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Abstract. The Keccak sponge function family, designed by Bertoni et
al. in 2007, was selected by the U.S. National Institute of Standards and
Technology (NIST) in 2012 as the next generation of Secure Hash Algo-
rithm (SHA-3). Due to its theoretical and practical importance, crypt-
analysis against SHA-3 has attracted an increasing attention. To the best
of our knowledge, the most powerful collision attack on SHA-3 up till now
is the linearisation technique proposed by Jian Guo et al. However, that
technique is infeasible to work on variants with a smaller input space,
such as SHA3-384.
In this work we improve previous results with three ideas which were
not used in previous works against SHA-3. First, in order to reduce con-
straints and increase flexibility in our solutions, we use 2-block messages
instead of 1-block messages. Second, we reduce the connectivity problem
into a satisfiability (SAT) problem, instead of applying the linearisation
technique. Finally, we consider two new non-random properties of the
Keccak non-linear layer and propose an efficient deduce-and-sieve algo-
rithm based on these properties.
The resulting collision-finding algorithm on 4-round SHA3-384 has a
practical time complexity of 259.64 (and memory complexity of 245.93).
This greatly improves the previous best known collision attack by Dinur
et al., whose 2147 time complexity was far from being practical. Although
our attack does not threaten the security margin of the SHA-3 hash func-
tion, the tools developed in this paper could be useful in future analysis
of other cryptographic primitives and also in development of new and
faster SAT solvers.

Keywords: SHA-3 hash function, collision attack, deduce-and-sieve al-
gorithm, SAT solver
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1 Introduction

Cryptographic hash functions are unkeyed primitives that accept an arbitrar-
ily long input message and produce a fixed length output hash value, or digest
for short. Since the time of introduction by Diffie and Hellman in their seminal
paper [7] suggesting signing a hash value of a message rather than the message
itself, hash functions were found to be extremely useful in variety of crypto-
graphic protocols: in authentication (e.g., HMAC [1]), in password protection,
for commitment schemes, in key exchange protocols, etc. Hence, the need for a
secure and efficient hash function is great, both for real life applications and as
a component of more complex constructions.

The first de-facto cryptographic hash function was MD5 [24], developed by
Rivest to fix a few issues with its predecessor MD4. Later, the US National
Institute of Standards in Technology (NIST) published the SHA standard [22].
After two years, SHA was updated into what was later named SHA-1 [20] to
prevent some attacks that was not disclosed to the public (but was later redis-
covered by Chabaud and Joux [4]). With the need for larger output sizes (as
SHA-1 supports 160-bit output), NIST has decided to publish a new family of
hash functions, called SHA-2, with output sizes between 224 and 512 bits [21].

In a series of papers from 2005, Wang et al. [28,29,30] succeeded in breaking
a number of cryptographic functions. These fundamental works demonstrated
the way to attack most of existing hash functions using several techniques and
ideas: the use of modular differences (i.e., using both a XOR difference and an
additive difference), the use of multi-block collisions (i.e., collisions that span
over several blocks, and idea discovered independently in [2]), and introduction
of the message modification technique (a method to tweak a pair of messages
conforming to some differential characteristic up to a certain round, so that it
satisfies the characteristic for more rounds).

These advances (together with additional results on the Merkle-Damgård
hash function [6,16] which is the design all previously mentioned hash functions
followed), led NIST to start a cryptographic competition for the selection of a
new hash function standard. The process started in 2008, and in 2015 Keccak [11]
was published as the new SHA-3 standard [19].

Keccak [11], designed by Bertoni et al., is a sponge construction. It has a
1600-bit state which is updated by XORing message blocks to the state. The
number of bits that compose a message block depends on the required output
size (as the capacity of the sponge function should be twice as many bits as the
output size, and the remaining bits are XORed with the message block). Then,
a 24-round permutation Keccak-f is applied to the state and another block is
absorbed into the state, until the last block is absorbed. Finally, the internal
state is updated again using Keccak-f, and some bits of the internal state are
revealed as the output.

Since 2008 when Keccak was published, the analysis of both keyed mode
and unkeyed mode Keccak has attracted considerable attention in academia. On
the keyed mode Keccak, a cube-like attack proposed by Dinur et al. [10] and
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a conditional cube attack proposed by Huang et al. [13] are the most powerful
tools for analysing primitives based on the Keccak sponge function.

A SAT solver has been applied on the analysis of the unkeyed mode Keccak
by Morawiecki et al. to find a preimage of a hash value in the literature [17].
But the authors did not take algebraic structures of Keccak into consideration,
which somehow reduces the power of the SAT solver. In our collision attack, we
combine algebraic non-random characteristics with a SAT solver to make full
use of its efficiency.

The purpose of a collision attack on a hash function H is to find a pair of
distinct messages M and M ′ such that H(M) = H(M ′). Finding a collision
pair should be computationally difficult for a secure hash function. With respect
to collision attacks on Keccak, Naya-Plasencia et al. reported several practical
attacks in [18] on the Keccak hash function in 2011, including a collision attack
on 2-round Keccak-512.5 Dinur et al. proposed practical collision attacks on
4-round Keccak-224/256 [8] in 2012, where the authors combined a 1-round
connector with a 3-round low weight trail by algebraic techniques. In 2013, the
same authors constructed practical collision attacks on 3-round Keccak-384 and
Keccak-512 and theoretical attacks on 4-round Keccak-384 and 5-round Keccak-
256 using generalised internal differentials [9].

Currently, the most powerful tool for building a practical collision attack
against the SHA-3 hash function is the linearisation technique carried out by
Qiao et al. in [23], which was later improved by Song et al. in [25]. The two
works were recapped into a journal version in [12] by Guo et al. In [23], Qiao
et al. followed the framework proposed by Dinur et al. in [8] and extended the
previous 1-round connector by one more round. In that work, the authors devel-
oped a novel algebraic technique to linearise all S-boxes in the first round. In [25],
Song et al. developed a new non-full linearisation technique to save degrees of
freedom in the attack. With the help of the new technique, they launched several
practical collision attacks on the Keccak family, such as 5-round SHA3-224 and
5-round SHA3-256. However, this technique can not succeed to work on variants
with a smaller input space, such as SHA3-384 and SHA3-512. It is because the
appended conditions will consume a large amount of degrees of freedom while
variants with a smaller input space can not provide sufficient degrees of freedom.
Previous results of collision attacks on SHA-3 are summarised in Table 1.

Our Contributions Our work extends previous results [8] on finding collisions in
SHA-3: a 3-round differential characteristic that leads to a collision is used in
rounds 2–4, whereas a connecting phase is used in the first round to lead the
input message pair into the input difference of the differential characteristic.

At the same time, we introduce three techniques into collision attacks on
Keccak. The first, is the use of more than a single block in the colliding message
pair. Namely, we noticed that many of good input differences impose conditions
on the input which cannot be satisfied (as they are in the capacity part of the
state). By first finding a message pair that satisfies these conditions, we levy

5 SHA3-n differs from Keccak-n only in the padding rule.
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Rounds Target Complexity Reference
2 Keccak-512 Practical [18]
4 Keccak-224 Practical [8]
4 Keccak-256 Practical [8]
3 Keccak-512 Practical [9]
3 Keccak-384 Practical [9]
4 Keccak-384 2147 [9]
5 Keccak-256 2115 [9]
5 SHA3-224 Practical [23]
5 SHA3-256 Practical [23]

Table 1. Summary of Existing Collision Attacks on SHA-3

this restriction. Not only that this step offers greater flexibility in choosing a
differential characteristic, we use the first block to set some chaining value bits
to values that help the connectivity step.

Our second contribution is to replace the linear connection phase that was
used before in [12] with a SAT-connection phase, which is inspired by the ded-
icated collision attack against SHA-1 with a SAT solver aided, proposed by
Stevens et al in [27]. Namely, we use SAT solvers to find message values that
satisfy the required difference conditions while previous works [12,23,25] did the
connection from the input difference of the characteristic to the message condi-
tions using linearisations. Again, there are two advantages for this approach —
the first, is that we gain greater flexibility in choosing the differential charac-
teristic as now we can “connect” to a wider range of input differences. Secondly,
non-linear conditions which are useful in finding collisions (i.e., fixing interme-
diate bits to some values) are much easier to be satisfied using this sort of tools.

The third contribution is the introduction and development of multiple detec-
tion and sieving tools for a faster and more efficient completion of internal states
than applying a SAT solver directly on non-linear problems. This reduces the
number of unknowns and simplifies relations, making SAT solvers more efficient
by a few orders of magnitude. We introduce a Truncated Difference Transform
Table, that for a given truncated differential transition stores possible differen-
tial transitions (i.e., if a truncated differential is followed, the table allows to
efficiently find actual bit differences that were involved in the transition). We
also introduce a Fixed Value Distribution Table, a precomputed table used to
efficiently identify values that correspond to certain truncated difference tran-
sitions (just like in the original work of [3] stored in the difference distribution
table also the values that correspond to the transition). The use of these two
tools makes it possible to deduce information concerning pairs which we need
for satisfying the differential characteristic.

We combine these ideas and produce the first practical attack that can find
collisions in 4-round SHA-384. The expected running time of this attack is below
260 (we remind the reader that the SHA1 collision found by [27] used about 263
computation). While we implemented the attack and verified it, our best result
at the moment is a 5-bit near collision, which is to date, the best known near-
collision against SHA3-384.
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Organisation of the paper The rest of the paper is organised as follows. In Sec-
tion 2, we describe the SHA-3 hash function and properties of the Keccak round
function. In Section 3, we revisit the collision attack proposed by Guo et al.
The new framework of our attack is illustrated in Section 4. The methods of
constructing the differential characteristic and generating the first blocks are
stated in Section 5. The SAT-connection phase is described in Section 6. In Sec-
tion 7, experimental results of our attack are given. Finally, we conclude the
paper in Section 8.

2 Background

2.1 SHA-3 hash function

The Keccak algorithm. In this section we describe the Keccak hash function
in its default version. We refer the reader to [11,19] for the complete Keccak
specification.

The Keccak hash function works on a 1600-bit state A, which is simply
a three-dimensional array of bits, namely A[5][5][64]. One-dimensional arrays
A[ ][y][z], A[x][ ][z] and A[x][y][ ] are called a column, a row and a lane, re-
spectively; a two-dimensional array A[ ][ ][z] is called a slice, which is shown
in Figure 1. The coordinates are always considered modulo 5 for x and y, and
modulo 64 for z. A 1600-bit string a is converted to the state A in the following
manner: the (64(5y + x) + z)th bit of a becomes A[x][y][z].

We will also utilise a one-dimensional manner for referring to a single related
bit. For example, we use A[i] to represent the bit A[ψ0(i)][ψ1(i)][ψ2(i)], where
ψ0(i) = ⌊i/320⌋, ψ1(i) = ⌊i/64⌋ mod 5, ψ2(i) = i mod 64, ⌊ ⌋ is the floor
function, and 0 ≤ i < 1600. We also define a function ϕ0 such that the bit A[i]
is in the ϕ0(i)th column of the state A, where ϕ0(i) = 64ψ1(i) + ψ2(i).

There are four different variants of the Keccak hash function, namely Keccak-
224, Keccak-256, Keccak-384 and Keccak-512. For each n ∈ {224, 256, 384, 512},
Keccak-n corresponds to the parameters r (bitrate) and c = 2n (capacity), where
r + c = 1600. The capacity c is 448, 512, 768, 1024, respectively for Keccak-224,
Keccak-256, Keccak-384 and Keccak-512. And the bitrate r is 1152, 1088, 832, 576
with respect to the four versions.

Initially, the state is filled with zeroes and the message is split into r-bit
blocks. There are two phases in the Keccak hash function. In the absorbing
phase, the next r-bit message block is XORed with its first r-bit segment of the
state and then the state is processed by an internal permutation that consists
of 24 rounds. After all the blocks are absorbed, the squeezing phase begins. In
the squeezing phase, Keccak-n iteratively returns the first r bits of the state as
the output of the function with the internal permutation, until an n-bit digest
is produced.

In the permutation, the round function R consists of five operations, namely,
θ, ρ, π, χ and ι. The round function is defined as R = ι ◦ χ ◦ π ◦ ρ ◦ θ, with the
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Fig. 1. Terminologies in Keccak

following sub-functions:

θ : A[i][j][k]← A[i][j][k] +Σ4
j′=0A[i− 1][j′][k] +Σ4

j′=0A[i+ 1][j′][k − 1],

ρ : A[i][j]← A[i][j] ≫ r[i, j], r[i, j]s are constants,
π : A[j][2i+ 3j]← A[i][j],

χ : A[i][j]← A[i][j] + (A[i+ 1][j] + 1)A[i+ 2][j][k],

ι : A[0][0]← A[0][0] +RCir , RCir is the irth round constant,

where 0 ≤ i < 5, 0 ≤ j < 5, 0 ≤ k < 64 and 0 ≤ ir < 24.
The purpose of θ is to diffuse the state. In the operation θ, the bit A[i]

is summed up with the ϕ1(i)th and ϕ2(i)th columns of bits, where ϕ1(i) =
64((ψ0(i)− 1) mod 5)+ψ2(i) and ϕ2(i) = 64((ψ0(i)+1) mod 5)+ ((ψ2(i)− 1)
mod 5).

The operations ρ and π implement a bit-level permutation of the state. Let
us denote this combined permutation by σ = π ◦ ρ, which forms a mapping on
integers {0, 1, · · · , 1599} such that σ(i) is the new position of the i-th bit in the
state after applying π ◦ ρ. The first three linear operations θ, ρ and π will be
called a half round, denoted as L. We rewrite the expression of L in Equation 1:

B[i] = A[σ−1(i)]⊕ col[ϕ1(σ−1(i))]⊕ col[ϕ2(σ−1(i))]. (1)

In Equation 1,A is the input state of L whileB is the output state. col[ϕ1(σ−1(i))]
and col[ϕ2(σ−1(i))] are the sums of the five bits in the ϕ1(σ−1(i))th and ϕ2(σ−1(i))th
columns, respectively. The sum of the five bits in one column is called a column
sum.

Padding rule. The Keccak hash function uses a multi-rate padding rule.
By this rule, the original message M is appended with a single bit 1 followed by
the minimum number of 0 bits and a single 1 bit such that the resulting message
is of length that is a multiple of the bitrate r. Specifically, the resulting padded
message is M =M |10 ∗ 1.
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In the four Keccak variants adopted by the SHA-3 standard, the message is
first appended with ‘01’, then the padding rule is applied. Namely, the resulting
padded message is M =M |0110 ∗ 1.

2.2 Properties of the Keccak round function

In this section we show five properties of the Keccak round function. The first
property is called the CP-kernel equation [11]. For states in which all columns
have even parity, θ is the identity: this is the column parity kernel (CP-kernel)
property. This property has been widely used in cryptanalysis of Keccak. For
example, the attacks in [13] use it to control the diffusion of cube variables.

Property 1. (CP-kernel Equation) For every ith and jth bits in the same
column of the state A we have:

A[i]⊕A[j] = B[σ(i)]⊕B[σ(j)],

where A and B are the input and output states of L, respectively, and 0 ≤ i, j <
1600, i ̸= j.

Property 1 can be easily verified through Equation 1. As the operations in the
first half round are all linear, the equality also holds for differences of corre-
sponding bits.

Before we present four differential properties of the non-linear operation χ,
we first recall the definition of the difference distribution table (DDT) of χ.
The operation χ is applied to each row of the state independently, and can be
regarded as an S-box. In the differential cryptanalysis proposed by Biham and
Shamir in [3], the DDT of an S-box counts the number of cases where the input
difference of a pair is a and the output difference is b. In our case, for an input
difference a ∈ F5

2 and an output difference b ∈ F5
2, the entry δ(a, b) of the DDT

of the Keccak S-box S is:

δ(a, b) = |{z ∈ F5
2|S(z)⊕ S(z ⊕ a) = b}|.

The set {z ∈ F5
2|S(z) ⊕ S(z ⊕ a) = b} is called a solution set.6 We present an

important property of the solution set as follows.

Property 2. ([5,8,11]) For every a, b ∈ F5
2, the solution set of the Keccak S-box,

{z ∈ F5
2|S(z)⊕ S(z ⊕ a) = b} forms an affine subspace of F5

2.

In Property 3 and Property 4, we will show that for some special out-
put differences of the Keccak S-box, the input difference should follow cer-
tain conditions. The two properties can be easily proven by checking the DDT
of the Keccak S-box. Suppose a 5-bit input difference of the S-box is δin =
(δin[4], δin[3], δin[2], δin[1], δin[0]) and the output difference is δout = (δout[4],
δout[3], δout[2], δout[1], δout[0]). Property 3 and Property 4 are then as follows.
6 The idea of the solution set first appeared in Biham and Shamir’s original work on

differential cryptanalysis.
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Property 3. If δout = 0x1 then δin[0] = 1.

Property 4. If δout = 0x3 then δin[1]⊕ δin[3] = 1.

We summarise all cases with special output differences in Table 2.

Output Difference Conditions Output Difference Conditions
0x1 δin[0] = 1 0x3 δin[1] ⊕ δin[3] = 1
0x2 δin[1] = 1 0x6 δin[2] ⊕ δin[4] = 1
0x4 δin[2] = 1 0xc δin[3] ⊕ δin[0] = 1
0x8 δin[3] = 1 0x18 δin[4] ⊕ δin[1] = 1
0x10 δin[4] = 1 0x11 δin[0] ⊕ δin[2] = 1

Table 2. Summary of Conditions for Special Output Differences of χ.

If only one input bit of the Keccak S-box is known, two output differences
of the S-box become linear. Let us show only the case when the least significant
input bit is given in Property 5. The other cases are shown in Appendix A. Sup-
pose the two 5-bit inputs of the Keccak S-box are x4x3x2x1x0 and x′4x′3x′2x′1x′0.
The corresponding outputs are y4y3y2y1y0 and y′4y′3y′2y′1y′0.

Property 5. ([12]) Given x1 and x′1, δout[0] is a linear combination of δin[0], x2
and x′2. Similarly, δout[4] is a linear combination of δin[4], x1 and x′1.

Property 5 comes from the algebraic relation between input and output of χ.
The algebraic normal form of χ is as follows:

yi = xi + (x(i+1 mod 5) + 1) · x(i+2 mod 5), for i = 0, . . . , 4

y′i = x′i + (x′(i+1 mod 5) + 1) · x′(i+2 mod 5), for i = 0, . . . , 4

δout[0] and δout[4] can be written as:

δout[0] = δin[0] + (x1 + 1) · x2 + (x′1 + 1) · x′2,
δout[4] = δin[4] + (x0 + 1) · x1 + (x′0 + 1) · x′1.

When x1 and x′1 take different values, the expressions of δout[0] and δout[4] are
linearised as shown in Table 3.

Conditions Linear Expressions
x1 = x′1 = 0 δout[0] = δin[0] + δin[2] δout[4] = δin[4]

x1 = x′1 = 1 δout[0] = δin[0] δout[4] = δin[4] + δin[0]

x1 = 1, x′1 = 0 δout[0] = δin[0] + x′2 δout[4] = δin[4] + x0 + 1

x1 = 0, x′1 = 1 δout[0] = δin[0] + x2 δout[4] = δin[4] + x′0 + 1

Table 3. Linear Expressions of δout[0] and δout[4] with Different x1 and x′1
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3 Guo et al.’s collision attacks on SHA-3

In this section we revisit the most dedicated existing collision attacks against
the SHA-3 hash function, constructed by Guo et al. utilising an algebraic and
differential hybrid method [12].

The framework of the attack against SHA3-n is shown in Figure 2. Given an
n2-round high-probability differential characteristic with the first n bits of the
output difference ∆SO as zeros, the attack consists of two stages. In the first
stage the adversary applies an n1-round connector by linearising the first n1
rounds. Thus the adversary obtains message pairs as {(M1,M

′

1)|Rn1(M1||0) ⊕
Rn1

(M
′
1||0) = ∆SI}, where ∆SI is the input difference of the differential char-

acteristic. In the second stage, the adversary finds a colliding pair following an
n2-round differential characteristic by searching over the pairs of messages ob-
tained in the first stage.

-round connector -round differential trail

𝑟 

𝑐 

𝑛1 

𝑛 

Δ𝑆𝐼  Δ𝑆𝑂  

𝑛2 

Fig. 2. Overview of Guo et al.’s (n1 + n2)-round Collision Attacks

The main drawback of this approach is that in the linearisation technique in
the first stage, bit conditions are added in order to linearise the first n1 rounds,
thus consuming many degrees of freedom. As the input space of SHA3-384 is too
small for a sufficient level of degrees of freedom, extra bit conditions may cause
contradictions with restrictions on the initial values in the capacity part, thus
making the linearisation technique infeasible.

4 New framework for a collision attack against 4-round
SHA3-384

In this section we introduce a new framework for a collision attack that overcomes
drawbacks in Guo et al.’s technique. There are three stages in our attack, namely
the 1st block generation stage, the 1-round SAT-based connector stage, and the
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collision searching stage, as depicted in Figure 3. Before we overview the three
stages, we introduce some notations, definitions, and parameters.

f L 

f L 

3-round Differential 

Characteristic with 

High Probability

Collision

𝑀1 

𝑀1
′  

𝑀2 

𝑀2
′  

1st block generation stage 1-round SAT-based connector stage

𝛼1 

Collision searching stage

𝛼0 

Fig. 3. The framework of Our Attack

The first blocks M1 and M
′

1 in Figure 3 are called prefixes. The second
blocks M2 and M

′

2 are called suffixes. In our attack, we assume that message
pairs (M1||M2) and (M

′

1||M
′

2) are actually messages after applying the padding
rule. The first blocks M1 and M ′

1 as well as the first 828 bits of the suffixes M2

and M
′

2 are controlled by the adversary and the last four bits of the suffixes are
0111. The size of the input space in this case is 832 + 828 = 1660 bits. The last
(r+4) bits of the input state of the second block are defined as chaining values,
which are known given a fixed prefix pair.

The 3-round differential characteristic depicted in Figure 3 is given in Ap-
pendix B. The probability of the characteristic is 2−42. The method of construct-
ing the characteristic is discussed in Section 5.2. The differential transition of
the i-th round in the characteristic is denoted by αi−1

L−→ βi−1
χ−→ αi, where

i ≥ 1. Let α0 be the input difference of the second block after adding message
blocks as shown in Figure 3. Next, we overview the three stages.

4.1 1st block generation stage

In this stage the adversary generates prefix pairs fulfilling required conditions on
corresponding chaining values. The method of deriving these conditions is given
in Section 5.1.

Instead of working on single-block messages like in the previous technique,
we turn to two-block messages, similar to the attacks proposed by Wang et al.
against MD-like hash functions [28,29,30]. This helps to reduce the impact of re-
strictions from the initial values in the capacity part on the 1-round connector.
The Keccak permutation on a prefix is regarded as a pseudo random number
generator (PRNG). Once a corresponding 1-round connector fails, the adver-
sary just generates another random prefix pair (M1,M

′

1) fulfilling the required
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conditions over the chaining values. In comparison, in Guo et al.’s method, the
adversary would have to search for a new differential characteristic with a special
form, which is a hard and time-consuming process.

4.2 1-round SAT-based connector stage

We develop a new 1-round SAT-based connector that replaces Guo et al.’s lineari-
sation technique, and removes the requirement on the size of the input space. In
this stage, for each prefix pair generated in the first stage, the adversary searches
for a suffix pair which connects the chaining values with a preset 1-round input
difference α1. This problem is called a connectivity problem, and it is defined as
follows.

Definition 1. Given a prefix pair (M1,M
′

1), the connectivity problem is to de-
termine if there exists a suffix pair (M2,M

′

2) such that

R(f(M1||0)⊕ (M2||0))⊕R(f(M
′

1||0)⊕ (M
′

2||0)) = α1. (2)

The connectivity problem can be reduced to a satisfiability (SAT) problem
and solved by a SAT solver. However, solving the connectivity problem using a
SAT solver for every prefix pair generated in the first stage is still time consum-
ing. Instead, we develop a preliminary deduce-and-sieve algorithm that filters
prefix pairs based on their differential properties.

In the deduce-and-sieve algorithm, the adversary rejects a prefix pair (M1,M
′

1)
if there exists no differential transition from α0 to α1, where the last 1600−828 =
772 bits of α0 are the sum of the chaining values. Thus, the adversary can ef-
ficiently dismiss most of prefix pairs that have no solution for corresponding
connectivity problems.

Then, the adversary applies the SAT solver to solve the connectivity prob-
lems for remaining pairs. For a prefix pair (M1,M

′

1), if there exists a suffix pair
(M̂2, M̂

′

2) such that Equation 2 holds, the SAT solver then returns the corre-
sponding suffix pair, which is called a suffix seed pair ; otherwise, the SAT solver
rejects the prefix pair. The 1-round SAT-based connector stage is described in
more detail in Section 6.

4.3 Collision searching stage

The method in the collision searching stage follows Guo et al.’s work: once the
adversary obtains a prefix pair (M1,M

′

1) and a suffix seed pair (M̂2, M̂
′

2), the ad-
versary aims to find a suffix pair (M2,M

′

2) following the differential characteristic
depicted in Figure 3.

All solutions for a corresponding connectivity problem form an affine sub-
space. Next, we explain how to derive that subspace of suffixes M2, which also
applies to deriving a subspace of suffixes M

′

2.
Given a pair of prefix and suffix seeds (M̂2, M̂

′

2), the input difference of
the operation χ, denoted as β0, can be deduced by computing L(f(M1||0) ⊕
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(M̂2||0)) ⊕ L(f(M
′

1||0) ⊕ (M̂
′

2||0)). Let x be a vector of bit values before χ, i.e.
x = L(f(M1||0)⊕ (M2||0)). By Property 2, given β0 and α1, all linear equations
on input affine subspaces of active S-boxes in the first round can be derived and
expressed as

A1 · x = b1, (3)

where A1 is a block-diagonal matrix in which each diagonal block together with
corresponding constants in b1 forms equations for one active S-box. Additional
constraint that x needs to fulfill is that given M1 and M

′

1 the chaining values
are prefixed:

A2 · x = b2, (4)

where A2 is a submatrix of L−1 and b2 is the vector of those prefixed chaining
values. Thus, x is in an affine subspace, which is equivalent to M2 being in an
affine subspace.

The adversary combines and solves Equation 3 and Equation 4 and obtains all
solutions to the connectivity problem. The adversary then exhaustively searches
for solutions of collision pairs that follow a 3-round differential characteristic.

5 Constructing a 3-round differential characteristic

In this section, we first introduce the deduction of conditions on chaining values
given an input difference. Afterwards, we discuss two criteria when constructing
a differential characteristic. With the differential characteristic, we explain the
method of generating prefix pairs satisfying conditions on corresponding chaining
values.

5.1 Requirements on chaining values

For the connectivity problem to have at least one solution (at least one pair of
compatible suffixes), chaining values must follow certain conditions. We classify
these conditions into two types having different forms:

– Type-I Conditions are of the form α0[i1]⊕α0[i2] = c, where c is a constant
and α0[i1], α0[i2] (i1, i2 ≥ 828) are the i1th bit and the i2th bit of α0,
respectively, and α0[i1] and α0[i2] are in the same column.

– Type-II Conditions are of the form α0[j1] ⊕ α0[j2] ⊕ α0[j3] ⊕ α0[j4] = c,
where j1, j2, j3, j4 ≥ 828 and c is a constant. Each pair of bits (α0[j1], α0[j2])
and (α0[j3], α0[j4]) are in the same column, while β0[σ(j2)] and β0[σ(j3)] are
in the same row.

We demonstrate how to comply with these two types of conditions in chaining
values. With α1, the adversary obtains an output difference of each S-box from
α1. There are three types of output differences from which the adversary can
derive conditions on β0. These cases are listed as follows.

12



Algorithm 1 Deriving Type-I Conditions
Input: α1

Output: Set of Type-I Conditions SA

1: Compute the output difference for each S-box from α1.
2: S0 = ∅, S1=∅, SA = ∅.
3: for each integer i ∈ [0, 1600) do
4: δout is the output difference of the corresp. S-Box where α1[i] is embedded in.
5: if δout = 0 then
6: S0 = S0 ∪ {i}.
7: else if δout ∈ {0x1,0x2,0x4,0x8,0x10} and α1[i] = 1 then
8: S1 = S1 ∪ {i}. ▷ Property 3
9: for each integer i ∈ [828, 1600) do

10: for each integer j ∈ [i+ 1, 1600) do
11: if σ(i), σ(j) ∈ S0 or σ(i), σ(j) ∈ S1 then
12: SA = SA ∪ {α0[i]⊕ α0[j] = 0}. ▷ Property 1
13: else if σ(i) ∈ S0, σ(j) ∈ S1 or σ(i) ∈ S1, σ(j) ∈ S0 then
14: SA = SA ∪ {α0[i]⊕ α0[j] = 1}. ▷ Property 1
15: Remove linear related conditions in SA

16: return SA

– Type-I Output Difference: The output difference of an S-box is zero when
it is inactive.

– Type-II Output Difference: The output difference of an S-box is 0x1,
0x2, 0x4, 0x8, or 0x10.

– Type-III Output Difference: The output difference of an S-box is 0x3,
0x6, 0xc, 0x11 or 0x18.

As from the form of Type-I Conditions, the adversary can derive conditions
from Type-I and Type-II output differences by applying CP-kernel equations.
The procedure is shown in Algorithm 1. From Line 3 to Line 8, the adversary
obtains Type-I and Type-II Output Differences from α1. Then, the adversary
deduces Type-I Conditions on chaining values by applying Property 1.

With these three types of output differences, the adversary can derive Type-
II Conditions. The procedure is shown in Algorithm 2. For each Type-III Output
Difference δout, the adversary checks Table 2 and writes a corresponding con-
dition as β0[i1] + β0[i2] = 1. If both of the bits α0[σ

−1(i1)] and α0[σ
−1(i2)]

are in the chaining value part, the procedure continues; otherwise, the adversary
moves to the next S-box. As shown in Lines 8 to 22 in Algorithm 2, if α0[σ

−1(i1)]
and α0[σ

−1(i2)] are in the chaining value part, the adversary checks CP-kernel
equations where β0[i1] and β0[i2] are involved in:

α0[σ
−1(i1)]⊕ α0[j1] = β0[i1]⊕ β0[σ(j1)],

α0[σ
−1(i2)]⊕ α0[j2] = β0[i2]⊕ β0[σ(j2)],

where α0[j1] and α0[j2] are in the same column with α0[σ
−1(i1)] and α0[σ

−1(i2)],
respectively. The adversary searches for α0[j1] and α0[j2] with some extra re-
quirements: α0[j1] and α0[j2] should be in the chaining value part; β0[σ(j1)] and

13



Algorithm 2 Deriving Type-II Conditions
Input: α1

Output: Set of Type-II Conditions SB

1: Compute the output difference for each S-box from α1.
2: S0, S1 are the same as in Algorithm 1, SB = ∅.
3: for each S-box do
4: δout is the output difference of the S-Box.
5: if δout ∈ {0x3,0x6,0xc,0x11,0x18} then
6: flag= 0.
7: Check Table 2 and write the corresponding condition as β0[i1] + β0[i2] = 1.
8: if σ−1(i1) ≥ 828 and σ−1(i2) ≥ 828 then
9: for each α0[j1] in the ψ0[σ

−1(i1)]th column where j1 ≥ 828 do
10: if σ(j1) ∈ S0 or σ(j1) ∈ S1 then
11: flag=1.
12: c1 = i, where i is 0/1 s.t. σ(j1) ∈ Si

13: Break
14: if (flag) then
15: flag=0.
16: for each α0[j2] in the ψ0[σ

−1(i2)]th column where j2 ≥ 828 do
17: if σ(j2) ∈ S0 or σ(j2) ∈ S1 then
18: flag=1.
19: c2 = i, where i is 0/1 s.t. σ(j2) ∈ Si

20: Break
21: if (flag) then
22: SB = SB∪{α0[j1]⊕α0[σ

−1(i1)]⊕α0[σ
−1(i2)]⊕α0[j2] = 1⊕c1⊕c2}

23: return SB

β0[σ(j2)] should be embedded in S-boxes with either Type-I or Type-II Output
Differences. If such α0[j1] and α0[j2] exist, then the adversary derives a Type-II
Condition (Line 22 in Algorithm 2).

5.2 How to construct a 3-round differential characteristic

The 3-round differential characteristic in our attack adapts the second charac-
teristic in [12, Table 9]. The last two rounds of their characteristic are used as
the last two rounds characteristic from the third round to the fourth round in
our attack. We slightly change the output difference of their characteristic to
make the first 384 bit differences be zero. Thus, the probability of the last two
rounds characteristic is 2−16 instead of 2−15 in the original one.

We extend the 2-round backward characteristic by one extra round. When
β1 is fixed, the 3-round differential characteristic is determined. We choose β1
according to two criteria as follows:

– Criterion 1: The affine subspace in the collision searching stage should be
sufficiently large to find a collision pair.

– Criterion 2: The number of conditions on the chaining values should not
be too large.

14



If Criterion 1 is not fulfilled, the affine subspace defined by Equation 3 and
Equation 4 is so small that the probability that a collision pair is obtained in
the third stage becomes insignificant.

If the characteristic does not follow Criterion 2, the procedure of generating
1st message blocks will become infeasible to be realised in practice. To keep our
attack practical, the differential characteristic should satisfy Criterion 2.

The difference α2 has 8 active S-boxes in the second round. From the DDT
of the S-box, the probability of a nonzero differential transition is at least 2−4.
Thus, the probability of our 3-round differential characteristic is not larger than
(2−4)8 · 2−16 = 2−48. The size of the affine subspace in the collision searching
stage should be larger than 48. The probability of the first round transition
should not be smaller than 2828−48 = 2780. As the average probability of a
nonzero differential path is 2−3, there should be no more than 780/3 = 260
active S-boxes in the first round to satisfy Criterion 1.

As for Criterion 2, we set the threshold for the number of conditions as 50.
We use a hash table to generate prefix pairs, as discussed in Section 5.3. When
the number of conditions is too large, the memory consumption when generating
1st blocks is infeasible.

We use a greedy algorithm to choose β1. With α2 from the second charac-
teristic in [12, Table 9], the adversary picks a compatible β1 at random and
computes α1 as L−1(β1). Given α1, the adversary obtains the number of active
S-boxes in the first round. With Algorithm 1 and Algorithm 2, the adversary
deduces conditions on the chaining values. If the two criteria are satisfied, the
greedy algorithm outputs a 3-round characteristic; otherwise, the adversary pick
another compatible β1 and continue the procedure.

In our differential characteristic presented in Table 6, there are 228 active
S-boxes in the first round. Applying Algorithm 1 and Algorithm 2 on the dif-
ferential characteristic, there are 39 conditions on the chaining values, including
38 Type-I Conditions and 1 Type-II Condition. These conditions are listed in
Appendix C. The probability of the differential characteristic is 2−42. Our dif-
ferential characteristic may not minimise the attack’s complexity. Finding such
a differential characteristic is an open problem.

5.3 Generating prefix pairs fulfilling the requirements

We explain the generation procedure of prefix pairs fulfilling the 39 conditions in
Table 7. In our approach, we use a hash table to trade off memory for time and
data complexities. The memory consumption in this procedure is mainly from a
hash table indexed by 39 bits. Before we describe the procedure, we introduce
some definitions.

We define a constant sum as a binary string c38c37 · · · c1c0, where ci is the sum
in the i-th condition, 0 ≤ i ≤ 38. In our case, the constant sum is 0x7e00000000
from the conditions in Table 7. The conditions are the sums of differences in
certain bit positions of the input state of the second block. To check whether
given a prefix pair (M1,M

′

1) the conditions are satisfied, the adversary first
computes sums of binary values in these positions, which are called the value
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Algorithm 3 Generating Prefix Pairs
Output: Set of Prefix Pairs SP

1: Constant sum Σ=0x7e00000000
2: SP = ∅
3: Initialise an array Counter of length 239 with zeros.
4: for each integer i ∈ [0, 2n) do
5: Randomly pick a message M of 832 bits and compute the value string c.
6: HashTable[c][Counter[c]]=M
7: Increase Counter[c] by 1.
8: for each integer i ∈ [0, 2n) do
9: if i < i⊕Σ then

10: for each integer j ∈ [0,Counter[i]) do
11: for each integer k ∈ [0,Counter[i⊕Σ]] do
12: SP = SP ∪ {(HashTable[i][j],HashTable[i⊕Σ][k])}

string and recorded as a 39-bit string. Then, the adversary sums up value strings
and checks whether the result equals the constant sum value. If true, then the
adversary obtains a prefix pair fulfilling all conditions; otherwise discards it.

The procedure of generating prefix pairs satisfying the conditions is shown
in Algorithm 3. First, the adversary generates 2n messages M of length 832 bits
and computes corresponding value strings c. The adversary places M into the
cth row of the hash table. Thereafter, the adversary searches through the hash
table for prefix pairs that satisfy the constraints (Lines 8 to 16).

Algorithm 3 generates around 2n · 2n−1 · 2−39 = 22n−40 pairs. The time and
data complexity is 2n. The memory consumption is mainly from the hash table,
which is also 2n. The value of n is experimentally discussed in Section 7.

6 1-round SAT-based connector

We develop a new 1-round SAT-based connector to solve the connectivity prob-
lem in an efficient way. The connector includes two phases. First, we use a
deduce-and-sieve algorithm to filter prefix pairs generated by Algorithm 3. Then,
for each remaining prefix pair, the connectivity problem is resolved by applying
a SAT solver.

6.1 Deduce-and-sieve algorithm

In the deduce-and-sieve algorithm, we assume that for a prefix pair (M1,M
′

1),
there exists a suffix pair (M2,M

′

2) in the connectivity problem. It indicates that
in some S-boxes, input differences for Type-I and Type-II output differences
should be of a special form. Thus, some bit differences of β0 are supposed to be
fixed, which are then recorded in the sets S0 and S1, see Algorithm 1.

There are two phases in the deduce-and-sieve algorithm. In the difference
phase, given a prefix pair (M1,M

′

1) the adversary deduces new bit differences
and checks whether a contradiction has been reached, in which case the prefix

16



Algorithm 4 Initial Phase of the Deduce-and-sieve Algorithm
1: procedure Initial(M1, M

′
1)

2: A = f(M1||0), A′ = f(M
′
1||0)

3: for each integer i ∈ [0, 1600) do
4: if i ≥ 828 then
5: α0[i] = A[i]⊕A′[i], αS

0 [i] = 1, AS [i] = 1, A′
S [i] = 1

6: else
7: α0[i] = 0, αS

0 [i] = 0, A[i] = 0, A′[i] = 0, AS [i] = 0, A′
S [i] = 0

8: if i ∈ S0 then
9: β0[i] = 0, βS

0 [i] = 1
10: else if i ∈ S1 then
11: β0[i] = 1, βS

0 [i] = 1
12: else
13: βS

0 [i] = 0

14: B[i] = 0, B′[i] = 0, BS [i] = 0, B′
S [i] = 0

15: for each integer i ∈ [0, 320) do
16: Σ[i] = 0, ΣS [i] = 0

17: return A,A′, AS , A
′
S , B,B

′, BS , B
′
S , α0, α

S
0 , β0, β

S
0

pair is discarded. The value phase helps to sieve prefix pairs more efficiently,
as the filtering rate of the difference phase is low. In the value phase, more bit
values can be deduced from the algebraic property of the Keccak S-box. If new
bit differences are obtained from new bit values, the adversary returns to the
difference phase to seek a contradiction and to discard the prefix pair.

In the initial phase of the deduce-and-sieve algorithm (Algorithm 4), the
adversary computes the chaining values for a prefix pair (M1,M

′

1) and stores
the values in two vectors A and A′ of length 1600, respectively. As the bit values
in vectors A and A′ can be either known or unknown, two extra vectors AS ,
A′

S , called indicator vectors, record whether the bit value in a corresponding
position is known. To be more specific, for 0 ≤ i < 1600, if and only if the ith bit
in A is known then AS [i] = 1. The adversary then computes the bit difference
α0[i], where 828 ≤ i < 1600, and sets the corresponding bit differences of β0
as a constant vector. Two indicator vectors αS

0 and βS
0 record whether the bit

difference in a corresponding position is known.
In the deduce-and-sieve algorithm, we use the vector Σ of length 320 to

record sums of five bit differences in each column. In the beginning, each entry
of the indicator vector ΣS is initialised as 0 denoting an unknown state.

6.1.1 The difference phase

In the difference phase of the deduce-and-sieve algorithm, for a given prefix pair
(M1,M

′

1), bit differences of α0 in the chaining value part can be obtained. As
we assume that there exists a solution in the connectivity problem for the prefix
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pair (M1,M
′

1), some bit differences of β0 should be certain values from the sets
S0 and S1, deduced by Algorithm 1.

With the CP-kernel equations and the expression of L, the adversary can de-
duce new bit differences from α0 and β0. We investigate the differential transition
of the Keccak S-box and develop a tool called Truncated Difference Transform
Table (TDTT), which is inspired by the truncated differential cryptanalysis, pro-
posed by Knudsen in [15]. With the TDTT of the Keccak S-box, a contradiction
may be reached for the prefix pair (M1,M

′

1) as there is no compatible differential
path from the input difference of the first round α0 to the output difference α1.
Before we define the TDTT of an S-box, we first introduce truncated difference
in Definition 2.

Definition 2. An n-bit difference is called a truncated difference if only m bits
of it are known, where m < n.

A 2n-bit integer a||b, where a, b ∈ Fn
2 , is used to represent a truncated dif-

ference. Let (an−1, · · · , a0) and (bn−1, · · · , b0) be the binary representations of a
and b, respectively. For each i where 0 ≤ i < n, if bi is known, ai = 1; otherwise,
ai = 0. In regular truncated differences, for each i where 0 ≤ i < n, ai ≥ bi.
Otherwise, the truncated difference is called irregular.

Differences covered by a regular truncated difference a||b, where a, b ∈ Fn
2 ,

are {d ∈ Fn
2 |di = bn+i if ai = 1, 0 ≤ i < n}. A difference d ∈ Fn

2 being covered
by a truncated difference ∆ ∈ F2n

2 is denoted by d ⪯ ∆.
We observe that with an output difference of the Keccak S-box and a cor-

responding truncated input difference, more bits of the input difference can be
fixed. For example, suppose that the output difference of an S-box is 0x1 and the
truncated input difference is 0 where none of the input bit differences is known.
Property 3 indicates that the least significant input bit difference should be 1.
Then, the truncated input difference of the S-box can be updated as 0000100001
in the binary representation. A complete transforming behaviour of the S-box
can be described by its TDTT:

Definition 3. Given a truncated input difference ∆T
in and an output difference

∆out, the entry TDTT(∆T
in, ∆out) of the S-box’s TDTT is:

TDTT (∆T
in, ∆out) =


null, if ∆T

in does not deduce ∆out, or ∆T
in is irregular

∆T ′

in , if more bits of the input difference can be derived
∆T

in, if no more bits can be derived

where ∆T ′

in is the new truncated input difference, ∆T
in, ∆

T ′

in ∈ F2n
2 and ∆out ∈ Fn

2 .

In case of Property 3, it can be observed that TDTT(0, 1) is 0x21.
The TDTT of an S-box can be constructed from its DDT, which is shown in

Algorithm 5. For a regular truncated difference a ∈ F2n
2 and an output difference

b ∈ Fn
2 , the adversary finds all the covered differences ∆in by a such that the

differential path ∆in → b is compatible, where ∆in ∈ Fn
2 (Line 4 in Algorithm 5).

If there exists no such ∆in, TDTT(a, b) =null. Otherwise, the adversary finds
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the new truncated difference T covering all ∆in and TDTT(a, b) = T (Line 8 to
14 in Algorithm 5). For an irregular truncated difference a ∈ F2n

2 , the adversary
labels the entire row of the TDTT as null, shown in Line 16 of Algorithm 5.

Algorithm 5 Constructing the TDTT of an n-bit S-box from its DDT
Input: DDT of an n-bit S-box
Output: TDTT of the S-box
1: for each integer a ∈ [0, 22n) do
2: if a is a regular truncated difference then
3: for each integer b ∈ [0, 2n) do ▷ TDDT(a, b) is computed in the loop.
4: Find D = {∆in ∈ Fn

2 |DDT(∆in, b) ̸= 0} ∩ {∆in ∈ Fn
2 |∆in ⪯ a}

5: if D = ∅ then
6: TDTT(a,b)=null
7: else
8: T=0 ▷ T is a 2n-bit integer.
9: for each integer i ∈ [0, n) do

10: if the i-th bit of each entry in D is a constant as ci then
11: Ti = ci, Tn+i = 1 ▷ Ti is the ith bit of T .
12: else
13: Ti = 0, Tn+i = 0

14: TDTT(a, b) = T

15: else
16: TDTT(a,*)=null
17: return TDTT

Next, we describe the method of deducing new bit differences from the CP-
kernel equations and the expression of L. Then, we explain the method of ap-
plying it for sieving prefix pairs.

Deducing New Differences from the CP-kernel equations. New differences of
some bit positions can be derived from the CP-kernel equations. For example, as
shown in Figure 4, the differences α[i3], α[i4] and β[σ(i3)] are known. β[σ(i4)] can
be deduced from the CP-kernel equation as β[σ(i4)] = α[i3]⊕α[i4]⊕β[σ(i3)]. New

L 

𝛼0 𝛽0 

i0 
i1 
i2 
i3 
i4 

σ(i0) 
𝜎 i1  
𝜎 i2  
𝜎 i3  
𝜎 i4  

deduced bit

known bit

unknown bit

Fig. 4. Deducing New Differences from the CP-kernel Equations

differences can be derived in a column if there exists a position ij in the column
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such that both α[ij ] and β[σ(ij)] are known, and 0 ≤ j < 5. The procedure of
deducing new differences in the i-th Column is shown in Algorithm 6.

Algorithm 6 Deducing New Differences in the i-th Column
1: procedure CPKernel(α0, β0, αS

0 , βS
0 , i)

2: Compute the indices of the five bits in the i-th column as i0, i1, · · · , i4.
3: flag = 0
4: for each integer j ∈ [0, 5) do
5: if αS

0 [ij ] = 1 and βS
0 [σ(ij)] = 1 then

6: flag = 1, sum = α0[ij ]⊕ β0[σ(ij)]

7: if flag then
8: for each integer j ∈ [0, 5) do
9: if αS

0 [ij ] = 1 and βS
0 [σ(ij)] = 0 then

10: β0[σ(ij)] = sum⊕ α0[ij ], βS
0 [σ(ij)] = 1.

11: else if αS
0 [ij ] = 0 and βS

0 [σ(ij)] = 1 then
12: α0[ij ] = sum⊕ β0[σ(ij)], βS

0 [σ(ij)] = 1

L L 

(a) (b)

known bits

unknown bits

don’t care bits

Fig. 5. Representatives when the Sum State is 1

Deducing New Differences from the Expression of L. New bit differences can be
derived from the expression of L. Applying Equation 1, the bit difference β0[i]
can be expressed as:

β0[i] = α0[σ
−1(i)]⊕Σ[ϕ1(σ

−1(i))]⊕Σ[ϕ2(σ
−1(i))], (5)

where Σ[ϕ1(σ
−1(i))] and Σ[ϕ2(σ

−1(i))] are the sums of the five bits in the
ϕ1(σ

−1(i))th and ϕ2(σ
−1(i))th columns, respectively, and 0 ≤ i < 1600. If only

one variable in Equation 5 is unknown, its value can be deduced. Before we show
the technique of deducing new difference applying Equation 5, we introduce the
method of computing the column sum.

We classify the situations of the column sum into three cases. The first case
is that the column sum is known. The second is that the column sum becomes
known with one more known bit. The third is that more than two bits of infor-
mation are needed to derive the column sum. In order to compute the column
sum, we use another variable called a sum state that encodes the three states: 1
for the first case, 2 for the second case, or 0 otherwise.
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Fig. 6. Representatives when the Sum State is 2

Representatives when the sum state is 1 are shown in Figure 5.7 For example,
as shown in Figure 5 (b), α0[i2], α0[i3], α0[i4], β0[σ(i0)] and β0[σ(i1)] are known.
Applying the CP-kernel equation, the column sum can be computed as

α0[i2]⊕ α0[i3]⊕ α0[i4]⊕ β0[σ(i0)]⊕ β0[σ(i1)].

Representatives when the sum state is 2 are shown in Figure 6.8 In these five
representatives the sum of four bits of one column can be derived with the CP-
kernel equation. The index of the left bit in the column, defined as the marked
bit, is recorded. The difference of the marked bit may be deduced in a later step.

The procedure for computing the i-th column sum is shown in Algorithm 7.
The adversary finds the states of the 10 related bits from α0 and β0. If the
situation matches one of the representatives in Figure 5, the column sum is
known. The adversary computes the sum and updates the sum state ΣS [i] with
1. If the situation matches one of the representatives in Figure 6, where one bit
difference is missing, the adversary computes the sum of the corresponding blue
bits. The adversary then records the sum and the index of the marked bit and
updates the sum state ΣS [i] with 2. If the situation does not match any of the
representatives in Figure 5 or Figure 6, the adversary labels the corresponding
sum state as 0.

Given column sums, the adversary can obtain new bit differences from the
expression of θ. To be more specific, if there is only one variable is unknown in
Equation 5, the value of it can be easily deduced. The procedure is shown in
Algorithm 8. There are 6 situations in which new differences can be deduced.
In the forth and sixth situations, marked bits are obtained and corresponding
column sums are updated. In the first, second, third and fifth situations, when
new values in α0 or β0 are obtained, the corresponding CP-kernel equations are
checked again to deduce new bit differences.

Sieving Prefix Pairs with TDTT. The sieving procedure applying the TDTT
of the Keccak S-box is shown in Algorithm 9. With β0 and βS

0 , the adversary

7 We only show a representative in Figure 5 (b). The other cases can be obtained by
permuting the bits in the two columns simultaneously.

8 We only show three representatives in Figure 6. The other cases can be obtained by
permuting the bits in the two columns of the subfigures simultaneously.
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Algorithm 7 Computing the i-th Column Sum
1: procedure ColumnSum(α0, β0, αS

0 , βS
0 , i, Σ, ΣS , MarkedBit)

2: Compute the indices of the five bits in the i-th column as i0, i1, · · · , i4.
3: if the five bits match one of the representatives in Figure 5 then
4: Compute the sum and record it in Σ[i]
5: ΣS [i] = 1
6: else if the five bits match one of the representatives in Figure 6 then
7: Compute the sum of the four corresponding known bits and record it in Σ[i]
8: ΣS [i] = 2
9: Record the index of the corresponding marked bit in MarkedBit[i]

10: else
11: ΣS [i] = 0

can deduce the truncated input difference for each S-box. Then, the adversary
discards prefix pairs with no solutions in the connectivity problem according
to the TDTT. For pairs that cannot be discarded, the adversary may obtain
new bit differences of β0 from the TDTT. Once a bit difference is obtained, the
adversary checks the related CP-kernel equations to deduce new bit differences
in α0 and β0, as shown in Lines 13-15 in Algorithm 9.

Let us summarise the difference phase of the derive-and-seive algorithm in
Algorithm 10. The adversary first initialises the difference phase by deducing bit
differences through checking the CP-kernel equations. Then, she updates column
sums and deduces new bit differences from the expression of L. Finally, the
adversary checks the TDTT of the Keccak S-box and decides whether a certain
prefix pair (M1,M

′

1) should be discarded. If the pair should not be discarded,
the adversary computes the number of new deduced bit differences from Lines
8-13 in Algorithm 10. If new bit differences are deduced, the adversary goes back
to Line 8; otherwise, she accepts the prefix pair.

6.1.2 The value phase
In the value phase, the adversary applies an algebraic property of the Keccak
round function to deduce new input bit values of χ in the first round. New values
can be deduced using a new tool called Fixed Value Distribution Table (FVDT)
and applying the CP-kernal Equalities.

The FVDT is developed from an observation that with a truncated input
difference and an output difference of the Keccak S-box, bit values in some
positions are constants. Applying the FVDT of the Keccak S-box, the adversary
can obtain new input bit values of χ. With these new values and the chaining
values, the adversary applies the CP-kernal equations to deduce additional input
bits of χ. With the new values, the adversary can derive new bit differences from
the expression of χ. Then, she can continue with the difference phase.

Fixed Value Distribution Table (FVDT). Before we delve into details of the
FVDT of an n-bit S-box, we first define a solution set of a truncated input
difference ∆T

in and an output difference ∆out as follows:
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Algorithm 8 Deducing New Differences from the Expression of L
1: procedure LinearTrans(α0, β0, αS

0 , βS
0 , Σ, ΣS , MarkedBit)

2: for each integer i ∈ [0, 1600) do
3: i0 = σ−1(i), i1 = ϕ1(i0), i2 = ϕ2(i0)
4: Deduce the expression of β0[i] = α0[i0]⊕Σ[i1]⊕Σ[i2]
5: if βS

0 [i] = 0 and αS
0 [i0] = 1 and ΣS [i1] = 1 and ΣS [i2] = 1 then

6: β0[i] = α0[i0]⊕Σ[i1]⊕Σ[i2], βS
0 [i] = 1

7: CPkernel(α0, β0, αS
0 , βS

0 , ϕ0(i0))
8: else if βS

0 [i] = 1 and αS
0 [i0] = 0 and ΣS [i1] = 1 and ΣS [i2] = 1 then

9: α0[i0] = β0[i]⊕Σ[i1]⊕Σ[i2], αS
0 [i0] = 1

10: CPkernel(α0, β0, αS
0 , βS

0 , ϕ0(i0))
11: else if βS

0 [i] = 1 and αS
0 [i0] = 1 and ΣS [i1] = 0 and ΣS [i2] = 1 then

12: Σ[i1] = β0[i]⊕ α0[i0]⊕Σ[i2], ΣS [i1] = 1
13: else if βS

0 [i] = 1 and αS
0 [i0] = 1 and ΣS [i1] = 2 and ΣS [i2] = 1 then

14: α0[MarkedBit[i1]] = β0[i]⊕ α0[i0]⊕Σ[i1]⊕Σ[i2]
15: αS

0 [MarkedBit[i1]] = 1
16: Σ[i1] = α0[MarkedBit[i1]]⊕Σ[i1], ΣS [i1] = 1
17: CPkernel(α0, β0, αS

0 , βS
0 , ϕ0(MarkedBit[i1]))

18: else if βS
0 [i] = 1 and αS

0 [i0] = 1 and ΣS [i1] = 1 and ΣS [i2] = 0 then
19: Σ[i2] = β0[i]⊕ α0[i0]⊕Σ[i1], ΣS [i2] = 1
20: else if βS

0 [i] = 1 and αS
0 [i0] = 1 and ΣS [i1] = 1 and ΣS [i2] = 2 then

21: α0[MarkedBit[i2]] = β0[i]⊕ α0[i0]⊕Σ[i1]⊕Σ[i2]
22: αS

0 [MarkedBit[i2]] = 1
23: Σ[i2] = α0[MarkedBit[i2]]⊕Σ[i2], ΣS [i2] = 1
24: CPkernel(α0, β0, αS

0 , βS
0 , ϕ0(MarkedBit[i2]))

Definition 4. The solution set of a truncated input difference ∆T
in and an out-

put difference ∆out is

ST (∆
T
in, ∆out) =

⋃
∆in⪯∆T

in

{(a, a⊕∆in)|S(a)⊕ S(a⊕∆in) = ∆out},

where ∆T
in ∈ F2n

2 , ∆in ∈ Fn
2 and ∆out ∈ Fn

2 .

The solution set of the truncated input difference ∆T
in and the output differ-

ence ∆out is a generalisation of the solution set of the input difference ∆in and
the output difference ∆out of regular DDTs. From Definition 4, it is a union of
solution sets of the input difference ∆in and the output difference ∆out, where
∆in ⪯ ∆T

in.
We observe that for the truncated input difference ∆T

in and the output dif-
ference ∆out, some bits of the pairs in the solution set ST (∆

T
in, ∆out) may be

constants. For example, when the truncated input difference ∆T
in is 0xc2, the

covered differences are 0x2, 0x3, 0xa, 0xb, 0x12, 0x13, 0x1a, and 0x1b. If the
output difference ∆out is 0x1, the compatible differences are 0xb and 0x1b. The
solution set is ST (0xc2,0x1) = {0x0, 0x3, 0x8, 0xb} ∪ {0x1, 0x1c}. It can be
easily verified that the value of the third bit in the solution set is fixed as 0.

Based on this observation, we develop a useful tool called Fixed Value Dis-
tribution Table. If the adversary can obtain fixed values in some bit positions
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Algorithm 9 Discarding Prefix Pairs with TDTT
1: procedure Sieve(α0, β0, α1, αS

0 , βS
0 , TDTT)

2: for each S-box do
3: Deduce the output difference ∆out from α1.
4: Deduce the truncated input difference ∆T

in from β0 and βS
0 .

5: T=TDTT(∆T
in,∆out)

6: if T=null then
7: return 0.
8: else if T=∆T

in then
9: continue

10: else if T ̸= ∆T
in then

11: Find the indices of the five bits in the S-box as i0, i1, · · · , i4.
12: for each integer j ∈ [0, 5) do
13: if the (j + 5)th bit of ∆in is 0 and Tj+5 = 1 then
14: β0[ij ] = Tj , βS

0 [ij ] = 1 ▷ Tj is the jth bit of T .
15: CPkernel(α0, β0, αS

0 , βS
0 , ϕ0(σ

−1(ij)))

with ∆T
in and ∆out, we use a 2n-bit integer a||b, called as fixed point, to record

constant values and their corresponding positions, where a, b ∈ Fn
2 . If the i-th

bit in the S-box is a constant, ai = 1 and bi is assigned to be a fixed value;
otherwise, ai = 0 and bi = 0, where 0 ≤ i < n and ai and bi are the i-th bit of a
and b, respectively. We define the FVDT of an S-box as follows:

Definition 5. Given a truncated input difference ∆T
in and an output difference

∆out, the entry FVDT(∆T
in, ∆out) of the S-box’s FVDT is:

FV DT (∆T
in, ∆out) =

{
null, if ∆T

in does not deduce ∆out, or ∆T
in is irregular.

v, otherwise.

where ∆T
in, v ∈ F2n

2 , ∆out ∈ Fn
2 and v is the fixed point with respect to ∆T

in and
∆out.

The adversary uses the FVDT of the Keccak S-box to initialise the value
phase. The process is shown in Algorithm 11.

Deducing New Values from CP-kernel equations. Similarly to the difference
phase, new values can be deduced from the CP-kernel equations. For each col-
umn, the adversary just calls CPKernel(A, B, AS , BS , i) and CPKernel(A′,
B′, A′

S , B′
S , i) corresponding to two prefixes M1 and M ′

1, where i is the index
of the column and 0 ≤ i < 320.

It should be noted that more operations, including the column sum technique
in the differential phase (even on a fraction of columns), can be applied similarly
to deduce more bit values in the value phase. The technique might help to
improve the filtering rate of the deduce-and-sieve algorithm but increase its
complexity. It is, however, an open problem how to balance the complexity and
filtering rate of the deduce-and-sieve algorithm.
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Algorithm 10 Difference Phase of the Derive-and-seive Algorithm
1: procedure InitialiseDP(α0, β0, α1, αS

0 , βS
0 )

2: for each integer i ∈ [0, 320) do
3: CPkernel(α0, β0, αS

0 , βS
0 , i)

4: return a =the number of new deduced differences bits in α0 and β0
5: procedure DP(α0, β0, α1, αS

0 , βS
0 , TDTT)

6: a =InitialiseDP(α0, β0, α1, αS
0 , βS

0 )
7: while a ̸= 0 do
8: for each integer i ∈ [0, 320) do
9: if ΣS [i] = 0 then

10: ColumnSum(α0, β0, αS
0 , βS

0 , i, Σ, ΣS MarkedBit)
11: else if ΣS [i] = 2 and αS

0 [MarkedBit[i]] = 1 then
12: ΣS [i] = 1, Σ[i] = Σ[i]⊕ α0[MarkedBit[i]]

13: LinearTrans(α0, β0, αS
0 , βS

0 , Σ, ΣS , MarkedBit)
14: flag =Sieve(α0, β0, α1, αS

0 , βS
0 , TDTT)

15: if flag = 0 then
16: return 0 ▷ Discard the prefix pair
17: else
18: a =the number of new deduced differences bits in α0 and β0.
19: return 1 ▷ Accept the prefix pair

Deducing New Bit Differences from Bit Values. New bit differences can be de-
duced from bit values obtained in the value phase. For example, if the adversary
finds that the input bits of an S-box are x1 = x′1 = 0 then from Table 3,
δin[4] = δout[4], where δout[4] can be derived from α1. If δin[0] is known, δin[2]
can be obtained by δin[2] = δin[0] + δout[0]. The procedure of deducing new bit
differences is done by checking the cases in Table 3 as shown in Algorithm 14
in Appendix A. The value phase of the deduce-and-sieve algorithm is shown in
Algorithm 12.

The deduce-and-sieve algorithm is shown in Algorithm 13. With a prefix pair,
the adversary first runs the difference phase. If there is a contradiction then the
adversary discards the pair (Line 11); otherwise, the adversary starts the value
phase (Line 7). If new bit differences are deduced in the value phase then the
adversary runs the difference phase again; otherwise, she accepts the prefix pair
(Line 9). As the size of the Keccak state is finite 1600 bits, the deduce-and-sieve
algorithm will end in finite steps when no new bit differences can be obtained.
In this way, the deduce-and-sieve algorithm has a practical complexity.

6.2 SAT

Some of the generated prefix pairs have been filtered by applying the deduce-
and-sieve algorithm. The connectivity problems of the remaining prefix pairs
are determined by using a SAT-solver called CryptoMiniSAT [26]. The recent
version of CryptoMiniSAT accepts XOR clauses as input arguments to describe
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Algorithm 11 Initialising the Value Phase
1: procedure InitialVP(α0, β0, α1, αS

0 , βS
0 , B, B′, BS , B′

S , FVDT)
2: for each S-box do
3: Deduce the output difference ∆out from α1.
4: Deduce the truncated input difference ∆T

in from β0 and βS
0 .

5: v=FVDT(∆T
in,∆out)

6: if T=0 then
7: continue
8: else
9: Find the indices of the five bits in the S-box as i0, i1, · · · , i4.

10: for each integer j ∈ [0, 5) do
11: if vj+5 = 1 then ▷ vj is the jth bit of v.
12: B[ij ] = vj , B′[ij ] = vj , BS [ij ] = 1, B′

S [ij ] = 1

Algorithm 12 Value Phase of the Derive-and-seive Algorithm
1: procedure VP(α0, β0, α1, αS

0 , βS
0 , A, A′, AS , A′

S , B, B′, BS , B′
S , FVDT)

2: InitialVP(α0, β0, α1, αS
0 , βS

0 , B, B′, BS , B′
S , FVDT)

3: for each integer i ∈ [0, 320) do
4: CPkernel(A, B, AS , BS , i)
5: CPKernel(A′, B′, A′

S , B′
S , i)

6: a =Update(α0, β0, α1, αS
0 , βS

0 , B, B′, BS , B′
S) ▷ See Algorithm 14

7: if a = 0 then
8: return 0 ▷ No new bit differences are deduced.
9: else

10: return 1 ▷ New bit differences are deduced.

a SAT problem. It means that there is no need to convert XORs in the Keccak
round function into the conjunctive normal form (CNF) as it was done in [17].

The procedure of converting the connectivity problem of a prefix pair (M1,M
′
1)

into a SAT problem is shown in Algorithm 15 in Appendix D. It can be seen
from Algorithm 15 that in order to convert the connectivity problem into a SAT
problem the adversary just needs to assign chaining values as initial values and
derive expressions of output differences of the first round. The non-linear term
v0 = (v1 + 1)v2 in χ can be converted into CNF clauses as (¬v0 ∨ ¬v1 ∨ v2) ∧
(v0∨ v1)∧ (v0∨¬v2), where v0, v1 and v2 are internal variables (see Lines 28-30,
33-35).

7 Experiments and complexity analysis

We verify our work by implementing the attack and analysing its complexity. We
generate 241.3 prefix pairs fulfilling the conditions in Table 7 for one iteration.
These prefix pairs are filtered with the deduce-and-sieve algorithm. According
to our experiments, the filtering rate is 2−19.42. Thus, there are 221.88 prefix
pairs remained after applying our deduce-and-sieve algorithm. If we run the
deduce-and-sieve algorithm without the value phase, the filtering rate becomes
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Algorithm 13 Derive-and-seive Algorithm
1: procedure DeriveSeive(M1, M

′
1, TDTT, FVDT)

2: (A,A′, AS , A
′
S , B,B

′, BS , B
′
S , α0, α

S
0 , β0, β

S
0 )=Initial(M1, M

′
1)

3: flag = 1
4: while flag do
5: flag =DP(M1, M

′
1, α0, β0, α1, αS

0 , βS
0 , TDTT)

6: if flag then
7: flag =VP(α0, β0, α1, αS

0 , βS
0 , A, A′, AS , A′

S , B, B′, BS , B′
S , FVDT)

8: if flag = 0 then
9: return 1 ▷ Accept the prefix pair

10: else
11: return 0 ▷ Discard the prefix pair

2−13.55. It can be seen that the value phase helps to improve the efficiency of
the deduce-and-sieve algorithm by a factor of 25.87.

The average running time of the deduce-and-sieve algorithm is 1.22× 10−5s
for a prefix pair in average running on a single core of Intel(R) Xeon(R) CPU
E5-2609 0 @ 2.40GHz. If we apply the SAT solver CryptoMiniSAT to determine
the connectivity problem instead of using our deduce-and-sieve algorithm, the
average running time of the SAT solver for every prefix pair is 0.31s on a single
core of Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz. In conclusion, our approach
outperforms the SAT solver by a factor of 2.54×104 on this special type of SAT
problems.

As from the software performance figure [14], approximately 221 times of
Keccak 24-round permutations can be implemented in 1 second on a single
core of Intel(R) Sandy Bridge(R) Core i5-2400 @ 3.10GHz. It indicates that
one execution of 4-round SHA3-384 takes 4/24 × 2−21 = 2−23.58s. Thus, our
deduce-and-sieve algorithm on one prefix pair is approximately equivalent to
1.22 × 10−5/2−23.58 = 27.25 SHA3-384 operations from our experiments. The
average running time of the SAT solver for each remaining prefix pair after the
deduce-and-sieve algorithm is 3.93s on the same platform, which is equivalent to
3.93/2−23.58 = 225.55 SHA3-384 operations.

We use statistical methods to analyse the data complexity. We define a semi-
free n-bit chaining value collision attack in which situation the adversary is
assumed to have the capacity of modifying n-bit chaining values for each suffix
message, where n > 0. From our experiments, it can be observed that there
are 10.95 suffix seed pairs in average for each iteration to construct semi-free
14-bit chaining value collision attacks. Deriving the probability that there exists
a solution for a connectivity problem in a non-statistical manner is an open
problem.

Next, we estimate the probability that the suffix seed pair is still a seed pair
for a semi-free (n − 1)-bit chaining value collision attack, denoted as pn, where
n ≥ 1. The probability is important in analysing the complexity of our attack.
The probability pn should be 1

2 , where n > 0. As discussed in Section 4.3, a
suffix seed pair for constructing a semi-free n-bit chaining value collision attack
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should fulfill a system of linear equations combining Equation 3 and Equation 4.
If the suffix seed pair is also a suffix pair for a semi-free (n − 1)-bit chaining
value collision attack, one extra constraint from that one extra bit chaining
value should hold except for Equation 3 and Equation 4. Thus, the probability
pn is 1

2 , where n > 0.

To build a real collision attack, we need to collect 214 suffix seed pairs for the
semi-free 14-bit chaining value collision attack. Therefore, we need to generate
241.3 · 214/10.95 = 251.85 prefix pairs. To generate these pairs, the adversary
applies the hash table technique in Algorithm 3. As mentioned in Section 5.3,
the time, data and memory complexity of the 1st block generation stage should
be 245.93.

In the 1-round SAT-based connector stage, the adversary applies the deduce-
and-sieve algorithm to filter the 251.85 prefix pairs. The time complexity is 27.25 ·
251.85 = 259.1 and the memory complexity is negligible. Then, the adversary
solves the connectivity problems for the remaining 251.85 · 2−19.42 = 232.43 prefix
pairs applying the SAT solver. The time complexity is 232.43 ·225.55 = 257.98. The
memory cost of applying the SAT solver is also negligible from our experiments.
Thus, the complexity of the second stage is 259.64.

In the collision searching stage, the adversary solves the system of linear
equations combining Equation 3 and Equation 4 with a prefix pair and a suf-
fix seed pair gained from the previous stage, the time complexity of which is
negligible. Then, the adversary searches the solutions of the linear equations for
a suffix pair following the last 3-round differential characteristic of probability
242. Thus, the complexity of this stage is 242. Therefore, the time complexity is
determined by the complexity of the second stage, which is 259.64. The memory
and data complexity are both 245.93. Recall that the second stage includes two
phases, which are applying the deduce-and-sieve algorithm to filter prefix pairs
and solving the remaining connectivity problems with SAT solvers. It is also an
open problem to find the optimal filtering rate of the deduce-and-sieve algorithm
to balance the complexity of the two phases.

As the size of available memory we have is insufficient to generate 251.77

prefix pairs in one run utilising a large hash table, we had to generate data in
several iterations instead. Up till now, we have run 57 iterations on our platform.
We denote the number of suffix seed pairs for constructing a semi-free n-bit
chaining value collision attack in these iterations by Ωn, where 6 ≤ n ≤ 14.
We also compute the fraction that a suffix seed pair for constructing a semi-free
n-bit chaining value collision attack is still a seed pair for constructing a (n−1)-
bit near collision, denoted by p̂n, where 7 ≤ n ≤ 14. The experiment results
are shown in Table 4. It can be seen that almost each p̂n is close to 0.5, which
verifies our claim that pn should be 0.5. In these results, the best result is a suffix
seed pair for constructing a semi-free 5-bit chaining value collision attack. We
show our message pairs for a semi-free 5-bit chaining value collision in Table 8
in Appendix E.
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n 14 13 12 11 10 9 8 7 6 5

Ωn 624 291 133 66 29 13 12 7 3 1

p̂n 0.466 0.457 0.496 0.439 0.448 0.923 0.583 0.429 0.333 -
Table 4. Experiment Results

8 Conclusions

In this paper we describe a practical collision attack on 4-round SHA3-384. Our
attack outperforms the previous collision attack, of complexity 2147, proposed
by Dinur et al. in [9]. Currently, our result includes a 5-bit near collision, but an
adversary with slightly higher computing power can find a collision in practical
time.

Although this work does not threaten the security of the full SHA-3 hash
function, our results may be applied to analyse other sponge-based hash func-
tions. The two cryptanalytic tools that we introduced in this work, namely,
Truncated Difference Transition Table and Fixed Value Distribution Table, can
be helpful in detecting non-random behaviour of S-boxes. This may be useful
not only in analyses of other primitives but also for future designs of new secure
non-linear layers in symmetric primitives.

With the deduce-and-sieve algorithm developed in this work, most of unsat-
isfiable cases in a class of SAT problems can be determined in a more efficient
way than calling a SAT solver directly. The deduce-and-sieve algorithm may help
to enhance the performance of a SAT solver for certain class of SAT problems.
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A Linear expressions of the output differences of χ with
different conditions

Conditions Linear Expressions
x2 = x′

2 = 0 δout[1] = δin[1] + δin[3] δout[0] = δin[0]
x2 = x′

2 = 1 δout[1] = δin[1] δout[0] = δin[0] + δin[1]
x2 = 1, x′

2 = 0 δout[1] = δin[1] + x′
3 δout[0] = δin[0] + x1 + 1

x2 = 0, x′
2 = 1 δout[1] = δin[1] + x3 δout[0] = δin[0] + x′

1 + 1
x3 = x′

3 = 0 δout[2] = δin[2] + δin[4] δout[1] = δin[1]
x3 = x′

3 = 1 δout[2] = δin[2] δout[1] = δin[1] + δin[2]
x3 = 1, x′

3 = 0 δout[2] = δin[2] + x′
4 δout[1] = δin[1] + x2 + 1

x3 = 0, x′
3 = 1 δout[2] = δin[2] + x4 δout[1] = δin[1] + x′

2 + 1
x4 = x′

4 = 0 δout[3] = δin[3] + δin[0] δout[2] = δin[2]
x4 = x′

4 = 1 δout[3] = δin[3] δout[2] = δin[2] + δin[3]
x4 = 1, x′

4 = 0 δout[3] = δin[3] + x′
0 δout[2] = δin[2] + x3 + 1

x4 = 0, x′
4 = 1 δout[3] = δin[3] + x0 δout[2] = δin[2] + x′

3 + 1
x0 = x′

0 = 0 δout[4] = δin[4] + δin[1] δout[3] = δin[3]
x0 = x′

0 = 1 δout[4] = δin[4] δout[3] = δin[3] + δin[4]
x0 = 1, x′

0 = 0 δout[4] = δin[4] + x′
1 δout[3] = δin[3] + x4 + 1

x0 = 0, x′
0 = 1 δout[4] = δin[4] + x1 δout[3] = δin[3] + x′

4 + 1

Table 5. Linear Expressions of the Output Differences of χ with Known Input Bits in
Different Positions
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Algorithm 14 Deducing New Bit Differences
1: procedure Update(α0, β0, α1, αS

0 , βS
0 , B, B′, BS , B′

S)
2: for each integer i ∈ [0, 1600) do
3: if βS

0 [i] = 0 and BS [i] = 1 and B′
S [i] = 1 then

4: βS
0 [i] = 1, β0[i] = B[i]⊕B′[i] .

5: for each integer i ∈ [0, 1600) do
6: if BS [i] = 1 and B′

S [i] = 1 then ▷ Property 5
7: if B[i] = 0 and B′[i] = 0 then
8: Update β0/βS

0 [ψ0(i)][ψ1(i)][ψ2(i)], β0/βS
0 [ψ0(i)][ψ1(i) + 2][ψ2(i)] and

β0/β
S
0 [ψ0(i)][ψ1(i) + 4][ψ2(i)] according to the 1st row in Table 3

9: else if B[i] = 1 and B′[i] = 1 then
10: Update β0/βS

0 [ψ0(i)][ψ1(i)][ψ2(i)], β0/βS
0 [ψ0(i)][ψ1(i) + 2][ψ2(i)] and

β0/β
S
0 [ψ0(i)][ψ1(i) + 4][ψ2(i)] according to the 2nd row in Table 3

11: else if B[i] = 1 and B′[i] = 0 then
12: Update β0/βS

0 [ψ0(i)][ψ1(i)][ψ2(i)], β0/βS
0 [ψ0(i)][ψ1(i) + 2][ψ2(i)] and

β0/β
S
0 [ψ0(i)][ψ1(i) + 4][ψ2(i)] according to the 3rd row in Table 3

13: else if B[i] = 0 and B′[i] = 1 then
14: Update β0/βS

0 [ψ0(i)][ψ1(i)][ψ2(i)], β0/βS
0 [ψ0(i)][ψ1(i) + 2][ψ2(i)] and

β0/β
S
0 [ψ0(i)][ψ1(i) + 4][ψ2(i)] according to the 4th row in Table 3

15: return a =the number of new deduced differences bits in β0.

B The 3-round differential characteristic

α1(∆SI ) 7 c - b c 4 f 5 b 4 3 9 8 - - 2 2 4 - 7 d e 4 b c 9 6 6 8 - - 1 a c - 2 - 9 5 d 3 2 e b 8 - - - d 4 - 2 e 9 8 9 7 5 - 6 8 - - - 3 c - 5 7 - 6 a - 7 f 5 8 - - - 1
7 c - b c c f 5 b 4 3 9 8 - - 2 2 4 - f d e 4 b c 9 e 6 8 - - 1 a c - 2 - 9 5 d 3 2 e f 8 - - - c 4 - a e 9 8 9 7 5 - 6 8 - - - 3 4 1 4 7 - 6 a - 5 f 5 8 - - -
7 c - b c 4 f 5 b 4 3 9 8 - - - 2 4 - f d a 4 b c 9 e 6 8 - - 1 a c - 2 - 9 5 d 3 2 e b 8 - - - c 4 - a e 9 8 9 7 d - 6 8 - - - 3 c 1 5 7 - 6 a 2 5 f 5 8 - - -
7 c - b c 4 f 5 b c 3 9 8 - - 2 2 4 - f d e 4 f c 9 6 6 8 - - 1 a c - 2 - 9 5 d 3 2 e b 8 - - - c 4 - a e 9 8 9 7 5 - 6 8 - - - 3 c 1 5 7 - 6 a - 5 f 4 8 - - -
7 c - b c 4 f 1 b 4 3 9 8 - - 2 2 4 - f d e 4 b c 9 e 6 8 - - 1 a c - 2 - 9 5 d 3 a e b 8 - - - d 4 - a e 9 8 9 7 5 8 6 8 - - - 3 c 1 5 7 - 6 a - 5 f 5 8 - - -

β1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2−26

- - - - - - - - - 1 - - 8 - - - - - - - - - - - - - - - 8 - 1 - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - 8 - 1 - - - - - - - - - - 1 - - - - - -
- - 1 - - - - - - 1 - - - - - - - - - - - - - - - 1 - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - 1 - - - - - - - - - - - - -
- - 1 - - - - - - - - - 8 - - - - - - - - - - - - - - - 8 - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - 8 - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - -

β2 - - - - - - - - - - - - - - - - 8 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2−15

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8 - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1
- - - - - - - - - - - - - - - - 8 - - - - - - - - - - - - - - - - - - - - - - - 8 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

β3 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2−1

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 - - - - - - - - - - - - - - - - - - - 1 - - - - - - -
- - - - - - - - - - - - - - - 1 - - - - - - 2 - - - - - - - - - - - - - - - - - - 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - 8 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2

α4 (∆SO) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - −
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 - - - - - - - - - - - - - - - ? - - - 1 - - - - - - -
- - - - - - - - - - - - - - - 1 - - - - - - 2 - - - - - - - - ? - - - - - - ? - - 2 - - - - - ? - - - - - - ? - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4 - - - - - - - - - - - - - - - ? - - - - - - - - - - - - - - - ? - -
- - - - - - - - - - - - - - - ? - - 8 - - - - - - - - - - - - ? - - ? - - - - - - - - - - - - - - - ? - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2

Table 6. The 3-round differential trail

A 3-round differential trail is shown in Table 6. The ‘?’ in Table 6 means that the
corresponding byte is unknown. In the last column, the number is the probability
that the state transfers to the next state. For example, Pr(α1 → β1) = 1, which is
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stated in the last entry of the first row. Therefore, the probability of the 3-round
differential trail is 2−42.

C Conditions on chaining values

Type-I Conditions

α0[867] + α0[1187] = 0, α0[867] + α0[1187] = 0, α0[868] + α0[1188] = 0,
α0[881] + α0[1201] = 0, α0[882] + α0[1202] = 0, α0[883] + α0[1203] = 0,
α0[884] + α0[1204] = 0, α0[885] + α0[1205] = 0, α0[886] + α0[1206] = 0,
α0[887] + α0[1207] = 0, α0[888] + α0[1208] = 0, α0[889] + α0[1209] = 0,

α0[999] + α0[1319] = 0, α0[1000] + α0[1320] = 0, α0[1001] + α0[1321] = 0,
α0[1036] + α0[1356] = 0, α0[1037] + α0[1357] = 0, α0[1038] + α0[1358] = 0,
α0[1039] + α0[1359] = 0, α0[1040] + α0[1360] = 0, α0[1088] + α0[1408] = 0,
α0[1148] + α0[1468] = 0, α0[1149] + α0[1469] = 0, α0[1150] + α0[1470] = 0,
α0[1151] + α0[1471] = 0, α0[1216] + α0[1536] = 0, α0[1217] + α0[1537] = 0,
α0[1218] + α0[1538] = 0, α0[1219] + α0[1539] = 0, α0[1220] + α0[1540] = 0,
α0[1277] + α0[1597] = 0, α0[1278] + α0[1598] = 0, α0[1279] + α0[1599] = 0,
α0[938] + α0[1578] = 0, α0[959] + α0[1279] = 1, α0[998] + α0[1318] = 1,

α0[1147] + α0[1467] = 1, α0[836] + α0[1476] = 1,
Type-II Conditions α0[952] + α0[1592] + α0[1373] + α0[1053] = 1

Table 7. Set of parameters for the attack on 7-round Keccak-MAC-256

33



D Converting the Connectivity Problem into a SAT
problem

Algorithm 15 Converting a connectivity problem into a SAT problem
Input: M1, M ′

1, α1

Output: An SAT problem SE

1: SE = ∅
2: A = f(M1||0), A′ = f(M

′
1||0)

3: A[828] = A[828]⊕ 1, A′[828] = A′[828]⊕ 1 ▷ Padding
4: A[829] = A[829]⊕ 1, A′[829] = A′[829]⊕ 1 ▷ Padding
5: A[830] = A[830]⊕ 1, A′[830] = A′[830]⊕ 1 ▷ Padding
6: for each integer i ∈ [0, 828) do
7: A[i] = v(i), A′[i] = v(i+ 828)

8: c = 1656
9: for each integer i ∈ [0, 320) do ▷ θ

10: Σ[i] = v(c),
11: Add an XOR clause v(c)+A[i]+A[i+320]+A[i+640]+A[i+960]+A[i+1280] = 0

to SE

12: c = c+ 1
13: Σ′[i] = v(c),
14: Add an XOR clause v(c)+A′[i]+A′[i+320]+A′[i+640]+A′[i+960]+A′[i+

1280] = 0 to SE

15: c = c+ 1

16: for each integer i ∈ [0, 1600) do
17: Add an XOR clause v(c) +A[i]⊕Σ[ϕ1(i)]⊕Σ[ϕ2(i)] = 0 to SE

18: A[i] = v(c)
19: c = c+ 1
20: Add an XOR clause v(c) +A′[i]⊕Σ′[ϕ1(i)]⊕Σ′[ϕ2(i)] = 0 to SE

21: A′[i] = v(c)
22: c = c+ 1

23: ρ(A), π(A), ρ(A′), π(A′)
24: for each integer i ∈ [0, 5) do ▷ χ
25: for each integer j ∈ [0, 5) do
26: for each integer k ∈ [0, 64) do
27: B[i][j][k] = v(c) ▷ B[i][j][k] = (A[i][j + 1][k] + 1)A[i][j + 2][k]
28: Add a clause ¬v(c) ∨ ¬A[i][j + 1][k] ∨A[i][j + 1][k] to SE

29: Add a clause v(c) ∨A[i][j + 1][k] to SE

30: Add a clause v(c) ∨ ¬A[i][j + 2][k] to SE

31: c = c+ 1
32: B′[i][j][k] = v(c) ▷ B′[i][j][k] = (A′[i][j + 1][k] + 1)A′[i][j + 2][k]
33: Add a clause ¬v(c) ∨ ¬A′[i][j + 1][k] ∨A′[i][j + 1][k] to SE

34: Add a clause v(c) ∨A′[i][j + 1][k] to SE

35: Add a clause v(c) ∨ ¬A′[i][j + 2][k] to SE

36: c = c+ 1

37: for each integer i ∈ [0, 1600) do
38: Add an XOR clause A[i]⊕A′[i]⊕B[i]⊕B′[i] = α1[i] to SE
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E Semi-free Chaining Value Collision Messages

M1

7eb6ed3934564200 75d0e6b51d238c bb6badc150fc7530 a95e35a4266adb7e 2e9af78d077abc81
2af3adb6220bce55 dc6cd48da31cc32b d0f70356b596dcb4 35df3d0c646fb875 3f4b5c144ba3de65
cb2bbd4319886e97 6c0289a5a95a07ed 33d4fdfe8d403af9

M2

9cd41cc9965fe7a3 261baf704db0c539 3d05e819ea87c083 9b935bdcd7d2f383 c35f056399f29d7a
edc930fae9385eab 6650a9f144358100 476421ea0432a50a d12edee5158d198 220c00f9e9e509ad
bc8f326b1f480fda 1481cbc4bdb7f871 fb8a9fbbc29d5804 1

M ′
1

a54826d410e5091f 69bebb188099ebc0 3b32c71031b181c3 31ff258169a39406 db60e4353a5f8358
54a77b0eff70e7b2 3471d4fea04932de 2d5a11d3fabfedac e0401413a65a3abb 119f9ce12bfdde9c
982bc25efd4c067f be2ffffc535c2c71 f5a8eb3083469ba4

M ′
2

a500a7d98697470c 562000f9c16a90b2 f36a28662e5ab309 917d23e9a7fa450b 4d8bef680700d969
dc861cefcef2f803 3acbcc19aede0534 692367f60bfb4089 7de7f68b65da7778 3575579461894a2b
7ec0f83e0d81bded ecedaa7cda3c3469 7655830fb6a485aa

H
5a5b92501fd0ecb1 7491fdac0c5a9173 20a1b9c99bdd27ef 1f1b3495ed0d233e 2ab5556d2ae00a23
ca75246e32f4827f
Table 8. Semi-free 5-bit Chaining Value Collision Messages and Hash Value
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