

[7] Donald Beaver, Konstantinos Chalkias, Mahimna Kelkar, Lefteris Koko-
ris Kogias, Kevin Lewi, Ladi de Naurois, Valeria Nicolaenko, Arnab
Roy, and Alberto Sonnino. Strobe: Stake-based threshold random
beacons. Cryptology ePrint Archive, 2021.

[8] Michael Ben-Or. Another advantage of free choice (extended abstract)
completely asynchronous agreement protocols. In Proceedings of the
second annual ACM symposium on Principles of distributed computing,
pages 27–30, 1983.

[9] Adithya Bhat, Nibesh Shrestha, Aniket Kate, and Kartik Nayak. Op-
trand: Optimistically responsive distributed random beacons. Cryptol-
ogy ePrint Archive, 2022.

[10] Adithya Bhat, Nibesh Shrestha, Zhongtang Luo, Aniket Kate, and
Kartik Nayak. Randpiper – reconfiguration-friendly random beacons
with quadratic communication. ACM SIGSAC CCS 2021, 2021.

[11] Manuel Blum. Coin flipping by telephone a protocol for solving
impossible problems. ACM SIGACT News, 15(1):23–27, 1983.

[12] Dan Boneh and Victor Shoup. A graduate course in applied cryptog-
raphy, 2017. http://toc.cryptobook.us/book.pdf.

[13] Sean Bowe. Bls12-381: New zk-snark elliptic curve construction. Zcash
Company blog, URL: https://z. cash/blog/new-snark-curve, 2017.

[14] Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles
in constantinople: Practical asynchronous byzantine agreement using
cryptography. Journal of Cryptology, 18(3):219–246, 2005.

[15] Ran Canetti and Tal Rabin. Fast asynchronous byzantine agreement
with optimal resilience. In ACM Symposium on Theory of computing
(STOC), pages 42–51, 1993.

[16] Ignacio Cascudo and Bernardo David. Scrape: Scalable randomness
attested by public entities. In International Conference on Applied
Cryptography and Network Security, pages 537–556. Springer, 2017.

[17] Ignacio Cascudo, Bernardo David, Omer Shlomovits, and Denis Var-
lakov. Mt. random: Multi-tiered randomness beacons. Cryptology ePrint
Archive, Report 2021/1096, 2021. https://ia.cr/2021/1096.

[18] Generate random numbers for smart contracts using chainlink vrf. https:
//docs.chain.link/docs/chainlink-vrf.

[19] T-H Hubert Chan, Rafael Pass, and Elaine Shi. Pili: An extremely
simple synchronous blockchain. IACR Cryptology ePrint Archive,
2018:980, 2018.

[20] David Chaum and Torben Pryds Pedersen. Wallet databases with
observers. In Annual international cryptology conference, pages 89–
105. Springer, 1992.

[21] Alisa Cherniaeva, Ilia Shirobokov, and Omer Shlomovits. Homomor-
phic encryption random beacon. IACR Cryptol. ePrint Arch., 2019:1320,
2019.

[22] Information Technology Laboratory Computer Security Division. In-
teroperable randomness beacons: Csrc. https://csrc.nist.gov/projects/
interoperable-randomness-beacons.

[23] Sourav Das, Vinith Krishnan, Irene Miriam Isaac, and Ling Ren. Spurt:
Scalable distributed randomness beacon with transparent setup. In 2022
IEEE Symposium on Security and Privacy (SP), pages 2502–2517.
IEEE, 2022.

[24] Danny Dolev, Joseph Y Halpern, Barbara Simons, and Ray Strong.
Dynamic fault-tolerant clock synchronization. Journal of the ACM
(JACM), 42(1):143–185, 1995.

[25] Danny Dolev and H. Raymond Strong. Authenticated algorithms for
byzantine agreement. SIAM Journal on Computing, 12(4):656–666,
1983.

[26] J Drake. Minimal vdf randomness beacon. ethereum research post
(2018). https://ethresear.ch/t/minimal-vdf-randomness-beacon/3566.

[27] Drand. drand.
[28] Drand. Drand - a distributed randomness beacon daemon. https://github.

com/drand/drand.
[29] Pesech Feldman and Silvio Micali. An optimal probabilistic protocol

for synchronous byzantine agreement. SIAM Journal on Computing,
26(4):873–933, 1997.

[30] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Conference on the theory
and application of cryptographic techniques, pages 186–194. Springer,
1986.

[31] Matthias Fitzi and Juan A Garay. Efficient player-optimal protocols for
strong and differential consensus. In Proceedings of the twenty-second
annual symposium on Principles of distributed computing, pages 211–
220, 2003.

[32] Kobi Gurkan, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad
Stern, and Alin Tomescu. Aggregatable distributed key generation.
Cryptology ePrint Archive, Report 2021/005, 2021. https://eprint.iacr.
org/2021/005, Appearing in EUROCRYPT ’21.

[33] Mads Haahr. True random number service. https://www.random.org/.
[34] Runchao Han, Haoyu Lin, and Jiangshan Yu. Randchain: Decentralised

randomness beacon from sequential proof-of-work. Cryptology ePrint
Archive, Report 2020/1033, 2020. https://eprint.iacr.org/2020/1033.

[35] Timo Hanke, Mahnush Movahedi, and Dominic Williams. Dfin-
ity technology overview series, consensus system. arXiv preprint
arXiv:1805.04548, 2018.

[36] Somayeh Heidarvand and Jorge L Villar. Public verifiability from
pairings in secret sharing schemes. In International Workshop on
Selected Areas in Cryptography, pages 294–308. Springer, 2008.

[37] Jonathan Katz and Chiu-Yuen Koo. On expected constant-round
protocols for byzantine agreement. In Annual International Cryptology
Conference, pages 445–462. Springer, 2006.

[38] scipr-lab/libff: C++ library for finite fields and elliptic curves.
[39] Zhongtang Luo. zhtluo/randpiper-rs. https://github.com/zhtluo/

randpiper-rs.
[40] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn.

Sonic: Zero-knowledge snarks from linear-size universal and updatable
structured reference strings. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, pages 2111–
2128, 2019.

http://toc.cryptobook.us/book.pdf
https://ia.cr/2021/1096
https://docs.chain.link/docs/chainlink-vrf
https://docs.chain.link/docs/chainlink-vrf
https://csrc.nist.gov/projects/interoperable-randomness-beacons
https://csrc.nist.gov/projects/interoperable-randomness-beacons
https://ethresear.ch/t/minimal-vdf-randomness-beacon/3566
https://github.com/drand/drand
https://github.com/drand/drand
https://eprint.iacr.org/2021/005
https://eprint.iacr.org/2021/005
https://www.random.org/
https://eprint.iacr.org/2020/1033
https://github.com/zhtluo/randpiper-rs
https://github.com/zhtluo/randpiper-rs

[41] Ralph C Merkle. A digital signature based on a conventional encryption
function. In Conference on the theory and application of cryptographic
techniques, pages 369–378. Springer, 1987.

[42] Atsuki Momose, Jason Paul Cruz, and Yuichi Kaji. Hybrid-bft:
Optimistically responsive synchronous consensus with optimal latency
or resilience. IACR Cryptol. ePrint Arch., 2020:406, 2020.

[43] Atsuki Momose and Ling Ren. Optimal communication complex-
ity of byzantine consensus under honest majority. arXiv preprint
arXiv:2007.13175, 2020.

[44] Lan Nguyen. Accumulators from bilinear pairings and applications. In
Cryptographers’ track at the RSA conference, pages 275–292. Springer,
2005.

[45] Rafael Pass and Elaine Shi. Thunderella: Blockchains with optimistic
instant confirmation. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages 3–33. Springer,
2018.

[46] blockchain oracle service, enabling data-rich smart contracts. https:
//provable.xyz/.

[47] Michael O Rabin. Randomized byzantine generals. In 24th Annual
Symposium on Foundations of Computer Science (sfcs 1983), pages
403–409. IEEE, 1983.

[48] Irving S Reed and Gustave Solomon. Polynomial codes over certain
finite fields. Journal of the society for industrial and applied mathe-
matics, 8(2):300–304, 1960.

[49] Philipp Schindler, Aljosha Judmayer, Markus Hittmeir, Nicholas Stifter,
and Edgar Weippl. Randrunner: Distributed randomness from trapdoor
vdfs with strong uniqueness. Technical report, Cryptology ePrint
Archive, Report 2020/942, https://eprint. iacr. org/2020/942, 2020.

[50] Philipp Schindler, Aljosha Judmayer, Nicholas Stifter, and Edgar
Weippl. Hydrand: Practical continuous distributed randomness. In 2020
IEEE Symposium on Security and Privacy (SP). IEEE, 2020.

[51] Fred B Schneider. Implementing fault-tolerant services using the state
machine approach: A tutorial. ACM Computing Surveys (CSUR),
22(4):299–319, 1990.

[52] Nibesh Shrestha, Ittai Abraham, Ling Ren, and Kartik Nayak. On the
Optimality of Optimistic Responsiveness. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security,
pages 839–857, 2020.

[53] Nibesh Shrestha and Adithya Bhat. Optrand implementation.

[54] Nibesh Shrestha, Adithya Bhat, Aniket Kate, and Kartik Nayak. Syn-
chronous distributed key generation without broadcasts. Cryptology
ePrint Archive, 2021:1635, 2021.

[55] Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris Kogias, Nicolas
Gailly, Linus Gasser, Ismail Khoffi, Michael J Fischer, and Bryan
Ford. Scalable bias-resistant distributed randomness. In 2017 IEEE
Symposium on Security and Privacy (SP), pages 444–460. Ieee, 2017.

[56] Bitcoin Wiki. Secp256k1. Accessed: Feb, 11, 2016.

[57] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and
Ittai Abraham. Hotstuff: Bft consensus with linearity and responsive-
ness. In Proceedings of the 2019 ACM Symposium on Principles of
Distributed Computing, pages 347–356, 2019.

APPENDIX

co-Decisional Bilinear Squaring assumption. This is a mod-
ified version of the symmetric pairing based assumption in
SCRAPE and related works [16], [36]. We formally show that
this is the correct generalization of the DBS assumption for
Type-III pairings by showing that it implies the Decisional
Bilinear Diffie Hellman (DBDH) assumption in Definition A.2.

Definition A.1 (co-Decisional Bilinear Squaring (co-DBS)
Assumption). Let e : G1 × G2 → GT be an efficient pairing
scheme, with g1 ∈ G1 and g2 ∈ G2 being two independent
generators. We say that the co-DBS assumption holds if the

following is true for any PPT adversary A:

Pr


α, β, γ ←$ Zq, b←$ {0, 1},

u1 ← gα1 , u2 ← gα2 ,

v1 ← gβ1 ,

T0 ← e(g1, g2)
α2β ,

T1 ← e(g1, g2)
γ ,

b′ ← A(g1, g2, u1, u2, v1, Tb)

∣∣∣∣∣∣∣∣∣∣∣
b′ = b

 ≤ negl(κ)

Prior works such as SCRAPE [16] define the problem
in the symmetric pairing setting where G1 = G2. However,
no known explicit construction exists for the asymmetric
pairing definitions, although most of these works argue that the
generalization is easy. SCRAPE and its sources [36] mention
that it is easy to generalize it to the Type III pairings. In this
work, we make explicit the assumption and show implication
to the known Decisional Bilinear Diffie Hellman (DBDH)
assumption.

Definition A.2 (Decisional Bilinear Diffie Hellman (DBDH)
Assumption [12]). Let G1 × G2 → GT be an efficient non-
degenrate Type-III pairing. Let g1 ∈ G1 and g2 ∈ G2 be two
independent generators. The assumption is said to hold if for
any PPT adversary A the following is true:

Pr


α, β, γ, δ ←$ Zq, b←$ {0, 1}

u1 ← gα1 , u2 ← gα2
v1 ← gβ1 , w2 ← gγ2
T0 ← e(g1, g2)

αβγ

T1 ← e(g1, g2)
δ

b′ ← A(g1, g2, u1, u2, v1, w2, Tb)

∣∣∣∣∣∣∣∣∣∣∣
b′ = b

 ≤ negl(κ)

Lemma 2. The co-DBS assumption implies the DBDH as-
sumption.

Proof: Given an instance of co-DBS (g1,g2,u1,u2,v1,Tb),
we can construct a correct DBDH instance using
(g1, g2, u1, u2, v1, w2 ← gγ2 , T

′
b ← T γ

b) for a randomly
chosen γ ←$ Zq . If b = 0, then it is the correct instance of
DBDH with T ′

0 = e(g1, g2)
αβγ . If b = 1, then it is the correct

instance of DBDH with T ′
1 = e(g1, g2)

γ′γ where γ′ originated
from T1 in the original co-DBS instance.

Chaum-Pedersen Scheme for NIZKPK. Concretely,

Let (g, u) ∈ G2 be public values with u ← gs for some s ∈ Zq .
A prover P runs the following interactive protocol:
(1) P first sends to V , the values a ← gw for a randomly drawn
w ←$ Zq .
(2) The verifier V chooses a random c←$ Zq , and sends c to the
prover P .
(3) The prover sends r ← w + cs to V .
(4) The verifier checks if gr = auc and outputs the result.

Fig. 9: Interactive discrete log Proof of Knowledge protocol for
NIZKPK

Using Fiat-Shamir heuristic [30], we transform this into
a non-interactive proof (assuming Random Oracle Model) by
setting c← H(u, a) and proof π ← (a, r).

Note. This can be easily extended to prove that given
(g1, g2, u1, u2) ∈ G4, a Prover knows s such that gs1 = u1

and gs2 = u2 by duplicating all the steps except generating

https://provable.xyz/
https://provable.xyz/

TABLE II: Summary of notation.

Symbol Meaning

A PPT Adversary
b Number of data shards in RS
C Linear Error Correcting Code
C Challenger for cryptographic games
C⊥ Dual of the Linear Error Correcting Code space C
c SCRAPE Ciphertexts/Encryptions
d SCRAPE decryptions
D Distinguishing adversary
NIZKPK Alg. to prove knowledge x satisfying gx = u.
Verify() Algorithm that verifies the above relation
δ The actual network speed
∆ The worst case maximum network delay
e Type III Bilinear Pairing function
f Actual number of faults in the system
G1,G2,GT The pairing groups of e
H The random oracle

Symbol Meaning

λ The security parameter
κ The normalized message size
⟨m⟩pi A message m along with a signature by node pi
negl() A negligible function
Or The beacon output for round r
pk SCRAPE Public Keys
n Total number of nodes
P The set of all the nodes in the system
pi The ith node of the system
r Rounds of the Random Beacon Protocol
sk SCRAPE Secret Keys
q The prime order of all the pairing groups
t Max. number of faults tolerated in the system
τ Time instants
v SCRAPE Commitments
Zq The scalar field of all the groups of e

the challenge c. The challenge can be generated together as
c← H(u1, u2, a1, a2). The same technique can also be used to
prove equality of discrete logarithms, i.e., logg1 u1 = logg2 u2.

SCRAPE PVSS.

Let L ∈ P be a designated node and s←$ Zq .
Sharing phase
Share(s,pk)→ (v, c)
– Build a degree t polynomial p(x) ∈ Zq with p(0) = s.
– Compute and output shares si ← p(i), commitments vi ← gsi2 ,

and encryption ci ← pki
si , for i ∈ [n].

PVrfy(v, c,pk)→ {0, 1}
– Parse v := {vi}, c := {ci}, and pk := {pki} for i ∈ [n].
– Check if e(ci, g2) = e(pki, vi) for i ∈ [n].
– Sample a random code word c⊥ ∈ C⊥ and parse it as c⊥ :=

{c⊥1 , . . . , c⊥n }, and check if
∏

i∈[n]

v
c⊥i
i = 1G2 , where 1G2 is the

identity element of G2.
– If both the checks for commitments (Eq. (1)) and encryption pass,

then output 1, otherwise output 0.
Reconstruction phase
Dec(ski, ci)→ di

– Decrypts the share by computing di ← cski
−1

i

ShVrfy(vj , cj , dj)→ {0, 1}
– Check if e(dj , g2) = e(g1, vj).
Recon(S := {dj}j∈[n])→ s
– On receiving t + 1 valid shares in S, reconstruct B = gs1 by

computing B ←
∏

dj∈S

d
ℓj
j =

∏
dj∈S

g
p(j)·ℓj
1 = g

p(0)
1 = gs1, where

ℓj is the j th Lagrange coefficient.
– Reconstruct the secret S ∈ GT as S ← e(B, g′2)

Fig. 10: Recap of pairing based PVSS in SCRAPE [16, Section
4]. Note that we only present the algorithms here and not the actual
broadcast-channel based protocol. We also present the scheme for
asymmetric pairings.

Setup. Before starting the SCRAPE protocol, we assume that
the nodes choose independent generators g1 ∈ G1 and g2, g

′
2 ∈

G2. We require that g′2 is such that the discrete log with respect

to g2 is not known to the adversary.2 These can be generated
using a common reference string (CRS) assumption or they
can be parameters specified by the pairing scheme itself as in
BLS-12-381 [13]. We also assume a PKI so that all nodes
are aware of each other’s public keys which are generated as
pk = gsk1 where sk ∈ Zq is the secret key.

Sharing. In the sharing phase, the leader (also known as the
dealer in literature) generates a random polynomial p(x) with
the secret as the constant term p(0). Then the dealer commits
to the shares for every node using the generator g2 ∈ G2 in the
commitment vector v := {vi ← g

p(i)
2 } for i ∈ [n], and at the

same time encrypts it to every node whose public keys using
the generator g1 ∈ G1 in the encryption vector c := {ci ←
pki

p(i)} for i ∈ [n].

Public verifiability. Any node on observing the encryption
vector c and commitment vector v uses the coding technique
to check that the commitments indeed contain an (n, t + 1)
secret sharing. Using the coding techniques, we can ensure
that the commitments are a valid (n, t + 1) secret sharing.
But, the above steps still do not guarantee that the encryptions
contain an (n, t + 1) secret sharing. Therefore, we need to
check that the encryptions and the commitments have the same
discrete log, i.e., logg2 vi = logpki

ci. This check can be easily
performed with pairings by checking e(ci, g2) = e(pki, vi) by
anyone (nodes or clients) with access to pk.

Reconstruction. During reconstruction, every node decrypts
its share ci to produce di ← cski

−1

i = g
p(i)
1 by cancelling the

secret key from the encryption. When receiving another node’s
decrypted value, a node can check that it is correct by again
checking for the equality of the discrete log of the decrypted
value, i.e., check if e(dj , g2) = e(g1, vj).

Finally, after obtaining t+1 correct shares, we use standard
Lagrange interpolation in the exponent to obtain the value B =

2For Type-2 pairings, we want the discrete log of g1,g′2 with respect to g2
to be not known. For Type-3 pairings, we want the discrete log of g′2 with
respect to g2 to be not known.

gs1, with which we compute the secret S = e(B, g′2). We recall
the security of pairing based SCRAPE (see Theorem 4, [16]).

Indistinguishability of secrets (IND1-Secrecy) refers to
notion that when the dealer of a PVSS scheme is honest,
the (computational) adversary does not learn any information
about the secret. Formally, it is defined by Heidarvand et
al. [36] in the game defined in Definition A.3. It assumes that a
PVSS scheme consists of the following four phases: (i) Setup,
(ii) Distribution, (iii) Verification, and (iv) Reconstruction.

Definition A.3 ((IND1-secrecy) Indistinguishability of se-
crets [36]). We say that an (n, t+ 1) threshold PVSS scheme
is IND1-secret if any PPT adversary A has a negligible
advantage in the following game played against a challenger
C. During the game, A can corrupt a new node at any time,
but up to t nodes in total. When A corrupts a node, he receives
his secret key (only after the setup). A list of corrupted nodes
is maintained during the game.

1. C runs the setup subprotocol and sends the public param-
eters to A along with the public keys of still uncorrupted
nodes. C stores the secret keys of those nodes.

2. A sends the public keys of already corrupted nodes.

3. C picks two random secrets x0, x1 and a random bit
b ∈ {0, 1}. Then C runs the distribution subprotocol for
secret x0 and sends all the resulting information to A,
along with xb.

4. C runs reconstruction subprotocol for the set of all
uncorrupted nodes and sends all the messages exchanged
via public channels (if any) to A. No new corruptions are
allowed from this point.

5. A outputs a guess bit b′.

The advantage of the adversary A in this game is defined
as |Prob [b′ = b]− 1

2 |.

Note. In this work, we will assume a static variant of this game
where the adversary A corrupts up to t nodes before Step 1.
of the game.

A. Proof of IND1-Secrecy of our modified PVSS

Theorem 3 (IND1-Secrecy for sharing). Assuming that the
hash function H is random oracle and that co-DBS assumption
holds, the protocol in Fig. 1 achieves IND1-Secrecy for sharing
against any t−bounded PPT adversary A.

Proof: We show that if a t-bounded static PPT adversary
A has a non-negligible advantage εA in breaking the IND1-
secrecy of our protocol in Fig. 1, then there exists a PPT ad-
versary ADBS that has a non-negligible advantage in breaking
the co-DBS assumption.

TheADBS simulates our modified sharing toA when given
an instance of co-DBS (g1, g2, u1 ← gα1 , u2 ← gα2 , v1 ←
gβ1 , Tb) as follows:

1. ADBS sends v1 ∈ G1 and g2, u2 ∈ G2 as the generators
for the group.

2. The static adversary A corrupts up to t nodes and sends
their public keys. WLOG, we assume that the corrupted
nodes have indices 1 ≤ j ≤ t.

3. ADBS sends the public keys for the honest nodes pki ←
gRi
1 for t+1 ≤ i ≤ n, where ri ←$ Zq . (This is equivalent

to setting the secret key ski = Ri/β.)
4. For 1 ≤ i ≤ t, ADBS sets vi ← gri2 and ci ← pkrii

without knowing α since it knows u2 = gα2 . For t+ 1 ≤
i ≤ n, ADBS sets v using Lagrange interpolation of a
polynomial using u2 = gα2 ; and sets ci = v

RiPα(i)
1 where

Pα(i) is an (n, t+ 1) polynomial evaluating to α, which
is constructed by first producing v

Pα(i)
1 using ri used for

ci for i ∈ [t], and then raising to the secret key.
5. For the NIZK proof NIZKPK(α, g2, v ← gα2), ADBS

chooses r, c ←$ Zq , sets a ← g2/v
c by simulating the

random oracle and setting c ← H(g2, v, a) and outputs
proof π := (a, r).

6. Finally, ADBS sends Tb to A.
7. A outputs a bit b′.

If b′ = 1, ADBS outputs b = 1, i.e., that Tb = T1 a random
element in GT .

Observe that this is a secret sharing of e(vα1 , u2) =
e(g1, g2)

α2β and the information sent by ADBS is distributed
exactly like an actual secret sharing instance. When given
T0, the adversary A can detect the correct sharing with
non-negligible probability εA, and with the same probability,
ADBS can make a correct guess with probability εA.

Thus, if our scheme is not IND1-secret then we can break
the co-DBS assumption, leading to a contradiction.

B. Proof for Warm-up Beacon Security

We use RO to refer to Random Oracles. We capture the
security of our protocol in the following theorem:

Theorem 4 (Warm-up beacon Fig. 1). Assuming RO and the
co-DBS assumptions hold, the protocol in Fig. 1 is secure as
per Definition IV.1.

Proof: Weak agreement. follows trivially due to the
guarantees of the broadcast channel. The coding check and
the failure of the digital signatures introduces a negligible
probability that an honest node may accept an invalid share.

Validity. also follows from the construction, and correctness
follows from existing works [16], [20].

Value-validity Assume an adversary exists that can violate
this property, i.e., it can make an honest node output a value
that is not uniform.

Any t-bounded adversary must select t + 1 valid secret
sharings. The final vector (from which an honest node outputs
the beacon) must satisfy:

(i) Discrete log equality. For any j ∈ [n], the combined
commitment vj ∈ v with respect to g2 has the same discrete
log as the combined encryption cj ∈ c with respect to g1.

(ii) Unique degree-t polynomial. With high probability
(1 − 1/q, where q is the order of the groups), due to coding
scheme used from SCRAPE [16], we know that the polynomial
P encoded in c when reconstructed using any t+1 decryption
will reconstruct to a unique secret S = e(gs1, g

′
2).

Let P be the polynomial in the commitments. We know
that the (n, t+ 1) sharing is a valid degree t polynomial, and
that the product of g

pj(0)
1 and t other values produce g

P (0)
1 .

We know that P (0) = pj(0) +X , where X can be known by
the adversary if it picks its own t sharings.

Let some adversary A construct P (0) such that all the
checks pass but P (0) is not a function of some sj , and g

sj
1

knowledge proof along with t others are included in the set π.
We know that

∏
i∈π gsi1 = g

P (0)
1 . So we get a contradiction

that P (0) is not a function of g
sj
1 . Intuitively, the only way

to remove gsi1 is having knowledge of it or randomly but its
probability is negligible.

Since no t−bounded adversary can know P (0), P which
is a function of sj is also unpredictable for any t−bounded
adversary. From Theorem 3, we know that this is not the case,
leading to a contradiction.

From the decomposition proof, we know that the final
polynomial being shared (from which B is derived) contains
contributions from at least one honest node whose input
is uniformly random. Therefore, the value-validity condition
holds. The only way an adversary can bias this distribution is
by learning some information about the value shared by some
honest node.

C. Proof for Beacon Unpredictability

Theorem 5 (Beacon unpredictability). Assuming RO and the
co-DBS assumptions hold, the protocol in Fig. 1 produces an
unpredictable beacon.

Proof: From Theorem 4, we know that in the broadcast
channel world, it guarantees Value validity. In OptRand, we re-
alize this and counter the weak-agreement property by making
sure the beacon is constructed from a random sharing proposed
by the same leader last time.

Formally, to prove security via reduction in Definition III.2,
any adversary that breaks the security of OptRand must violate
synchrony, can only do so by breaking the cryptography, which
remains secure with high probability.

Concretely, any adversary that wins the game defined in
Definition III.2 can be simulated to by a simulator to either
break Theorem 3 or the underlying digital signature scheme.
The adversary A outputs b′ with probability εA = εDS +
εIND1, where εDS is the probability of breaking the digital
signature scheme (say EU-CMA), and εIND1 is the probability
of breaking the IND1-secrecy. If εA is non-negligible, then
it must be the case that it has learned a sharing of one of
the honest nodes, which we use to win the co-DBS game
(similar to the IND1-secrecy) simulation, implying εIND1 is
non-negligible, or win the digital signature security, implying
εDS is non-negligible.

	Introduction
	Our Approach, Key Ideas and Results

	Related Work
	Related Works in the Random Beacon Literature
	Related Works in the BFT SMR Literature

	System Model and Definitions
	Definitions
	Employed Primitives

	Warm-up: Random Beacons Using a Broadcast Channel
	Our Protocol

	Optimistically Responsive Random Beacon
	Protocol Details

	Reconfiguration
	Performance Evaluation
	Implementation Details
	Experiments
	Random Beacon Performance
	Reconfiguration

	Acknowledgements
	References
	Appendix
	Proof of IND1-Secrecy of our modified PVSS
	Proof for Warm-up Beacon Security
	Proof for Beacon Unpredictability

