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Abstract. In this paper we generalise Ti’s fault attack and the loop abort fault attacks on super-
singular isogeny cryptosystems (genus one) to genus two. Genus two isogeny based cryptosystems are
generalisations of its genus one counterpart, as such, attacks on the the latter are believed to generalise
to the former.

Fault attacks on supersingular elliptic curve isogeny cryptography has been shown to be practical. We
show in this paper that fault attacks continue to be practical in genus two, albeit with a few additional
traces required.

Isogeny-based cryptography was proposed in 1997 by Couveignes in an unpublished manuscript [Cou06] on
hard homogeneous spaces. This was re-discovered independently by Rostovtsev and Stolbunov in 2006 [RS06].
In 2011, Jao and De Feo introduced the supersingular isogeny Diffie-Hellman (SIDH) protocol [JF11]. This
went on to form the basis of SIKE in 2017 which is a third-round alternative candidate in NIST’s post-
quantum standardisation process. The isogenies of supersingular elliptic curves have also found use in creating
a hash function in 2005 by Charles, Goren, and Lauter [CLG09]. These cryptosystems are dependent on the
difficulty of finding isogenies between supersingular elliptic curves.

This hard problem of finding isogenies between elliptic curves is not unique to abelian varieties of dimen-
sion one, i.e. elliptic curves. One can generalise the SIDH protocol to abelian varieties of higher dimension,
which is what was proposed by Flynn and Ti in [FT19]. They presented the G2SIDH which generalises
SIDH to genus two and bases G2SIDH on the difficulty of finding isogenies between principally polarised
superspecial abelian surfaces. Furthermore, Takashima [Tak17] proposed a generalisation of the CGL hash
function to genus two in 2018, and this was improved by Castryck, Decru, and Smith in 2019. Cryptanalysis
of higher genera cryptosystems have been conducted by Costello and Smith in [CS20], and Kunzweiler, Ti,
and Weitkamper in [KTW21].

In this paper, we take a different approach and outline physical attacks that are able to recover the secret
keys of G2SIDH. Physical attacks have a long history in cryptography and have also been proposed against
isogeny-based attacks in the literature [GW17, KAJ17, Til7, KPHS18, CKM*20,ZYD"20, CKM21,XIU*21,
ACDMRH22,UXT*22]

The method that we employ are fault attacks. The analogous fault attacks on SIDH that we are interested
in can be classified as loop abortion techniques as well as point perturbation. The former method of Gélin
and Wesolowski [GW17] relies on using a fault to disrupt loops in the SIDH algorithm to force a system
to output intermediate values which correspond to intermediate curves along the secret isogeny. The latter
attack of Ti [Til7] aims to perturb one of the auxiliary points of the protocol. This forces the system to
compute images of random points through the secret isogeny. The attack exploits this fact and uses the
result of this unintended computation to recover the secret isogeny with several traces.

This paper describes the generalisation of both fault attack methods to the G2SIDH protocol. We begin
by outlining the preliminaries in Section 1 and sketching out the G2SIDH protocol in Section 1.3. Next, the
generalisation of Ti’s fault attack to G2SIDH will be detailed in Section 2, and we provide an analysis of this
attack in Section 3. And we will discuss the implications of this attack on current genus two cryptosystems
in Section 4. Lastly, we will sketch the loop-abort attack on G2SIDH in Section 5.

1 Preliminaries/Background

This section serves as a concise introduction to the central characters of genus two isogeny-based cryptogra-
phy. We will only cover the necessary topics and will set out the notation to be used in the paper.



1.1 Abelian Surfaces

We consider abelian surfaces, i.e. abelian varieties A of dimension 2, over F, where ¢ is a power of a prime
p > 2. Given A, we have the dual abelian variety AV, together with an invertible sheaf P on the product
A x AV. An isogeny X : A — AV is called a polarisation of A; the polarisation \ is principal if it is an
isomorphism.

We consider the principally polarised abelian surfaces (PPAS), which are pairs of (A, \) where A is an
abelian surface and A : A — AV is a principal polarisation. As shown in [GGR05, Thm. 3.1], a principally
polarised abelian surface over [, is isomorphic to one of the following:

1. the Jacobian J(C) of a smooth projective curve C' of genus 2, or
2. the product of two elliptic curves E x E’,

where J(C) is equipped with its canonical principal polarisation.
For each n prime to p, we have A[n] = C? (where C,, is the cyclic group of order n), and the Weil pairing

en : Aln] x A [n] — pn

which is bi-additive, alternating and Galois-invariant. Via the polarisation A, we obtain a pairing e, :
Aln] x A[n] = pin.

A principally polarised abelian surface is said to be superspecial if it is isomorphic over Fp to a product
of supersingular elliptic curves, as abstract abelian varieties. In addition, all such products are isomorphic
to each other. As an analogue of supersingular elliptic curves, our objects of interest are the principally
polarised superspecial abelian surfaces (PPSSAS).

1.2 Mumford representation

We consider a PPSSAS which is the Jacobian of a smooth projective curve C' of genus 2. Such a C is also
said to be superspecial. It is hyperelliptic, so we can write it in the form y? = f(x) for some f(z) € F,[z] of
degree 5 or 6.

Lemma 11 ( [Gall2]) Let C' = C N A% Any non-zero divisor D € Pic’(C) is linearly equivalent to a
divisor of one of the following forms:

— Py — oo with P, € C', or
— P+ Py — 200 with P1, Py € C" such that 1(Py) # P, where 1 : C — C is the hyperelliptic involution.

Such a divisor is said to be semi-reduced.

Given a semi-reduced divisor D, consider the polynomial u(x) = [[,(z — x(P;)), which is of degree 1 or
2. Then there is a unique v(z) € Fp[z] satisfying degv(z) < degu(x) and v(z(F;)) = y(P;) for each ¢, such
that

v(z)? = f(z) (mod u(x)).

The pair (u(z),v(x)) is called the Mumford representation of the semi-reduced divisor D. Furthermore, D is
defined over F, if and only if u(z),v(z) € F,.

For a general D € Pic’(C), one first finds a semi-reduced D’ € Pic’(C) which is linearly equivalent to D,
then computes its Mumford representation. Although D’ is not unique, its Mumford representation is. Given
Mumford representations of divisors Dy, Dy € Pic® (C), one can apply Cantor’s algorithm [Gall2, Chap. 10]
to compute the Mumford representation of Dy + Ds.



1.3 G2SIDH

Let A be a PPSSAS. If G C A is a finite subgroup of order prime to p, we obtain an abelian variety A/G
with a canonical isogeny A — A/G of kernel G. We will only consider the case where G is proper, i.e. it does
not contain A[n] for any n > 1. Note that there is no loss of generality since A/(A[n]) = A if n is coprime
to p.

Definition 12 Let m > 1 be prime to p and G C A[m] be a proper subgroup. We say G is mazimal m-
isotropic if

1. the Weil pairing e, : Alm] x Alm] = un, restricts trivially to G, and
2. G is not properly contained in any subgroup of Alm] satisfying (1).

The significance of such subgroups is given by the following.

Proposition 13 Let A be PPSSAS and G C A be a finite proper subgroup of order prime to p. The polari-
sation for the abelian surface A/G is principal if and only if G is a mazimal m-isotropic subgroup for some
m > 1, in which case it is also superspecial (hence a PPSSAS).

Let [ # p be a small prime, say [ € {2,3}. In the case where m = [, we have the following.

Lemma 14 The mazimal [™-isotropic subgroups of A[l™] are isomorphic to either

Cl” X Cln, or Cl" X Cln—k X Clk

for some 1 < k < |%]. In particular, each G = Cy x Cy € All] is a mazximal l-isotropic subgroup. The

resulting A — A/G s called an (I,1)-isogeny.

Now we may describe our isogeny graph for the protocol for G2SIDH. As in SIDH, we fix a small prime
I # p, say | € {2,3}, and consider the graph G, ; whose vertices are isomorphism classes of PPSSAS, and
edges are (I,1)-isogenies. Note that if A — B is an (I,1)-isogeny, so is the dual BY — AY and composing
with their respective polarisations gives an (I,1)-isogeny B — A. Thus the graph is undirected.

As noted in [FT19], the graph G, ; is not collision resistant due to the prevalence of “diamonds”. In the
same paper, the authors describe G2SIDH, a genus two variant of the SIDH key-exchange protocol based on
Gp, for I = 2,3. The presence of diamonds does not affect the security of G2SIDH.

1. Pick a prime of the form p = 2¢4 - 38 . f — 1, where 2°4 and 3°8 are of comparable length.

2. Pick a PPSSAS A over 2. One can, for example, start from a fixed superspecial genus two curve, then
traverse randomly along G, 2. In [KTW21], the authors suggest taking y* = z%+1 for the starting curve.

3. To traverse along G, ;, select random points Py, Ps, P3 € A[l"] such that G = (P, P>, P3) is a maximal
{™-isotropic subgroup of A[I"]. To achieve this, one can proceed as in [KTW21] with a symplectic basis
of A[l"™] which respect to the Weil pairing, then obtain G via a sequence of (,1)-isogenies of length n.

4. Now the key exchange proceeds as in SIDH. Alice and Bob agree on a PPSSAS, as in step (2). Al-
ice then chooses a secret maximal 2°4-isotropic subgroup of A[2°4] and computes a symplectic basis
(Py, P2, Ps, Py) of A[2°4]. Bob chooses a secret maximal 3°5-isotropic subgroup of A[3°2] and computes
a symplectic basis (Q1, @2, Q3,Q4) of A[3°B]. Each of them sends their respective basis to the other
party.

5. From her basis, Alice proceeds as in step (3) to obtain a random maximal 2¢4-isotropic subgroup Ga,
with corresponding isogeny ¢4 : A — A/G4 =: J4. She then sends the tuple

(Ja,04(Q1),94(Q2),94(Q3), pa(Q4))

to Bob. One can show that the resulting basis {¢4(Q;) : 1 < i < 4} of J4[3°5] is symplectic.



6. Similarly, Bob obtains a random maximal 3°8-isotropic subgroup G g, with corresponding isogeny ¢p :
A — A/Gp =: Jg. He sends the tuple

(JB,¢B(P1), dB(P2), ¢5(P3),¢5(Py))

to Alice.
7. Now Alice computes ¢p(G 4) from the symplectic basis {¢p(P;) : 1 < i < 4} of Jp[2°4] and obtains the
PPSSAS Jap := Jg/éd5(G4). Similarly Bob obtains Jpa := Ja/¢a(Gpg). One then has Jap = Jpa.

The resulting PPSSAS J4p is, with overwhelming probability, the Jacobian of a genus two curve. Quan-
titatively, there are O(p3) such cases but only O(p?) products of two supersingular elliptic curves. Hence
Alice and Bob can derive a shared key by computing the genus two curve Cyp such that Jap = J(Cap).
Since such curves form a moduli space of dimension 3, one can describe C4p by a set of three parameters.
An explicit description of these invariants was computed by Igusa [Igu60] and by Cardona, Quer, Nart and
Pujolas [CNP02,CQO5].

1.4 Fault attack on SIDH

We summarise the fault attack on SIDH in [Til7].

Let E be a supersingular elliptic curve over Fp2. Recall that Alice computes a secret isogeny ¢4 : E — E4
whose kernel is a cyclic subgroup of order 2°4. Suppose the attacker Eve injects a fault into the system,
causing it to perturb a point in E to some X € E(FF,2). This is possible since SIDH computations only use
the z-coordinates of points; with probability 50%, a random change of this coordinate results in a rational
point on the curve. From the SIDH protocol, Eve gains access to the point ¢4(X). Multiplying X by a
suitable scalar, we may assume without loss of generality that X € E[2¢4].

First consider the ideal case where X has order 2¢4 exactly; this occurs with a probability of 50%. If P’
denotes a generator of ker ¢4, then (P’, X) almost certainly generates the whole of E[2°4]. We obtain:

Ba/(4(X)) = B/ (P, X) = B/E[2"] = E

so the isogeny Fq4 — Ea/{(¢4(X)) is dual to ¢ 4. This enables Eve to obtain Alice’s secret isogeny ¢ 4.

More generally, if X has order 2¢4~F for a small k, then Eve computes E4 — FEa/(¢4(X)) =: E’ and
E'/{Y) = E for some point rational point Y € E’ of order 2*. This has only 22* possibilities and Eve can
easily launch a brute force attack to recover the dual isogeny E4 — E' — E’/(Y).

2 Fault attack

The idea of the fault attack is that it forces the protocol to output the image of a random divisor under
the secret isogeny, and given enough of such random images, we can recover the secret isogeny. By using
certain ‘reduced’ representations of divisors (see next paragraph), a fault is likely to give us a valid divisor.
Hence the adversary may assume after enough faults, we obtain the image of a valid random divisor under
the secret isogeny, and hence recovery the secret isogeny by Lemma 23.

Recall that the Mumford representation represents a divisor P + @ — 200 with polynomials u, v where the
roots of u are the x coordinates of P,Q € A(F,) and y. = v(z,), » € {P,Q}. However v carries a lot more
information than necessary, instead one could simply choose an agreed ordering of F,2 and represent the y
coordinate via a 0 or 1, representing the two roots of the hyperelliptic curve equation. The added benefit
of this representation is the reduction of message sizes in any protocol. Also, this means that whenever we
apply a fault to a divisor, we would either flip the y coordinate bit or alter the polynomial u. As u is monic,
the fault can only affect the z°, 2! coefficients.

Half the time after faulting, the roots of u lies in IF,. In this case, there is a roughly % chance each x
coordinate yields a y coordinate in F, via the hyperelliptic curve, which gives us a total probability of this
case of %



The other half, the roots lies in F,2 and there’s a % chance that they yield a y coordinate in Fy2. The

divisor for such as case is of the form P + PFmb[Fq2 Y1 _ 900, which tells us that there is a % chance in this
case as the y coordinate bit for both points gives us such a divisor, hence this case contributes a probability
of %

In total, this tells us that there is a % chance that the faulted point is a valid divisor.

2.1 Technical results for the recovery of isogeny from image of random points

The first result is well-known in the literature and is stated here for completeness. We will use this proposition
for the other results to come.

Proposition 21 ( [MRM74, Prop I1.6.3]) Let A be an abelian variety of dimension g, we have

29
A[n]g{cﬂ ank 0<i<2g
C,, n=p

The next result is the first of our technical lemmas. It shows that we are able to recover a secret isogeny
if we are provided with images of a torsion subgroup that contains the kernel of the isogeny.

Lemma 22 Suppose we have a separable isogeny ¢ : A — B of abelian varieties over Fp with ker ¢ C A[n]
and we are given ¢ (A[n]). We can recover ¢ efficiently whenever n has small prime factors.

Il

Proof. By [MRM74, Thm II.7.4], we know that there exists a separable isogeny ¢ : B — B/ (¢(A[n])) = A
such that ker ) = ¢(A[n]) and ¢ o ¢ = [n].
In the case that n = £° for a small prime ¢, it is computationally feasible to recover ¢ given ker ¢). Consider

the following commutative diagram:

e 6‘71 the—1 e‘ the—2 b2 |
v i v v
B/ ker B/ ([£] ker v) B/ ([6*] ker ) B/ ([t°~ ' ker )

As there are only a small number of possible separable isogenies f where ker f C ker[¢], given by the number
of subgroups of ker[¢] which is quite small by Proposition 21. Hence each ¢; is easy to compute and ¢ is easy
to compute

Now in the case that n = [],¢;’, repeat the above procedure but for each prime and compose the
isogenies.

In the preceding lemma, we saw that knowledge of the images of the torsion subgroup is sufficient for
us to recover the secret isogeny. However, this may not be practical. As such, this next result computes the
amount of information we will need to recover the secret isogeny.

Lemma 23 Suppose furthermore that A[°] C A(Fpr) and ¢ (A[€°]) has m generators. Given the images of
at least m random points P; € A(F,r) under ¢, there is a probability of at least (1 — Eil)m that we can find

¢ (Ale)).



Proof. Let n = £79¢|A(F,r)|. n is a integer as A [¢¢] is a subgroup of A (F,r) |A[¢¢]] = £9°.

Since [n]P; € A[¢¢], [n]p(P;) = ¢([n]P;) gives us a random point in ¢( [¢¢]). With sufficiently many
random points, it is possible that we generate all of ¢ (A [£°]).

We can know precisely when we have sufficiently many points with the following procedure. Find some
minimal set of generators of B [¢°], say ();. Then we know that Zfi S LQ; = Cfcg . Express every point

[n]P; = Z?il M, ;Q; and let UDV = M be a smith form of M as a matrix over Z,.
Since D is diagonal and U,V are invertible, we can easily read out the size of the subgroup generated

by [n]P;, and hence decide how much brute force is needed to reach ¢ (A [¢¢]). Letting {ai}zl be invariant
factors of M that has f-adic valuation more than e, then we get

‘ZZ Hp—ma)

and by comparing with |¢ (A [¢¢])|, we can find how much brute force is needed.
The probability that we generate ¢ (A [¢¢]) is given by Theorem 32 of the next section.

Remark 24 Note that if the random points dont generate A (] but [¢p (A[€°]) : >, Z([n|F;)] is small, we
can brute force for the remaining part of the kernel.

In the examples, we shall assume that each fault is successful and yields the image of a random divisor
under the secret isogeny.

Example 25 In the case of cryptosystems, we have g = 2 and the kernel is of the form C’ge. In this case,
Theorem 32 tells us that the probability that n faults is enough is (1 —£~™) (1 — El’”). This tells us that we
need on average, we need the following number of faults:

£+2

i (L") (=) = (1= ) (1= 7)) =24

and if we used 2 faults, the probability that we generate the entire kernel is
(1-0hHQ-e?)=1—t"'—t72+07°
When £ = 2, this value is %.

Example 26 In the case that the kernel has the form Cye @ Cpe—r @ Cypr,k < e, then the result from
Theorem 32 tells us that the probability that n faults is enough is (1 —£~™) (1 — fl_") (1 — 42_”), This tells
us that we need on average, we need the following number of faults:

> 04302 +40+3
_ 1—-n _ 2—n _ _ 1—n _ 2—n _ 3—n —
Z:: (=) Q=) =27 = (=07 =27 (1= 077) =834 7=

and if we used 3 faults, the probability that we generate the entire kernel is
(1- z—l) (1= Q-3 =10 =020 07— °
When { = 2, this value is =7 =~ 0.33.

Example 27 As a final example, suppose that the kernel the form Cye @ Cpe—r & Cpr, k < e as before but we
want the probability that with n faults such that

ZZ =0



This is again given by Theorem 32 which gives us
2456
P(3,n,6) = £~ (07";0), < :; )
¢

2 _ S 1 _ (3+k—i
() 155
i=0

i=1
~ 675(n72)

assuming 0 < k,e — k, e.

2.2 Pseudocode and software simulation of the attack

Suppose we have abelian varieties A, B of dimension g and an isogeny ¢ : A — B and the images of
random points P; € A(F,) under ¢. Further suppose that ker ¢ C A[¢°] C A(F,) and suppose that we have

| ker ¢| = ¢*. We provide the pseudocode to obtain the isogeny ¢:

Algorithm 1: Recovery of isogeny after fault injection

Data: ¢(P;)

Result: p: A > B

n — 07 | A (F,);

P}« [n]o(F;) ; /* Now we have P/ € ¢(A[(]) =/
Determining how much bruteforce is needed;

Set Q; as generators of B[¢°];

Compute M; ; € Z; with Pj = > Mi;Qj 5 /* Possible when ¢ is small */
UDV «+— M ; /* Smith normal over Z; */
A; < Diﬂ‘;

m < [{ai|ve(as) < e}l;
¢ «— éke—me Hm/l pvg(ai);
i=
Add more row vectors into D with brute force to get B/Z(DV); = A where the sum is over the rows ; /* We
only need to brute force vectors in

B

O[] : 32 ([P

See Lemma 23 and Example 27 for the details */
G+ SIZP! = ¢ (A[t?]) := ker o;
Computing ¢;
for i + 1 to e do
Ai = B/([t°7')G) i : Aoy — Ajs
Bruteforce ¢; : A; — A;—1 to get [Z’] = 1/},~[€i71]¢>¢ ; /* Possible when ¢ is small */
end
D D1 Pe—10e;

return ¢;

An implementation that simulates fault injection and secret key recovery can be found in https://
github.com/yanboti/Genus2FaultAttack. Note that the implementation simplifies pseudocode by omitting

the Smith normal form computation and does not require bruteforcing.


https://github.com/yanboti/Genus2FaultAttack
https://github.com/yanboti/Genus2FaultAttack

3 Analysis of attack

In the attack above, we are able to generate a subgroup of ¢ (A [£¢]). If the subgroup has a small enough
index, then bruteforcing the remaining parts of the group becomes feasible. Hence in this section, we compute
the probability that given n random points, how likely are we to generate a subgroup of a fixed index in
¢ (A[€°]). In the case the index of the subgroup has index 1, then no brute force is needed.

For convenience, we introduce the notations for the g-deformed Pochhammer symbols and binomial
coefficients

Definition 31 -
(a;q)n = [[ 1 - ad"

k=0
m - gmF
(”)q - kl;[o 1— gt

Suppose that ¢ (A [¢¢]) has m generators as a Zy-module. This now reduces the problem to computing the
probability that with n random elements in (Z;)™ generates the entire Z,-module, and if not, how ‘much’ is
left. This is given by the following theorem (for convenience we use p instead of £):

Theorem 32 Let P; be n random elements in Z,", distributed with respect to the normalized Haar measure
and assume m < n. Let M =77 /37" | Z.P; and denote the probability that | M| = p¥ is as P(m,n, k). Then

—n —n +k—1
P(m,n,k) =p " (p";p),, (m % )
P

In the theorem above, P(m,n,0) gives the probability that we generate the full kernel and the k in
P(m,n, k) is a measure of how much bruteforce is needed. To understand the terms, we provide the following
approximation:

Remark 33

ok — m+k—1
P(m,n,k) =p " (p ";p)m( " )
p

m—1 k ;

] ) 1— m—+k—1i

e (TLa—pr ) (T
i=0 1=p

i=1

_ pfnk (1 _pf(n+17m) +0 <p7(n+2fm))) pk(mfl) _’_pk(mfl)fl +0 <pk(mfl)72>
—_————
if k0
_ pfkr(nJrlfm) +0 (pfk(nJrlfm)fl)

In the case of k =0, we have

P(m,mO) = (p_n,p)m — H 1 _pi—n > (1 _p—(n—m+1))m

=0

Lemma 34 Let P be a m x n matriz with Pj; = (Pi)j, Suppose it’s invariant factors are ay,as, ..., any,
then |M|=TT", a;.



Remark 35 This allows us to consider the rows of matriz P instead of the columns P;, giving us m vectors
in Z,, making counting a lot easier.

Lemma 36

P(m,n,0)= [[1-p""=("p),,

Proof. We can work over F,, by reduction mod p and by Remark 35, the problem reduces to finding the
number of ordered linearly independent m-tuples (P;);", over 7. We require

Z+1EF ZFP

and since

i i
> FPi|=p" =) _F,P;
j=1 j

Hence we get

Now we can prove Theorem 32.

Proof. We proceed by induction on a recurrence relation. Suppose that P; € pZy, then by dividing p from
each component, we obtain a new matrix with one of the invariant factors reduced by a factor of p. Otherwise
by swapping the columns appropriately, we can get a unit at P; 1, and by using elementary row operations,
get P; 1 = d;1. This reduces to the case of the smaller matrix, hence we have the recursion relation

Vel

pt—1
'3

1
P(m,n, k) = —P(m,n,k —1) + Pim—1,n—1,k)
pn
and the boundary conditions P(m,n,0) = (p~";p),, and evidently P(1,n,k) = p~ "% — p~ "B+ The last
one tells us that we can reasonably extend the function to P(0,n, k) = 0.
From this we get the following recursions immediately

m—1
- + — . .
P(m,n, k) z:p"Z " )Z,]P’(m—z,n—z,k—l)
1=0
With this, we can prove the theorem by induction.
Evidently p° (p~"p),, ("y 1)p = (p™™p),, = P(m,n,0) which proves the base case of k& = 0. For the
inductive step, we have

-1

3

P(m,n, k)= p (p_";p)i]P’(m—z',n—i,k—l)

11

-1

3

p

%

I
o



m—1 .
— (7. —nk w(m+k—1—2
B
i=0 p
m—1 . .
— —n. —nk ik m+k—i—1 o (i+Dk m+k—1—2
=(p™"p), P ;(p( L )p P § )

_ (p_n;p)mp—nk <<m +: - 1>p — pmk (k‘ ; 2>p>

Iy _ap(m+k—1
=(p™"p), P ( N )p

4 Application to genus two isogeny-based cryptography

This section describes the impact of the fault attack on existing genus two isogeny-based cryptosystems.
In particular, we will state how the fault attack may be used against G2SIDH of Flynn and Ti [FT19],
the generalisation of the identification scheme based on SIDH [JF11], and the Genus 2 Oblivious Transfer
protocol of Fernandez-Valencia [Ferl9)].

4.1 Attack models on protocols

The fault attack model on the various protocols are similar. Ideally, the fault attack would be able to recover
the secret isogeny without the knowledge of either party, and the attack should be successful with a single
trace. However, this is not possible because correct images of auxiliary points are required by SIDH and the
genus two protocols. By faulting these points, these protocols are unable to be completed as specified and
errors may be raised.

G2SIDH Recall that the G2SIDH protocol is a key-exchange protocol between two parties seeking to
establish a secret key. This protocol has been described in §1.3. To break the protocol, an adversary has to
learn the secret key of either one of the parties.

Suppose an adversary is trying to learn Alice’s static secret isogeny and has the ability to cause a fault
in Alice’s computation. After introducing a fault in @; just prior to Alice’s computation of ¢4(Q;) for
1 =1,2,3,4, Alice would then proceed to publish the public key tuple

(JA7 ¢A(X1)7 ¢A(X2))7 ¢A(X3))a ¢A(X4))

The adversary will then be able to recover ¢ 4 using the fault attack.

In a static key exchange set-up, the long-term static secret key is usually protected against active attacks
by a Fujisaki-Okamoto transform. But it should be noted that FO transforms will not be able to prevent
the fault attack. This is because, throughout the validation process the static public key of Alice is only
computed once and is never checked during validation. Hence the fault attack would not be detected by
this validation and an adversary would be able to recover the secret isogeny. In an ephemeral key exchange
set-up, the attack can still be mounted.

As noted in [TFMP21] in the fault attack model is realistic in a multiparty scenario where a central
server has a different static key, that will be re-computed during each session, for each user.

Identification protocol Although an identification protocol has not formally been defined for genus 2
isogenies, it can be derived from the ingredients used to construct G2SIDH. We will not be detailing the
exact construction, and will refer readers to [JF11] to note the similarities between the key exchange protocol
and the identification protocol.
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In such an identification scheme, the adversary’s task is to recover the prover’s long-term secret isogeny.
After the long-term secret is computed, the images of the auxiliary points under the secret isogeny must also
be computed. It is at this stage that the fault attack can be carried out in an attempt to recover the secret
key.

Genus 2 Oblivious Transfer The genus two oblivious transfer has a long term secret key that can be
attacked using the fault attack delineated in this paper.

4.2 Feasibility of attack models

The feasibility of the fault attack on various SIDH-like protocols have been discussed in by Ti [Til7] and
Tasso, De Feo, El Mrabet and Pontié [TFMP21]. In short, fault attacks will cause a failure in genus one key
exchange protocols since the auxiliary points that are needed to complete the protocol will be altered. We
have also shown that with 2-4 traces (as given by the examples in §2) of the fault attack are required to fully
recover the secret key.

For the identification and oblivious transfer protocols, the presence of a long-term secret allows this fault
attack to work well.

The experimental results of [TFMP21] showed that fault attacks of [Til7] are “exploitable in practice
though electromagnetic injection on a SoC.” We believe that the genus two version of this fault attack will
retain this property of practicality.

4.3 Countermeasures

The countermeasure to thwart this attack is to implement order checking before the publication of the
auxiliary points. This is the same as with the SIDH case.

5 Fault attack via loop-abort

The premise of the loop-abort attack is simple: terminate the isogeny-chain computation prematurely so
that secret information regarding the full isogeny can be extracted.

Consider the isogeny computation of a (27,27 % 2¥)-isogeny ¢. Since isogeny computations have com-
plexities in the order of the degree of the isogeny, the complexity of ¢ is O(22"). One can employ a compu-
tational trick to reduce the complexity to O(4n) by factoring the isogeny into n consecutive (2, 2)-isogenies.
The isogeny computation would then iterate through all n (2, 2)-isogeny computations before outputting the
result. In fact, this sort of computation is done in all implementations of isogeny-based cryptography that
we know of.

Recall now that there are generally 15 (2,2)-isogenies from a given PPAS. Hence each iteration of the
isogeny would increase the search complexity fourteen-fold (after excluding the dual isogeny). The aim of the
loop abort attack is to interrupt the isogeny computation midway through the iteration. This allows for the
adversary to reduce the search space of the isogeny problem to something manageable. Indeed, with precise
control of such an attack, one only needs to perform O(14n) computations to recover the secret isogeny
in its entirety at a cost of n precise fault injections. Attackers can also elect to increase the computational
complexity in order to reduce the number successful of fault injections; in general, m successful perturbations
can result in O(14™/™m) complexity in the best case.

This loop abort technique is applicable to all the cryptographic protocols described above.
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