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Abstract

The FHEW fully homomorphic encryption scheme (Ducas and Micciancio, Eurocrypt 2015)
and its TFHE variant (Chillotti et al., Asiacrypt 2016) are the best-known methods to perform
bit-level homomorphic computations on encrypted data. There are two competing bootstrap-
ping approaches to FHEW-like schemes: the AP bootstrapping method (Alperin-Sheriff and
Peikert, Crypto 2014) which is the basis of the original FHEW scheme, and the GINX boot-
strapping method (Gama et al., Eurocrypt 2016), adopted by TFHE. An attractive feature of
the AP/FHEW method is that it supports arbitrary secret key distributions, which are both
critical for a number of important applications (like threshold and some multi-key homomor-
phic encryption (HE) schemes), and provides better security guarantees. On the other hand,
GINX/TFHE bootstrapping uses much smaller evaluation keys, but it is directly applicable only
to binary secret keys, which are less standard and restrict the scheme’s applicability. (Exten-
sions of GINX/TFHE bootstrapping to arbitrary keys are known, but they incur a substantial
performance penalty.)

In this paper, we present a new bootstrapping procedure for FHEW-like schemes that
achieves the best features of both schemes: support for arbitrary secret key distributions at
no additional runtime costs, while using small evaluation keys. As an added benefit, our new
bootstrapping procedure results in smaller noise growth than both AP and GINX, regardless of
the key distribution.

Our improvements are both theoretically significant (offering asymptotic savings, up to a
O(log n) multiplicative factor, either on the running time or public evaluation key size), and
practically relevant. We demonstrate the practicality of the proposed methods by building a
prototype implementation within the PALISADE open-source HE library. We illustrate the
benefits of our method by providing a simple construction of threshold HE based on FHEW.

Keywords: Blind Rotation, Bootstrapping, Fully Homomorphic Encryption (FHE), Thresh-
old Homomorphic Encryption.
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1 Introduction

There are two competing approaches to bootstrap FHEW-like Fully Homomorphic Encryption
(FHE) schemes [DM15, CGGI20, MP21]: the AP bootstrapping method (originally proposed by
Alperin-Sheriff and Peikert [ASP14] and efficiently instantiated in the ring setting by the FHEW
cryptosystem [DM15]), and the GINX method (originally proposed by Gama et al. [GINX16] and
adapted to the ring setting by the TFHE scheme [CGGI20].) A detailed comparison between the
two methods is presented in [MP21], which concludes that the AP/FHEW method [ASP14, DM15]
is faster when LWE (Learning With Errors) secret keys follow the Gaussian distribution, while the
(ring) GINX/TFHE method [GINX16, CGGI20] has the lead for the special (and less standard)
case of binary LWE secret keys. For the crossover point of ternary keys, [MP21] still recommends
GINX bootstrapping due to its much lower memory (bootstrapping key) requirements. In fact,
the main attraction of using GINX bootstrapping (with binary or ternary keys, as implemented by
[CGGI20, MP21]) remains its lower memory footprint, which is substantially smaller than the AP
method.

The use of binary (or even ternary) keys is however quite limiting for two reasons. On the secu-
rity front, the theoretical foundation of lattice cryptography only offers solid support for Gaussian
keys with relatively large entries, of the order of O(

√
n) [Reg09, LPR13], where n is the secret

vector dimension serving as a security parameter. The use of smaller keys (Gaussian with small
variance, or ternary) is motivated by practical considerations (limiting error growth during ho-
momorphic computation, and the efficient implementation of GINX bootstrapping) and has some
limited theoretical support [MP13, Mic18], but it is still primarily heuristic, a compromise between
security and efficiency. In fact, for extreme parameter settings (e.g., sparse keys or a very large
number of samples) it is known to weaken the security of the LWE problem [AG11, CHHS19]. For
these reasons, current recommendations in [ACC+18] do not support the use of binary keys and
suggest the use of ternary keys as a reasonable compromise between practical utility and security.1

An even more compelling motivation to use larger secret keys is offered by threshold (lattice-
based, homomorphic) encryption [BD10, AJLA+12]. Threshold cryptography offers a method to
distribute a secret key s among a set of participants, say P1, . . . , Pk, each holding a share si of the
secret key, in such a way that they can collaboratively decrypt messages. Still, if a subset of parties
are corrupted and their secret shares si are made available to an adversary, ciphertexts retain their
security. So, threshold cryptography eliminates the single point of failure associated with the secret
key and ensures that encrypted data remains secure unless collaboratively decrypted by all parties.

The use of threshold cryptography is particularly attractive in the setting of homomorphic
computation, as it requires modifications only to the key generation and decryption procedures.
A threshold encryption scheme still has a single public key p (under which all messages can be
encrypted by different parties) and evaluation key (used to perform homomorphic computations
on ciphertexts.) In other words, applications of threshold Homomorphic Encryption (HE) support
the same, simple workflow of standard (single party) HE: all data owners encrypt their data under
a single public key p, and send their encrypted data to a single server that securely performs the
encrypted computation, leading to a final encrypted result. Only at this point, the protocol requires
interaction with multiple decryption servers (each holding a secret share si) to recover the final

1To address this, [MP21] offers a simple method to adapt GINX bootstrapping from binary to ternary keys, for a
modest (factor 2) penalty in running time, and recent works [KDE+21, BIP+22] have shown that even this extra cost
can be eliminated or reduced. (Unfortunately, the methods of [KDE+21, BIP+22] are only useful for ternary keys,
and cannot be efficiently extended to larger keys. Thus, this work focus on the more general algorithm in [MP21].)
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result. So, by only increasing the cost of decryption (and only by a modest amount, see below),
threshold cryptography guarantees the security of all data (encrypted under a common public key
p), even against the servers holding the decryption key (as long as they are not all corrupted.2)

Lattices (and the LWE problem) provide a very convenient setting to implement threshold
cryptography, as the public key (p ≈ a · s) is defined as a (noisy) linear function of the secret key s,
for a random, publicly known value a. (See next section for a more formal definition of the LWE
function.) So, distributed (shared) key generation can be easily implemented by having each party
choose a local public-secret key pair (pi ≈ a ·si, si) individually (without any interaction), and then
setting the public key to the sum p = p1 + · · ·+ pk of the local public keys. It is immediate to see
that this is a valid public key corresponding to the secret key s = s1 + · · · + sk implicitly shared
by all parties. In fact, this is how keys are generated in [BD10] (using uniformly random si) and
[AJLA+12] (using an arbitrary LWE key generation algorithm for each si.) Decryption can also
easily be implemented3 by decoding a ciphertext c using the individual secret key shares, and then
adding up the partial decryptions. So, key generation and decryption are minimally interactive.4

We remark that the threshold schemes [BD10, AJLA+12] predate FHEW-like HE ([BD10] does
not explicitly provide any homomorphic computation capability, and [AJLA+12] is a BGV-type
encryption scheme.) However, the same principles apply to virtually any LWE-based encryption
scheme, including those considered in this paper. Now comes a critical observation: even if the
local key shares si have binary coefficients, their sum s (used by homomorphic computations and
bootstrapping) is no longer binary and has coefficients potentially as large as k, the number of
parties participating in the shared decryption protocol. Depending on the application, this number
can be quite high, requiring similarly large secret keys. (E.g., see [CHI+21] for an application of
lattice-based threshold (additively) HE with as many as 1000 parties.)

The FHEW-like cryptosystems with either AP or GINX bootstrapping are the most attractive
methods for bit-level homomorphic computations.5 But when ported to the threshold cryptography
setting (with its correspondingly larger secret keys), FHEW-like encryption presents the user with
a difficult choice between

• the AP bootstrapping method of [ASP14, DM15], with its fast performance (essentially in-
dependent of the secret key size) but very large evaluation keys, and

• the GINX bootstrapping method of [GINX16, CGGI20, MP21], with much smaller evaluation
keys, but a much larger running time due to the use of large secret keys.

A related class of applications to “multi-key HE” is discussed later on. So, one may ask the question:
is it possible to design a bootstrapping procedure that offers the advantages of both methods, i.e.,
fast bootstrapping with arbitrarily distributed secret keys, and small public evaluation keys?

2As standard in HE, we consider security against passive adversaries, in which case the security threshold can be
set to k − 1.

3This requires some care, adding noise to the partial decryptions to avoid information leakage, as already done in
[BD10, AJLA+12].

4HE also requires the generation of public evaluation keys, which introduces some additional complications, and
is discussed below.

5Other methods oriented towards arithmetics on integer or floating-point numbers like [BGV14, CKKS17] offer
advantages for a complementary set of applications, but are not within the scope of our paper.
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1.1 Our results

We answer the above question in the affirmative, designing a new bootstrapping procedure that
supports the use of arbitrary secret key distributions without any performance penalty (similar to
AP/FHEW bootstrapping) while keeping the attractive small size of GINX/TFHE bootstrapping
keys. The impact of our bootstrapping method become significant with larger keys or moderately
large number of threshold decryption servers. Our method offers the additional advantage of
reducing the amount of noise introduced during bootstrapping, even for the case of binary keys
that are the most favorable to GINX. (See Figure 2c.) The improvements over previous methods are
both theoretical (reducing either the running time or memory requirement of previous bootstrapping
procedure by factors as high as O(log n), depending on the size of the secret keys/threshold group
size), and practical. We verified our theoretical results and the practicality of the proposed method
with experiments, performed using prototype implementation within the PALISADE open-source
HE library.

1.2 Techniques

The main operation underlying both AP and GINX bootstrapping is the evaluation of a so-called
“blind rotation”: on input the Ring LWE encryption RLWE(g) of a polynomial g(X), a publicly
known constant ai, and an encryption6 E(si) of a secret key coordinate si, produce an encryption
RLWE(g · Xai·si) of the same polynomial g, with its coefficients rotated by ai · si positions. The
difference between the two bootstrapping procedures is that

• AP works by including in the evaluation key encryptions E(a · si) for all possible values of a
and then using ai as a selector to pick one of them. This allows using arbitrary keys si with
no impact on the running time, but also requires large evaluation keys due to the need to
store multiple encryptions E(a · si) for every secret key element si.

7

• GINX on the other hand works by assuming si ∈ {0, 1} is a single bit, and using E(si) as a
selector between the original ciphertext RLWE(g) and a modified one RLWE(g ·Xai), using a
homomorphic “MUX” gate. This only requires a single encryption E(si) for each key element,
but it is clearly applicable only to binary secrets. Larger secrets can be handled, for example,
writing them in binary, and processing them bit by bit, but at a substantial cost in terms of
running time.

In this paper, we present new techniques and optimizations to perform blind rotations using
ring automorphisms and key switching, and variants thereof, providing tradeoffs between key size
and computation time. The basic idea is to use the automorphisms ψa(X) = Xa of the 2N -th
cyclotomic ring Z[X]/(XN + 1) (for N = 2k, and odd a) and key switching8 to map encryptions
RLWE(f(X)) of f to encryptions RLWE(f(Xa−1

)) of a permuted polynomial. Then, multiply the
result by E(Xs) to get an encryption of f(Xa−1

) ·Xs. Finally, use automorphisms/key-switching
again to map this ciphertext to an encryption of f(X) ·Xa·s.

6Under a typically different scheme E(·), used when generating the evaluation key.
7The method also offers storage memory trade-offs, decomposing a into a sequence of smaller “digits”, but the

same remarks apply.
8The automorphism ψa alone maps an encryption under z(X), to an encryption under modified key z(Xa).

Key-switching is used to turn this into an encryption under the original key z(X).
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The idea of using automorphisms is not new. For example, it was already used in a different
context by Halevi and Shoup [HS18] to implement linear transformations and permutation networks
in the (BGV-based) HElib HE library. Closely related to our use is the work of Bonnoron et al.
(following a suggestion of Micciancio [BDF18, Footnote 6]), which uses automorphisms to reduce
the key size of a variant of the FHEW cryptosystem. At a technical level, in [BDF18] the method is
applied to the product of two cyclic polynomial rings, while we apply it to a single cyclotomic ring,
as originally used by FHEW. As a result, the scheme of [BDF18] was not quite practical, resulting
in poor concrete running times. It is perhaps because of this poor performance that the technique
did not receive further attention.

Building on [BDF18], we introduce several variants and optimizations of the technique and show
that when properly applied to FHEW it can be quite practical, both in terms of running time and
key size. Many of our optimizations revolve around the technical difficulty that automorphisms ψa
exist only for odd coefficients while bootstrapping requires multiplication for both even and odd a.
A simple solution to this problem is to express even a’s by a sum of two odd numbers (say, 1 and
a− 1.) However, this has the undesirable effect of doubling the number of homomorphic products,
the most critical and time-consuming operation required by bootstrapping. As a side note, we
remark that, even after pointing out that automorphisms are only applicable for odd coefficients
a, the bootstrapping algorithm of [BDF18], at least as described in that paper, blindly applies the
technique to even and odd coefficients a, which is not correct. In our paper, we formally fix this
problem and introduce several optimizations that allow us to deal with arbitrary (even and odd)
coefficients a at essentially no added cost.

Remark 1 In practice, one can use Torus LWE or other similar structures over Ring LWE to
achieve additional performance and accelerate computations, as demonstrated in [CGGI20]. How-
ever, such schemes apply additional requirements, which may restrict their applicability and choice
of parameters. For example, Torus LWE uses floating-point operations, which are efficient with
small parameters (such as ring dimension) but require large precision for higher parameters while
RLWE may enjoy some acceleration approaches such as CRT decomposition to deal with multi-
precision numbers. To preserve generality and compare all bootstrapping methods observed in the
same environment, we will use only Ring LWE in this paper following [MP21]. We note that it is
straightforward to apply Torus LWE to each of the observed methods as it has shown in [CGGI20]
for GINX.

1.3 Applications to Threshold and Multi-key FHE

As described earlier, the linear properties of LWE allow to easily build threshold public-key encryp-
tion schemes: each party locally generates a key pair pi ≈ a ·si, and the public key p = p1 + · · ·+pk
can be set to the sum of the individual public keys. Things are more complex for threshold FHE.
This is because, beside a public encryption key p, one needs to generate an evaluation key, which is
essentially an encryption Ep(s) of the secret key s = s1 + · · ·+sk under the public key p. Naturally,
this can be done using generic techniques from secure multiparty computation, with each party
holding si as a local input, and common input p. However, this would not be quite practical.
In fact, [AJLA+12] gives specialized protocols to compute the evaluation key, but the method is
specific to the BGV encryption scheme underlying their protocol. So, an interesting question is if a
similar specialized evaluation key generation protocol can be designed for the threshold version of
FHEW-like HE schemes. We observe that this is indeed possible, again using the linear homomor-

4



phic properties of lattice-based encryption. Specifically, after generating the global public key p,
parties can encrypt their own secret shares Ep(si) under it. Since all the shares are encrypted under
a common public key, they can be added up, resulting in a HE

∑
iEp(si) = Ep(

∑
i si) = Ep(s) of

the global secret key.9

Our blind rotation techniques also require the generation of switching keys to be used in con-
junction with the ring automorphisms ψa. Again, a specialized distributed key generation algorithm
can be built using the linearity of LWE encryption and the automorphisms. More in detail, in order
to apply the automorphism ψa to a ciphertext, one needs to generate an encryption of the permuted
secret key Ep(ψa(s)). Using the linearity of ψa, this can be achieved by having each party com-
puting the encryption Ep(ψa(si)) of a permuted key share, and then combining these ciphertexts
into

∑
iEp(ψa(si)) = Ep(

∑
i ψa(si)) = Ep(ψa(

∑
i si)) = Ep(ψa(s)). The difference with standard

(non-threshold) key generation, is that when the evaluation key is computed by a single party, the
switching key Ep(ψa(s)) can be computed using a more efficient (and less noisy) private key version
of LWE encryption Es(ψa(s)). Here, in order to distribute the computation among parties that
only have shares si of the secret key, encryption is performed using the common public key p.

Another potential application of our techniques is Multi-Key HE. This is a generalization of
HE where messages can be encrypted under independently generated public keys p1, . . . , pk, and
still allow to perform joint computations on them. Naturally, decrypting the final result requires
knowledge of all relevant secret keys s1, . . . , sk. So, this is similar to threshold encryption, but
with the difference that p1, . . . , pk are not combined in advance into a single public key p, and the
set of keys can be chosen dynamically. GSW-based (e.g., FHEW-like) multi-key HE schemes were
proposed in a sequence of works [CM15, MW16, PS16, BP16, CCS19]. These schemes typically work
by combining ciphertexts encrypted under different keys into a “multi-ciphertext”, corresponding
to the concatenation of the keys. Since the secret (decryption) key is also a concatenation, if
the individual keys si are binary (as is the case for example in [CCS19]), their concatenation is
also binary, and one can make direct use of the efficient GINX bootstrapping for binary keys.
However, these concatenated “multi-ciphertexts” are much longer than simple RLWE encryption,
and the cost of bootstrapping (compared to the single key setting) is even higher than GINX with
large keys. (Specifically, it grows linearly with the number of parties, rather than logarithmically.)
Recently, [ZZC+21] have proposed a multi-key HE scheme with compact ciphertexts. Interestingly,
this compact scheme combines the individual secret keys by taking their sum. So, it requires an
efficient bootstrapping method with non-binary keys. Similar to the threshold encryption setting,
our techniques can be applied to speed up bootstrapping while keeping a small evaluation key.

1.4 Other Important Related Works

Besides bootstrapping of FHEW/TFHE, blind rotation is a useful tool to evaluate arbitrary func-
tions in HE. For example, the Cheon-Kim-Kim-Song (CKKS) scheme [CKKS17] is efficient in
the evaluation of complex numbers, but it only supports addition and multiplication. Thus, the
ReLU and comparison functions, which are important components of neural networks, are eval-
uated using blind rotation in [BGGJ20, LHH+21, CJP21, LMP21] as they are not represented
as polynomials in real numbers. Also, a generalized bootstrapping for all the RLWE-based HE
schemes including CKKS, Brakerski-Gentry-Vaikuntanathan(BGV) [BGV14], and Brakerski/Fan-

9Calculation of
∑
iEp(si) proposed in this paper is done by the products of RGSW ciphertexts encrypting secret

shares (see Section 6.)
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Vercauteren (BFV) [Bra12, FV12], were proposed using blind rotation in [KDE+21].

1.5 Organization

The rest of the paper is organized as follows. The basic lattice-based HE and the previous blind
rotation techniques are presented in Section 2. In Section 3, a new blind rotation algorithm and its
variants are proposed. The theoretical analysis and comparison to prior works are given in Section
4 and the implementation results are given in 5. In Section 6, a threshold HE scheme based on our
proposed blind rotation is described as a possible application. Finally, we conclude with remarks
in Section 7.

2 Preliminaries

Let N be a power of two. We denote the 2N -th cyclotomic ring by R := Z[X]/(XN + 1) and
its quotient ring by RQ := R/QR. Ring elements in R are indicated in bold, e.g. a = a(X).

For two vectors ~a and ~b, we denote their inner product by 〈~a,~b〉. Function composition of f and
g is denoted by f ◦ g. All logarithms are base 2 unless otherwise indicated. We write the floor,
ceiling and round functions as b·c, d·e and b·e, respectively. We denote the infinite norm of a ∈ R
by ‖a‖∞, which is the largest absolute value among its coefficients. For q ∈ Z and q > 1, we
identify the ring Zq with [−q/2, q/2) as the representative interval, and for x ∈ Z we denote the
centered remainder of x modulo q by [x]q ∈ Zq. We extend these notations to elements of R by
applying them coefficient-wise. We use a ← S to denote uniform sampling from the set S. We
denote sampling according to a distribution χ by a← χ.

2.1 Basic Lattice-based Encryption

For positive integers q and n, basic LWE encryption of m ∈ Z under the secret key ~s ← χkey is
defined as

LWEq,~s(m) = (~α, β) = (~α,−〈~α,~s〉+ e+m) ∈ Zn+1
q ,

where ~α← Znq and error e← χerr. We occasionally drop subscripts q and ~s when they are obvious
from the context.

For a positive integer Q and a power of two N , basic RLWE encryption of m ∈ R under the
secret key z ← χkey is defined as

RLWEQ,z(m) := (a,−a · z + e + m) ∈ R2
Q,

where a ← RQ, and ei ← χerr for each coefficient ei of e where i ∈ [0, N − 1]. As with LWE, we
will occasionally drop subscripts Q and z.

We assume that (t0, · · · , tdr−1) is a gadget decomposition of t ∈ RQ if t =
∑dr−1

i=0 gi · ti where
~g = (g0, . . . , gdr−1) is a gadget vector, and ‖ti‖∞ < Br.

We adapt the definitions of RLWE′ and RGSW from [MP21]. For a gadget vector ~g, we define
RLWE′z(m) and RGSWz(m) as follows

RLWE′z(m) := (RLWEz(g0 ·m),RLWEz(g1 ·m), · · · ,RLWEz(gdr−1 ·m)) ∈ R2d
Q

RGSWz(m) :=
(
RLWE′z(z ·m),RLWE′z(m)

)
∈ R2×2d

Q .
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The scalar multiplication between an element in RQ and RLWE′ ciphertext

� : RQ × RLWE′ → RLWE

is defined as

t� RLWE′z(m) = 〈(t0, · · · , tdr−1), (RLWEz(g0 ·m), · · · ,RLWEz(gdr−1 ·m))〉

=

dr−1∑
i=0

ti · RLWEz(gi ·m) = RLWEz

(
dr−1∑
i=0

gi · ti ·m

)
= RLWEz(t ·m) ∈ R2

Q,

For each error ei in RLWEz(gi ·m), the error after multiplication is equal to
∑dr−1

i=0 ti · ei which is
small if ti and ei are small.

The multiplication between RLWE and RGSW ciphertexts

~ : RLWE× RGSW→ RLWE

is defined as

RLWEz(m1) ~ RGSWz(m2) = (a, b) ~
(
RLWE′z(z ·m2),RLWE′z(m2)

)
= RLWEz(a · z ·m2) + RLWEz(b ·m2)

= RLWEz(m1 ·m2 + e1 ·m2) ∈ R2
Q.

This result represents an RLWE encryption of the product m1 ·m2 with an additional error term
e1 ·m2. In order to have RLWEz(m1) ~ RGSWz(m2) ≈ RLWEz(m1 ·m2), it is necessary to make
the error term e1 ·m2 small. This can be achieved by using monomials m2 = ±Xυ as messages.
The multiplication between RLWE~RGSW is naturally extended to RGSWz(m1)~RGSWz(m2) ≈
RGSWz(m1 ·m2).

2.1.1 Public-key Lattice-based Encryption

If an encryption of zero pkRLWE
z = RLWEz(0) = (a,−a · z + e) is given as a public key, then the

public-key encryption can be done as

EncRLWE(m; pkRLWE
z ) := v · pkRLWE

z + (e0,m + e1) = RLWEz(m),

where v ← χkey, and e0, e1 ← χerr.
We also can find encryption of z ·m without the knowledge of z by slightly modifying the public

key encryption (with the same amount of noise) as follows:

Enc′
RLWE

(m; pkRLWE
z ) := v · pkRLWE

z + (m + e0, e1) = RLWEz(zm).

Using EncRLWE one can generate RLWE′ ciphertexts, and also can generate RGSW ciphertexts to-
gether with Enc′RLWE under the secret z.
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Key Switching in RLWE

Key switching operation converts a ciphertext RLWEz1(m) encrypted by a secret key z1 to a
ciphertext RLWEz2(m) encrypted by a new secret key z2. There are different variants of the key
switching technique and readers can refer to the literature (e.g., see [KPZ21]) for details. We focus
on the BV key switching method [BV11]:

• KSGen(z1, z2): Outputs swk = RLWE′z2
(z1).

• KSz1→z2(RLWEz1(m), swk): Given RLWEz1(m) = (a, b), it outputs

RLWEz2(m) = a� RLWE′z2
(z1) + (0, b) (mod Q).

RLWE′z2
(z1) generated by KSGen is a public switching key. The key switching error is equal to the

error of R� RLWE′ multiplication.

Automorphism in RLWE

In order to perform some operations in HE, we use the automorphisms of R. There are N auto-
morphisms ψt : R → R given by a(X) 7→ a(Xt) for t ∈ Z∗2N . We naturally extend ψt to R2 to
apply the automorphism on a RLWE ciphertext. Automorphisms are applied using the following
procedures which makes use of a special set of switching keys akt = RLWEz(X)(z(Xt)):

• EvalAutot (RLWEz(m), akt): Given RLWEz(m(X)) = (a(X), b(X)) and switching key akt,
apply ψt to a(X) and b(X) to obtain (a(Xt), b(Xt)), which is an RLWE encryption of m(Xt)
under the secret key z(Xt). Then apply the key switching function KSz(Xt)→z(X) on the
RLWEz(Xt)(m(Xt)) ciphertext, to produce the final output ciphertext RLWEz(X)(m(Xt)).

We note that ψ is a permutation on the coefficients of the elements of R, which is easily calculated.
ψt does not introduce additional error as an automorphism ψt is a norm-preserving map.

Secret Key Distribution

The entries of a secret vector for LWE-based scheme and coefficients of a secret polynomial for RLWE-
based scheme are chosen from the following secret key distributions as suggested in Homomorphic
Encryption Security Standard [ACC+18].
Gaussian (theoretical) Gaussian distribution with standard deviation σ ≈

√
N suggested in [Reg09,

LPR13] which guarantees the best theoretical security level close to the uniform secret key distri-
bution
Gaussian (practical) Gaussian distribution with σ ≈ 3.19 which is considered as a more efficient
alternative to the Gaussian theoretical distribution
Ternary the uniform distribution with entries from the set {−1, 0, 1} which is widely used for
lattice-based HE schemes since it introduces a relatively small error
Binary (non-standard) the uniform distribution with entries from the set {0, 1} which introduces
a small error and leads to the more efficient algorithms but is considered as less secure due to the
existing hybrid attacks, e.g., [EJK20]

In general, the secret key distribution is chosen depending on the security level and performance
required for a particular scheme [MP21]. Most schemes benefit from using small distributions such
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as binary and ternary since they may simplify some algorithms and reduce error accumulation.
However, in threshold HE [AJLA+12, MTPBH, Par21, ZZC+21], the secret key distribution should
be wider even if the initial secret key distribution is small. Therefore, considering the general case,
a large secret key distribution such as Gaussian should also be examined carefully.

2.2 Blind Rotation

Blind rotation is an operation that multiplies a given ring element f ∈ RQ by a monomial Y u,
where the exponent u = β + 〈~α,~s〉 ∈ Zq is given by an LWE ciphertext (~α, β) ∈ Zn+1

q encrypted
under a secret key ~s ∈ Znq . The output of the blind rotation is RLWE encryption of f · Y u. The
operation is called “blind rotation” because it rotates the coefficients of f negacyclically, by an
amount u which is provided in encrypted form. A formal definition is given below

Definition 1 (Blind Rotation) For q|2N , let Y = X
2N
q . A blind rotation is an algorithm which

takes as input a ring element f ∈ RQ, an LWEq,~s ciphertext (~α, β) ∈ Zn+1
q , and blind rotation keys

brkz,~s corresponding to secrets z and ~s, and it outputs the RLWE ciphertext

RLWEQ,z

(
f · Y β+〈~α,~s〉

)
∈ R2

Q.

Two different blind rotation algorithms were proposed in [DM15, CGGI20]. Following [MP21], we
refer to the two algorithms as “AP blind rotation” and “GINX blind rotation” respectively, as they
are optimized ring versions of two bootstrapping procedures (for general LWE) originally proposed
in [ASP14] (AP) and [GINX16] (GINX). Both methods rely on the properties of RGSW ciphertext
described above.

AP Blind Rotation

In AP blind rotation [DM15, ASP14], the blind rotation keys are generated for each element si ∈ Zq
of the secret ~s as

brkAP = {brki,j,v = RGSWz(Y vBjrsi)}i,j,v
for i ∈ [0, n− 1], j ∈

[
0, logBr(q)− 1

]
, and v ∈ ZBr . In the algorithm, acc is initiated to the trivial

encryption acc = RLWEQ,z(f · Y β) = (0,f · Y β). Then, for each i ∈ [0, n− 1], αi is decomposed in

base Br as αi =
∑logBr (q)−1

j=0 ai,jB
j
r and acc is updated sequentially for all αi,j as

acc← acc~ RGSWz(Y αi,jB
j
rsi).

The full procedure of AP blind rotation is described in Algorithm 1.
AP blind rotation supports all types of secret key distributions and provides a useful tradeoff

between space and computational complexity based on the choice of the base Br ≥ 2. Greater Br
allows performing computations faster at the cost of storing more rotation keys, while smaller Br
reduces storage overhead but increases computational time.

GINX Blind Rotation

GINX blind rotation [CGGI20, GINX16] is more efficient than AP when the secret key ~s is set
to a binary or ternary vector, but its performance degrades when using larger secret keys [MP21].
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Algorithm 1 Blind Rotation: AP [DM15, ASP14]

procedure BlindRotateAP(f , (~α, β), {brki,j,v = RGSWz(Y vBjrsi)}i,j,v)
acc← (0,f · Y β) . acc = RLWEz(f · Y β)
for (i = 0; i < n; i = i+ 1) do . RLWEz(f · Y β+α0s0+···+αi−1si−1)

for (j = 0; j < logBr(q); j = j + 1) do . Y (αi,0B
0
r+···+αi,jBjr)·si is multiplied

αi,j =
⌊
αi/B

j
r

⌋
mod Br . αi =

∑logBr (q)−1

j=0 αi,jB
j
r

acc← acc~ brki,jαi,j . brki,jαi,j = RGSWz(Y αi,jB
j
rsi)

return acc = RLWEz(f · Y u) . acc = RLWEz(f · Y β+〈~α,~s〉)

In the general case, each secret key element si ∈ Zq, i ∈ [0, N − 1], is expressed as subset-sum

si =
∑|U |

j=1 uj · si,j where si,j ∈ {0, 1} and U ⊂ Zq is an appropriately chosen subset of Zq. To

express arbitrary elements of Zq one can use U = {1, 2, 4, . . . , 2k−1}. But one can also use U = {1}
and U = {1,−1} for binary and ternary secrets, respectively [MP21]. Using this notation for any
subset U , the blind rotation key is generated as

brkGINX = {brki,j = RGSWz(si,j)} .

In the algorithm, acc is initiated to acc = RLWEQ,z(f · Y β) = (0,f · Y β) and updated as

acc← acc + (Y αiuj − 1) · (acc~ RGSWz(si,j))

If si,j = 0, the second addendum is ignored since it gives an encryption of 0 and the value stored
by the accumulator stays the same. If si,j = 1, then acc ~ RGSWz(1) is equal to acc and the
accumulator is updated to Y αiuj · acc. Repeating this procedure for all j ∈ [0, |U |−1] results in
Y αisi · acc. The full procedure of GINX blind rotation is described in Algorithm 2.

Algorithm 2 Blind Rotation: GINX [CGGI20, GINX16, MP21]

procedure BlindRotateGINX(f , (~α, β), {brki,j = RGSWz(si,j) | si =
∑
si,juj})

acc← (0,f · Y β) . RLWEz(f · Y β)
for (i = 0; i < n; i = i+ 1) do . RLWEz(f · Y β+α0s0+···+αi−1si−1)

for (j = 0; j < |U |; j = j + 1) do . Y αi·(si,0u0+···+si,juj) is multiplied
acc← acc + (Y αiuj − 1) · (acc~ brki,j) . Y αiuj is multiplied if si,j = 1

return acc = RLWEz(f · Y u) . acc = RLWEz(f · Y β+〈~α,~s〉)

It is easy to see that for the small U this procedure may be efficient in both key size and running
time. However, the running time and storage overhead growth significantly with the larger secret
key distribution. GINX blind rotation is more efficient than AP for the secret key ~s chosen from
small distributions such as binary or ternary secret keys; but less key size in general.

There is another optimization of GINX to remove the second loop in Algorithm 2 in such a
way that it has about half of the computations and the same key size and error for ternary keys.
However, it is only optimized for ternary key [KDE+21, BIP+22] and cannot be efficiently extended
to larger keys.
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RLWEz (g(X))

RLWEz

(
g(Xα−1

i )
)

RLWEz

(
g(Xα−1

i ) · Y si
)

RLWEz (g · Y αisi)

X→Xα−1
i

~RGSWz(Y si )

X→Xαi

Figure 1: The basic building block of proposed algorithm, where Y = X
2N
q .

3 New Blind Rotation Techniques

In this section, we present new blind rotation algorithms, which improve on previous meth-
ods [ASP14, GINX16, DM15, CGGI17, CGGI20, MP21] in terms of running time, public key
size, or both. Recall that blind rotation takes as input an LWE ciphertext (~α, β) and a ring element
f ∈ RQ, and the goal is to output a ciphertext RLWE(f · Y β+〈~α,~s〉) ∈ R2

Q encrypting a rotation

of f , by a secret amount specified by the decryption of (~α, β) where Y = X
2N
q . Blind rotation

algorithms also make use of a collection of rotation keys brk, which are specific to each blind ro-
tation technique. Our algorithms, just like previous work, use an accumulator acc = RLWE(g)
holding an RLWE encryption of some ring element g. This value is initially set to g = f · Y β, and
then multiplied by

∏
i Y

αisi for i = 0, . . . , n − 1, so that at the end the accumulator contains an
encryption f · Y β+〈~α,~s〉 as desired, and we may output acc as the final result of the blind rotation
algorithm. The accumulator is updated through a sequence of RLWE ~ RGSW products, where
RLWE is the value of the accumulator, and RGSW is an auxiliary ciphertext holding a secret key
element si. Our algorithms also make use of ring automorphisms ψt and their associated switching
keys akt, as described in Section 2.

We first describe a base blind rotation algorithm using automorphism with a basic building
block and then provide its variants that use auxiliary blind rotation keys to reduce computational

complexity. We also present an optimization for q < 2N and q|2N , which uses Y = X
2N
q explicitly

to improve the complexity of the base algorithm. Finally, we propose several optimizations to
reduce the size of evaluation keys.

3.1 The Base Blind Rotation Algorithm

We first give a brief explanation of the basic building block of our algorithms in Figure 1.
For a given encryption acc = RLWEz (g(X)) corresponding to some intermediate ring ele-

ment g(X) ∈ RQ, we apply automorphism EvalAutoα−1
i

to acc and obtain RLWEz

(
g(Xα−1

i )
)

,

where α−1
i is computed mod q. Then, we multiply the accumulator by RGSWz (Y si) which

results in RLWEz

(
g(Xα−1

i ) · Y si
)

. Finally we apply automorphism EvalAutoαi and obtain

RLWEz (g · Y αisi). This process is repeated for all i ∈ [0, n − 1], so that eventually acc contains
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RLWEz

(
f · Y β+〈~α,~s〉).

A technical difficulty that needs to be overcome is that automorphisms ψαi exists only when αi
is odd. So, we need to give special treatment to even αi. The full procedure is given in Algorithm 3.
Here we briefly discuss how to deal with even coefficients αi, and a basic optimization that reduces
the number of automorphisms by a factor of 2.
Dealing with Even αi: Since we can apply automorphism EvalAutot only for odd t, we set ωi = αi−1
if αi is even and ωi = αi if αi is odd. Now we can apply blind rotation for the vector ~ω and obtain
RLWE

(
f · Y β+〈~ω,~s〉). Then we repeatedly multiply RGSW (Y si) for each even αi, which results in

RLWE
(
f · Y β+〈~α,~s〉)10.

Reducing Number of Automorphisms: Notice that we can combine EvalAutoαi and EvalAutoα′i+1

operations by executing automorphism EvalAutoαiα′i+1
, which reduces the number of automorphism

operations to n.

Algorithm 3 Blind Rotation: Base Algorithm

procedure BlindRotate
(
f , (~α, β),

(
{brki = RGSWz(Y si)}i∈[0,n−1] , {ak2j+1}j∈[1,q/2−1]

))
for (i = 0; i < n; i = i+ 1) do

if αi is even then
ωi ← αi − 1

else
ωi ← αi

ω′i ← ω−1
i (mod q)

acc← (0,
(
f · Y β

)
◦ (Xω′0)) . acc = RLWEz(f(Xω′0) · Y βω′0)

for (i = 0; i < n− 1; i = i+ 1) do . RLWEz(g(Xω′i))
acc← acc~ brki . RLWEz(g(Xω′i) · Y si)
acc← EvalAutoωiω′i+1

(acc, akωiω′i+1
) . RLWEz((g(X) · Y ωisi) ◦ (Xω′i+1))

acc← acc~ brkn−1

acc← EvalAutoωn−1(acc, akωn−1) . RLWEz(f · Y β+〈~ω,~s〉)
for (i = 0; i < n; i = i+ 1) do

if αi is even then
acc← acc~ brki

. acc = RLWEz(f · Y β+〈~α,~s〉)

return acc = RLWEz(f · Y u)

3.2 Reducing Computational Complexity Using Auxiliary Keys

In Algorithm 3, when αi is even, we multiply the accumulator first by Y ωisi = Y (αi−1)si and then
by Y si . Thus, in average, we perform n/2 additional RLWE~RGSW multiplications, beyond the n
products required when all αi are odd. We show how to get rid of these additional multiplications
using a small number of auxiliary blind rotation keys RGSW(Y si+si+1), where by convention sn :=
s0.

10We can also relax the worst-case condition of Algorithm 3 to the case that at most half of the coefficients of αi’s
are even. If the number of even values in ~α is greater than n/2, we evaluate RLWE(f · Y β+〈~α+1,~s〉) using Algorithm

3. Then finally, we obtain RLWE(f · Y β+〈~α,~s〉) by multiplying RGSW(Y −Σn−1
i=0 si) at the end.
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The idea is the following. At each step i, assuming (by induction) that αi is odd, we consider
two cases, depending on the parity of αi+1. If αi+1 is odd, we may multiply the accumulator by
Y αisi and immediately move to the next step i + 1. Otherwise, if αi+1 is even, we multiply the
accumulator by Y αi(si+si+1) instead, and balance this operation by subtracting αi from αi+1, i.e.,
we set αi+1 ← αi+1−αi. In either case, the (possibly updated) value of αi+1 is odd, preserving the
inductive assumption, and we may move to the next iteration. This enables to omit the additional
RLWE ~ RGSW multiplications in the last loop of Algorithm 3. The full pseudocode is given in
Algorithm 4. Notice that if α0 is even we can start with any other index i0 such that αi0 is odd.
In the unlikely case that all αi are even we can start with α0 − 1 and have only one additional
multiplication by Y s0 at the very end of the algorithm. However, since the αi are uniformly random,
this happens with exponentially small probability 1/2n, and its effect on performance can be safely
ignored.

Algorithm 4 Blind Rotation: Computationally Efficient Variant

procedure BlindRotate
(
f , (~α, β),

(
{RGSWz(Y si),RGSWz(Y si+si+1)}i∈[0,n−1] , {ak2j+1}j∈[1,q/2−1]

))
~ω ← ~α
acc← (0,

(
f · Y β

)
◦ (Xω′0)) . Assume ω0 is odd

for (i = 0; i < n; i = i+ 1) do
if αi+1 is even then

acc← acc~ RGSWz(Y si+si+1) . Y ωi(si+si+1) is multiplied
ωi+1 ← ωi+1 − ωi . Y (ωi+1−ωi)si+1 is multiplied later

else
acc← acc~ RGSWz(Y si)

acc← EvalAutoωiω′i+1
(acc, akωiω′i+1

)

return acc = RLWEz(f · Y u)

3.3 Optimization for q < 2N

Blind rotations for q < 2N are interesting special cases, as they commonly occur in FHEW-
like cryptosystems [DM15, MP21]. When q < 2N , our goal is to find RLWE(f · Y β+〈~α,~s〉) =

RLWE(f · X
2N
q
β+〈 2N

q
~α,~s〉

). Hence, when we have RGSWz(Xsi)i∈[0,n−1] and apply Algorithm 3 as

it is, all 2N
q ~αi are even, which is the worst-case in terms of computational complexity, where n

additional multiplications of RGSW(Xsi) are required.

With a single additional auxiliary blind rotation key RGSWz(X−Σn−1
i=0 si), we can replace the n

multiplications by the RGSW(Xsi)’s by a single multiplication. We evaluate RLWE(f ·X
2N
q
β+〈~ω,~s〉

)
as in Algorithm 3, where ωi = 2N

q αi + 1. Since [ωi] 2N
q

= 1, we have [ω′i] 2N
q

= 1 and
[
ωiω

′
i+1

]
2N
q

= 1

for all i, and ω′i := ω−1
i (mod 2N). Hence, we only need automorphism keys

{
ak 2N

q
j+1

}
j∈[1,q−1]

.
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Algorithm 5 Blind Rotation: All-even Case

procedure BlindRotate

(
f , (~α, β),

(
{RGSWz(Xsi)}i∈[0,n−1] ,RGSWz(X−Σn−1

i=0 si),
{
ak 2N

q
j+1

}
j∈[1,q−1]

))
for (i = 0; i < n; i = i+ 1) do

ωi ← 2N
q αi + 1

ω′i ← ω−1
i (mod 2N)

acc← (0,
(
f ·X

2N
q
β
)
◦ (Xω′0))

for (i = 0; i < n; i = i+ 1) do . RLWEz(f ·X
2N
q
β+〈~ω,~s〉

)
acc← acc~ RGSWz(Xsi)
acc← EvalAutoωiω′i+1

(acc, akωiω′i+1
)

acc← acc~ RGSWz(X−Σn−1
i=0 si) . acc = RLWEz(f ·X

2N
q
β+ 2N

q
〈~α,~s〉

)

return acc = RLWEz(f ·X
2N
q
u
) = RLWEz(f · Y u)

3.4 Key Size Reduction

RLWE′ Blind Rotation Keys Instead of RGSW

In all algorithms so far, we used RGSW(Y si) (and RGSW(Y si+si+1)) as blind rotation keys. We can
replace these keys with smaller RLWE′ keys using the compact representation method of [KDE+21],
while replacing each RLWE ~ RGSW multiplication with three R � RLWE′ products. Beside the
blind rotation keys RLWE′z(Y si) (and RLWE′z(Y si+si+1)), this method also requires an auxiliary
key RLWE′z(z2), which, however, remains the same for all si (and si + si+1). So, its impact on
blind key storage requirements is minor. As each RGSW ciphertext is composed of two RLWE′

ciphertexts and each RLWE~RGSW multiplication requires two R�RLWE′ products, this method
offers a memory-computation trade-off: key storage is roughly cut in half, and computation time
is increased by a factor 3/2. In typical HE application scenarios, key size reduction is crucial as
it lowers the computation and communication cost for resource-limited clients. So, the increase in
running time may be affordable.

The compact multiplication method works as follows. Given the current accumulator acc =
RLWEz(g) = (a, b), auxiliary key RLWE′z(Y si), and compact blind rotation key RLWE′z(Y si), we
first multiply RLWE′z(Y si) by the ring elements a and b to obtain

a� RLWE′z(Y si) = RLWEz(a · Y si) = (a′, b′)

b� RLWE′z(Y si) = RLWEz(b · Y si)

Then we compute RLWEz(a · z · Y si) by evaluating

a′ � RLWE′z(z2) + (b′, 0) = RLWEz(a′ · z2 + b′ · z) = RLWEz(a · z · Y si).

Finally, we add RLWEz(a · z · Y si) and RLWEz(b · Y si) together to obtain the updated acc:

acc← RLWEz(a · z · Y si) + RLWEz(b · Y si)

= RLWEz((a · z + b) · Y si) = RLWEz(g · Y si).

In summary, we can replace all RLWE ~ RGSW products in Algorithms 3, 4, and 5 with the
alternative AltMult multiplication procedure described in Algorithm 6.
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Algorithm 6 Alternative Multiplication with RLWE′ Keys [KDE+21]

procedure AltMult(RLWEz(m1),RLWE′
z(m2),RLWE′

z(z2))
(a, b)← RLWE(m1)
(a′, b′)← a� RLWE′

z(m2)
res← a′ � RLWE′

z(z2) + (b′, 0) . RLWEz(a′ · z2 + b′ · z) = RLWEz(a · z ·m2)
res← res + b� RLWE′ (m2) . res = RLWEz((a · z + b) ·m2)

return res = RLWEz(m1 ·m2)

Key size and Computation Tradeoffs with Fewer Automorphism Keys

We do not have to carry all the switching keys. EvalAutok(·, akk) for an odd k can be replaced
with sequence of operations EvalAutokj (·, akkj ), where k =

∏
j kj . In other words,

EvalAutok(ct, akk) =

EvalAutok0(EvalAutok1(· · · EvalAutoki−1
(ct, akki−1

) · · ·), akk1), akk0).

Thus, we only need to carry a set of keys {kj}j∈[0,i−1] whose subset-products generates Z∗q .
As an extreme example, all the rotations is done using only two switching keys ak5 and ak−1

by applying (or not) EvalAuto−1(ct, ak−1) and (at most q − 1) EvalAuto5(ct, ak5). Here, we
use that {−1, 5} generates Z∗q , where q is a power of two. For another example, using log q keys
ak−1, ak5, ak52 , ak54 , . . . , ak5q/2 , we can perform the same operation as EvalAutok (for any odd k)
with at most log q of EvalAuto with keys from the given set.

4 Analysis

4.1 Complexity and Key Size Analysis

The comparisons of computational complexity and key size are given in Table 1. Both settings
are directly motivated by applications. In particular, q = 2N is used in general bootstrapping of
RLWE-based HE [KDE+21], while q < 2N often arises in functional bootstrapping of FHEW-like
HE [DM15, CGGI17, CGGI20, MP21].

In order to facilitate the comparison of all blind rotation algorithms, we measure their time
complexity in terms of the number of R � RLWE′ products they perform, as the cost of these
operations dominates the total running time. We note that each RLWE~ RGSW product requires
two R�RLWE′ products, while key switching is performed with a single R�RLWE′ multiplication.
So, both RLWE ~ RGSW products and key switching operations are easily expressed in terms of
R�RLWE′ products. Another common measure of complexity used in previous work on FHEW-like
HE is the number of NTT performed by the algorithms. We note that one can easily convert the
number of R�RLWE′ products to the number of NTT as each R�RLWE′ requires precisely (dg+1)
NTT operations. As a side remark, the cost of BGV/BFV/CKKS bootstrapping is often measured
in terms of rotation and relinearization operations (a form of key switching), which is also easily
expressed in terms of R� RLWE′ products.

Similarly, we compare the memory requirement of all blind rotation algorithms using the total
number of RLWE′ ciphertexts required by the blind rotation key. The blind rotation keys for all
methods consist of several RGSW and RLWE′ ciphertexts. In turn, each RGSW is composed of two
RLWE′ ciphertexts. For sake of brevity, “blind rotation key size” refers to the size of both brk
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and ak in this section. This can be translated into a traditional “bit size” simply noting that each
RLWE′ ciphertext requires roughly 2dgN logQ-bit of space.

Previous Methods

AP The complexity and key size of the AP technique depends on the value of the gadget
decomposition base Br used to decompose αi into a sequence of small integers αi,j , where

αi =
∑logBr q−1

j=0 αi,jB
j
r and dr =

⌈
logBr q

⌉
. The blind rotation key for AP is given by{

RGSWz(Y vBjrsi)
}
i,j,v

, where (i, j, v) ∈ [0, n − 1] × [0, dr − 1] × [1, Br − 1]. (Note that cipher-

texts for v = 0 are trivial and are not needed.) So, the key is composed by dr(Br − 1)n RGSW
ciphertexts, or, equivalently, 2dr(Br − 1)n RLWE′ ciphertexts. In the worst-case, drRLWE~RGSW

is required to multiply Y αi,jB
j
r for each i = 0, . . . , n − 1 and j = 0, . . . , dr − 1 to acc. So, the

worst-case complexity is 2drn of R � RLWE′ multiplications. However there is a 1/Br chance for

each αi,j to be 0, in which case the multiplication by RGSWz(Y αi,jB
j
rsi) can be skipped, reducing

the the average-case complexity to 2dr

(
1− 1

Br

)
n R� RLWE′ multiplications.

GINX The complexity and key size of the GINX technique [MP21] depends on the cardinality
of the set U used to represent each si =

∑
uj∈U si,juj . We note that the size of this set can

be set optimally to |U |= dlog(‖s‖∞)e. The blind rotation key {RGSWz(si,j)|si =
∑
si,juj} is

composed of |U |n RGSW ciphertexts, or, equivalently, 2|U |n RLWE′ ciphertexts. The algorithm
also requires 2|U |n RLWE~RGSW multiplications by Y αisi,juj for each i = 0, . . . , n− 1 and uj ∈ U
to acc. In GINX optimization for ternary keys [KDE+21, BIP+22], the number of RLWE~ RGSW
multiplications is reduced from 4n to 2n. To distinguish from original GINX method we denoted
this optimization GINX ∗.

Proposed Methods

The Base Blind Rotation (Algoritm 3) In our Algorithm 3, the public key for blind ro-
tation contains n RGSW ciphertexts ({RGSWz(Y si)}i∈[0,n−1]) and q/2 − 1 RLWE′ ciphertexts

({ak2j+1}j∈[1,q/2−1]). Algorithm 3 performs n RLWE~RGSW multiplications and n R�RLWE′ mul-

tiplications to multiply the accumulator by Y ωi·si ; for an even αi, we have to multiply RGSW(Y si),
and thus we require n and 3n/2 RLWE~RGSW multiplications in the worst-case and average-case,
respectively. Algorithm 3 is denoted by “Ours(Alg. 3)” in Table 1.

Reducing Computational Complexity Using Auxiliary Keys (Algoritm 4) In Algorithm
4, we need auxiliary blind rotation keys RGSW (Y si+si+1), so we need a total of 2n of RGSW
ciphertexts and q/2− 1 of RLWE′ ciphertexts. This allows omitting the additional RLWE~ RGSW
multiplications by RGSW(Y si) at the end of the algorithm. So, the numbers of operations is n
RLWE~RGSW multiplications and nR�RLWE′ multiplications on average and n+1 RLWE~RGSW
multiplications and n R�RLWE′ multiplications in the all-even case, which occurs with probability
1

2n . Hence, Algorithm 4 is faster than the base case in Algorithm 3, and has constant execution
time, at the cost of larger blind rotation keys. The proposed reduced-complexity variant is shown
as “Ours(Alg. 4)” in Table 1.
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Table 1: Complexity and key size of each blind rotation technique. Key size (# keys) is the number
of RLWE′ ciphertexts, and computational complexity (# mult) is the number of R� RLWE′.

Method
Using RGSW keys Using RLWE′ keys

# keys
# mult

# keys
# mult

average worst average worst

AP [ASP14, DM15] 2dr(Br − 1)n 2dr

(
1− 1

Br

)
n 2drn dr(Br − 1)n+ 1 3dr

(
1− 1

Br

)
n 3drn

GINX [GINX16, CGGI20, MP21] 2|U |n 2|U |n 2|U |n |U |n+ 1 3|U |n 3|U |n
Ours (Alg. 3) 2n+ q/2− 1 4n 5n n+ q/2 5.5n 7n
Ours (Alg. 4) 4n+ q/2− 1 3n+ 2

2n 3n+ 2 2n+ q/2 4n+ 3
2n 4n+ 3

Ours (Alg. 5) 2n+ q + 1 3n+ 2 3n+ 2 n+ q + 1 4n+ 3 4n+ 3

Optimization for q < 2N (Algoritm 5) When q < 2N , the variant in Algorithm 5 is efficient
in terms of key size and computational complexity. It requires (n + 1) RGSW ciphertexts for

{RGSWz(Xsi)}i∈[0,n−1] and RGSWz(XΣn−1
i=0 si), and (q−1) RLWE′ ciphertexts for the switching keys{

ak 2N
q
j+1

}
j∈[1,q−1]

, for a total of 2n+ q + 1 RLWE′ ciphertexts. The computational cost is (n+ 1)

RLWE~RGSW multiplications, and n R�RLWE′ multiplications for key switching. Our Algorithm
5 for the all-even case is denoted by “Ours(Alg. 5)” in Table 1.

Key Size Reduction Using RLWE′ Keys (Algorithm 6) As shown in subsection 3.4, we
can replace RGSW ciphertexts in blind rotation keys by RLWE′ ciphertexts. Then, the key size
for RGSW blind rotation keys is reduced to almost half. As a tradeoff, RLWE~ RGSW is replaced
by AltMult in Algorithm 6, which involves three R� RLWE′ multiplications instead of two. This
modification can be applied to our proposed methods as well as AP and GINX. The comparison
with key size reduction using RLWE′ is given in separate columns in Table 1.

4.2 Error Analysis

We present a theoretical analysis of the error growth to set the proper auxiliary modulus and show
the implementation results with concrete parameters. We use an approach from [DM15, MP21]
to estimate the variance σ2

acc from the blind rotation procedure. The total error estimation for
algorithms using blind rotation such as FHEW/TFHE bootstrapping [DM15, MP21, CGGI20],
amortized FHEW bootstrapping [MS18], and general bootstrapping for RLWE HE [KDE+21], can
be easily calculated using this value.

The error variance introduced by single R� RLWE′ is equal to dgN
B2
g

12 σ
2, where Bg and dg are

parameters for gadget decomposition used in R � RLWE′ multiplication. For sake of brevity we

denote σ2
� := dgN

B2
g

12 σ
2. The variances σ2

acc−AP and σ2
acc−GINX can be estimated as [MP21]

σ2
acc−AP = 2drn · σ2

� and σ2
acc−GINX = 4|U |n · σ2

�.

In Algorithms 3, 4, and 5, each acc~ RGSWz(Y si) introduces additive error whose variance is
2 · σ2

�, as Y si is a monomial. The automorphism operation ψωiω′i+1
is error free, and key switch-

ing introduces additive error with variance σ2
�. Hence, EvalAutoωiω′i+1

(acc, akωiω′i+1
) introduces

additive error with variance σ2
�. In the worst-case, Algorithm 3 requires 2n RLWE~ RGSW multi-

plications and n R� RLWE′ multiplications; thus the error after blind rotation is given as 5n · σ2
�.

Similarly, the error after Algorithms 4 and 5 has variance 3(n+ 2) · σ2
�.
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Table 2: Estimation of error growth for each blind rotation technique. The value is normalized to
the common multiplier σ2

�, the variance of error introduced by an R� RLWE′.

Method
σ2
acc/σ

2
�

Using RGSW keys Using RLWE′ keys

AP [ASP14, DM15] 2drn (‖z‖2+2)drn
GINX [GINX16, CGGI20, MP21] 4|U |n 2(‖z‖2+2)|U |n

Ours (Alg. 3) 5n (2‖z‖2+5)n
Ours (Alg. 4) 3n+ 2 (‖z‖2+3)n+ (‖z‖2+3)
Ours (Alg. 5) 3n+ 2 (‖z‖2+3)n+ (‖z‖2+3)

AltMult in Algorithm 6 introduces a larger error than RLWE ~ RGSW; it presents error with
variance (‖z‖2+2) ·σ2

�. We note that ‖z‖ can be assumed to be bounded by
√
N/2 when z follows

ternary uniform distribution. Table 2 summarizes the estimation of error growth for all algorithms.
We remark that |U |= dlog ‖s‖∞e, e.g., |U |= 2 for ternary secret.

4.3 Comparison by Key Distribution

The computational complexity and key sizes for each key distribution are given in Figures 2a and
2b. The figures are for the parameter set STD128, (n, q,N,Q) = (512, 1024, 1024, 227), proposed by
Micciancio and Polyakov [MP21] based on HE Security Standard [ACC+18], which is for the 128-
bit security w.r.t. classical computer attacks for ternary key distribution. Here, “Gauss. Pract.”
corresponds to the Gaussian secret key distribution with standard deviation σ = 3.19; “Gauss.
Theor.” to the case σ =

√
n; both secret key distributions truncated using a standard 12σ tail

bound.
It can be seen that the proposed algorithm has less computational complexity and key size

compared to AP and GINX when the key distribution is wider than binary (except for GINX∗)
and the least error for all key distributions. We also demonstrate that our method is getting more
efficient than existing blind rotation techniques in situations when binary and ternary secret key
distributions cannot be used. For example, the key distribution wider than ternary is used to
construct the threshold variant of the threshold HE schemes introduced in [AJLA+12, ZZC+21],
where secret keys are accumulated from partial secret keys.

5 Implementation

In this section, we present the implementation results of the proposed blind rotation on FHEW
bootstrapping as a useful application. Also, we compare it to the AP and GINX blind ro-
tation techniques. We use the gate bootstrapping of FHEW [DM15] implemented in PAL-
ISADE [PAL21]. According to the theoretical analysis presented early, similar results will be
achieved for TFHE [CGGI20] by using floating-point operations and DFTs instead of operation
over finite rings and NTTs respectively for each discussed blind rotation technique.

We follow the approach from [MP21] for our experiment, where several parameter sets are
introduced based on different security levels. We omit the details on parameter selection as it can
be found directly in [MP21]. We compared accumulated errors for different techniques discussed in
this paper.
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Figure 2: Comparison of blind rotation computational complexity, key size, and error.
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Table 3: Parameter sets and experimental error variances of blind rotation technique for ternary
secret distribution. For AP, we use dr = 2. For Ours, we use Alg. 4

Parameter set n q N log2Q Bg
σ2
acc

AP GINX Ours

STD128 512 1024 1024 27 27 1.00× 1011 1.78× 1011 5.92× 1010

STD192 1024 1024 2048 37 213 9.14× 1014 2.02× 1015 8.09× 1014

STD256 1024 2048 2048 29 28 1.41× 1012 3.13× 1012 9.95× 1011

STD128Q 1024 1024 2048 50 225 1.53× 1022 3.35× 1022 1.18× 1022

STD192Q 1024 1024 2048 35 212 2.68× 1014 5.26× 1014 1.88× 1014

STD256Q 2048 1024 2048 27 27 7.07× 1011 1.46× 1012 5.77× 1011

Table 4: Timing results (in [ms]) of blind rotation keys for FHEW bootstrapping (NAND gate).
Key distribution Ternary Gaussian (practical, σ = 3.19)

Parameter set AP GINX GINX∗
Ours

AP GINX GINX∗
Ours

Alg. 4 Alg. 5 Alg. 4 Alg. 5

STD128 127 129 86 104 103 127 801 - 104 103
STD192 452 466 315 386 379 452 2831 - 386 379
STD256 513 544 359 427 433 513 3283 - 427 433

STD128Q 341 353 237 308 310 341 2096 - 308 310
STD192Q 433 448 294 377 373 433 2772 - 377 373
STD256Q 1061 1074 759 883 870 1061 6612 - 883 870

5.1 Parameter Sets and Blind Rotation Error

Table 3 shows the error variances of ciphertexts after applying different blind rotation techniques by
the parameter sets for FHEW presented in [MP21] and [Ope22]. For the names of parameter sets,
we follow the notation from [MP21]. The prefix “STD” denotes the parameter set that corresponds
to the HE security standard [ACC+18]. The numbers in the parameter set names correspond to the
estimated bits of security, and the suffix “Q” denotes the parameter sets secure against quantum
attack. For all parameter sets the ternary secret key distribution is used.

The variances of blind rotation error in Table 3, σ2
acc was obtained numerically. For each

parameter set, we record the error values after blind rotation for 500 trials and then estimate the
value of σ2

acc. The proposed blind rotation technique is implemented using PALISADE. We use AP
and GINX implementation provided in PALISADE library [PAL21] as it is.

Table 3 demonstrates that the error variance after blind rotation by Algorithm 5 is reduced by
11% − 30% and 60% − 68% compared to AP and GINX, respectively. This experimental result
meets the theoretical analysis in Table 2.

The total error and decoding failure probability can be calculated from the given σacc. We refer
to [MP21] for the detailed calculation as the other parts of errors are common regardless of the
blind rotation technique used. However, the error after blind rotation takes a major portion of the
error in the whole bootstrapping process. The achieved error variance shows an improvement in
comparison with previous methods, and thus it reduces the decryption failure probability.
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Table 5: Blind rotation key size (in [MB]) for FHEW bootstrapping (NAND gate).
Key distribution Ternary Gaussian (practical, σ = 3.19)

Parameter set AP GINX GINX∗
Ours

AP GINX GINX∗
Ours

Alg. 4 Alg. 5 Alg. 4 Alg. 5

STD128 1674 54 54 67.5 54.0 1674 189 - 67.5 54.0
STD192 6682 222 222 249.7 166.6 6682 777 - 249.7 166.6
STD256 10440 232 232 289.9 232.1 10440 812 - 289.9 232.1

STD128Q 6200 200 200 225.0 150.0 6200 700 - 225.0 150.0
STD192Q 6510 210 210 236.2 157.6 6510 756 - 236.2 157.6
STD256Q 9720 216 216 269.9 216.1 9720 756 - 269.9 216.1

5.2 Runtime Results

The evaluation environment was with PALISADE v.1.11.7 in Intel(R) Xeon(R) Platinum 8280 CPU
@ 2.70GHz, running Ubuntu 16.04.7 LTS. We compiled with gcc 8.4.0 and the following CMake
flags: NATIVE SIZE=64. We note that the current version of PALISADE does not contain AVX-
optimized implementation which can speed up all bootstrapping algorithms (see [MP21] for more
details). To provide an impartial comparison of bootstrapping algorithms, we have implemented
all of them using the identical library and computing environment.

Tables 4 and 5 contain experimental results for NAND gate evaluation in FHEW in terms of
runtime and blind rotation key size, respectively. We provide experiments for different parameter
sets for ternary and practical Gaussian secret key distributions. In our experiments we used Al-
gorithms 4 and 5 which are the most suitable for the parameters in Table 3 among the proposed
techniques. We follow [MP21] for GINX with ternary and Gaussian secret keys and GINX∗ with
ternary secret keys. We do not provide GINX∗ experimental results for Gaussian secret keys, as
GINX∗ is an optimization only for ternary secret keys. In Table 5 we consider only the key sizes for
the blind rotation keys. LWE switching keys are also required for the FHEW bootstrapping. How-
ever, these keys are the same for each blind rotation technique we analyzed, and thus we omitted
them in Table 5.

Considering that the gate bootstrapping includes additional operations other than blind ro-
tation, such as LWE addition and key switching, the results in Tables 4 and 5 roughly meet the
theoretical analysis conducted in Section 4. Table 4 shows that both Algorithms 4 and 5 improve
the runtime for the gate bootstrapping by about 15%, compared to AP for both ternary and Gaus-
sian secret key. For ternary secret key, our method is also about 17% faster than GINX but about
23% slower than GINX∗. However, for Gaussian secret key our methods surpass GINX by more
than 7.4 times and GINX∗ is not efficiently scalable for large secret key distributions. Table 5 shows
that Algorithm 5 gives up to 45 times reduced key size compared to AP, and about 25% reduction
compared to GINX in case of ternary. The key size of Algorithm 4 is up to 36 times smaller than
that of AP.

6 Applications to Threshold Homomorphic Encryption

The above analysis demonstrates that the proposed blind rotation technique supports arbitrary
secret key distribution and has reasonable complexity and small key size with the smallest blind
rotation error among all known blind rotation techniques. In this section, we outline a threshold HE

21



scheme which takes advantage of the proposed blind rotation technique. The simple structure of
our blind rotation keys gives us an instinctive design of FHEW-like threshold HE with the approach
proposed in [AJLA+12].

Following the base concept described in Section 1.3, to enable threshold HE using the FHEW
scheme, we define the algorithms for distributed evaluation key generation. Each participant j has
the secret keys ~sj for LWE encryption and zj for RLWE encryption, where j ∈ J and J denotes
the set of participants with |J |= k. The common secret keys are defined as ~s∗ =

∑
j∈J ~sj and

z∗ =
∑

j∈J zj .

6.1 Distributed Generation of Evaluation Keys

The distributed generation of evaluation key for threshold version of Algorithm 3 explained in this
section is naturally extended to Algorithms 4 and 5 by simple modifications. We omit a description
of the LWE switching key which is not the main interest of this paper and is straightforward.

6.1.1 Public Key Generation [AJLA+12]

The public key for implicit secret keys z∗ =
∑

j∈J zj is generated by the following procedures.

• Each participant j ∈ J independently generates their own secret ~sj and zj .

• Given common random string acrs, each participant calculates bj = −acrs ·zj+ej and shares
them to other participants, where ej ← χerr.

• The public key is generated as pkRLWE
z∗ = (acrs,

∑
j∈J bj).

6.1.2 Generation of Automorphism Keys

The generation of automorphism keys consists of the following two stages.

• Using the shared public key pkRLWE
z∗ , each participant generates encryptions akThrj,i =

RLWE′z∗
(
zj(X

i)
)

as

akThrj,i :=
(
EncRLWE(B0

g · zj(Xi)), . . . , EncRLWE(B
dg−1
g · zj(Xi))

)
for all i ∈ {2`+ 1 : 1 ≤ ` ≤ q/2− 1}, where ~Bg = (B0

g , B
1
g , . . . , B

dg−1
g ) is a gadget vector. The

error for encryption is sampled from χsmenc, which is a special distribution for a large error to
“smudge out” small differences in distributions [AJLA+12], we denote its variance by σsmenc
in the later analysis. Next, each participant sends akThrj,i to the computing party.

• The computing party generates automorphism keys akThri as follows

akThri :=
∑
j∈J

akThrj,i =
∑
j∈J

RLWE′z∗
(
zj(X

i)
)

= RLWE′z∗
(
z∗(X

i)
)
.
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6.1.3 Generation of Blind Rotation Keys

The difference from the generation of the automorphism keys is that, as sum of components sj,i is
done in the exponent, the merging is done by RGSW~RGSW multiplications, instead of additions.

• Each participant generates the partial encryption brkThrj,i = RGSWz∗(Y
sj,i) for i ∈ [0, n− 1],

where sj,i is the i-th component of ~sj . We can generate the RGSW key using following
equation:

brkThrj,i :=
(
RLWE′z∗(z∗ · Y

sj,i),RLWE′z∗(Y
sj,i)
)
.

Then, each party sends brkThrj,i to the computing party.

• The computing party calculates brkThri = RGSWz∗(Y
s∗,i) for i ∈ [0, n−1] using the following

equation (note that the error is additive.):

brkThri :=
∏
j∈J

brkThrj,i =
∏
j∈J

RGSWz∗(Y
sj,i) = RGSWz∗(Y

s∗,i).

Any party can use these keys to perform secure computations without revealing secrets of
any participants, including the binary gate evaluation [DM15] using the proposed blind rotation
technique.

6.2 Performance Analysis

Computational Complexity and Key Size

Following the above evaluation key generation, the computing party finds the evaluation keys:{
brkThri = RGSWz∗(Y

s∗,i)
}
i∈[0,n−1]

,
{
akThr2i+1 = RLWE′z∗(z∗(X

2i+1))
}
i∈[1,q/2−1]

.

Thus, the computation of blind rotation and the structure of the keys are the same as in Algorithm 3.
In other words, the computational complexity and key size are the same as in Table 1 in terms of
the number of R�RLWE′ multiplications (computational complexity) and RLWE′ ciphertexts (key
size).

The X-axis of Figure 2 (key distribution) can be heuristically replaced by the number of
participants of threshold HE. For example, the number of possible si in “Gauss. Prac.” is
2·12σ+1 = 77.56, so it is for the case that there are 39 participant with ternary secrets (equivalently
77 participant with binary secrets.) This implies that the proposed blind rotation is preferable for
threshold HE as it takes advantage of fast evaluation and the small key size regardless of the secret
key distribution. Practically, the optimized parameter differs by the number of participants as the
blind rotation error (see analysis below) depends on the number of participants, but the trend will
follow Figure 2.

Error Analysis

The analysis of the blind rotation error for threshold HE assumes that each zj is a ternary key.
This analysis is similar to 4.2, except for the fact that ak and brk now have higher error variance.
The variance of pkRLWE

z∗ error epk is equal to kσ2 as it is sum of errors ej of all parties. The
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error of each RGSWz(Y sj,i) is equal to v · epk + e0 · z∗ + e1 so the variance can be calculated as
σ2
fresh = 2kN

3 σ2 + 2kN
3 σ2

smenc + σ2
smenc. RGSWz (Y si) is obtained by consecutive multiplication of

RGSW~ RGSW and introduces additive error, whose variance is equal to σ2
brk = 2k · dgN

B2
g

12 σ
2
fresh.

For automorphism keys, we again have that each RLWE′z
(
zj(X

t)
)

has the error of variance σ2
fresh.

Thus the error of RLWE′z
(
z(Xt)

)
is equal to σ2

ak = kσ2
fresh.

The total variance after blind rotation in Algorithm 3 is equal to

σ2
acc = dgN

B2
g

12
·
(
3n · σ2

brk + n · σ2
ak

)
.

Similarly, the error variance after Algorithms 4 and 5 are the same as

σ2
acc = dgN

B2
g

12
·
(
(2n+ 2) · σ2

brk + n · σ2
ak

)
.

The blind rotation algorithm for AP can be also extended in the similar way, whose blind rotation
keys are RGSWz∗(Y

vBtrs∗,i) for i ∈ [0, n− 1], t ∈ [0, dr − 1], and v ∈ ZBr . Then, the error after AP
blind rotation is

σ2
acc = dgN

B2
g

12
·
(

2dr

(
1− 1

Br

)
n · σ2

brk

)
.

Since σbrk is much greater than σak, the proposed Algorithm 3 has less error than the AP variant
by exploiting the ring automorphism as well as the less key size. FHEW-like HE parameters are
error-sensitive; as our algorithm also produces the least error, our algorithm is more favorable in
threshold HE.

7 Conclusion

A new blind rotation technique for homomorphic encryption is proposed with several variants
which provide tradeoffs between key size and complexity. We used ring automorphism for scalar
multiplication on the exponent, which substitutes the consecutive RGSW multiplications used by
previous techniques and simplifies the blind rotation procedure. The proposed method offers the
best of both previous AP and GINX bootstrapping simultaneously and further improves on them.
We demonstrate that our method is better than both approaches in terms of running time and
evaluation key size except for the isolated case of binary keys. It offers the additional advantage of
reducing the amount of noise introduced during blind rotation, even for the case of the binary key
that is the most favorable to GINX.

We also showed a simple threshold HE scheme based on FHEW. This scheme takes advantages
of the proposed blind rotation technique since it requires computations under secret keys with
distributions wider than binary or ternary. Our analysis showed that the performance and key size
could be kept relatively low with increasing the number of participants, unlike GINX blind rotation.
This is an important property for the distributed computation settings, which is also supported by
AP blind rotation. However, we demonstrated that the proposed blind rotation is better in terms
of complexity, key size, and error. This demonstrates the high potential of FHEW-like schemes in
different applications where the secret key distribution is wider than binary or ternary.
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