
Quantum and Classical Algorithms for Bounded Distance Decoding

Richard Allen∗ Ratip Emin Berker† Sílvia Casacuberta‡ Michael Gul§

Harvard University

February 17, 2022

Abstract

In this paper, we provide a comprehensive overview of a recent debate over the quantum versus
classical solvability of bounded distance decoding (BDD). Specifically, we review the work of Eldar
and Hallgren [EH22], [Hal21] demonstrating a quantum algorithm solving λ12−Ω(

√
k log q)-BDD in

polynomial time for lattices of periodicity q, finite group rank k, and shortest lattice vector length λ1.
Subsequently, we prove the results of [DvW21a], [DvW21b] with far greater detail and elaboration
than in the original work. Namely, we show that there exists a deterministic, classical algorithm
achieving the same result.

Contents
1 Introduction 2

1.1 Timeline of Publications . 2
1.2 Outline of this Paper . 3

2 Background on Lattices, Relations, and Reductions 3
2.1 Definitions and Notation . 3
2.2 SVP, CVP, and BDD . 4
2.3 Lattice Hardness Results . 5
2.4 Survey of Quantum Approaches to Lattice Problems 6

3 Overview of Eldar and Hallgren’s Algorithm 6
3.1 Quantum Primitives . 7
3.2 Intuition for the Proof . 7

4 Classical Primitives 8
4.1 The LLL Algorithm . 8
4.2 Babai’s Nearest Plane Algorithm . 10

5 Proof of Classical Alternative 11
5.1 Short Bases from Short Full-Rank Sets . 11
5.2 Duality . 12
5.3 Completing the Proof . 14

6 Conclusion and Future Work 16

∗rallen@college.harvard.edu
†rberker@college.harvard.edu
‡scasacubertapuig@college.harvard.edu
§michaelgul@college.harvard.edu

1

mailto:rallen@college.harvard.edu
mailto:rberker@college.harvard.edu
mailto:scasacubertapuig@college.harvard.edu
mailto:michaelgul@college.harvard.edu

1 Introduction
Lattice-based encryption, and specifically encryptions based on the Learning With Errors (LWE)
problem as introduced by Regev [Reg10], are considered a promising candidate for post-quantum
encryption. The security of LWE rests on the conjectured hardness of lattice problems such as
the Closest Vector Problem (CVP) and Bounded Distance Decoding (BDD). However, Eldar and
Hallgren [Hal21] have recently proposed a quantum algorithm for BDD with a subexponential ap-
proximation factor. The specific quantum protocol used to achieve this exponential speed-up raised
questions on the purely classical achievability of the same result. Specifically, Eldar and Hallgren’s
algorithm uses the Quantum Phase Estimation (QPE) protocol to reduce a worst-case instance of
BDD to a random instance in a lattice of lower dimension, while preserving the bound on error
magnitude. The resulting problem has a known classical solution. Since the core quantum step is
the use of QPE for dimensionality reduction, a natural question is whether classical dimensional-
ity reduction algorithms could be substituted. Shortly after this result, Ducas and van Woerden
[DvW21a] showed that the Lenstra-Lenstra-Lovász (LLL) lattice basis reduction algorithm can be
used to achieve the same result for a specific class of lattices, later generalizing this result to the
same type of lattice considered by Eldar and Hallgren. In this work, we give an overview of Eldar
and Hallgren’s quantum algorithm, followed by a detailed exposition of Ducas and van Woerden’s
classical algorithm. In order to develop the necessary tools for the proof, we survey the field of
lattice problems in general, and in particular describe the LLL algorithm in detail.

1.1 Timeline of Publications
Eldar and Hallgren first presented their algorithm in a talk given by Hallgren on September 21,
2021 at the Simons Institute [Hal21]. Their main point can be summarized as follows:

Theorem 1.1 (Eldar and Hallgren [EH22]). There exists a poly(n, log q)-time quantum algorithm
solving λ12−Ω(

√
k log q)-BDD on lattices of dimension n, periodicity q, and finite group rank k with

shortest lattice vector length λ1.

We elaborate on the definitions and implications of the parameters n, q, and k further below.
While Hallgren’s talk only considered the special case q = 2n, k = 1, it was also briefly mentioned
that the theorem holds for arbitrary q and k. Three days after the talk, on September 24, 2021,
Ducas and van Woerden published a note [DvW21a] proving that known classical polynomial-time
algorithms (namely, LLL and Babai’s algorithms) are sufficient to achieve the result presented by
Eldar and Hallgren. Similar to Hallgren’s talk, the note only considered the special case where
q = 2n, k = 1, hence presenting the theorem:

Theorem 1.2 (Ducas and van Woerden, Version 1 [DvW21a]). For any given vector a ∈ Zn, define
the lattice La = qZn + aZ. There exists a deterministic polynomial-time algorithm that solves BDD
in La for any error up to radius λ1(La) · 2−Θ(

√
n), where λ1(La) is the length of the shortest vector

in La.

Given that Hallgren had mentioned in his talk that their result is generalizable to arbitrary q and
k, this motivated us to work on generalizing Ducas and van Woerden’s proof to arbitrary q and k
as well. Following this, we received Eldar and Hallgren’s preprint through private correspondence,
in which their result was indeed proven for arbitrary q and k [EH22]. While we were working
independently on a proof of the classical algorithm for arbitrary q and k, we realized later that on
October 14, 2021, Ducas and van Woerden had published a second version of their note [DvW21b],
explaining that their result is generalizable for arbitrary q and k:

Theorem 1.3 (Ducas and van Woerden, Version 2 [DvW21b]). For any given matrix A ∈ Zn×k,
define the lattice LA = qZn + AZk. There exists a deterministic polynomial-time algorithm that
solves BDD in LA for any error up to radius 1

2λ1(LA) · exp
{
−Ω(
√
k · ln q)

}
.

Note that in principle, A is arbitrary, but in order for k to give the finite group rank we generally
restrict the columns of A to be linearly independent over Z. From this point on, we sought to
elaborate on their result, filling in missing details and unifying a summary of Eldar and Hallgren’s
algorithm with an elaboration on Ducas and van Woerden’s proof for the general case.

2

1.2 Outline of this Paper
This paper is structured as follows. In Section 2, we introduce the necessary definitions and tools to
work with lattices (Section 2.1), as well as the main computational lattice problems that we require
for the discussion, mainly SVP, CVP, and BDD (Section 2.2), along with their known hardness
results and reductions (Section 2.3). We also provide a survey on other important lattice-based
quantum algorithms beyond the result of Eldar and Hallgren (Section 2.4). In Section 3, we provide
an overview of the quantum algorithm by Eldar and Hallgren, including the necessary quantum
primitives (Section 3.1) and the intuition for their proof (Section 3.2). In Section 4, we review the
main two classical lattice algorithms, namely the LLL algorithm (Section 4.1) and Babai’s nearest
plane algorithm (Section 4.2).

As we describe the algorithms and their correctness, we extract the necessary facts for the proof
of the classical counterpart to Eldar and Hallgren’s quantum algorithm, used in Section 5. Our main
proof is split into three parts: we first show how to obtain short bases from full-rank sets of short
lattice vectors (Section 5.1), we then turn to dual lattices and their relevant properties (Section 5.2),
and lastly we put together all the ingredients of the proof (Section 5.3).

2 Background on Lattices, Relations, and Reductions

2.1 Definitions and Notation
Before turning our attention to BDD, we survey a number of lattice problems and the connections
between them. The basic objects of interest are integer lattices:

Definition 2.1 (Lattice). A lattice L is generated by all the integer combinations of the vectors of
some basis B:

L =

m∑
i=1

Zbi =
{ m∑

i=0

zibi, where zi ∈ Z, bi ∈ B
}
.

Figure 1: An example of a lattice in R2, with two bases given which correspond
to {[2, 1], [0, 2]} and {[4, 0], [−2, 1]}.

Lattices have infinitely many bases, and so it is natural to ask which bases are better in some
sense. We will see that the two main properties we will consider are that the basis vectors are
as short and as orthogonal as possible. In fact, one of the key insights guiding shortest vector
algorithms is that the latter of these properties implies the former. We will discuss this further in
Section 4, when we introduce the LLL algorithm.

The volume of the lattice is denoted by det(L). For any basis B = {b1, . . . , bn} for L, the
determinant of L is defined by

det(L) =
√∣∣∣det(B⊤B

)∣∣∣,
where B is understood as the basis matrix constructed with the vectors bi as columns. If L is
full-rank, then B is a square matrix, so we can also think of the volume of the lattice as |det(B)|.

3

Geometrically, the determinant of the lattice is the volume of the parallelepiped spanned by the
bi’s [Bai06]. It is important to remark that the volume of the lattice is an invariant; that is, does
not depend on the choice of the basis. This is because any two different bases B1,B2 for the same
lattice L are related by a unimodular matrix [Bai06]. Specifically, there exists a matrix U with
det(U) = ±1 such that

B1 = U ·B2.

Hence it follows that |det(B1)| = |det(B2)|.
We will return to the topic of volume of lattices in Section 4, when we further analyze the

properties of det(L).

2.2 SVP, CVP, and BDD
Long before lattices were used in cryptography, computational problems in the field of lattice theory
had been considered in other contexts. The two main ones are the Shortest Vector Problem (SVP)
and the Closest Vector Problem (CVP):

Definition 2.2 (γ-SVP [DD18]). Given a lattice L ⊂ Rn, find a lattice vector x ∈ L \ 0 such that

||x|| ≤ γ(n) · λ1(L),

where λ1(L) denotes the length of the shortest vector in the lattice.

Definition 2.3 (γ-CVP [SD16]). Given a lattice L ⊂ Rn and a target vector t ∈ Rn, find a lattice
vector x ∈ L such that

||x− t|| ≤ γ(n) · dist(L, t),

where dist(L, t) = minx∈L ||x− t||. See Figure 2 for a diagram.

Figure 2: An instance of the CVP, with target vector t = (4, 3.5) and solution
(4, 4). Note that the shortest vector in this lattice is (0, 2).

These problems have many variants. In addition to the approximation versions presented above,
both γ-SVP and γ-CVP have exact analogues (called SVP and CVP respectively), where the goal is
to find the shortest/closest vector instead of approximating it. And, γ-SVP also has a decision-based
version called γ-GAP-SVP:

Definition 2.4 (γ-GAP-SVP [Reg10]). Given a lattice L ⊂ Rn and d > 0, output YES if λ1(L) ≤ d
and NO if λ1(L) ≥ γ(n) · d.

A slightly different problem, considered by Eldar and Hallgren [Hal21], is Bounded Distance
Decoding (BDD), which is concerned with recovering a lattice vector given a target vector with a
slight error.

Definition 2.5 (Bounded Distance Decoding [DvW21b]). Given a lattice L ⊂ Rn, a radius λ1(L)
2 >

r > 0, and a vector t = v + e with ∥e∥ < r and v ∈ L, output the lattice vector v.

4

Note that the condition r < λ1(L)
2 guarantees a unique solution. BDD is the main problem

that we will be studying in this paper, since both the quantum and classical algorithms discussed
below give subexponential approximations. As we will develop in Section 4, there are classical
polynomial-time algorithms that can approximate SVP and CVP for γ(n) = 2O(n); namely, the
LLL algorithm and Babai’s nearest plane algorithm. More concretely, the LLL algorithm solves γ-
SVP for γ(n) = 2(n−1)/2, whereas Babai’s nearest plane algorithm solves γ-CVP for γ(n) = 2n/2.1
One can then use the same algorithm by Babai to solve BDD whenever 2n/2 · dist(L, t) ≤ λ1/2,
given that in that case the answer is unique.

2.3 Lattice Hardness Results
There are several important intractability results about such computational lattice problems. In
1981, van Emde Boas proved that CVP is NP-hard, but the same result did not immediately extend
to SVP [vEB81]. In fact, γ-CVP is now known to be NP-complete for any γ ≤ nc/ log logn. In 1997,
Ajtai proved that SVP is NP-hard to solve exactly under randomized reduction [Ajt98], which
provided the first theoretical evidence that SVP is intractable. Later on, Micciancio proved that
SVP is NP-hard to approximate with any factor less than

√
2 [Mic01]. Lastly, Goldreich, Micciancio,

Safra, and Seifer showed that SVP is not harder than CVP [GMSS99]. Additionally, the various
lattice problems are connected by a network of reductions. Figure 3 contains an overview of the
major dimension-preserving reductions.

Figure 3: A summary of significant dimension-preserving reductions between
various lattice problems, where A → B means A reduces to B. Solid (dotted)
arrows denote a reduction that preserves (changes) the approximation factor γ.
Source: [SD21].

While interesting in their own right, lattice problems are especially relevant for cryptography.
Currently, the best candidates for post-quantum cryptography are lattice-based encryptions, and
the security of these schemes relies on the conjectured hardness of these lattice problems. When
Learning With Errors (LWE) was first introduced by Regev he proved its security by reducing it to
γ-GAP-SVP:

Theorem 2.6 (Regev, Hardness of Learning With Errors [Reg10]). Define LWEp,χ as follows:
given a series of equations of the form

⟨s, ai⟩+ ei = bi

where s ∈ Zn
p , the ai are independently and uniformly chosen from Zn

p , bi ∈ Zp, and the ei are
independently chosen from χ, recover s. Then, if α ∈ (0, 1) is such that αp > 2

√
n, and there is an

1By tuning the parameters of the algorithm, it is actually possible to improve the approximation factors to γ(n) =
(2/

√
3)n and 2(2/

√
3)n, respectively [Reg04b]. This approximation factor can be further improved with BKZ bases

[LLL82].

5

efficient algorithm that can solve LWEp,Ψ̄α
, then there exists an efficient quantum algorithm that

solves Õ(n/α)-GAP-SVP in the worst case.

The distribution Ψ̄α is described at depth in the paper, but it is essentially a discrete Gaussian
centered at 0 with standard deviation αp.

Crucially, γ-GAP-SVP is conjectured to be hard to solve, i.e., no polynomial time algorithm
can solve it for a polynomial γ. And, Micciancio proved that for γ(n) ≤

√
2, γ-GAP-SVP is NP-

Hard [Mic01]. Though Regev’s reduction is quantum, Peikert demonstrated a classical reduction in
[Pei09], and in 2009, Lyubashevsky and Micciancio [LM09] reduced γ-GAP-SVP to BDD:

Theorem 2.7 (Theorem 7.1 in [LM09]). For any γ > 2
√
n/ log n, there is a polynomial time Cook

reduction from γ-GAP-SVP to 1
γ

√
n/ log n-BDD.

Elsewhere in the paper, they proved the opposite direction of the reduction as well, meaning
that the conjectured hardness of γ-GAP-SVP is equivalent to the hardness of BDD. It is precisely
because of this link between the security of LWE and BDD that further study of Eldar and Hallgren’s
algorithm for BDD is so important.

2.4 Survey of Quantum Approaches to Lattice Problems
Before Eldar and Hallgren’s algorithm for BDD, a number of other quantum algorithms have been
proposed for different lattice problems. For instance, Kuperberg describes in [Kup05] a quantum al-
gorithm utilizing Quantum Fourier Transform (QFT) to solve the dihedral hidden subgroup problem
(DHSP) that has time complexity 2O(

√
logN) and takes 2O(

√
logN) quantum space, where 2N is the

order of the dihedral group DN . Regev applies a similar quantum algorithm to the unique shortest
vector problem (unique SVP) in [Reg04c] and proposes a space-efficent alternative to Kuperberg’s
algorithm in [Reg04d], taking only O(logN) quantum space instead of 2O(

√
logN). Kuperberg then

generalizes Regev’s algorithm in [Kup11], adding two parameters that (1) allows the algorithm to
take less space at the cost of more quantum time and (2) allows the algorithm take less quantum
time at the cost of more classical space and time, as long as the the classical space has quantum
access. However, the composition of Kuperberg and Regev’s algorithm does not yield a subexpo-
nential algorithm for SVP. The reason is that Regev’s reduction produces a quadratic blowup in the
input size.

Overall, these papers are good examples of how quantum algorithms can be used in order to im-
prove classical approaches to lattice-based problems by providing time and space efficient variations,
which we imagine was also what motivated Eldar and Hallgren’s work.

3 Overview of Eldar and Hallgren’s Algorithm
We now give an overview of some of the key points in Eldar and Hallgren’s proof of Theorem 1.1
[EH22]. Eldar and Hallgren parametrize lattices by the following three integers:

1. Lattice dimension n: n is the dimension of the space Zn in which our lattice is embedded. We
consider only full rank lattices, i.e., those for which the cardinality of the basis B is also n,
since any lattice can be reduced to a full-rank lattice in a lower-dimensional Zm.

2. Periodicity q: q is defined as the minimal integer such that qZn ⊂ L. In other words, it is the
minimal integer such that qei ∈ L for every standard basis vector ei ∈ Zn. Such an integer
must exist. To see why, note that there must be some minimal integer qi such that qiei ∈ L,
because otherwise we could extend our basis B by ei, which is impossible since L is full-rank.
Then let q = LCM({qi}).

3. Finite group rank k: Since qZn is a subgroup of the abelian group L, we can consider the
quotient L mod q ≡ L/qZn, obtained by taking each standard basis coefficient of a lattice
vector mod q. This is a finite abelian group since Zq is finite, so by the structure theorem for
finitely generated abelian groups we can decompose L mod q as Zq1 × · · · × Zqk for qi | qi+1.
Moreover, k is the group rank of L mod q and can be thought of as the dimension of the reduced
lattice, analogous to the security parameter in LWE. Letting G give a basis for L mod q, it

6

follows that the matrix [G|qI] for an n× n identity I generates the full lattice L (but is not a
basis; it is too large to be a linearly independent set).

Now that we understand the claim, we begin with a review of some major quantum primitives used
in the construction.

3.1 Quantum Primitives
There are only two quantum primitives necessary to understand Eldar and Hallgren’s algorithm,
and one is derived from the other. First is the Quantum Fourier Transform (QFT), a particular
basis change for quantum states.

Definition 3.1. Let |x⟩ for 0 ≤ x < q denote a basis state for some q-dimensional Hilbert space H
of quantum states. The Quantum Fourier Transform (QFT) over the cyclic group Zq, denoted Fq,
is a linear map defined by

Fq : |x⟩ 7→ 1
√
q

q−1∑
i=0

ωix
q |i⟩ ,

where ωq denotes a primitive qth root of unity.

The QFT is computable in poly(log(q)) time using only Hadamard and controlled phase rota-
tions. Note that this definition differs from that presented in class and [Bar22], which uses only
Hadamard gates and no controlled operations, but conforms to the definition most often used in
physics (by leaving out the controlled phase rotations we obtain what physicists refer to as the
Hadamard transformation). One of the main uses of the QFT is as the basic building block for the
Quantum Phase Estimation (QPE) algorithm:

Theorem 3.2 (Pg. 225 in [NC10]). There exists a quantum algorithm which, given a unitary U ,
and an eigenstate |u⟩ of U with eigenvalue e2πiϕu , outputs an n-bit approximation ϕ̃u to ϕu with
probability 1− ϵ using t = n+O(log(1/ϵ)) ancilla qubits and O(t2) operations.

The algorithm works by first applying a series of controlled unitary powers to the ancilla qubits,
which transforms our ancilla register into a QFT state. We can then apply the inverse QFT to
obtain an approximation of the phase of the unitary eigenvalue.

With these quantum primitives covered, we can understand the basic arguments behind Eldar
and Hallgren’s algorithm, presented below.

3.2 Intuition for the Proof
Eldar and Hallgren’s algorithm reduces worst-case BDD on a lattice L in L(n, q, k) to ϵ̃-random-
BDD, which is BDD on a random lattice L̃ with basis [B̃|qI] for B̃ ∈ Zm×k

q selected randomly. L̃
has shortest vector of length λ̃1, and the transformed target vector t̃ is at most λ̃1ϵ̃ away from a
lattice vector in L̃. For m =

√
k log q, we can solve BDD on this lattice with approximation factor

ϵ̃ = 2−
√
k log q using Babai’s nearest plane algorithm.

Before obtaining this random lattice, we consider a related, long-standing problem in quantum
state representations of a lattice. For decades, researchers have considered the goal of generating,
given a lattice L with coefficients in Zq with basis B, the state |ψ0⟩ =

∑
v∈L

∑
z∈C |v + z⟩ where

C is some extended shape, say a cube (more on why this is desirable below). We approximate
|ψ0⟩ in the following way. Begin by computing the state

∑
c |c⟩ ⊗

∑
z∈C |z⟩ where c ranges over

all possible coefficients of lattice vectors in L. We can then perform entangling gates to obtain∑
c

∑
z∈C |c,Bc+ z⟩. We want the state

∑
c

∑
z∈C |0,Bc+ z⟩, but computing this would require

us to know the c corresponding to each Bc+ z, i.e., to solve BDD, which is exactly the problem we
are trying to solve in the first place!

We cannot do this, but we can perform a Quantum Fourier Transform and measure the first
register to compute |ψa⟩ =

∑
c ω

c·a
q

∑
z∈C |Bc+ z⟩ for a a random vector (random by the nature

of quantum measurement). The problem of computing c from Bc + z is therefore reduced to the
problem of determining the phases ωc·a

q . The key observation is that the state |ψa⟩ is an eigenvector
of a shift by a lattice vector. For x ∈ Zn

q , let Ux be the shift unitary defined by Ux |y⟩ = |y + x⟩.

7

Then if we shift by the closest lattice vector Bc′ ∈ L to t, we obtain UBc′ |ψa⟩ = ωc′·a
q |ψa⟩. Applying

the Quantum Phase Estimation (QPE) algorithm, we can compute c′ · a, and after repeating for
multiple random a we can obtain a good approximation of c′.

Unfortunately, we are trying to solve for Bc′, so we cannot proceed so directly. However, we
do have the target vector t = Bc′ + ∆ for some ∆ of norm regulated by the BDD approximation
factor, and we have Ut |ψa⟩ = ωc′·a

q U∆ |ψa⟩ ≈ ωc′·a
q |ψa⟩. (“Approximately” here is defined in terms

of state overlap. If we had not summed over cubes C about each lattice point, then for any ∆ not a
lattice vector this overlap would be zero. This justifies our consideration of these states). This is the
key quantum subroutine used in the dimensionality reduction: Eldar and Hallgren use a modified
approximate QPE to sample m = O(

√
k log q) noisy inner products of c′ and construct a lattice L̃

of the form described above. Then they simply use Babai’s nearest plane algorithm on L̃ and map
the solution back to the original lattice L.

4 Classical Primitives

4.1 The LLL Algorithm
These lattice problems had been studied long before they became relevant to cryptography after Aj-
tai’s worst-case/average-case equivalence result for lattices [Ajt98]. In fact, Gauss already provided
a polynomial-time algorithm to solve SVP exactly in 2-dimensions in the 19th century. Broadly,
the algorithm finds the most orthogonal basis we can find for the given lattice using orthogonal
projections, in an iterative manner that resembles Euclid’s algorithm [Gal12].

While solving SVP exactly (i.e., for γ(n) = 1) does not carry over to higher dimensions, a
similar idea prevails. Namely, we would like to obtain a short basis, which is achieved through
orthogonalizing such basis as much as possible. Suppose a basis {v1, . . . , vn} is orthogonal. The
shortest vector in the lattice can be written as some linear combination λ1 = a1v1 + · · ·+ anvn for
ai ∈ Z, which has norm-squared ∥λ1∥2 = a21∥v1∥2 + · · · + a2n∥vn∥2. This is minimized for ai = δj0,
such that vj is the shortest basis vector. We conclude that any orthogonal basis must include
the shortest vector in the lattice. While not every lattice has an orthogonal basis, this reasoning
explains why the LLL algorithm uses the Gram-Schmidt orthogonalization process as a subroutine.
Throughout this paper, we will use the superscript ∗ to denote a Gram-Schmidt vector.

The LLL algorithm was introduced by Arjen Lenstra, Hendrik Lenstra, and László Lovász in
1982 [LLL82], originally in the context of polynomial factorization. The LLL algorithm reduces an
arbitrary basis for a lattice into a “shorter” basis, which is referred to as the LLL-reduced basis and
is formally defined as follows:

Definition 4.1 (δ-LLL reduced basis). Let {b1, b2, . . . , bn} be a basis for an n-dimensional lattice
L, and let {b∗1, b∗2, . . . , b∗n} be the orthogonal basis generated with Gram-Schmidt. Let µi,k = ⟨bk,bi⟩

⟨b∗i ·b∗i ⟩
,

where ⟨·, ·⟩ denotes the dot product between two vectors. We say that {b1, b2, . . . , bn} is a δ-LLL-
reduced basis if it satisfies the following two conditions:

1. (Size reduced.) For all i ̸= k, µi,k ≤ 1/2.

2. (Lovász condition.) For each i, ||b∗i+1+µi,ib
∗
i ||2 ≥ δ||b∗i ||2. Equivalently, we can write ||b∗i+1||2 ≥

(δ − µ2
i+1,i)||b∗i ||2.

We remark that, in [DvW21b], their usages of δ denote what we have defined as 1/
√
δ. That is,

if δ′ denotes the parameter used by [DvW21b], then δ′ = 1/
√
δ, where δ is defined as above. It is

customary in the literature to choose δ = 3/4, although any value δ ∈ (1/4, 1) guarantees that the
LLL algorithm terminates in polynomial time.

Put into words, the second condition reads as saying that b∗i is not much larger than b∗i−1. Let
us further develop the Lovász condition:

||b∗i+1||2 ≥ (δ − µ2
i+1,i)||b∗i ||2 ≥ δ||b∗i ||2,

||b∗i || ≥
√
δ||b∗i ||.

8

If we take logarithms in the Lovász condition, we obtain that

ln ||b∗i+1|| ≥ ln
(√

δ · ||b∗i ||
)
= ln ||b∗i || − ln

(
1/
√
δ
)
. (4.1)

In notation of the Ducas and van Woerden note, where ℓi := ln ||b∗i ||, this corresponds to

ℓi+1 ≥ ℓi − ln
(
1/
√
δ
)
. (4.2)

If we re-state Equation 4.2 in terms of the δ′ used in the Ducas and van Woerden note, we obtain
that

ℓi+1 ≥ ℓi − ln(δ′). (4.3)

This corresponds exactly to Fact 2.2 in the Ducas and van Woerden note.
It is natural to ask whether every lattice has an LLL-reduced basis. The LLL algorithm gives a

constructive proof that the answer is yes. The LLL pseudocode is presented in Algorithm 1.

Algorithm 1 The LLL algorithm
1: procedure LLLAlg({b1, b2, . . . , bn})
2: Compute the Gram-Schmidt basis b∗1, . . . , b∗n and coefficients µi,j for 1 ≤ j < i ≤ n.
3: Repeat the following two steps until the LLL reduced basis is found:
4: for i = 1 to n do ▷ Perform size reduction
5: for k = i− 1 to 1 do
6: m← ⌊µk,i⌋
7: bi ← bi −mbk
8: end for
9: end for

10: for i = 1 to n− 1 do ▷ Check Lovász condition
11: if ||b∗i+1 + µi,i+1b

∗
i ||2 < δ||b∗i ||2 then

12: Swap bi+1 and bi.
13: Go to Step 1.
14: end if
15: end for
16: end procedure

The correctness of the algorithm can be stated as follows [Gal12]:

Lemma 4.2. If the LLL algorithm terminates, then the output basis is LLL-reduced. Moreover, for
any δ ∈ (1/4, 1), the LLL algorithm terminates within polynomial time.

We will focus on the proof that the LLL algorithm terminates, because such a proof uses facts
that we will need when showing correctness of the classical algorithm in Ducas and van Woerden.
To show that the algorithm performs a finite number of steps, we define the following potential
function on the basis vectors of the lattice [Reg04a]:

ϕ(B) =

n∏
i=1

det(Li) =

n∏
i=1

||b∗1|| · . . . · ||b∗i || =
n∏

i=1

||b∗i ||n−i+1, (4.4)

where Li is defined as the lattice spanned by b1, . . . , bi. Then, to show that the LLL algorithm
terminates, we need to prove that the initial value of ϕ(B) is upper bounded, that it can never drop
below 1, and that each iteration of the LLL algorithm decreases ϕ by a factor of at least

√
4/3

[Pei13].
The potential of the original basis B is bounded by

∏n
i=1 ||bi||n, given that ||b∗i || ≤ ||bi||. Because

every intermediate basis is integral by definition and has positive integer determinant, the same holds
for all the lattices Li associated with that basis. Hence it follows that the potential is at least 1.

9

Let us consider the step Check Lovász condition in the pseudocode of the LLL algorithm (namely,
Line 10). Suppose that bi and bi+1 are swapped in Line 12 of the LLL algorithm pseudocode, and
let the resulting basis be denoted B′. Then, we claim the following [Pei13]:

Lemma 4.3. If bi and bi+1 are swapped in Line 12 of the LLL algorithm, then b′∗j = b∗j for all
j /∈ {i, i+ 1}, and b′∗i = µi,i+1b

∗
i + b′i+1.

Proof. If j < i, then the vector b′∗j is not affected by the swap, because it is the component
of b′j = bj orthogonal to span(b′1, . . . , b′j−1) = span(b1, . . . , bj−1). The same argument holds for
j > i+ 1. Lastly, b′∗i is by definition the component of b′i = bi+1 orthogonal to span(b′1, . . . , b′i+1) =
span(b1, . . . , bi−1), which is µi,i+1b

∗
i + b∗i+1 by construction.

We can then prove the following [Pei13]:

Lemma 4.4. If bi and bi+1 are swapped in Line 12 of the LLL algorithm, then

ϕ(B′)

ϕ(B)
<
√
δ.

Proof. This immediately follows from the previous lemma. Define Li as before, and let L′
i denote

the lattice generated by the first i basis vectors after a swap. Then:

ϕ(B′)

ϕ(B)
=

det(L′
i)

det(Li)
=
||b∗1|| · . . . · ||b∗i−1|| · ||µi,i+1b

∗
i + b∗i+1||

||b∗1|| · . . . · ||b∗i−1|| · ||b∗i ||
=
||µi,i+1b

∗
i + b∗i+1||
||b∗i ||

<
√
δ,

given that, as per Line 11 in the LLL algorithm (Alg. 1), the vectors are swapped if and only if
||b∗i+1 + µi,i+1b

∗
i ||2 < δ||b∗i ||2.

Since δ ∈ (1/4, 1), the previous lemma in particular implies that

n∏
j=i

det(L′
j) ≤

n∏
j=i

det(Lj).

By taking logarithms, and by switching to the notation of Ducas and van Woerden, it follows that

i∑
j=1

ℓj ≤
i∑

j=1

ℓ′j , (4.5)

which corresponds to their Fact 2.3. Note that in Ducas and van Woerden’s notation, ℓ′j is the
logarithm of the norm of a vector from the original basis, and ℓj is the logarithm of the norm of a
vector from the LLL-reduced basis.

Lastly, we ask, how does the LLL-reduced basis relate to the SVP? The following theorem shows
their relationship; namely, the first vector in the ordered LLL-reduced basis corresponds to the
desired approximation of λ1(L):

Proposition 4.5 (γ-SVP from LLL). If {b1, b2, . . . , bn} is an n-dimensional LLL-reduced basis of
a lattice L, then ||b1|| ≤ 2(n−1)/2λ1(L), where λ1(L) is the length of the shortest vector of L.

The proof is short and can be consulted, for example, in Deng’s manuscript [Den16].

4.2 Babai’s Nearest Plane Algorithm
After explaining how the LLL algorithm provides an approximation to SVP, let us mention briefly
how to obtain an approximation to CVP.

Babai’s nearest plane algorithm solves γ-CVP for γ(n) = 2n/2 in polynomial time. Because we
do not need the inner mechanisms of Babai’s algorithm in order to analyze the classical counterpart
to Eldar and Hallgren’s algorithm, other than its final approximation factor for CVP, we will not
describe the algorithm in detail and instead only provide a short intuitive overview.

10

Babai’s algorithm considers the affine subspace Hc = {
∑n−1

i=1 aibi + cbn}. Then, Hc = H0 + cbn.
However, bn is not necessarily orthogonal to H0, and hence the distance between H0 and Hc is
exactly c||b∗n|| (as opposed to c||bn||). Babai then observes that inside each of these hyperplanes,
there is a copy of the sublattice L′ generated by the first n− 1 basis vectors bi and shifted by cbn.
Then, Babai’s algorithm iteratively finds the closest hyperplane Hc to the target vector t (as defined
in γ-CVP) fixing one coordinate at a time [Bab86].

When the input lattice to Babai’s algorithm is an LLL-reduced basis (as described in Section 4.1),
the desired approximation for CVP follows. A proof of this claim can be found, for example, in
[SD16] or [Reg04b].

5 Proof of Classical Alternative
Eldar and Hallgren’s proof is interesting and uses “phased cube states” in a unique way, but their
construction can be simplified. For the class of lattices on which they solve BDD, there in fact
exists a deterministic, far simpler classical algorithm achieving the same result. Within three days
of Hallgren’s talk [Hal21], Ducas and van Woerden published a note [DvW21a] solving BDD with
the appropriate subexponential factor for the special case q = 2n, k = 1.

Emboldened by this result, we sought to generalize their proof to the case of arbitrary q, k,
demonstrating a classical alternative to Eldar and Hallgren’s algorithm in all cases. However, on
October 14, 2021, Ducas and van Woerden managed to prove the generalization we were working
on [DvW21b]. Still, their proof is rather brief and leaves out many key details and intuitions. Here,
we present a complete and self-contained proof of Theorem 1.3.

We remark that we already proved Facts 2.2 and 2.3 in [DvW21b] when describing the LLL
algorithm and its correctness proof in Section 4.1. We will use them again when finalizing the proof
of the result in Section 5.3.

5.1 Short Bases from Short Full-Rank Sets
We open the proof with a lemma which shows that if we can find a full-rank set of short lattice
vectors, then we can construct a lattice basis of short vectors, as well. Formally:

Lemma 5.1 (Lemma 7.1 in [MG02], Fact 2.1 in [DvW21b]). There exists a deterministic poly-time
algorithm which, given a basis B′ of an n-dimensional lattice L(B′), and a full-rank set of n vectors
S ⊂ L(B′) outputs a basis B such that ∥b∗i ∥ ≤ maxs∈S ∥s∥.

We will make use of two subclaims regarding the relationships between unimodular and upper-
triangular matrices. Unimodular matrices are defined below:

Definition 5.2. An integer matrix U ∈ Zn×n is unimodular if det(U) = ±1. Note that any
unimodular matrix has integer inverse by Cramer’s Theorem.

We prove the following lemma:

Lemma 5.3. Given an integer matrix Q ∈ Zn×n, there exists a unimodular matrix U ∈ Zn×n such
that T = UQ is upper-triangular.

Proof. U will be constructed as a product of unimodular matrices corresponding to elementary
matrices for row operations on an integer matrix: swapping two rows, multiplying a row by −1, and
adding an integer multiple of one row to another. All such elementary matrices have determinant
±1, so by the homomorphism property of the determinant, so will U . We proceed by induction:
if we can show that given a list {a1, . . . , ak} of integers (which we think of as the non-zero entries
of a column of some U ′ obtained from U via a preceding sequence of elementary row operations),
we can produce a new list {0, a′1, . . . , a′k−1} of integers by swapping entries in the list, multiplying
entries by −1, and adding an integer multiple of one entry to another, then the proof will follow.
First, multiply the appropriate entries by −1 such that all entries are non-negative. Then, order
the entries by increasing value. If the first entry is 0, we are done; otherwise, subtract the maximal
integer multiple of the first entry from all other entries which preserves non-negativity, and reorder
in increasing value. The new first entry must have decreased in value from the previous first entry.

11

This procedure is guaranteed to terminate in a finite number of steps, such that the first entry in
eventually zero, which completes the proof.

In addition, we will need the following lemma:

Lemma 5.4. Suppose S = BT for T upper-triangular and invertible. Then s∗i = Tiib
∗
i for sj , bj the

jth columns of S and B respectively.

Proof. We proceed by induction. Suppose the claim holds for all j ∈ [i− 1]. Then we have

s∗i = si −
i−1∑
j=1

⟨s∗j , si⟩
⟨s∗j , s∗j ⟩

s∗j = si −
i−1∑
j=1

⟨b∗j , si⟩
⟨b∗j , b∗j ⟩

b∗j .

Note that si can be written as si =
∑i

k=1 Tkibk since T is upper-triangular, so

s∗i =

i∑
k=1

Tkibk −
i−1∑
j=1

⟨b∗j ,
∑i

k=1 Tkibk⟩
⟨b∗j , b∗j ⟩

b∗j =

i∑
k=1

Tkibk −
i∑

k=1

i−1∑
j=1

⟨b∗j , Tkibk⟩
⟨b∗j , b∗j ⟩

b∗j .

Consider just the term
i−1∑
k=1

i−1∑
j=1

⟨b∗j , Tkibk⟩
⟨b∗j , b∗j ⟩

b∗j .

Since bk ∈ span{b∗1, · · · , b∗i−1} for all k ∈ [i− 1], it follows that

i−1∑
j=1

⟨b∗j , Tkibk⟩
⟨b∗j , b∗j ⟩

b∗j = Tkibk.

Therefore, we have

s∗i = Tiibi − Tii
i−1∑
j=1

⟨b∗j , bi⟩
⟨b∗j , b∗j ⟩

b∗j ≡ Tiib∗i ,

as desired.

Armed with these intermediate results, we may now return to the proof of the main lemma:

Proof. Since S is a set of lattice vectors, we can write S = B′Q for some integer matrix Q ∈ Zn×n,
which is invertible since S is full rank. By Lemma 5.3, we may write T = UQ for some unimodular U
such that T is upper-triangular. Let B = B′U−1. B is a basis since U is unimodular, and therefore
U−1 is an integer matrix. Furthermore, S = BT , so by Lemma 5.4 we have ∥b∗i ∥ = 1

|Tii|∥s
∗
i ∥ ≤ ∥s∗i ∥,

since Tii are all integers. Since ∥s∗i ∥ ≤ ∥si∥ ≤ maxs∈S∥s∥, the proof is complete.

5.2 Duality
In order to complete our proof, we will be using the idea of dual lattices, the definition of which is
given as:

Definition 5.5. The dual of a lattice L is

L̂ = {v ∈ span(L)|⟨v, w⟩ ∈ Z for all w ∈ L}. (5.1)

Equivalently, the dual lattice L̂ can be thought of as the set of all linear functions L → Z. In
order to use duality in our proof, we will first need to prove several lemmas, some of which are
inspired by the exercises in [Mic07] by Daniele Micciancio.

Lemma 5.6. The dual of Zn is Zn.

12

Proof. Take any v ∈ Zn. Since integers are closed under addition and multiplication, we have
⟨v, w⟩ ∈ Z for any w ∈ Zn. This shows Zn ⊂ Ẑn. Similarly, take any v ∈ Ẑn. For any i ∈ {1, . . . , n}
we have ei ∈ Zn (where ei is the unit vector with 1 for the ith coordinate and 0 for the remaining
coordinates). By definition of the dual lattice, this implies ⟨v, ei⟩ = vi ∈ Z. Hence, v ∈ Zn and
Ẑn ⊂ Zn. This proves that the dual of Zn is Zn.

Lemma 5.7. Let L̂ be the dual lattice of L. For any d > 0, the dual lattice of dL is 1
d L̂.

Proof. Take any v ∈ ˆ(dL). For all w ∈ L, we have dw ∈ dL, and hence:

⟨v, dw⟩ ∈ Z⇒ ⟨dv, w⟩ ∈ Z⇒ dv ∈ L̂ ⇒ v ∈ 1

d
L̂ ⇒ ˆ(dL) ⊂ 1

d
L̂. (5.2)

Similarly, take any v ∈ 1
d L̂, implying dv ∈ L̂. Note that for all w ∈ dL, we have w

d ∈ L. Hence:

w

d
∈ L, dv ∈ L̂ ⇒

〈
dv,

w

d

〉
∈ Z⇒ ⟨v, w⟩ ∈ Z⇒ v ∈ ˆ(dL)⇒ 1

d
L̂ ⊂ ˆ(dL) (5.3)

Hence, 1
d L̂ is the dual of dL.

Theorem 5.8 (Theorem 2 from [Mic07]). The dual of a lattice with basis B is a lattice with basis
(the dual basis) D = BG−1, where G = B⊤B is the Gram matrix of B.

Proof. For any basis B, define D as given in the theorem. The invertibility of G of follows from the
linear independence of the columns of B (hence B⊤B is nonsingular). Say L(B) and L(D) are the
lattices corresponding to bases B and D, respectively, and L̂(B) and L̂(D) are their dual lattices.
From Definition 2.1, it follows that any vector in L(D) is of form Dy for some integer vector y.
Accordingly, take any Dy ∈ L(D). We have:

• Dy = BG−1y = B((B⊤B)−1y) ∈ span(B).
• For all Bx ∈ L(B), we have ⟨Dy,Bx⟩ = (Bx)⊤(Dy) = x⊤B⊤B(B⊤B)−1y = x⊤y ∈ Z.

Hence, we have Dy ∈ L̂(B), implying L(D) ⊂ L̂(B). Now, take any v ∈ L̂(B). By definition of
the dual, we must have v ∈ span(B), implying that v = Bw for some w ∈ Rn. Moreover, since the
columns of B are in L(B), it follows that B⊤v ∈ Zk. Thus:

v = Bw = B(B⊤B)−1B⊤Bw = D(B⊤v) ∈ L(D). (5.4)

This implies L̂(B) ⊂ L(D). Therefore, L(D) = L̂(B), so D is indeed the dual basis of B.

Lemma 5.9. If D is the dual basis of B, then B is the dual basis of D. That is, the relationship
between primal and dual bases is symmetric.

Proof. Say D is the dual basis of B. By Theorem 5.8, this implies D = B(B⊤B)−1. Hence we have

D⊤D = (B⊤B)−⊤B⊤B(B⊤B)−1 = (B⊤B)−⊤ = ((B⊤B)⊤)−1 = (B⊤B)−1. (5.5)

By Theorem 5.8 and (5.5), the dual basis of D is:

D(D⊤D)−1 = D((B⊤B)−1)−1 = D(B⊤B) = B(B⊤B)−1(B⊤B) = B. (5.6)

Hence, the relation between primal and dual basis is indeed symmetric.

Lemma 5.10. For every lattice L, we have det
(
L̂
)
=

1

det (L)
.

Proof. Let B be the basis for L and D be the dual basis. Then by Theorem 5.8 we have B⊤D =
B⊤B(B⊤B)−1 = I. By Lemma 5.9, it follows that D⊤B = I. This implies that

(B⊤B)(D⊤D) = (B⊤(BD⊤)D) = (B⊤D) = I. (5.7)

Hence, the Gram matrix of B is the inverse of the Gram matrix of D. This implies that det
(
B⊤B

)
=

1/ det
(
D⊤D

)
and therefore det(L) = 1/ det

(
L̂
)
.

13

We now use the results above for our main proof. Recall that the lattice we are considering
is LA = qZn + AZk. It follows from Lemmas 5.6 and 5.7 that the dual of qZn is 1

qZ
n. Since

qZn ⊂ qZn + AZk, it follows that the dual of LA must be contained in 1
qZ

n. This is because
adding more vectors to the lattice simply adds more constraints to the dual lattice. In other words,
any vector w in the dual of LA needs to have ⟨v, w⟩ ∈ Z for all v ∈ qZn ⊂ LA, implying that
w ∈ 1

qZ
n. Let B = {b1, .., bn} be a LLL-reduced basis for LA, and and let D = {d1, ..., dn} be the

dual basis for B, as defined in Theorem 5.8. Lastly, let B∗ = {b∗1, .., b∗n} and D∗ = {d∗1, .., d∗n} be the
orthogonal bases generated by applying Gram-Schmidt to B and D, respectively. Since the dual
lattice is contained in 1

qZ
n, it follows that

det
(
L̂i+1

)
=

n∏
j=i+1

||d∗j || ≥
1

qn−i
. (5.8)

where L̂i+1 is defined as the lattice spanned by di+1, . . . , dn. Using Lemma 5.10 and Corollary 6
from [Mic07] (which explains how the relationship in Lemma 5.10 extends to the orthogonalizations
of dual bases), we also know that:

n∏
j=i+1

||b∗j || =

 n∏
j=i+1

||d∗j ||

−1

, (5.9)

since we can treat the last n− i vectors as a partial basis. Combining (5.8) and (5.9), we get:

n∏
j=i+1

||b∗j || ≤ qn−i (5.10)

⇒ ln

 n∏
j=i+1

||b∗j ||

 ≤ ln qn−i (5.11)

⇒
n∑

j=i+1

ln ||b∗j || =
n∑

j=i+1

ℓj ≤ (n− i) ln q, (5.12)

which corresponds to Fact 2.4 from [DvW21b].

5.3 Completing the Proof
Putting all of these pieces together, we have the following proposition, which corresponds to Propo-
sition 2.5 in Ducas and van Woerden’s note:

Proposition 5.11.
min
i
ℓi ≥ ln

(
λ1(L)

)
−
√

2k · ln δ′ · ln q,

where δ′ = 1√
δ

for δ the traditional parameter in the LLL algorithm, as explained immediately after
Definition 4.1.

Proof. Let d =
⌈√

2k·ln q
ln δ′

⌉
, we can then rewrite the above inequality as

min
i
ℓi ≥ ln

(
λ1(L)

)
− (d− 1) ln(δ′),

because d − 1 ≤
√

2k·ln q
ln δ′ . Note that when i ≤ d, the proposition follows from Equation 4.3. This

is because ℓ1 is the magnitude of a lattice vector b∗
1, so ℓ1 ≥ ln

(
λ1(L)

)
by definition, and we can

14

iteratively apply the Lovász condition until we reach ℓ1 :

ℓi ≥ ℓi−1 − ln(δ′) (5.13)

≥
(
ℓi−2 − ln(δ′)

)
− ln(δ′) = ℓi−2 − 2 ln(δ′) (5.14)

... (5.15)
≥ ℓ1 − (i− 1) ln(δ′) (5.16)
≥ ln(λ1(L))− (i− 1) ln(δ′). (5.17)

It follows that for i ≤ d, this is at least ln(λ1(L))− (d− 1) ln(δ′).

For the i > d case, we can start by bounding the sum
∑i

j=i ℓj :

i∑
j=1

ℓj ≤
i∑

j=1

ℓ′j ≤ i ln(q). (5.18)

This follows directly from the fact that
∑i

j=1 ℓj ≤
∑i

j=1 ℓ
′
j (Equation 4.5), and the fact that

ℓ′i ≤ ln(q) for all ℓ′i (Lemma 5.1). We can also establish a lower bound by subtracting Equation 5.12
from 5.18:

(i− k) ln(q) ≤
i∑

j=1

ℓj ≤ i ln(q) for d < i ≤ n. (5.19)

Now, we use the fact that i > d and subtract

i∑
j=1

ℓj −
i−d∑
j=1

ℓj ≥ (i− k) ln(q)− (i− d) ln(q), (5.20)

i∑
j=i−d+1

ℓj ≥ (d− k) ln(q). (5.21)

Furthermore, we can iteratively apply the Lovász condition like we did above to obtain ℓj ≤ ℓi +
(j − i) ln(δ′) for j ≤ i. Then, we can use this fact to establish an upper bound:

(d− k) ln(q) ≤
i∑

j=i−d+1

ℓj ≤ dℓi +
d−1∑
j=0

j ln(δ′). (5.22)

Rewriting this, we have

(d− k) ln(q) ≤ dℓi +
(d(d− 1)

2

)
ln(δ′). (5.23)

Then, we divide everything by d and rearrange to obtain

ℓi ≥
(d− k) ln(q)

d
−

(
(d− 1)

2

)
ln(δ′), (5.24)

ℓi ≥ ln(q)− k

d
ln(q)−

(
(d− 1)

2

)
ln(δ′). (5.25)

Recall that we defined d such that d− 1 ≤
√

2k·ln q
ln δ′ ≤ d, so we can substitute and simplify:

ℓi ≥ ln(q)− k

d
ln(q)− (d− 1)

1

2
ln(δ′), (5.26)

ℓi ≥ ln(q)− k√
2k·ln q
ln δ′

ln(q)−

(√
2k · ln q
ln δ′

)
1

2
ln(δ′), (5.27)

ℓi ≥ ln(q)− 1
2

√
2k ln(q) · ln(δ′)− 1

2

√
2k · ln(q) · ln(δ′). (5.28)

15

Finally, we use the fact that λ1(L) must be less than q to obtain

ℓi ≥ ln(λ1(L))−
√
2k ln(q) · ln(δ′) for d < i ≤ n, (5.29)

which is what we wanted to show.

All that remains is to show that Babai’s nearest plane algorithm will solve BDD. Recall that
Babai’s algorithm solves γ-CVP for γ(n) ≤ 2n/2 [Reg04b], and when r < λ1(L)/2, then CVP solves
BDD because the solution is unique. In other words, there is only one possible vector within r in
this case, and that is the closest one. Moreover, the smallest Gram-Schmidt vector mini ∥b∗i ∥ is less
than λ1(L) [Bai06], and therefore Babai’s algorithm will solve BDD for r < mini ∥b∗i ∥. Due to the
exponential factor and the above proposition, we have shown that Babai’s algorithm can solve BDD
up to radius 1

2λ1(L) · exp
{
−
√

2k · ln(q) · ln(δ′)
}

, concluding the proof of Theorem 1.3.

6 Conclusion and Future Work
After a survey of numerous interrelated lattice problems and previous work on quantum approaches
to these problems, we have presented an overview of Eldar and Hallgren’s work, as well as a complete
proof of Ducas and van Woerden’s result with all details filled in.

There is further work to be done in the area of classical algorithms for BDD and related lat-
tice problems. In particular, instead of LLL, it would be worthwhile to consider alternative basis
reductions, such as a Block Korkin-Zolotarev (BKZ) reduction, which is known to give a better
approximation factor than LLL when solving γ-CVP using Babai’s nearest plane algorithm [NV10].
It would also be interesting to consider randomized heuristics for lattice problems, such as Klein’s
algorithm [LLS11].

There is a more general question of when a quantum algorithm for a lattice problem is guaranteed
to have a classical counterpart. If more quantum-classical pairings are found, it would be interesting
to consider the connections between these cases and conjecture such a result.

Acknowledgements
We would like to thank Professor Boaz Barak and Emil Khabiboulline for their guidance through-
out this project. We are also thankful to Professor Vinod Vaikuntanathan and Jessica Sorrell for
useful correspondence on lattice-based quantum algorithms and their classical counterparts, and to
Professor Sean Hallgren and Dr. Lior Eldar for helpful feedback and for kindly providing us with
the manuscript of their result.

References
[Ajt98] Miklós Ajtai. The shortest vector problem in L2 is NP-hard for randomized reductions.

In Proceedings of the 13th annual ACM Symposium on Theory of Computing, pages
10–19, 1998.

[Bab86] László Babai. On Lovász’ lattice reduction and the nearest lattice point problem. Com-
binatorica, 6(1):1–13, 1986.

[Bai06] Thomas Baigneres. Cryptosystems and LLL. Technical report, 2006.
[Bar22] Boaz Barak. An Intensive Introduction to Cryptography. 2022.
[DD18] Daniel Dadush and Léo Ducas. Lecture 4 for the course “Intro to Lattice

Algorithms and Cryptography”. https://homepages.cwi.nl/~dadush/teaching/
lattices-2018/notes/lecture-4.pdf, 2018.

[Den16] Xinyue Deng. An introduction to Lenstra-Lenstra-Lovasz Lattice basis reduction algo-
rithm, 2016.

[DvW21a] Léo Ducas and Wessel van Woerden. A note on a Claim of Eldar & Hallgren: LLL
already solves it (Version 1). Cryptology ePrint Archive, 2021.

16

https://homepages.cwi.nl/~dadush/teaching/lattices-2018/notes/lecture-4.pdf
https://homepages.cwi.nl/~dadush/teaching/lattices-2018/notes/lecture-4.pdf

[DvW21b] Léo Ducas and Wessel van Woerden. A note on a Claim of Eldar & Hallgren: LLL
already solves it (Version 2). Cryptology ePrint Archive, 2021.

[EH22] Lior Eldar and Sean Hallgren. An efficient quantum algorithm for lattice problems
achieving subexponential approximation factor. arXiv preprint arXiv:2201.13450, 2022.

[Gal12] Steven D Galbraith. Mathematics of Public Key Cryptography. Cambridge University
Press, 2012.

[GMSS99] Oded Goldreich, Daniele Micciancio, Shmuel Safra, and J-P Seifert. Approximating
shortest lattice vectors is not harder than approximating closest lattice vectors. Infor-
mation Processing Letters, 71(2):55–61, 1999.

[Hal21] Sean Hallgren. An efficient quantum algorithm for lattice problems achieving subexpo-
nential approximation factor. Available at https://www.youtube.com/watch?v=K5Apl_
qCnDA, 2021.

[Kup05] Greg Kuperberg. A subexponential-time quantum algorithm for the dihedral hidden
subgroup problem. SIAM Journal on Computing, 35(1):170–188, 2005.

[Kup11] Greg Kuperberg. Another subexponential-time quantum algorithm for the dihedral hid-
den subgroup problem. arXiv preprint arXiv:1112.3333, 2011.

[LLL82] Arjen K. Lenstra, Hendrik Willem Lenstra, and László Lovász. Factoring polynomials
with rational coefficients. Mathematische Annalen, 261(ARTICLE):515–534, 1982.

[LLS11] Shuiyin Liu, Cong Ling, and Damien Stehlé. Decoding by sampling: A randomized
lattice algorithm for bounded distance decoding. IEEE Transactions on Information
Theory, 57(9):5933–5945, 2011.

[LM09] Vadim Lyubashevsky and Daniele Micciancio. On bounded distance decoding, unique
shortest vectors, and the minimum distance problem. In Annual International Cryptology
Conference, pages 577–594. Springer, 2009.

[MG02] Daniele Micciancio and Shafi Goldwasser. Complexity of Lattice Problems: A Crypto-
graphic Perspective, volume 671. Springer Science & Business Media, 2002.

[Mic01] Daniele Micciancio. The shortest vector in a lattice is hard to approximate to within
some constant. SIAM Journal on Computing, 30(6):2008–2035, 2001.

[Mic07] Daniele Micciancio. Lecture 3 for the course “Lattice Algorithms and Applications”.
https://cseweb.ucsd.edu/classes/sp07/cse206a/lec3.pdf, 2007.

[NC10] Michael A Nielsen and Isaac Chuang. Quantum Computation and Quantum Information.
Cambridge University Press, 2010.

[NV10] Phong Q. Nguyen and Brigitte Vallée. The LLL algorithm. Springer, 2010.
[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem.

In Proceedings of the 41st Annual ACM Symposium on Theory of Computing, pages
333–342, 2009.

[Pei13] Chris Peikert. Lecture 3 for the course “Lattices in Cryptography”. https://web.eecs.
umich.edu/~cpeikert/lic13/lec03.pdf, 2013.

[Reg04a] Oded Regev. Lecture 2 for the course “Lattices in Computer Science”. https://cims.
nyu.edu/~regev/teaching/lattices_fall_2004/ln/lll.pdf, 2004.

[Reg04b] Oded Regev. Lecture 3 for the course “Lattices in Computer Science”. https://cims.
nyu.edu/~regev/teaching/lattices_fall_2004/ln/cvp.pdf, 2004.

[Reg04c] Oded Regev. Quantum computation and lattice problems. SIAM Journal on Computing,
33(3):738–760, 2004.

[Reg04d] Oded Regev. A subexponential time algorithm for the dihedral hidden subgroup problem
with polynomial space. arXiv preprint quant-ph/0406151, 2004.

[Reg10] Oded Regev. The learning with errors problem. Invited survey in CCC, 7(30):11, 2010.
[SD16] Noah Stephens-Davidowitz. Lecture 5 for the course “Lattices Mini Course”. http:

//www.noahsd.com/mini_lattices/05__babai.pdf, 2016.

17

https://www.youtube.com/watch?v=K5Apl_qCnDA
https://www.youtube.com/watch?v=K5Apl_qCnDA
https://cseweb.ucsd.edu/classes/sp07/cse206a/lec3.pdf
https://web.eecs.umich.edu/~cpeikert/lic13/lec03.pdf
https://web.eecs.umich.edu/~cpeikert/lic13/lec03.pdf
https://cims.nyu.edu/~regev/teaching/lattices_fall_2004/ln/lll.pdf
https://cims.nyu.edu/~regev/teaching/lattices_fall_2004/ln/lll.pdf
https://cims.nyu.edu/~regev/teaching/lattices_fall_2004/ln/cvp.pdf
https://cims.nyu.edu/~regev/teaching/lattices_fall_2004/ln/cvp.pdf
http://www.noahsd.com/mini_lattices/05__babai.pdf
http://www.noahsd.com/mini_lattices/05__babai.pdf

[SD21] Noah Stephens-Davidowitz. Dimension-preserving reductions between lattice problems,
2015. 2021.

[vEB81] Peter van Emde Boas. Another NP-complete problem and the complexity of computing
short vectors in a lattice. Technical Report, Department of Mathematics, University of
Amsterdam, 1981.

18

	Introduction
	Timeline of Publications
	Outline of this Paper

	Background on Lattices, Relations, and Reductions
	Definitions and Notation
	SVP, CVP, and BDD
	Lattice Hardness Results
	Survey of Quantum Approaches to Lattice Problems

	Overview of Eldar and Hallgren's Algorithm
	Quantum Primitives
	Intuition for the Proof

	Classical Primitives
	The LLL Algorithm
	Babai's Nearest Plane Algorithm

	Proof of Classical Alternative
	Short Bases from Short Full-Rank Sets
	Duality
	Completing the Proof

	Conclusion and Future Work

