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Abstract

In this paper, we generalise the SIDH fault attack and the SIDH loop-abort fault attacks on su-
persingular isogeny cryptosystems (genus-1) to genus-2. Genus-2 isogeny-based cryptosystems are gen-
eralisations of its genus-1 counterpart, as such, attacks on the latter are believed to generalise to the
former.

The point perturbation attack on supersingular elliptic curve isogeny cryptography has been shown
to be practical. We show in this paper that this fault attack continues to be practical in genus-2, albeit
with a few additional traces required. We also show that the loop-abort attack carries over to the genus-2
setting seamlessly.

This article is a minor revision of the version accepted to the workshop Fault Diagnosis and Tolerance
in Cryptography 2022 (FDTC 2022).

Isogeny-based cryptography was first proposed in 1997 by Couveignes in an unpublished manuscript
[Cou06] on hard homogeneous spaces. This was re-discovered independently by Rostovtsev and Stolbunov
in 2006 [RS06]. In 2011, Jao and De Feo introduced the supersingular isogeny Diffie–Hellman (SIDH)
protocol [JF11]. This went on to form the basis of SIKE in 2017 which is a fourth-round candidate in NIST’s
post-quantum standardisation process. However, a flurry of recent results has since broken SIDH [?,?,?]. The
isogenies of supersingular elliptic curves have also found use in creating a hash function in 2005 by Charles,
Goren, and Lauter [CLG09]. These cryptosystems are dependent on the difficulty of finding isogenies between
supersingular elliptic curves.

This hard problem of finding isogenies between elliptic curves is not unique to abelian varieties of dimen-
sion one, i.e. elliptic curves. One can generalise the SIDH protocol to abelian varieties of higher dimension,
which is what was proposed by Flynn and Ti in [FT19]. They presented the G2SIDH protocol which gener-
alises SIDH to genus-2 and bases G2SIDH on the difficulty of finding isogenies between principally polarised
superspecial abelian surfaces. Furthermore, Takashima [Tak17] proposed a generalisation of the CGL hash
function to genus-2 in 2018, and this was improved by Castryck, Decru, and Smith in 2019 which patches the
vulnerability that causes collisions in the Takashima hash observed in [FT19]. Cryptanalysis of higher general
cryptosystems has been conducted by Costello and Smith in [CS20], and Kunzweiler, Ti, and Weitkämper
in [KTW21].

In this paper, we take a different approach and outline physical attacks that are able to recover the secret
keys of G2SIDH. Physical attacks have a long history in cryptography and have also been proposed against
isogeny-based attacks in the literature [GW17,KAJ17,Ti17,KPHS18,CKM+20,ZYD+20,CKM21,XIU+21,
ACDMRH22,UXT+22].

The method that we employ is fault attacks. The analogous fault attacks on SIDH that we are interested
in can be classified as loop-abortion techniques as well as point perturbation. The former method of Gélin
and Wesolowski [GW17] relies on using a fault to disrupt loops in the SIDH algorithm to force a system
to output intermediate values which correspond to intermediate curves along the secret isogeny. The latter
attack of Ti [Ti17] aims to perturb one of the auxiliary points of the protocol. This forces the system to
compute images of random points through the secret isogeny. The attack exploits this fact and uses the
result of this unintended computation to recover the secret isogeny with several traces.
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This paper describes the generalisation of both fault attack methods to the G2SIDH protocol. We begin
by outlining the preliminaries in Section 1 and sketching out the G2SIDH protocol in Section 1.3. Next, the
generalisation of Ti’s fault attack to G2SIDH will be detailed in Section 2, and we provide an analysis of
this attack in Section 3. And we will elucidate the loop-abort attack on G2SIDH in Section 4. Lastly, we
will discuss the implications of this attack on current genus-2 cryptosystems in Section 5.
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1 Preliminaries/Background

This section serves as a concise introduction to the central characters of genus-2 isogeny-based cryptography.
We will only cover the necessary topics and will set out the notation to be used in the paper.

1.1 Abelian Surfaces

We consider abelian surfaces, i.e. abelian varieties A of dimension 2, over Fq where q is a power of a prime
p > 2. Given A, we have the dual abelian variety A∨, together with an invertible sheaf P on the product
A × A∨. An isogeny λ : A → A∨ is called a polarisation of A; the polarisation λ is principal if it is an
isomorphism.

We consider the principally polarised abelian surfaces (PPAS), which are pairs of (A, λ) where A is an
abelian surface and λ : A → A∨ is a principal polarisation. As shown in [GGR05, Thm. 3.1], a principally
polarised abelian surface over Fp is isomorphic to one of the following:

(a) the Jacobian J(C) of a smooth projective curve C of genus-2, or

(b) the product of two elliptic curves E × E′,

where J(C) is equipped with its canonical principal polarisation.
For each n prime to p, we have A[n] ∼= C4

n (where Cn is the cyclic group of order n), and the Weil pairing

en : A[n]×A∨[n] −→ µn

which is bi-additive, alternating and Galois-invariant. Via the polarisation λ, we obtain a pairing en :
A[n]×A[n]→ µn.

A principally polarised abelian surface is said to be superspecial if it is isomorphic over Fp to a product
of supersingular elliptic curves as abstract abelian varieties. In addition, all such products are isomorphic
to each other. As an analogue of supersingular elliptic curves, our objects of interest are the principally
polarised superspecial abelian surfaces (PPSSAS).

1.2 Mumford representation

We consider a PPSSAS which is the Jacobian of a smooth projective curve C of genus-2. Such a C is also
said to be superspecial. It is hyperelliptic, so we can write it in the form y2 = f(x) for some f(x) ∈ Fq[x] of
degree 5 or 6.

Lemma 1.1 ( [Gal12, Lem. 10.3.3]). Let C ′ = C ∩ A2. Any non-zero divisor D ∈ Pic0(C) is linearly
equivalent to a divisor of one of the following forms:

• P1 −∞ with P1 ∈ C ′, or

• P1 + P2 − 2∞ with P1, P2 ∈ C ′ such that ι(P1) ̸= P2, where ι : C → C is the hyperelliptic involution.
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Such a divisor is said to be semi-reduced.

Given a semi-reduced divisor D, consider the polynomial u(x) =
∏
i (x− xPi

), which is of degree 1 or 2.
Then there is a unique v(x) ∈ Fp[x] satisfying deg v(x) < deg u(x) and v (xPi

) = yPi
for each i, such that

v(x)2 ≡ f(x) (mod u(x)).

The pair (u(x), v(x)) is called the Mumford representation of the semi-reduced divisor D. Furthermore, D
is defined over Fq if and only if u(x), v(x) ∈ Fq.

For a general D ∈ Pic0(C), one first finds a semi-reduced D′ ∈ Pic0(C) which is linearly equivalent to
D, then computes its Mumford representation. Although D′ is not unique, its Mumford representation is.
Given Mumford representations of divisorsD1, D2 ∈ Pic0(C), one can apply Cantor’s algorithm [Gal12, Thm.
10.3.14] to compute the Mumford representation of D1 +D2.

1.3 G2SIDH

Let A be a PPSSAS. If G ⊆ A is a finite subgroup of order prime to p, we obtain an abelian variety A/G
with a canonical separable isogeny A→ A/G of kernel G. We will only consider the case where G is proper,
i.e. it does not contain A[n] for any n > 1. Note that there is no loss of generality since A/(A[n]) ∼= A if n
is coprime to p.

Definition 1.2. Let m ≥ 1 be prime to p and G ⊆ A[m] be a proper subgroup. We say G is maximal
m-isotropic if

(a) the Weil pairing em : A[m]×A[m]→ µm restricts trivially to G, and

(b) G is not properly contained in any subgroup of A[m] satisfying (1).

The significance of such subgroups is given by the following.

Proposition 1.3 ( [FT19]). Let A be PPSSAS and G ⊆ A be a finite proper subgroup of order prime to p.
The polarisation for the abelian surface A/G is principal if and only if G is a maximal m-isotropic subgroup
for some m ≥ 1, in which case it is also superspecial (hence a PPSSAS).

Let ℓ ̸= p be a small prime. In the case where m = ℓn, we have the following.

Lemma 1.4 ( [FT19]). The maximal ℓn-isotropic subgroups of A[ℓn] are isomorphic to either

Cℓn × Cℓn , or Cℓn × Cℓn−k × Cℓk

for some 1 ≤ k ≤ ⌊n2 ⌋. In particular, each G ∼= Cℓ × Cℓ ⊆ A[ℓ] is a maximal ℓ-isotropic subgroup. The
resulting A→ A/G is called an (ℓ, ℓ)-isogeny.

Now we may describe our isogeny graph for the protocol for G2SIDH. As in SIDH, we fix a small prime
ℓ ̸= p, say ℓ ∈ {2, 3}, and consider the graph Gp,ℓ whose vertices are isomorphism classes of PPSSAS, and
edges are (ℓ, ℓ)-isogenies. Note that if A → B is an (ℓ, ℓ)-isogeny, so is the dual B∨ → A∨ and composing
with their respective polarisations gives an (ℓ, ℓ)-isogeny B → A. Thus the graph is undirected.

As noted in [FT19], the graph Gp,ℓ is not collision resistant due to the prevalence of “diamonds”. In the
same paper, the authors describe G2SIDH, a genus-2 variant of the SIDH key-exchange protocol based on
Gp,ℓ for ℓ = 2, 3. The presence of diamonds does not affect the security of G2SIDH.

1. Pick a prime of the form p = 2eA · 3eB · f − 1, where 2eA and 3eB are of comparable length.

2. Pick a PPSSAS A over Fp2 . One can, for example, start from a fixed superspecial genus-2 curve, then
traverse randomly along Gp,2. In [KTW21], the authors suggest taking y2 = x6 + 1 for the starting
curve.
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3. To traverse along Gp,ℓ, select random points P1, P2, P3 ∈ A[ℓn] such that G = ⟨P1, P2, P3⟩ is a maximal
ℓn-isotropic subgroup of A[ℓn]. To achieve this, one can proceed as in [KTW21] with a symplectic basis
of A[ℓn] with respect to the Weil pairing, then obtain G via a sequence of (ℓ, ℓ)-isogenies of length n.

4. Now the key exchange proceeds as in SIDH. Alice and Bob agree on a PPSSAS, as in step (2). Alice
then chooses a secret maximal 2eA-isotropic subgroup of A[2eA ] and computes a symplectic basis
(P1, P2, P3, P4) of A[2

eA ]. Bob chooses a secret maximal 3eB -isotropic subgroup of A[3eB ] and computes
a symplectic basis (Q1, Q2, Q3, Q4) of A[3eB ]. Each of them sends their respective basis to the other
party.

5. From her basis, Alice proceeds as in step (3) to obtain a random maximal 2eA-isotropic subgroup GA,
with corresponding isogeny ϕA : A→ A/GA =: JA. She then sends the tuple

(JA, ϕA(Q1), ϕA(Q2), ϕA(Q3), ϕA(Q4))

to Bob. One can show that the resulting basis {ϕA(Qi) : 1 ≤ i ≤ 4} of JA[3eB ] is symplectic.

6. Similarly, Bob obtains a random maximal 3eB -isotropic subgroup GB , with corresponding isogeny
ϕB : A→ A/GB =: JB . He sends the tuple

(JB , ϕB(P1), ϕB(P2), ϕB(P3), ϕB(P4))

to Alice.

7. Now Alice computes ϕB(GA) from the symplectic basis {ϕB(Pi) : 1 ≤ i ≤ 4} of JB [2eA ] and obtains the
PPSSAS JAB := JB/ϕB(GA). Similarly, Bob obtains JBA := JA/ϕA(GB). One then has JAB ∼= JBA.

The resulting PPSSAS JAB is, with overwhelming probability, the Jacobian of a genus-2 curve. Quan-
titatively, there are O(p3) such cases but only O(p2) products of two supersingular elliptic curves. Hence
Alice and Bob can derive a shared key by computing the genus-2 curve CAB such that JAB ∼= J(CAB).
Since such curves form a moduli space of dimension 3, one can describe CAB by a set of three parameters.
An explicit description of these invariants was computed by Igusa [Igu60] and by Cardona, Quer, Nart and
Pujolàs [CNP02,CQ05].

1.4 Fault attack on SIDH

Let E be a supersingular elliptic curve over Fp2 . Recall that Alice computes a secret isogeny ϕA : E → EA
whose kernel is a cyclic subgroup of order 2eA . Suppose the attacker Eve injects a fault into the system,
causing it to perturb a point in E to some X ∈ E(Fp2). This is possible since SIDH computations only use
the x-coordinates of points; with probability 50%, a random change of this coordinate results in a rational
point on the curve. From the SIDH protocol, Eve gains access to the point ϕA(X). Multiplying X by a
suitable scalar, we may assume without loss of generality that X ∈ E[2eA ].

First, consider the ideal case where X has order 2eA exactly; this occurs with a probability of 50%. If P ′

denotes a generator of kerϕA, then ⟨P ′, X⟩ almost certainly generates the whole of E[2eA ]. We obtain:

EA/ ⟨ϕA(X)⟩ ∼= E/ ⟨P ′, X⟩ = E/E[2eA ] ∼= E

so the isogeny EA → EA/ ⟨ϕA(X)⟩ is dual to ϕA. This enables Eve to obtain Alice’s secret isogeny ϕA.
More generally, if X has order 2eA−k for a small k, then Eve computes EA → EA/ ⟨ϕA(X)⟩ =: E′ and

E′/ ⟨Y ⟩ ∼= E for some rational point Y ∈ E′ of order 2k. This has only 22k possibilities and Eve can easily
launch a brute-force attack to recover the dual isogeny EA → E′ → E′/ ⟨Y ⟩.
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2 Fault attack

The idea of the fault attack is that it forces the protocol to output the image of a random divisor under the
secret isogeny, and given enough of such random images, we can recover the secret isogeny. By using certain
“reduced” representations of divisors (see next paragraph), a fault is likely to give us a valid divisor. Hence
the adversary may assume after enough faults, they would obtain the image of a valid random divisor under
the secret isogeny, and hence recover the secret isogeny by Lemma 2.4.

Recall that the Mumford representation represents a divisor P +Q−2∞ with polynomials u, v where the
roots of u are the x-coordinates of P,Q ∈ A(Fq) and y⋆ = v(x⋆), ⋆ ∈ {P,Q}. However v carries a lot more
information than necessary, instead, one could simply choose an agreed ordering of Fq2 and represent the
y-coordinate via a 0 or 1, representing the two roots of the hyperelliptic curve equation. The added benefit
of this representation is the reduction of message sizes in any protocol. Also, this means that whenever we
apply a fault to a divisor, we would either flip the y-coordinate bit or alter the polynomial u. As u is monic,
the fault can only affect the x0 and x1 coefficients.

Half the time after faulting, the roots of u lie in Fq. In this case, there is a roughly 1
2 chance each

x-coordinate yields a y-coordinate in Fq via the hyperelliptic curve, which gives us a total probability of this
case of 1

8 .
The other half, the roots lie in Fq2 and there’s a 1

2 chance that they yield a y-coordinate in Fq2 . The

divisor for such as case is of the form P + P
FrobF

q2
/Fq − 2∞, which tells us that there is a 1

2 chance in this
case as the y-coordinate bit for both points gives us such a divisor, hence this case contributes a probability
of 1

8 .
In total, this tells us that there is a 1

4 chance that the faulted point is a valid divisor.

2.1 Technical results for the recovery of isogeny from image of random points

The first two results are well-known in the literature and are stated here for completeness. We will use this
proposition and the next theorem for the other results to come.

Proposition 2.1 ( [MRM74, Prop. II.6.3]). Let A be an abelian variety of dimension g, we have

A[n] ∼=

{
C2g
n p ∤ n

Cin n = pk
0 ≤ i ≤ 2g .

Theorem 2.2 ( [MRM74, Thm. II.7.4]). Let A be an abelian variety. Then there is a bijective correspondence
between finite subgroups K ⊂ A and separable isogenies f : A → B where isogenies f1 : A → B1 and
f2 : A→ B2 are considered equivalent if there exists an isomorphism g : B1 → B2 such that g ◦ f1 = f2.

This correspondence is given by sending each finite subgroup K ⊂ A to f : A→ A/K and each separable
isogeny f : A→ B to ker f ⊂ A.

The next result is the first of our technical lemmas. It shows that we are able to recover a secret isogeny
if we are provided with images of a torsion subgroup that contains the kernel of the isogeny.

Lemma 2.3. Suppose there exists a separable isogeny ϕ : A→ B of abelian varieties of dimension 2 over Fp
with kerϕ ⊂ A[ℓe] where ℓ is a prime distinct from p and we are given A,B, ϕ (A[ℓe]). Then we can recover
ϕ by brute-forcing at most 16e isogenies.

Proof. By Theorem 2.2, we know that there exists a separable isogeny ψ : B → B/ (ϕ(A[ℓe])) = A such that
kerψ = ϕ(A[ℓe]) and ψ ◦ ϕ = [ℓe].

Define Ai = B/
(
[ℓe−i]ϕ(A[ℓe])

)
the isogenies ψi by ψi : Ai−1 → Ai via the quotient

Ai−1 → Ai−1/
(
(ψi−1 ◦ ψi−2 · · · ◦ ψ1)

(
[ℓe−i]ϕ(A[ℓe])

))
= Ai.

Next, find isogenies ϕi : Ai → Ai−1 such that ϕi ◦ [ℓi−1] ◦ ψi = [ℓi]. Importantly, kerϕi ⊂ ker[ℓ], hence
there are at most 16 isogenies to search through since there are 16 subgroups of C2×2

ℓ = Ai[ℓ]. Finally define
ϕ = ϕ1 ◦ · · · ◦ ϕe−1 ◦ ϕe.
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A Ae−1 Ae−2 . . . A1

B

A Ae−1 Ae−2 . . . A1

B/ kerψ B/ ([ℓ] kerψ) B/
(
[ℓ2] kerψ

)
B/
(
[ℓe−1] kerψ

)

ϕ1

ϕe−1 ϕe−2 ϕ2

ψe−2 ψ2

ψ1

ϕe

ψe

ϕ

ψ

[ℓe] [ℓe−1] [ℓe−2] [ℓ]

ψe−1

∼=∼=∼=∼=

Figure 1: Isogeny ϕ from A to B is the sequence on the top. The isogeny ψ from B to A is the sequence at
the bottom.

This procedure is illustrated in the diagram in Figure 1.

In the preceding lemma, we saw that knowledge of the images of the torsion subgroup is sufficient for us
to recover the secret isogeny. However, this may not be practical. As such, this next result computes the
amount of information we will need to recover the secret isogeny.

Lemma 2.4. Suppose we have a separable isogeny ϕ : A → B of abelian varieties of dimension 2 over Fp
such that kerϕ ⊂ A[ℓe] ⊂ A (Fpr ) and ϕ (A [ℓe]) has m generators where ℓ is a prime distinct from p. Given
the images of n ≥ m random points Pi ∈ A (Fpr ) under ϕ, there is a probability of at least

(
1− ℓ−1

)m
that

the group ϕ (A [ℓe]) is generated by [h]ϕ(Pi) where h = ℓ−2e |A (Fpr )|.

Proof. Note that h is an integer as A [ℓe] is a subgroup of A (Fpr ) and |A [ℓe]| = ℓ2e.
Since [h]Pi ∈ A [ℓe], [h]ϕ(Pi) = ϕ([h]Pi) gives us a random point in ϕ (A [ℓe]). With sufficiently many

random points, it is possible that we generate all of ϕ (A [ℓe]).
The probability that we generate ϕ (A [ℓe]) is given by Theorem 3.2 of the next section.

Remark 2.5. We note that Lemma 2.3 works in the more general case where kerψ ⊂ ϕ(A[N ]) for p ∤ N by
applying the lemma to each prime factor of N . The lemma also generalizes to higher dimensions, however,
the isogeny and quotient computations may be difficult.

Lemma 2.4 also generalizes directly to higher dimensions by setting h = ℓ−ge |A (Fpr )| where g is the
dimension of the abelian varieties.

Remark 2.6. We can know precisely when we have sufficiently many points with the following procedure.
Choose a minimal set of generators Qj of B [ℓe], then we can express every point [h]Pi by

∑2g
j=1Mi,jQj,

where Mi,j (mod ℓe) is unique. Let UDV =M be a Smith normal form of M as a matrix over Zℓ.
Since D is diagonal and U and V are invertible, we can easily read out the size of the subgroup generated

by [h]Pj. Letting {ai}m
′

i=1 be invariant factors of M that has ℓ-adic valuation less than e, then we get

|⟨[h]P1, . . . , [h]Pn⟩| = ℓm
′e
m′∏
i=1

p−vℓ(ai) .

By comparing this value with |ϕ (A [ℓe])|, we can find the index of the subgroup generated by [h]Pj in ϕ (A [ℓe]).
If the index is 1, then we know that [h]Pj generates the entire group.

Furthermore, if the random points do not generate A [ℓe] but [ϕ (A [ℓe]) : ⟨[h]P1, . . . , [h]Pn⟩] is small, we
can brute-force for ϕ (A [ℓe]) as the number of groups containing [h]Pn of a small index in C2g

ℓe is at most

[ϕ (A [ℓe]) : ⟨[h]P1, . . . , [h]Pn⟩]2g.
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In the examples, we shall assume that each fault is successful and yields the image of a random divisor
under the secret isogeny.

Example 2.7. In the case of cryptosystems, we have g = 2 and the kernel is of the form C2
ℓe . In this case,

Theorem 3.2 tells us that the probability that n faults are enough is (1− ℓ−n)
(
1− ℓ1−n

)
. This tells us that

on average, we need the following number of faults:

∞∑
n=1

n
((
1− ℓ−n

) (
1− ℓ1−n

)
−
(
1− ℓ1−n

) (
1− ℓ2−n

))
= 2 +

ℓ+ 2

ℓ2 − 1

and if we used 2 faults, the probability that we generate the entire kernel is(
1− ℓ−1

) (
1− ℓ−2

)
= 1− ℓ−1 − ℓ−2 + ℓ−3 .

When ℓ = 2, this value is 3
8 .

When only 2 faults are used, we can also give bounds on the average index of the subgroup, which gives
us an estimate of how much brute-force is needed.

For an upper bound, note that quotienting by ℓeZℓ × ℓeZℓ reduces the size of the index, hence we obtain
an upper bound with

∞∑
k=0

kP(2, 2, k)

=
(
ℓ−2; ℓ

)
2

∞∑
k=0

kl−2k

(
1 + k

k

)
ℓ

=
(
1− l−2

) (
1− l−1

) l3(l + 2)

(l − 1)(l2 − 1)2

=
l + 2

l2 − 1

where the sum of the product is derived from the q binomial theorem by substituting m = 2, t = l−2 into the
following identity:

∞∑
k=0

ktk
(
m+ k − 1

k

)
ℓ

= t
∂

∂t

∞∑
k=0

tk
(
m+ k − 1

k

)
ℓ

= t
∂

∂t

m−1∏
i=0

1

1− qit
.

When l = 2, 3, the upper bound is 4
3 and 5

8 respectively.
A lower bound is given by the following expression:

e−1∑
k=0

kP(2, 2, k) + e

(
1−

e−1∑
k=0

P(2, 2, k)

)
.

As an example, when e = 9 and l = 2, the value is approximately 1.330.
Since there are at most k4 isogenies to brute-force, we can also estimate the upper bound for the number

of isogenies to brute-force with a similar technique:

∞∑
k=0

k4P(2, 2, k) =
l7 + 16l6 + 75l5 + 176l4 + 219l3 + 176l2 + 65l + 16

(l2 − 1)4
.

When l = 2, 3, the upper bound is 2990
27 ≈ 110.741 and 6755

512 ≈ 13.193 respectively.
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Example 2.8. In the case that the kernel has the form Cℓe ⊕ Cℓe−k ⊕ Cℓk , k < e, then the result from
Theorem 3.2 tells us that the probability that n faults are enough is (1− ℓ−n)

(
1− ℓ1−n

) (
1− ℓ2−n

)
. This

tells us that we need on average, we need the following number of faults:

∞∑
n=1

n

(
(1− ℓ−n)

(
1− ℓ1−n

) (
1− ℓ2−n

)
−
(
1− ℓ1−n

) (
1− ℓ2−n

) (
1− ℓ3−n

) ) = 3 +
ℓ3 + 3ℓ2 + 4ℓ+ 3

ℓ4 + ℓ3 − ℓ− 1

and if we used 3 faults, the probability that we generate the entire kernel is(
1− ℓ−1

) (
1− ℓ−2

) (
1− ℓ−3

)
= 1− ℓ−1 − ℓ−2 + ℓ−4 + ℓ−5 − ℓ−6 .

When ℓ = 2, this value is 21
64 ≈ 0.33.

If only 3 faults are used, we can give bounds on the average index of the subgroup, which gives us an
estimate of how much brute-force is needed.

Similar to the previous case, the lower bound is given by

∞∑
k=0

kP(3, 3, k)

=
(
ℓ−3; ℓ

)
3

∞∑
k=0

kl−3k

(
2 + k

k

)
ℓ

=
(
1− l−3

) (
1− l−2

) (
1− l−1

) l3(l + 2)

(l − 1)(l2 − 1)2

=
l3 + 3l2 + 4l + 3

(l3 − 1)(l + 1)
.

When l = 2, 3, the upper bound is 31
21 ≈ 1.476 and 69

104 ≈ 0.663 respectively.
A lower bound is given by the following expression:

min(k,e−k)−1∑
k=0

kP(3, 3, k) + e

1−
min(k,e−k)−1∑

k=0

P(3, 3, k)

 .

As an example, when min(k, e− k) = 9 and l = 2, the value is approximately 1.472.
Since there are at most k4 isogenies to brute-force, we can also estimate the upper bound for the number

of isogenies to brute-force with a similar technique:

∞∑
k=0

k4P(3, 3, k) =
l15 + 20l14 + . . .

(l3 − 1)
4
(l + 1)

4 .

When l = 2, 3, the upper bound is approximately 128.239 and 14.244 respectively.

Example 2.9. As a final example, suppose that the kernel is of the form Cℓe ⊕Cℓe−k ⊕Cℓk , k < e as before
but we want the probability that with n faults such that[

ϕ (A [ℓe]) : ⟨[h]P1, . . . , [h]Pn⟩
]
= ℓδ

with δ < min(k, e− k). This is again given by Theorem 3.2 which gives us

P(3, n, δ) = ℓ−nδ
(
ℓ−n; ℓ

)
3

(
2 + δ

δ

)
ℓ

= ℓ−nδ

(
2∏
i=0

1− ℓi−n
)(

δ∏
i=1

1− ℓ3+k−i

1− ℓi

)
≈ ℓ−δ(n−2) .
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2.2 Pseudocode and software simulation of the attack

Suppose we have abelian varieties A,B of dimension 2 and an isogeny ϕ : A → B and the images of
random points Pi ∈ A(Fq) under ϕ. Further suppose that kerϕ ⊂ A[ℓe] ⊂ A(Fq) and suppose that we have
| kerϕ| = ℓk. We provide the pseudocode to obtain the isogeny ϕ:

Algorithm 1: Recovery of isogeny after fault injection

Data: ϕ(Pi)
Result: ϕ : A→ B

1 h← ℓ−ge |A (Fq)|;
2 P ′

i ← [h]ϕ(Pi) ; /* Now we have P ′
i ∈ ϕ(A[ℓe])*/

3 Determining how much brute-force is needed;
4 Set Qi as generators of B[ℓe];
5 Compute Mi,j ∈ Zℓ with P ′

i =
∑
jMi,jQj ;

6 UDV ←M ; /* Smith normal form over Zℓ*/

7 ai ← Di,i;
8 m← |{ai|vℓ(ai) < e}|;
9 ℓϵ ← ℓkℓ−me

∏m′

i=1 p
vℓ(ai);

10 Add more row vectors into D with brute-force to get B/ ⟨(DV )1, (DV )2, . . . , (DV )n⟩ ∼= A ; /* We only
need to brute-force vectors in

ϕ
(
A

[
ℓ
e]) /〈

P
′
1, P

′
2, . . . , P

′
n

〉
See Lemma 2.4 and Example 2.9 for the details*/

11 G← ⟨P ′
1, P

′
2, . . . , P

′
n⟩ = ϕ (A [ℓe]) := kerψ;

12 Computing ϕ;
13 for i← 1 to e do
14 Ai ← B/([ℓe−i]G);
15 ψi : Ai−1 → Ai;
16 Brute-force ϕi : Ai → Ai−1 to get [ℓi] = ψi[ℓ

i−1]ϕi;

17 end
18 ϕ← ϕ1 . . . ϕe−1ϕe;
19 return ϕ;

An implementation that simulates fault injection and secret key recovery can be found in https:

//github.com/yanboti/Genus2FaultAttack. Note that the implementation simplifies pseudocode by omit-
ting the Smith normal form computation and does not require brute-forcing.

3 Analysis of attack

In the attack above, we are able to generate a subgroup of ϕ (A [ℓe]). If the subgroup has a small enough
index, then brute-forcing the remaining parts of the group becomes feasible. In this section, we compute the
probability that n random points generate a subgroup of a fixed index in ϕ (A [ℓe]). In the case the index of
the subgroup has index 1, then no brute-force is needed. Since ϕ (A [ℓe]) is a quotient of A [ℓe] ∼= C2g

ℓe , it can
be written in the form

⊕m
i=1 Cℓqi .

To proof a statement about the index, it is most natural to consider the Smith normal form of some
matrix since the index of the subgroup generated can be read directly, see Remark 2.6 for more information.
Although A[ℓe] could be viewed as a module over Z or Z/ℓeZ, integers coprime to ℓ are not invertible in Z
and Z/ℓeZ is not a domain, which means the Smith normal form is not well-defined. Since ℓ>eA[ℓe] = 0, we
can view A[ℓe] as a Zℓ-module where Zℓ is the ℓ-adic integers and this resolves both problems earlier since
integers coprime to ℓ are invertible and Zℓ is a domain. Hence we can first study random points in Zmℓ first,
then take a quotient to get the result we are interested in.
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For convenience, we introduce the notations for the ℓ-deformed Pochhammer symbols and binomial
coefficients

Definition 3.1.

(a; ℓ)n =

n−1∏
k=0

1− aℓk

(
m

n

)
ℓ

=

n−1∏
k=0

1− ℓm−k

1− ℓk+1

We have the following theorem for the probability that n random points in Zmℓ generate a submodule of
index k.

Theorem 3.2. Let Pi be n random elements in Zmℓ and assume m ≤ n. Let M = Zmℓ /⟨P1, . . . , Pn⟩ where
⟨P1, . . . , Pn⟩ is the Zℓ-module generated by ℓ. Denote the probability that |M | = ℓk as P(m,n, k). Then

P(m,n, k) = ℓ−nk
(
ℓ−n; ℓ

)
m

(
m+ k − 1

k

)
ℓ

.

Before proving the theorem, we provide the following corollary in the case that we are interested in.

Corollary 3.2.1. The probability that n random elements in
⊕m

i=1
Zℓ

ℓqiZℓ
generates a subgroup of index ℓk

where k < mini qi is P(m,n, k). In the case that k = mini qi, then P(m,n, k) gives a lower bound.

Proof. For any submoduleM ⊂ Zmℓ of finite index ℓk, it can be written asM =
⊕m

i=1 ℓ
miZℓ with

∑
imi = k.

This submodule projected to the quotient module
⊕m

i=1
Zℓ

ℓqiZℓ
would then have the form

m⊕
i=1

ℓmiZℓ + ℓqiZℓ
ℓqiZℓ

which has index ℓ
∑

i min(mi,qi). This sum is precisely ℓ
∑

imi = ℓk if mi < qi for all i, which is true if k ≤ qi.
Otherwise, it is at least ℓmini qi . This shows that the probability is equal for k < mini qi and P(m,n, k)
provides a lower bound when k = mini qi

In the theorem above, P(m,n, 0) gives the probability that we generate the full kernel and the k in
P(m,n, k) is a measure of how much brute-force is needed. To understand the terms, we provide the
following approximation:

Remark 3.3. We have that

P(m,n, k) = ℓ−nk
(
ℓ−n; ℓ

)
m

(
m+ k − 1

k

)
ℓ

= ℓ−nk

(
m−1∏
i=0

1− ℓi−n
)(

k∏
i=1

1− ℓm+k−i

1− ℓi

)

= ℓ−nk
(
1− ℓ−(n+1−m) +O

(
ℓ−(n+2−m)

))ℓk(m−1) +ℓk(m−1)−1︸ ︷︷ ︸
if k ̸=0

+O
(
ℓk(m−1)−2

)
= ℓ−k(n+1−m) +O

(
ℓ−k(n+1−m)−1

)
.

Thus, in the case of k = 0 we have

P(m,n, 0) =
(
ℓ−n; ℓ

)
m

=

m−1∏
i=0

1− ℓi−n ≥
(
1− ℓ−(n−m+1)

)m
.
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Before proving the theorem, we use the following lemmas to prove the case for k = 0, before generalizing
it by induction.

Lemma 3.4. Let P be a m × n matrix with Pj,i = (Pi)j. Suppose its invariant factors are a1, a2, . . . , am,

then |M | =
∏m
i=1 ai.

Remark 3.5. This allows us to consider the rows of matrix P instead of the columns Pi, giving us m vectors
in Znℓ , making counting a lot easier.

Lemma 3.6.

P(m,n, 0) =
m−1∏
i=0

1− ℓi−n =
(
ℓ−n; ℓ

)
m
.

Proof. We can work over Fℓ by reduction mod ℓ. Furthermore, by Remark 3.5, the problem reduces to
finding the number of ordered linearly independent m-tuples (Pi)mi=1 over Fnℓ . We require

Pi+1 ∈ Fnℓ − ⟨P1,P2, . . . ,Pi⟩

and since
|Fnℓ − ⟨P1,P2, . . . ,Pi⟩| = ℓn − |⟨P1,P2, . . . ,Pi⟩| = ℓn − ℓi

we get

P(m,n, 0) =
m−1∏
i=0

1− ℓi−n =
(
ℓ−n; ℓ

)
m
.

Now we can prove Theorem 3.2.

Proof. We proceed by induction on a recurrence relation. Suppose that P1 ∈ ℓZnℓ , then by dividing ℓ from
each component, we obtain a new matrix with one of the invariant factors reduced by a factor of ℓ. Otherwise,
by swapping the columns appropriately, we can get a unit at P1,1, and by using elementary row operations,
we can get Pi,1 = δi,1. This reduces to the case of the smaller matrix, hence we have the recursion relation

P(m,n, k) =
1

ℓn
P(m,n, k − 1) +

ℓn − 1

ℓn
P(m− 1, n− 1, k)

and the boundary conditions P(m,n, 0) = (ℓ−n; ℓ)m and evidently P(1, n, k) = ℓ−nk − ℓ−n(k+1). The second
boundary condition and the recursion relation tell us we can extend the function to P(0, n, k) = 0.

From this, we get the following recursion relation

P (m,n, k) =

m−1∑
i=0

ℓ−n+i
(
ℓ−n; ℓ

)
i
P (m− i, n− i, k − 1) .

With this, we can prove the theorem by induction.
By the previous lemma, we have ℓ0 (ℓ−n; ℓ)m

(
m−1
0

)
ℓ
= (ℓ−n; ℓ)m = P(m,n, 0) which proves the base case

of k = 0. For the inductive step, we have

P (m,n, k)

=

m−1∑
i=0

ℓ−n+i ·
(
ℓ−n; ℓ

)
i
· P (m− i, n− i, k − 1)

=

m−1∑
i=0

(
ℓ−n+i ·

(
ℓ−n; ℓ

)
i
· ℓ−(n−i)(k−1) ·

(
ℓ−n+i; ℓ

)
m−i ·

(
m− i+ k − 2

k − 1

)
ℓ

)
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=
(
ℓ−n; ℓ

)
m
· ℓ−nk ·

m−1∑
i=0

ℓik
(
m+ k − i− 2

k − 1

)
ℓ

=
(
ℓ−n; ℓ

)
m
· ℓ−nk ·

m−1∑
i=0

(
ℓik ·

(
m+ k − i− 1

k

)
ℓ

− ℓ(i+1)k

(
m+ k − i− 2

k

)
ℓ

)
=
(
ℓ−n; ℓ

)
m
· ℓ−nk ·

((
m+ k − 1

k

)
ℓ

− ℓmk
(
k − 2

k

)
ℓ

)
=
(
ℓ−n; ℓ

)
m
· ℓ−nk ·

(
m+ k − 1

k

)
ℓ

.

4 Fault attack via loop-abort

The premise of the loop-abort attack is simple: terminate the isogeny-chain computation prematurely so
that secret information regarding the full isogeny can be extracted. At its simplest description, the loop-
abort attack is able to interrupt the computation of Alice’s secret isogeny and forces the device to output
intermediate values that can be used by an adversary to recover Alice’s secret isogeny.

4.1 The attack

Consider the isogeny computation of a (2n, 2n−k, 2k)-isogeny ϕ. Since isogeny computations have complexities
in the order of the degree of the isogeny, the complexity of ϕ is O(22n). One can employ a computational trick
to reduce the complexity to O(4n) by factoring the isogeny into n consecutive (2, 2)-isogenies. The isogeny
computation would then iterate through all n (2, 2)-isogeny computations before outputting the result. In
fact, this sort of computation is done in all implementations of isogeny-based cryptography that we know of.

The isogeny computation in G2SIDH-like schemes is partitioned into small degree isogenies for compu-
tation. Alice’s isogeny computation can be represented as

J0
ϕ0−−−→ J1

ϕ1−−−→ J2
ϕ2−−−→ . . .

ϕn−1−−−−→ Jn ,

where the ϕi’s are computed sequentially in a loop.
The adversary’s goal is to recover all the ϕi’s, which is equivalent to knowing the secret isogeny. If the

adversary can interrupt the iterative computation of the isogeny to output Ji for i = 1, . . . , n− 1, they will
be able to recover all the ϕi’s. To see this, observe that the adversary can recover ϕ1 given J1 by checking
all the (2,2)-isogenous varieties from J0 and finding a match. Knowing the isogeny ϕi−1, the adversary can
work out Ji (or, they could have stored this from the previous iteration), and in the next iteration of the
attack, when given Ji+1, they can identify ϕi. Performing this attack iteratively, the adversary will be able
to recover all ϕi, and hence the secret isogeny.

4.2 Trade-off between number of faults and computations

Recall now that there are generally 15 (2, 2)-isogenies from a given PPAS. Hence each iteration of the isogeny
would increase the search complexity fourteen-fold (after excluding the dual isogeny). The aim of the loop-
abort attack is to interrupt the isogeny computation midway through the iteration. This allows the adversary
to reduce the search space of the isogeny problem to something manageable. Indeed, with precise control of
such an attack, one only needs to perform O(14n) computations to recover the secret isogeny in its entirety
at a cost of n precise fault injections. Attackers can also elect to increase the computational complexity in
order to reduce the number successful of fault injections; in general, m successful perturbations can result
in O(14n/mm) complexity in the best case.
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5 Applicability to genus-2 isogeny-based cryptography

This section describes the impact of the fault attack on existing genus-2 isogeny-based cryptosystems. In
particular, we will state how the fault attack may be used against G2SIDH of Flynn and Ti [FT19], the
generalisation of the identification scheme based on SIDH [JF11].

5.1 Fault attack models

The crux of a fault attack is to introduce faults in the implementation through external means. Faults
can be brought about via an electromagnetic pulse, a clock glitch, or a voltage glitch. The impact of such
perturbations on a target device and to the adversary’s ability to recover secret material can differ greatly
depending on the following characteristics of fault attacks (see [BBB+22]).

• Precision. The precision of the fault describes the ability of an adversary to select bits in certain
variables to be perturbed at a particular point in time. The more precise the attack, the more unrealistic
it will be.

• Deterministic. A deterministic attack model hinges on the ability of an adversary to set the value of
the parameter under attack. A random fault model can only randomly choose a value of the parameter
under attack and is more practical than a deterministic one.

• Repeatability. This indicates the adversary’s ability to repeat identical faults in either the temporal
or spatial dimensions through different traces. Requiring repeatability in an attack would make the
attack more difficult to pull off.

Point perturbation attack

The point perturbation attack can be classified as an imprecise and random attack that does not require
repeatability. The attack does not need to be precise because there are multiple locations in the implemen-
tation where auxiliary points are called for computation. This is because the fault only needs to be directed
on any one of the auxiliary points in the protocol, and random faults on the point would allow an adversary
to recover the secret. Furthermore, according to [TFMP21, §4.2], the margin of the location and timing
of the fault is relatively large. This is particularly so for genus-2 cryptosystems as the target (the x1- and
x0-coordinates) have a combined footprint of 4 log2 p-bits, this allows for less precision in the fault injection.

Loop-abort attack

The loop-abort attack requires that a fault is inserted into a loop counter. Targeting a loop counter would
require precision in time and space of where the fault should be injected. However, in most implementations,
two observations can make the loop-abort attack more feasible:

(a) Most possible values of the loop-counter would cause the loop to abort, so there is no need to target a
precise bit as randomisations of the value would be sufficient for the loop to be aborted.

(b) To cause the i-th loop to be aborted, the perturbation on the loop counter can be made at any time
during the i-th loop. This increases the temporal margin of a fault attack.

5.2 Attack models on protocols

In the following, we will examine how the two different fault attacks can be used against different protocols.
In particular, we focus on the applicability of the two fault attacks on the protocols.

Ideally, the fault attack would be able to recover the secret isogeny without the knowledge of either party,
and the attack should be successful with a single trace. However, this is not possible in both fault attacks,
because correct images of auxiliary points are required by SIDH and the genus-2 protocols, and premature
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termination of the isogeny computation would result in the wrong public keys. By introducing faults, these
protocols are unable to be completed as specified and errors may be raised. The upshot is that fault injection
attacks can be detected.

5.2.1 G2SIDH

Recall that the G2SIDH protocol is a key-exchange protocol between two parties seeking to establish a secret
key. This protocol has been described in §1.3. To break the protocol, an adversary has to learn the secret
key of either one of the parties.

Point perturbation attack. Suppose an adversary is trying to learn Alice’s static secret isogeny and has
the ability to cause a fault in Alice’s computation. After introducing a fault in Qi just prior to Alice’s
computation of ϕA(Qi) for i = 1, 2, 3, 4, Alice would then proceed to publish the public key tuple

(JA, ϕA(X1), ϕA(X2), ϕA(X3)), ϕA(X4)).

The adversary will then be able to recover ϕA using the point perturbation attack.
But it should be noted that this attack has to be targeted at the key generation phase of G2SIDH since

the derivation of the shared key step of the procedure does not require the computation of auxiliary points.
As was noted in [TFMP21], a normal implementation of G2SIDH should not require that Alice recomputes

her static public key in the key generation step. The presence of the point perturbation attack makes such an
implementation mistake even more devastating. Also, the fault attack model is more realistic in a multiparty
scenario where a central server has a different static key, that will be re-computed during each session, for
each user.

A multiparty scenario can be one of the two cases:

(a) Alice trying to communicate with Bob and Charlie using different static public keys for each.

(b) Alice, Bob, and Charlie trying to establish a shared secret using the multiparty key exchange scheme
proposed by Azarderakhsh, Jalali, Jao, and Soukharev [AJJS19].

In the former case, Alice uses different static keys to communicate with Bob and Charlie. In this setting, it
is not unreasonable to assume that Alice would store only the static secrets with Bob and Charlie to save
on storage1. This would require that Alice recomputes her public key (using the secret isogeny) each time
Bob or Charlie initiates an interaction.

In the latter case, each time the multiparty protocol is invoked, Alice would be compelled to compute
using her static secret in the fourth pass of the protocol. Refer to Step 4 of Section 4.3 of [AJJS19]. Notice
that Alice does not need to recompute the first step of the protocol since that is always fixed.
Loop-abort attack. In this attack, the adversary is able to recover the static secret isogeny of G2SIDH by
iteratively computing the key generation or shared key derivation phase of the protocol. Having learnt the
isogeny ϕi, the adversary injects a fault in the (i + 1)st round to recover ϕi+1. Note that at most a total
of eA traces are needed to recover the entirety of the secret key. The adversary can reduce the number of
traces needed to recover the secret isogeny at the expense of more computation by following the trade-offs
suggested in §4.2.

5.2.2 Identification protocol

Although an identification protocol has not formally been defined for genus-2 isogenies, it can be derived
from the ingredients used to construct G2SIDH. We will not be detailing the exact construction and will refer
readers to [JF11] to note the similarities between the key exchange protocol and the identification protocol.
In such an identification scheme, the adversary’s task is to recover the prover’s long-term secret isogeny.

1Since the storage requirement can increase rapidly with the increase in the number of parties she needs to communicate
with.
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For the point perturbation attack, the fault has to be injected into the key generation phase to recover
the static long-term secret. However, attacking this protocol with the point perturbation attack faces the
same difficulties as in the G2SIDH protocol. Indeed, the static secret isogeny will not be used to compute
images of auxiliary points outside of the key generation. However, our observation regarding the multiparty
scenarios in G2SIDH carries over to the identification scheme.

The loop-abort attack is suitable in this scenario. This is because identification protocols require multiple
passes to achieve the desired level of security. Loop-abort attacks can then target the computations that use
the secret isogeny to recover it.

5.3 Feasibility of attack models

The feasibility of the fault attack on various SIDH-like protocols has been discussed in by Ti [Ti17], Gélin
and Wesolowski, and Tasso, De Feo, El Mrabet and Pontié [TFMP21].

The point perturbation attacks will cause a failure in genus one key exchange protocols since the auxiliary
points that are needed to complete the protocol will be altered. We have also shown that with 2-4 traces
(as given by the examples in §2) of the point perturbation attack are required to fully recover the secret
key with high probability. The point perturbation also benefits from allowing for more margin in the fault
injection in both temporal and spatial dimensions. The disadvantage of the point perturbation attack is
that it can only be launched against implementations in the key generation phase. As mentioned, it can
also work on implementations that recompute the key generation phase. However, this is not guaranteed in
every implementation.

In contrast, the loop-abort attack can be launched against all the protocols that we have looked at in
Section 5.2. This is because the loop-abort attack targets the sequential computation of secret isogenies
which forms the basis of all of the cryptosystems looked at in this paper. The downside of this approach
is that inducing a fault in the loop counter is comparatively more difficult than injecting a fault in a point.
Furthermore, significantly more traces are needed to recover the entire secret key (up to eA traces).

The experimental results of [TFMP21] showed that fault attacks of [Ti17] are “exploitable in practice
though electromagnetic injection on a SoC.” We believe that the genus-2 version of this fault attack will
retain this property of practicality. Experimental results on loop-abort attacks by Page and Vercauteren
[PV06], Espitau, Fouque, Gérard and Ticouchi [EFGT18], and Blömer, da Silva, Günther, Krämer and
Seifert [BdSG+14], have demonstrated the feasibility of loop-abort attacks.

5.4 Countermeasures

The countermeasure to thwart the point perturbation attack is to implement order checking before the
publication of the auxiliary points. The purpose of such a check is to ensure that faulted points are not
mapped through the secret isogeny which would leak information about the secret. This is the same as with
the SIDH case and can be implemented with minimal overheads. The point order checking will be able to
detect perturbations in the points since perturbed points are random points and will have random order in
the group. Performing a point order check would then identify these points, thus halting outputs from being
produced, thus thwarting the attack.

Loop-abort attacks can be countered by introducing (one or more) parallel counters that check against
the primary loop counter after each iteration of the isogeny computation. This simple countermeasure will
be able to detect faults in the loop counter and halt the computation if such a perturbation is observed, thus
thwarting the loop-abort attack.

The countermeasures against these attacks are simple and cheap to implement.
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[TFMP21] Élise Tasso, Luca De Feo, Nadia El Mrabet, and Simon Pontié, Resistance of isogeny-based
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