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Abstract

The FHEW fully homomorphic encryption scheme (Ducas and Micciancio, Eurocrypt 2015)
and its TFHE variant (Chillotti et al., Asiacrypt 2016) are the best-known methods to perform
bit-level homomorphic computations on encrypted data. There are two competing bootstrap-
ping approaches to FHEW-like schemes: the AP bootstrapping method (Alperin-Sheriff and
Peikert, Crypto 2014) which is the basis of the original FHEW scheme, and the GINX boot-
strapping method (Gama et al., Eurocrypt 2016), adopted by TFHE. An attractive feature of
the AP/FHEW method is that it supports arbitrary secret key distributions, which is critical
for a number of important applications (like threshold and some multi-key homomorphic en-
cryption (HE) schemes) and provides potentially better security guarantees. On the other hand,
GINX/TFHE bootstrapping uses much smaller evaluation keys, but it is directly applicable only
to binary secret keys, which restricts the scheme’s applicability. (Extensions of GINX/TFHE
bootstrapping to arbitrary keys are known, but they incur a substantial performance penalty.)

In this paper, we present a new bootstrapping procedure for FHEW-like schemes that
achieves the best features of both schemes: support for arbitrary secret key distributions at
no additional runtime costs, while using small evaluation keys. As an added benefit, our new
bootstrapping procedure results in smaller noise growth than both AP and GINX, regardless of
the key distribution.

Our improvements are both theoretically significant (offering asymptotic savings, up to a
O(log n) multiplicative factor, either on the running time or public evaluation key size), and
practically relevant. For example, for a concrete 128-bit target security level, we show how
to decrease the evaluation key size of the best previously known scheme by more than 30%,
while also slightly reducing the running time. We demonstrate the practicality of the proposed
methods by building a prototype implementation within the PALISADE open-source HE library.
We provide optimized parameter sets and implementation results showing that the proposed
algorithm has the best performance among all known FHEW bootstrapping methods in terms of
runtime and key size. We illustrate the benefits of our method by sketching a simple construction
of threshold HE based on FHEW.

Keywords: Blind Rotation, Bootstrapping, Fully Homomorphic Encryption (FHE), Thresh-
old Homomorphic Encryption.
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1 Introduction

There are two competing approaches to bootstrap FHEW-like Fully Homomorphic Encryption
(FHE) schemes [DM15, CGGI20]: the AP bootstrapping method (originally proposed by Alperin-
Sheriff and Peikert [AP14] and efficiently instantiated in the ring setting by the FHEW cryptosystem
[DM15]), and the GINX method (originally proposed by Gama et al. [GINX16] and adapted to the
ring setting by the TFHE scheme [CGGI20].) A detailed comparison between the two methods
is presented in [MP21], which concludes that the AP/FHEW method [AP14, DM15] is faster
when LWE (Learning With Errors) secret keys follow the Gaussian distribution, while the (ring)
GINX/TFHE method [GINX16, CGGI20] has the lead for the special case of binary LWE secret
keys. For the crossover point of ternary keys, [MP21] still recommends GINX bootstrapping due
to its much lower memory (bootstrapping key) requirements. Very recently, [KDE+21, BIP+22]
further improved GINX bootstrapping for ternary secrets by reducing the computation by half.
(In our comparison, we refer to this optimized scheme as GINX∗.) Besides the smaller running
times, a big attraction of using GINX bootstrapping (with binary or ternary keys, as implemented
by [CGGI20, MP21]) is its lower memory footprint, which is substantially smaller than the AP
method.

Efficiency aside, the use of secret keys with large entries is still interesting for both theoretical
and practical reasons. On the theoretical side, the foundation of lattice cryptography only offers
solid support for Gaussian keys with relatively large entries, of the order of O(

√
n) [Reg09, LPR13],

where n is the secret vector dimension serving as a security parameter. The use of smaller keys (e.g.,
with binary coefficients) has also received a substantial amount of theoretical attention [MP13,
Mic18, GKPV10, BLP+13, BD20, KF15]. However, the current state of the art, provided by
[Mic18]1, only shows that LWE with binary secrets can be proved as hard as standard LWE (with
uniform or gaussian secrets) at the cost of increasing the secret dimension by a factor O(log q) and
the error rate by a factor O(

√
n). So, motivated by practical considerations (limiting error growth

during homomorphic computation, and the efficient implementation of GINX bootstrapping), these
theoretical results supporting binary secrets are typically ignored, and parameters are set based on
the best currently known attacks.2 For fairness, this is also the approach followed in this paper
when comparing our work to previous schemes that benefit from the use of binary secrets.

A more compelling motivation to use larger secret keys in practice is offered by threshold (lattice-
based, homomorphic) encryption [BD10, AJLA+12]. Threshold cryptography offers a method to
distribute a secret key s among a set of participants, say P1, . . . , Pk, each holding a share si of the
secret key, in such a way that they can collaboratively decrypt messages. Still, if a subset of parties
are corrupted and their secret shares si are made available to an adversary, ciphertexts retain their
security. So, threshold cryptography eliminates the single point of failure associated with the secret
key and ensures that encrypted data remains secure unless collaboratively decrypted by all parties.

The use of threshold cryptography is particularly attractive in the setting of homomorphic
computation, as it requires modifications only to the key generation and decryption procedures.
A threshold encryption scheme still has a single public key p (under which all messages can be

1The more recent work [BD20] provides more general results for arbitrary “entropic” distributions, but does not
improve the reduction for binary secrets.

2This has become quite common for uniformly random binary secrets, and their use is now included in practical
tools, like the lattice estimator of [APS15]. Other, for extreme parameter settings (e.g., sparse keys or a very large
number of samples), there remain concerns about weakening the security of the LWE problem [AG11, CHHS19], and
their use is generally discouraged.
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encrypted by different parties) and evaluation key (used to perform homomorphic computations
on ciphertexts.) In other words, applications of threshold Homomorphic Encryption (HE) support
the same, simple workflow of standard (single party) HE: all data owners encrypt their data under
a single public key p, and send their encrypted data to a single server that securely performs the
encrypted computation, leading to a final encrypted result. Only at this point, the protocol requires
interaction with multiple decryption servers (each holding a secret share si) to recover the final
result. So, by only increasing the cost of decryption (and only by a modest amount, see below),
threshold cryptography guarantees the security of all data (encrypted under a common public key
p), even against the servers holding the decryption key (as long as they are not all corrupted.3)

Lattices (and the LWE problem) provide a very convenient setting to implement threshold
cryptography, as the public key (p ≈ a · s) is defined as a (noisy) linear function of the secret key s,
for a random, publicly known value a. (See next section for a more formal definition of the LWE
function.) So, distributed (shared) key generation can be easily implemented by having each party
choose a local public-secret key pair (pi ≈ a ·si, si) individually (without any interaction), and then
setting the public key to the sum p = p1 + · · ·+ pk of the local public keys. It is immediate to see
that this is a valid public key corresponding to the secret key s = s1 + · · · + sk implicitly shared
by all parties. In fact, this is how keys are generated in [BD10] (using uniformly random si) and
[AJLA+12] (using an arbitrary LWE key generation algorithm for each si.) Decryption can also
easily be implemented4 by decrypting a ciphertext c using the individual secret key shares and then
adding up the partial decryptions. So, key generation and decryption are minimally interactive.5

We remark that the threshold schemes [BD10, AJLA+12] predate FHEW-like HE ([BD10] does
not explicitly provide any homomorphic computation capability, and [AJLA+12] is a BGV-type
encryption scheme.) However, the same principles apply to virtually any LWE-based encryption
scheme, including those considered in this paper. Now comes a critical observation: even if the
local key shares si have binary coefficients, their sum s (used by homomorphic computations and
bootstrapping) is no longer binary and has coefficients potentially as large as k, the number of
parties participating in the shared decryption protocol. Depending on the application, this number
can be quite high, requiring similarly large secret keys. (E.g., see [CHI+21] for an application of
lattice-based threshold (additively) HE with as many as 1000 parties.)

The FHEW-like cryptosystems with either AP or GINX bootstrapping are the most attractive
methods for bit-level homomorphic computations.6 But when ported to the threshold cryptography
setting (with its correspondingly larger secret keys), FHEW-like encryption presents the user with
a difficult choice between

• the AP bootstrapping method of [AP14, DM15], with its fast performance (essentially inde-
pendent of the secret key size) but very large evaluation keys, and

• the GINX bootstrapping method and its variants [GINX16, CGGI20, MP21, JP22], with

3As standard in HE, we consider security against passive adversaries, in which case the security threshold can be
set to k − 1.

4This requires some care, adding noise to the partial decryptions to avoid information leakage, as already done in
[BD10, AJLA+12]. In this paper, we focus on the distributed key generation and homomorphic computation stages,
which are the most relevant to FHE bootstrapping.

5HE also requires the generation of public evaluation keys, which introduces some additional complications, and
is discussed below.

6Other methods oriented towards arithmetics on integer or approximations to real/complex numbers like [BGV14,
CKKS17] offer advantages for a complementary set of applications, but are not within the scope of our paper.
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much smaller evaluation keys, but substantially larger running time due to the use of large
secret keys.

A related class of applications to “multi-key HE” is discussed later on. So, one may ask the question:
is it possible to design a bootstrapping procedure that offers the advantages of both methods, i.e.,
fast bootstrapping with arbitrarily distributed secret keys and small public evaluation keys?

1.1 Our results

We answer the above question in the affirmative, designing a new bootstrapping procedure that
supports the use of arbitrary secret key distributions without any performance penalty (similar to
AP/FHEW bootstrapping) while keeping the attractive small size of GINX/TFHE bootstrapping
keys. In fact, we even improve upon the performance of the best previously known scheme (with
binary secrets), both in terms of key size and running time. For example, for the simple case of
a (single user) gate bootstrapping operation at a 128-bit target security level, we improve upon
previous schemes by reducing the evaluation key size by 30% (from 20MB to 14MB) while also
slightly reducing the running time. (See Section 5 for details.) The impact of our bootstrapping
method becomes significant with larger keys or a moderately large number of threshold decryption
servers. Our method offers the additional advantage of reducing the amount of noise introduced
during bootstrapping, even for the case of binary keys that are the most favorable to GINX so
far. The improvements over previous methods are both theoretical (reducing either the running
time or memory requirement of previous bootstrapping procedure by factors as high as O(log n),
depending on the size of the secret keys/threshold group size), and practical. We verified our
theoretical results and the practicality of the proposed method with experiments, performed using
prototype implementation within the PALISADE open-source HE library.

1.2 Techniques

The main operation underlying both AP and GINX bootstrapping is the evaluation of a so-
called “blind rotation”. This operation takes some polynomial f0 as an input and “rotates” it
by some value encrypted within a given LWE ciphertext (~α = (α0, . . . , αn−1) , β) using secret key
~s = (s0, . . . , sn−1). (See Section 2 for more details.)

Starting with the encryption RLWE(f0) of a polynomial f0 previous blind rotation algorithms
work as follows: at step i, given an encryption RLWE(fi−1) of a polynomial fi−1(X) = f0 ·
X

∑
j≤i−1 αjsj , homomorphically compute an encryption RLWE(fi) of an updated polynomial fi =

fi−1 ·Xαi·si = f0 ·X
∑
j≤i αjsj , using a publicly known constant αi (part of the input LWE ciphertext)

and an encryption7 E(si) of a secret key coordinate si. After repeating this step n times, we obtain
the encryption of RLWE(f0 · X〈~α,~s〉), which is negacyclic rotation of f0 by 〈~α,~s〉 positions. The
difference between the two bootstrapping procedures is that

• AP works by including in the evaluation key encryptions E(α · si) for all possible values of
α and then using αi as a selector to pick one of them. This allows using arbitrary keys si
with no impact on the running time, but also requires large evaluation keys due to the need
to store multiple encryptions E(α · si) for every secret key element si.

8

7Under a typically different scheme E(·), used when generating the evaluation key.
8The method also offers storage memory trade-offs, decomposing a into a sequence of smaller “digits”, but the

same remarks apply.
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• GINX on the other hand works by assuming si ∈ {0, 1} is a single bit, and using E(si) as a
selector between the original ciphertext RLWE(fi−1) and a modified one RLWE(fi−1 · Xαi),
using a homomorphic “MUX” gate. This only requires a single encryption E(si) for each key
element, but it is directly applicable only to binary secrets. Larger secrets can be handled in
a number of ways, but not without a cost either in terms of key size or computation time.
For example, [MP21] shows how to handle k-bit secrets by increasing both the evaluation key
size and the bootstrapping running time, each by a factor k. A different tradeoff is given in
[JP22], which incurs a smaller increase in running time (for small values of k) but at the cost
of increasing the key size by an exponential factor 2k − 1. Both methods also result in higher
bootstrapping noise.

In this paper, we present new techniques and optimizations to perform blind rotations using
ring automorphisms and key switching. In its most basic form, the idea is the following: given
RLWE(fi−1(X)), one can first apply a ring autormorphsim9 ψ1/αi(·) where ψa(h) := h(Xa). This
gives an encryption of fi−1(α

−1). Next, we homomorphically multiply the ciphertext by Xsi , to
get an encryption of fi−1(α

−1) · Xsi . Finally, we apply the ring automorphism ψαi(·) to get an
encryption of fi−1(X) · Xαisi . After repeating this process n times, we obtain the encryption of
RLWE(f0 ·X〈~α,~s〉).

The idea of using automorphisms is not new. For example, it was already used in a different
context by Halevi and Shoup [HS18] to implement linear transformations and permutation networks
in the (BGV-based) HElib HE library. Closely related to our use is the work of Bonnoron et al.
(following a suggestion of Micciancio [BDF18, Footnote 6]), which uses automorphisms to reduce
the key size of a variant of the FHEW cryptosystem. At a technical level, in [BDF18] the method is
applied to the product of two cyclic polynomial rings, while we apply it to a single cyclotomic ring,
as originally used by FHEW. As a result, the scheme of [BDF18] was not quite practical, resulting
in poor concrete running times.

The basic algorithm based on automorphisms can be improved in a number of ways. For
example, automorphisms from different steps can be composed together and replaced by a single
automorphism. Other optimizations revolve around the technical difficulty that automorphisms
ψα exist only for odd coefficients while bootstrapping requires multiplication by both even and
odd values of α. Still, the resulting methods require a substantial number of “automorphism
keys”, to perform the required key switching after each application of ψa. We further improve the
performance of the algorithm by introducing a new blind rotation strategy that reorders the secret
key elements s1, . . . , sn. Instead of iterating over the si (homomorphically multiplying by si), and
the applying automorphism ψαi/αi+1

at each step, we iteratively apply a fixed automorphism ψg

(where g generates a large subgroup Z∗q). This alone produces rotations f0 · Xgi for all possible
values of gi ∈ Z∗q . Then, we intersperse the homomorphic multiplications by the secret key elements

sj when gi is the correct value of αj . The final result is RLWE(f0 ·X〈~α,~s〉) as desired, but using only
a single automorphism key corresponding to the generator g. Notice how our proposed method
is applicable to arbitrary keys, and its performance is independent of the range of the secret
coordinates si.

In this intuitive explanation we omitted several important technicalities:

• The coefficients αi are arbitrary integers in Zq, while automorphisms exist only for invertible

9The automorphism ψa alone maps an encryption under z(X) to an encryption under modified key z(Xa). Then,
key-switching is used to turn this into an encryption under the original key z(X).
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α ∈ Z∗q .

• The multiplicative group Z∗q is not cyclic, but factors as the product of two groups of size q/4
and 2

• In order to run over all of Z∗q , the automorphism g needs to be applied O(q) times, but we
would like the computation to take only O(n) steps, independently of q.

The algorithms presented in the paper address all these difficulties and introduce further optimiza-
tions, which we analyze both in terms of worst-case and average-case complexity. As a result, our
final algorithm achieves the best performance among all the known blind rotation techniques for
FHEW-like cryptosystems both in terms of running time and key size.

Remark 1 In practice, one can use Torus LWE or other similar structures over Ring LWE as
demonstrated in [CGGI20]. To compare all bootstrapping methods observed in the same environ-
ment, we will use only Ring LWE in this paper following [MP21]. We note that it is straightforward
to apply Torus LWE to each of the observed methods as it has shown in [CGGI20] for GINX.

1.3 Applications to Threshold and Multi-key FHE

As described earlier, the linear properties of LWE allow to easily build threshold public-key encryp-
tion schemes: each party locally generates a key pair pi ≈ a ·si, and the public key p = p1 + · · ·+pk
can be set to the sum of the individual public keys. Things are more complex for threshold FHE.
This is because, beside a public encryption key p, one needs to generate an evaluation key, which is
essentially an encryption Ep(s) of the secret key s = s1 + · · ·+sk under the public key p. Naturally,
this can be done using generic techniques from secure multiparty computation, with each party
holding si as a local input, and common input p. However, this would not be quite practical.
In fact, [AJLA+12] gives specialized protocols to compute the evaluation key, but the method is
specific to the BGV encryption scheme underlying their protocol. So, an interesting question is if a
similar specialized evaluation key generation protocol can be designed for the threshold version of
FHEW-like HE schemes. We observe that this is indeed possible, again using the linear homomor-
phic properties of lattice-based encryption. Specifically, after generating the global public key p,
parties can encrypt their own secret shares Ep(si) under it. Since all the shares are encrypted under
a common public key, they can be added up, resulting in a HE

∑
iEp(si) = Ep(

∑
i si) = Ep(s) of

the global secret key.10

Our blind rotation techniques also require the generation of switching keys to be used in con-
junction with the ring automorphisms ψa. Again, a specialized distributed key generation algorithm
can be built using the linearity of LWE encryption and the automorphisms. More in detail, in order
to apply the automorphism ψa to a ciphertext, one needs to generate an encryption of the permuted
secret key Ep(ψa(s)). Using the linearity of ψa, this can be achieved by having each party com-
puting the encryption Ep(ψa(si)) of a permuted key share, and then combining these ciphertexts
into

∑
iEp(ψa(si)) = Ep(

∑
i ψa(si)) = Ep(ψa(

∑
i si)) = Ep(ψa(s)). The difference with standard

(non-threshold) key generation, is that when the evaluation key is computed by a single party, the
switching key Ep(ψa(s)) can be computed using a more efficient (and less noisy) private key version

10Calculation of
∑
iEp(si) proposed in this paper is done by the products of RGSW ciphertexts encrypting secret

shares (see Section 6.)
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of LWE encryption Es(ψa(s)). Here, in order to distribute the computation among parties that
only have shares si of the secret key, encryption is performed using the common public key p.

Another potential application of our techniques is Multi-Key HE. This is a generalization of
HE where messages can be encrypted under independently generated public keys p1, . . . , pk, and
still allow to perform joint computations on them. Naturally, decrypting the final result requires
knowledge of all relevant secret keys s1, . . . , sk. So, this is similar to threshold encryption, but
with the difference that p1, . . . , pk are not combined in advance into a single public key p, and the
set of keys can be chosen dynamically. GSW-based (e.g., FHEW-like) multi-key HE schemes were
proposed in a sequence of works [CM15, MW16, PS16, BP16, CCS19]. These schemes typically work
by combining ciphertexts encrypted under different keys into a “multi-ciphertext”, corresponding
to the concatenation of the keys. Since the secret (decryption) key is also a concatenation, if
the individual keys si are binary (as is the case for example in [CCS19]), their concatenation is
also binary, and one can make direct use of the efficient GINX bootstrapping for binary keys.
However, these concatenated “multi-ciphertexts” are much longer than simple RLWE encryption,
and the cost of bootstrapping (compared to the single key setting) is even higher than GINX with
large keys. (Specifically, it grows linearly with the number of parties, rather than logarithmically.)
Recently, [ZZC+21] have proposed a multi-key HE scheme with compact ciphertexts. Interestingly,
this compact scheme combines the individual secret keys by taking their sum. So, it requires an
efficient bootstrapping method with non-binary keys. Similar to the threshold encryption setting,
our techniques can be applied to speed up bootstrapping while keeping a small evaluation key.

1.4 Other Important Related Works

Besides bootstrapping of FHEW/TFHE, blind rotation is a useful tool to evaluate arbitrary func-
tions in HE. For example, the Cheon-Kim-Kim-Song (CKKS) scheme [CKKS17] is efficient in
the evaluation of complex numbers, but it only supports addition and multiplication. Thus, the
ReLU and comparison functions, which are important components of neural networks, are eval-
uated using blind rotation in [BGGJ20, LHH+21, CJP21, LMP21] as they are not represented
as polynomials in real numbers. Also, a generalized bootstrapping for all the RLWE-based HE
schemes including CKKS, Brakerski-Gentry-Vaikuntanathan(BGV) [BGV14], and Brakerski/Fan-
Vercauteren (BFV) [Bra12, FV12], was proposed using blind rotation in [KDE+21].

1.5 Organization

The rest of the paper is organized as follows. The basic lattice-based HE and the previous blind
rotation techniques are presented in Section 2. In Section 3, a new blind rotation algorithm and its
variants are proposed. The theoretical analysis and comparison to prior works are given in Section
4 and the implementation results are given in Section 5. In Section 6, a threshold HE scheme based
on our proposed blind rotation is described as a possible application. Finally, we conclude with
remarks in Section 7.

2 Preliminaries

Let N be a power of two. We denote the 2N -th cyclotomic ring by R := Z[X]/(XN + 1) and its
quotient ring by RQ := R/QR. Ring elements in R are indicated in bold, e.g. a = a(X). For

two vectors ~a and ~b, we denote their inner product by 〈~a,~b〉. We denote a vector of ones of length
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n by ~1n. Function composition of f and g is denoted by f ◦ g. All logarithms are base 2 unless
otherwise indicated. We write the floor, ceiling and round functions as b·c, d·e and b·e, respectively.
We denote the infinity norm of a ∈ R by ‖a‖∞, which is the largest absolute value among its
coefficients. For q ∈ Z and q > 1, we identify the ring Zq with [−q/2, q/2) as the representative
interval, and for x ∈ Z we denote the centered remainder of x modulo q by [x]q ∈ Zq. We extend
these notations to elements of R by applying them coefficient-wise. We use a ← S to denote
uniform sampling from the set S. We denote sampling according to a distribution χ by a← χ.

2.1 Basic Lattice-based Encryption

For positive integers q and n, basic LWE encryption of m ∈ Zq under the secret key ~s ← χkey is
defined as

LWEq,~s(m) = (~α, β) = (~α,−〈~α,~s〉+ e+m) ∈ Zn+1
q ,

where ~α← Znq and error e← χerr. We occasionally drop subscripts q and ~s when they are obvious
from the context.

For a positive integer Q and a power of two N , basic RLWE encryption of m ∈ R under the
secret key z ← χkey is defined as

RLWEQ,z(m) := (a,−a · z + e + m) ∈ R2
Q,

where a ← RQ, and ei ← χerr for each coefficient ei of e where i ∈ [0, N − 1]. As with LWE, we
will occasionally drop subscripts Q and z.

We say that (t0, · · · , tdg−1) is a gadget decomposition of t ∈ RQ if t =
∑dg−1

i=0 gi · ti where
~g = (g0, . . . , gdg−1) is a gadget vector, and ‖ti‖∞ < Bg. We adapt the definitions of RLWE′ and
RGSW from [MP21]. For a gadget vector ~g, we define RLWE′z(m) and RGSWz(m) as follows

RLWE′z(m) :=
(
RLWEz(g0 ·m),RLWEz(g1 ·m), · · · ,RLWEz(gdg−1 ·m)

)
∈ R2d

Q

RGSWz(m) :=
(
RLWE′z(z ·m),RLWE′z(m)

)
∈ R2×2d

Q .

The scalar multiplication between an element in RQ and RLWE′ ciphertext

� : RQ × RLWE′ → RLWE

is defined as

t� RLWE′z(m) = 〈(t0, · · · , tdg−1),
(
RLWEz(g0 ·m), · · · ,RLWEz(gdg−1 ·m)

)
〉

=

dg−1∑
i=0

ti · RLWEz(gi ·m) = RLWEz

dg−1∑
i=0

gi · ti ·m


= RLWEz(t ·m) ∈ R2

Q,

For each error ei in RLWEz(gi ·m), the error after multiplication is equal to
∑dg−1

i=0 ti · ei which is
small if ti and ei are small.

The multiplication between RLWE and RGSW ciphertexts

~ : RLWE× RGSW→ RLWE
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is defined as

RLWEz(m1) ~ RGSWz(m2) = (a, b) ~
(
RLWE′z(z ·m2),RLWE′z(m2)

)
= a� RLWE′z(z ·m2) + b� RLWE′z(m2)

= RLWEz(a · z ·m2) + RLWEz(b ·m2)

= RLWEz(m1 ·m2 + e1 ·m2) ∈ R2
Q.

This result represents an RLWE encryption of the product m1 ·m2 with an additional error term
e1 ·m2. In order to have RLWEz(m1) ~ RGSWz(m2) ≈ RLWEz(m1 ·m2), it is necessary to make
the error term e1 ·m2 small. This can be achieved by using monomials m2 = ±Xυ as messages.
The multiplication between RLWE~RGSW is naturally extended to RGSWz(m1)~RGSWz(m2) ≈
RGSWz(m1 ·m2).

Remark 2 We note that for gadget vector ~g = (1, Bg, . . . , B
dg−1
g ), we can ignore t0 without a

disadvantage and reduce runtime and key size. The error introduced by � is dgN
B2
g

12 σ
2, where

σ2 is error variance of a fresh ciphertext. The error variance of
∑dg−1

i=1 ti · RLWEz(gi · m) =

RLWEz

(∑dg−1
i=1 gi · ti ·m

)
is (dg − 1)N

B2
g

12 σ
2 +Var(t0 ·m), where Var(γ) is the variance of random

variable γ. Thus, it has less or equal error as long as Var(m) ≤ σ2, but saves one RLWE in RLWE′

and one NTT in �. This is similar to approximate gadget decomposition proposed in [CGGI20].

2.1.1 Public-key Lattice-based Encryption

If an encryption of zero pkRLWE
z = RLWEz(0) = (a,−a · z + e) is given as a public key, then the

public-key encryption can be done as

EncRLWE(m; pkRLWE
z ) := v · pkRLWE

z + (e0,m + e1) = RLWEz(m),

where v ← χkey, and e0, e1 ← χerr.
We also can find encryption of z ·m without the knowledge of z by slightly modifying the public

key encryption (with the same amount of noise) as follows:

Enc′
RLWE

(m; pkRLWE
z ) := v · pkRLWE

z + (m + e0, e1) = RLWEz(zm).

Using EncRLWE one can generate RLWE′ ciphertexts, and also can generate RGSW ciphertexts to-
gether with Enc′RLWE under the secret z.

Key Switching in RLWE

The key switching operation converts a ciphertext RLWEz1(m) encrypted under a secret key z1 to
a ciphertext RLWEz2(m) encrypted by a new secret key z2. There are different variants of the key
switching technique and readers can refer to the literature (e.g., see [KPZ21]) for details. We focus
on the BV key switching method [BV11]:

• KSGen(z1, z2): Outputs swk = RLWE′z2(z1).

• KSz1→z2(RLWEz1(m), swk): Given RLWEz1(m) = (a, b), it outputs

RLWEz2(m) = a� RLWE′z2(z1) + (0, b) (mod Q).

RLWE′z2(z1) generated by KSGen is a public switching key. The key switching error is equal to the
error of R� RLWE′ multiplication.
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(β, ~α) = LWEq,~s (q/4 ·m0) + LWEq,~s (q/4 ·m1) RLWEQ,z

(
f · Y β+〈~α,~s〉

)
LWEQ,~z (Q/4 · (m0 ∧∼m1))

LWEQ′,~z
(
Q′/4 · (m0 ∧∼m1)

)
LWEQ′,~s

(
Q′/4 · (m0 ∧∼m1)

)
LWEq,~s (q/4 · (m0 ∧∼m1))

blind rotate LWE ext.

mod switch

key switch mod switch

Figure 1: NAND gate bootstrapping procedure of FHEW scheme [DM15, MP21].

Automorphisms in RLWE

In order to perform some operations in HE, we use the automorphisms of R. There are N auto-
morphisms ψt : R → R given by a(X) 7→ a(Xt) for t ∈ Z∗2N . We naturally extend ψt to R2 to
apply the automorphism on a RLWE ciphertext. Automorphisms are applied using the following
procedures which make use of a special set of switching keys akt = RLWEz(X)(z(Xt)):

• EvalAutot (RLWEz(m), akt): Given RLWEz(m(X)) = (a(X), b(X)) and switching key akt,
apply ψt to a(X) and b(X) to obtain (a(Xt), b(Xt)), which is an RLWE encryption of m(Xt)
under the secret key z(Xt). Then apply the key switching function KSz(Xt)→z(X) on the
RLWEz(Xt)(m(Xt)) ciphertext, to produce the final output ciphertext RLWEz(X)(m(Xt)).

We note that ψ is a permutation on the coefficients of the elements of R, which is easily calculated.
ψt does not introduce additional error as an automorphism ψt is a norm-preserving map.

2.2 FHEW-like Bootstrapping

We briefly explain FHEW-like bootstrapping for NAND gates [DM15, MP21]. FHEW-like NAND
gate bootstrapping starts with two LWEq,~s ciphertexts with a small modulus q and adds them
(HomNAND). After blind rotation and extraction procedures, we obtain an LWEQ,~z encryption of
the result with a higher ciphertext modulus Q. Using a sequence of modulus and key switchings
we get back to an LWEq,~s ciphertext. The bootstrapping procedure is shown in Figure 1. We
focus on the blind rotation part and refer to [MP21] for more details on other parts of FHEW-like
bootstrapping.

2.2.1 Blind Rotation

Blind rotation is an operation that multiplies a given ring element f ∈ RQ by a monomial Y u,
where the exponent u = β + 〈~α,~s〉 ∈ Zq is given by an LWE ciphertext (~α, β) ∈ Zn+1

q encrypted
under a secret key ~s ∈ Znq . The output of the blind rotation is an RLWE encryption of f ·Y u, where
q is small in practice (q ≈ 210 in [DM15, CGGI20] and q ≈ 212 in [KDE+21]). The operation is
called “blind rotation” because it rotates the coefficients of f negacyclically, by an amount u which
is provided in encrypted form. A formal definition is given below.

Definition 1 (Blind Rotation) For q|2N , let Y = X
2N
q . A blind rotation is an algorithm which

takes as input a ring element f ∈ RQ, an LWEq,~s ciphertext (~α, β) ∈ Zn+1
q , and blind rotation keys

brkz,~s corresponding to secrets z and ~s, and outputs an RLWE ciphertext

RLWEQ,z

(
f · Y β+〈~α,~s〉

)
∈ R2

Q.
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Two different blind rotation algorithms were proposed in [DM15, CGGI20]. Following [MP21], we
refer to the two algorithms as “AP blind rotation” and “GINX blind rotation” respectively, as they
are optimized ring versions of two bootstrapping procedures (for general LWE) originally proposed
in [AP14] (AP) and [GINX16] (GINX). Both methods rely on the properties of RGSW ciphertexts
described above.

AP Blind Rotation

In AP blind rotation [DM15, AP14], the blind rotation keys are generated for each element si ∈ Zq
of the secret ~s as

brkAP = {brki,j,v = RGSWz(Y vBjrsi)}i,j,v
for i ∈ [0, n− 1], j ∈

[
0, logBr(q)− 1

]
, and v ∈ ZBr . In the algorithm, acc is initialized to the trivial

encryption acc = RLWEQ,z(f · Y β) = (0,f · Y β). Then, for each i ∈ [0, n− 1], αi is decomposed in

base Br as αi =
∑logBr (q)−1

j=0 αi,jB
j
r and acc is updated sequentially for all αi,j as

acc← acc~ RGSWz(Y αi,jB
j
rsi).

The full procedure of AP blind rotation is described in Algorithm 1.

Algorithm 1 Blind Rotation: AP [DM15, AP14]

1: procedure BlindRotateAP(f , (~α, β), {brki,j,v = RGSWz(Y vB
j
rsi)}i,j,v)

2: acc← (0,f · Y β)
3: for (i = 0; i < n; i = i+ 1) do
4: for (j = 0; j < logBr

(q); j = j + 1) do

5: αi,j =
⌊
αi/B

j
r

⌋
(mod Br)

6: acc← acc~ brki,jαi,j

7: return acc = RLWEz(f · Y u)

AP blind rotation supports all types of secret key distributions and provides a useful tradeoff
between space and computational complexity based on the choice of the base Br ≥ 2. Greater Br
allows performing computations faster at the cost of storing more rotation keys, while smaller Br
reduces storage overhead but increases computational time.

GINX Blind Rotation

GINX blind rotation [CGGI20, GINX16] is more efficient than AP when the secret key ~s is set
to a binary or ternary vector, but its performance degrades when using larger secret keys [MP21].
In the general case, each secret key element si ∈ Zq, i ∈ [0, N − 1], is expressed as subset-sum

si =
∑|U |−1

j=0 uj · si,j where si,j ∈ {0, 1} and U ⊂ Zq is an appropriately chosen subset of Zq. To

express arbitrary elements of Zq one can use U = {1, 2, 4, . . . , 2k−1}. But one can also use U = {1}
and U = {1,−1} for binary and ternary secrets, respectively [MP21]. Using this notation for any
fixed set U , the blind rotation key is generated as

brkGINX = {brki,j = RGSWz(si,j)}

where i = 0, . . . , n−1 and j = 0, . . . , |U |−1. In the algorithm, acc is initiated to acc = RLWEQ,z(f ·
Y β) = (0,f · Y β) and updated as

acc← acc + (Y αiuj − 1) · (acc~ RGSWz(si,j)).
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If si,j = 0, the second addendum is ignored since it gives an encryption of 0 and the value stored
by the accumulator stays the same. If si,j = 1, then acc ~ RGSWz(1) is equal to acc and the
accumulator is updated to Y αiuj · acc. Repeating this procedure for all j ∈ [0, |U |−1] results in
Y αisi · acc. The full procedure for GINX blind rotation is described in Algorithm 2.

Algorithm 2 Blind Rotation: GINX [CGGI20, GINX16, MP21]

1: procedure BlindRotateGINX(f , (~α, β), {brki,j = RGSWz(si,j) | si =
∑
si,juj})

2: acc← (0,f · Y β)
3: for (i = 0; i < n; i = i+ 1) do
4: for (j = 0; j < |U |; j = j + 1) do
5: acc← acc + (Y αiuj − 1) · (acc~ brki,j)

6: return acc = RLWEz(f · Y u)

It is easy to see that for the small U this procedure may be efficient in both key size and running
time. However, the running time and storage overhead grow significantly with larger secret key
distributions. GINX blind rotation is more efficient than AP for secret keys ~s chosen from small
distributions such as binary or ternary secret keys; but less efficient for general key size.

There is another optimization of GINX to remove the second loop in Algorithm 2 in such a
way that it has about half of the computations and the same key size and error for ternary keys.
However, it is only optimized for ternary keys [KDE+21, BIP+22] and cannot be efficiently extended
to larger keys. Joye and Paillier proposed a variant of GINX in [JP22], which is a generalization
of methods in [MP21] and [KDE+21], however, they suggested using binary and ternary secrets as
they are the most efficient.

3 New Blind Rotation Techniques

In this section, we present new blind rotation algorithms which improve on previous methods [AP14,
GINX16, DM15, CGGI17, CGGI20, MP21, JP22] in terms of running time, public key size, or both.
Our algorithms update an accumulator ciphertext acc initialized to acc = (0,f ′) = RLWE(f ′),
holding the encryption of a ring element f ′ related to f , to be specified. The accumulator is
updated through a sequence of RLWE ~ RGSW products, where RLWE holds the value of the
accumulator acc, and RGSW is an auxiliary ciphertext brki holding a secret key element si. Unlike
previous techniques, our algorithms do not substitute multiplication in the exponent by series of
additions (i.e. RLWE~RGSW products) but make use of ring automorphisms ψt and their associated
switching keys akt instead.

For brevity, we first describe a core blind rotation algorithm for the case where q = 2N and all
αi are odd since ψt is only defined for odd t, and then provide its variants and optimizations for
other cases.

3.1 The Core Blind Rotation Algorithm

We recall that the goal of the algorithm is to rotate the accumulator by Y 〈~α,~s〉 = Y
∑
i αisi , where∑

i αisi is computed modulo q = 2N . For N ≥ 8 the group Z∗2N is isomorphic to ZN/2 ⊗ Z2 with

generators {g,−1} (e.g., g = 5) and every t ∈ Z∗2N can be written as ±gk where k ∈ ZN/2. Let

αi = ±gki (mod 2N) for i = 0, . . . , n − 1. Let I+` =
{
i : αi = g`

}
and I−` =

{
i : αi = −g`

}
, for

11



` ∈ [0, N/2− 1]. Using the fact that gN/2 = 1 (mod 2N) we have the following decomposition

∑
i αisi =

(∑
j∈I+0

sj + · · ·+ g

(∑
j∈I+

N/2−1
sj − g

(∑
j∈I−0

sj + · · ·+ g

(∑
j∈I−

N/2−1
sj

))))
(mod 2N).

Denote brkj := RGSWz (Xsj ). Given an initial ciphertext acc = RLWE0
z (f ′(X)), we first

multiply it by brkj for all j ∈ I−N/2−1, then apply automorphism EvalAutog to acc and obtain

acc = RLWEz

(
f ′(Xg) ·X

g·
∑
j∈I−

N/2−1

sj
)
.

Then we multiply the accumulator by brkj for j ∈ I−N/2−2 and again apply automorphism EvalAutog

to acc. This process is repeated for both I−` and I+` for all ` = N/2 − 1, ..., 0. However, at the
(N/2)th step (i.e., after multiplication by I−0 ) we apply the automorphism EvalAuto−g instead of
EvalAutog, and (as an optimization) we skip the multiplication by the set I+0 . The final result is

acc = RLWEz

(
f ′
(
X−g

(N/2)−1
)
·X

∑
i αisi

)
.

If we set f ′(X) = f (X−g) ·X−gβ, this equals acc = RLWEz

(
f(X) ·Xβ+〈~α,~s〉). During the com-

putation, we use n keys brki for i ∈ [0, n − 1] and two automorphism keys akg and ak−g. The
algorithm performs two types of homomorphic operations: RLWE~RGSW multiplications and key
switching for automorphisms. The number of RLWE~RGSW multiplications is n, and the number
of automorphisms is N − 1. We can reduce the number of automorphisms when some of the I±`
are empty because the automorphisms between them can be composed, and replaced by a single
automorphism application. However, this requires storing a large number of automorphism keys
ak±gu for all possible values of u. Instead, for efficiency purposes, we store only a small number
of keys {akgu}u∈[1,w], for some parameter w which we call the window size. The full algorithm is
provided in Algorithm 3. We will see in Section 4 that with a quite small window size we can
achieve essentially the same improvement as when storing keys for all N possible automorphisms.

3.2 Dealing With Even αi

We provide several solutions to overcome the issue with even αi.

3.2.1 Memory Efficient Algorithm

One solution is to set ωi = αi − 1 if αi is even and ωi = αi if αi is odd. Now we can apply the
core blind rotation algorithm for the vector ~ω and obtain RLWE

(
f ·Xβ+〈~ω,~s〉). Then we repeatedly

multiply brki for each even αi. This algorithm requires n/2 additional RGSW multiplications on
average. If we store one additional key brknsum := RGSW(X−

∑
i si), and in case of the number of

even αi is greater than n/2, we initially multiply acc by brknsum := RGSW(X−
∑
i si), and update

αi ← αi + 1. This will make the number of odd αi to be greater than half, mitigating the worst
case. The full algorithm is provided in Algorithm 4.

3.2.2 Computation Efficient Algorithm

We can get rid of additional multiplications for even αi in the previous solution by using auxiliary
blind rotation keys brk∗i := RGSW(Xsi+si+1), for i ∈ [0, n− 2]. The idea is to find odd α′i such that
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Algorithm 3 Core Blind Rotation Sub Algorithm for odd αi

1: procedure BlindRotateCore
(
acc, ~α, {brki}i∈[0,n−1] , {akgu}u∈[1,w] , ak−g

)
2: v ← 0
3: for (` = N/2− 1; ` > 0; ` = `− 1) do
4: for j ∈ I−` do
5: acc← acc~ brkj

6: v ← v + 1
7: if (I−`−1 6= ∅ or v = w or l = 1) then
8: acc← EvalAutogv (acc, akgv )
9: v ← 0

10: for j ∈ I−0 do
11: acc← acc~ brkj

12: acc← EvalAuto−g(acc, ak−g)
13: for (` = N/2− 1; ` > 0; ` = `− 1) do
14: for j ∈ I+` do
15: acc← acc~ brkj

16: v ← v + 1
17: if (I+`−1 6= ∅ or v = w or l = 1) then
18: acc← EvalAutogv (acc, akgv )
19: v ← 0
20: for j ∈ I+0 do
21: acc← acc~ brkj

22: return acc

Algorithm 4 Memory Efficient Blind Rotation Algorithm, q = 2N

1: procedure BlindRotateME
(
f , ~α, β, {brki}i∈[0,n−1] , brknsum, {akgu}u∈[1,w] , ak−g

)
2: acc← (0,f

(
X−g

)
·X−gβ)

3: if number of even αi is > n/2 then
4: acc← acc~ brknsum
5: ~α← ~α+ ~1n (mod 2N)

6: for (i = 0; i < n; i = i+ 1) do
7: if αi is even then
8: ωi ← αi − 1 (mod 2N)
9: else

10: ωi ← αi
11: acc← BlindRotateCore(acc, ~ω, {brki} , {akgu} , ak−g)
12: for (i = 0; i < n; i = i+ 1) do
13: if αi is even then
14: acc← acc~ brki

15: return acc = RLWEz(f(X) ·Xβ+〈~α,~s〉)
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∑
i αisi =

∑
i α
′
is
′
i, where s′i is either equal to si or to si+si+1. First, we assume that α0 is odd and

set α′0 = α0, otherwise, we initially multiply the accumulator by brknsum and update αi ← αi + 1.
Then at each step i, assuming (by induction) that α′i is odd, we consider two cases, depending on
the parity of αi+1. If αi+1 is odd, we set s′i = si and α′i+1 = αi+1. Otherwise, we set s′i = si + si+1

and balance this by setting α′i+1 = αi+1 − αi. In either case, the value of α′i+1 is odd, preserving
the inductive hypothesis, and we may move to the next iteration. For the last iteration we always
set s′n−1 = sn−1. Note that during the process we do not need to know the values si, we only have
the information of whether s′i = si or s′i = si + si+1. The full algorithm is provided in Algorithm 5.

Algorithm 5 Computation Efficient Blind Rotation Algorithm, q = 2N

1: procedure BlindRotateCE
(
f , (~α, β), {brki}i∈[0,n−1] , {brk

∗
i }i∈[0,n−2] , brknsum, {akgu}u∈[1,w] , ak−g

)
2: acc← (0,f

(
X−g

)
·X−gβ)

3: if α0 is even then
4: acc← acc~ brknsum
5: ~α← ~α+ ~1n (mod 2N)

6: Find odd α′i :
∑
i αisi =

∑
i α
′
is
′
i

7: for (i = 0; i < n; i = i+ 1) do
8: if s′i = si then
9: brk′i ← brki

10: else
11: brk′i ← brk∗i

12: acc← BlindRotateCore(acc, ~α′, {brk′i} , {akgu} , ak−g)
13: return acc = RLWEz(f(X) ·Xβ+〈~α,~s〉)

3.2.3 Case q = N

In FHEW-like cryptosystems [DM15, MP21, CGGI20], commonly the blind rotation input LWE
ciphertext (~α, β) has a modulus q < 2N . The use of q < 2N helps decrease the key size of AP-style
bootstrapping. The size of q affects the decryption failure of LWE ciphertexts. However in practice,
in the most interesting case, we can achieve q = N with a negligible probability of decryption
failure.

For our case we raise the modulus from N to 2N , by multiplying the ciphertext (~α, β) by factor
2, resulting (2~α, 2β) with all even 2αi. We initially multiply acc by brknsum to make all 2αi + 1 to
be odd. The full algorithm is provided in Algorithm 6.

Algorithm 6 Blind Rotation Algorithm, q = N

1: procedure BlindRotateOptim
(
f , ~α, β, {brki}i∈[0,n−1] , brknsum, {akgu}u∈[1,w] , ak−g

)
2: acc← (0,f

(
X−g

)
·X−2gβ)

3: acc← acc~ brknsum
4: ~α′ ← 2~α+ ~1n (mod 2N)
5: acc← BlindRotateCore(acc, ~α′, {brki} , {akgu} , ak−g)
6: return acc = RLWEz(f(X) ·X2(β+〈~α,~s〉))
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LWEQ,~z (Q/4 ·m0) + LWEQ,~z (Q/4 ·m1) LWEQ′,~z
(
Q′/4 ·m

)
LWEQ′,~s

(
Q′/4 ·m

)

(β, ~α) = LWEq,~s (q/4 ·m) RLWEQ,z

(
f · Y β+〈~α,~s〉

)
LWEQ,~z (Q/4 · (m0 ∧∼m1))

mod switch key switch

mod switch

blind rotate LWE ext.

Figure 2: NAND gate bootstrapping procedure of FHEW scheme. We start from LWEQ,~z and switch
to LWEq,~s before blind rotation. We refer [MP21] for other gates.W

3.3 Improved FHEW Scheme and Removal of brknsum

As was mentioned in [DM15] we can reduce the noise and number of key switching operations in
FHEW-like bootstrapping, by swapping some operations in the procedure in Figure 1. We start
with a ciphertext with a higher modulus Q rather than q and do modulus switching to q right
before the blind rotation. (See Figure 2.)

Here we propose a trick which we call round-to-odd to get all-odd LWE ciphertext during mod-
ulus reduction so that brknsum in Algorithm 6 becomes unnecessary. Thus, the round-to-odd gives
advantages in runtime, key size, and noise growth regarding multiplication of brknsum. For cipher-
text (~α′, β′) = LWEQ′(Q

′/4 ·m), the modulus reduction is defined as(
~α =

⌊
q

Q′
· ~α′
⌉
, β =

⌊
q

Q′
· β′
⌉)

= LWEq(q/4 ·m).

We modify the rounding operation to round-to-odd, bxeodd, which returns the nearest odd integer
for the given input x. In addition, if x is closer to zero than any other odd number (i.e., 1), it
returns zero. Then the new modulus reduction is defined as(

~α =

⌊
2N

Q′
· ~α′
⌉
odd

, β =

⌊
2N

Q′
· β′
⌉
odd

)
= LWE2N (q/4 ·m),

which gives an LWE ciphertext of modulus 2N with all-odd coefficients. We note that the modulus
reduction error by round-to-odd is equivalent to modulus switching to N . The blind rotation
algorithm for the round-to-odd trick case is provided in Algorithm 7

Algorithm 7 Blind Rotation Algorithm with Round-to-odd Input, q = 2N

1: procedure BlindRotateRoundToOdd
(
f , ~α, β, {brki}i∈[0,n−1] , {akgu}u∈[1,w] , ak−g

)
. ~α, β are all odd

2: acc← (0,f
(
X−g

)
·X−gβ)

3: acc← BlindRotateCore(acc, ~α, {brki} , {akgu} , ak−g)
4: return acc = RLWEz(f(X) ·Xβ+〈~α,~s〉)

4 Analysis

In this section, we analyze our new blind rotation technique and compare it to the prior art. We
analyze blind rotation separately from the full FHEW scheme since blind rotation is a useful tool
in a number of other applications, e.g., the homomorphic evaluation of non-polynomial functions
[LHH+21, LMP21] and CKKS/BGV/BFV bootstrapping [KDE+21].
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4.1 Analysis of the Number of Automorphisms

We focus on the number of automorphisms for Algorithm 3. First notice that the number of non-
empty I±` is always at most min(N,n) just because there are a total of N sets, and their union
has size n, i.e., the total number of terms αisi. Moreover, it can be less than n if some of the si
have the same coefficient αi. We evaluate the average number of non-empty I±` under the standard
assumption that the LWE coefficients αi are random and independent.11 Assume without loss of
generality that all αi are odd, as enforced by our algorithms. Each fixed set I±` is empty if all
αi do not belong to it. Since the αi are uniform and independent, this happens with probability
(1−1/N)n ≈ e−n/N . Therefore I±` is non-empty with probability 1−(1−1/N)n ≈ 1−e−n/N , and, by
linearity of expectation, the expected number of nonempty sets is N(1−(1−1/N)n) ≈ N(1−e−n/N ).

Counting the number of non-empty sets I±` is useful to estimate the number of automorphism
applications performed by our algorithm because the automorphisms between non-empty sets are
composed and replaced by a small number of automorphisms with keys in {akgu}u∈[1,w] for a given

window size w. Let k be the number of non-empty sets I±` , be it either min(N,n) in the worst
case, or k = N(1 − e−n/N ) on average. Let v1, . . . , vk be the exponents of the k automorphisms
gvi that need to be applied after each non-empty set. Write each exponent as vi = v′i + w · v′′i
where v′i = vi mod w ∈ {1, . . . , w − 1}, and v′′i = bv′i/wc. (In case vi is a multiple of w, the v′i
part can be omitted altogether.) In Algorithm 3, the vi applications of the basic automorphism g
(following multiplication by the ith set I±` ) are replaced by one application of automorphism gv

′
i and

v′′i applications of automorphism gw. So, the number of automorphism applications of type gv
′
i is

κ, for some κ ≤ k.12 In order to bound the number of applications of automorphism gw, we use the
fact that the sum

∑
i vi is bounded by N . Therefore,

∑
i v
′′
i is at most N−κ

w . In summary, by storing
w automorphism keys {akgu}u∈[1,w], we can reduce the number of automorphism applications to

κ+ N−κ
w = (1−1/w)κ+ (1/w)N ≤ (1−1/w)k+ (1/w)N . We always have n ≤ N , and in the worst

case, we have k ≤ n. So the total number of automorphism applications is always bounded by
(1−1/w)n+(1/w)N . On average, using k ≈ N(1−e−n/N ), the expected number of automorphism
applications reduces to N(1− (1− 1/w) · e−n/N ).

4.2 Complexity, Key Size, and Error Analysis

The comparison of computational complexity, key size, and error are given in Table 1. In order
to facilitate the comparison of all blind rotation algorithms, we measure their time complexity in
terms of the number of R�RLWE′ products they perform, as the cost of these operations dominates
the total running time. Each RLWE ~ RGSW product requires two � multiplications, while key
switching is performed with a single � multiplication. So, both ~ products and key switching
operations are easily expressed in terms of � products. We note that the operation � can be
considered as an abstraction of a basic operation for FHEW and its torus variant TFHE [CGGI20].
Another common measure of complexity used in previous works on FHEW-like HE is the number
of NTT/FFT performed by the algorithms. We note that one can easily convert the number of
� products to the number of NTT as each � requires precisely (dg + 1) NTT operations, where

11This is certainly true for freshly encrypted messages, as the αi are chosen uniformly at random by the encryption
algorithm. But it is reasonable to expect this to be true even when the ciphertext is the result of a homomorphic
computation.

12κ will be less than k if some of the v′i are 0.
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dg is the number of elements of a gadget vector. We note that � requires dg NTT operations if
approximate gadget decomposition is used.

Similarly, we compare the memory requirement of all blind rotation algorithms using the total
number of RLWE′ ciphertexts required by the blind rotation key. The blind rotation keys for all
methods consist of several RGSW and RLWE′ ciphertexts. In turn, each RGSW is composed of
two RLWE′ ciphertexts. For the sake of brevity, “blind rotation key size” refers to the size of
both brk and ak in this section. This can be translated into a traditional “bit size” simply noting
that each RLWE′ ciphertext requires roughly 2dgN logQ-bit of space (or 2(dg − 1)N logQ-bit with
approximate gadget decomposition.)

We also note that in our analysis and implementation we use approximate gadget decomposition.
Approximate gadget decomposition does not introduce additional error but reduces runtime and
key size for all analyzed blind rotation techniques. One can find the counterparts for exact gadget
decomposition by simply substituting dg − 1 with dg in the equations.

We use an approach from [DM15, MP21] to estimate the variance σ2acc from the blind rotation
procedure. The total error for algorithms using blind rotation such as FHEW/TFHE bootstrap-
ping [DM15, MP21, CGGI20] and amortized FHEW bootstrapping [MS18], can be easily estimated

using this value. The error variance introduced by a single � operation is equal to dgN
B2
g

12 σ
2, where

Bg and dg are parameters for gadget decomposition used in � multiplication. For the sake of

brevity we denote σ2� := dgN
B2
g

12 σ
2.

In AP and our algorithms, each ~ is performed by RGSW encrypting the monomial, and thus
introduces an additive error with variance 2 ·σ2�. The automorphism operation due to key switching
introduces an additive error with variance σ2�. Thus the variance σ2acc can be estimated as σ2� mul-
tiplied by the number of � operations. In the GINX and GINX* variants, due to the preprocessing
of RGSW ciphertexts before ~ multiplications, each ~ introduces an additive error with variance
4 · σ2� and 8 · σ2�, respectively.

We note that the parameters for the FHEW scheme in Section 5 are selected following this
theoretical analysis. However, the fact that one technique has a smaller complexity expression than
another in this theoretical analysis does not necessarily mean that it will show a better runtime
in practice, because of the use of different parameter sets required to achieve a target security
level. For example, binary GINX has the smallest expression representing the abstract key size
and runtime in this analysis. But in practice, our new blind rotation algorithm outperforms binary
GINX because of the following two reasons. First, our blind rotation has less noise growth compared
to binary GINX, allowing a smaller parameter set to be used. Second, we can achieve the same
security level with a smaller n by using Gaussian secrets at no cost in performance.

5 Implementation

In this section, we present the implementation results of our new blind rotation algorithm as applied
to FHEW bootstrapping. For our implementation, we use Algorithm 6 optimized by reducing the
number of automorphisms, which gives the best performance. We compare it to the AP and GINX
blind rotation techniques. According to the theoretical analysis presented in the previous section,
similar results will be achieved for TFHE [CGGI20] by using floating-point operations and DFTs
instead of operations over finite rings and NTTs, respectively for each discussed blind rotation
technique.
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Table 1: Complexity, key size, and error variance of each blind rotation technique. Key size (#
keys) is the number of RLWE′ ciphertexts, and computational complexity (# mult) is the number
of R � RLWE′. The parameter w is a small integer, typically a small constant independent of n.
The parameter |U | depends on the secret key size and can be as large as logn for gaussian secrets
following the error distribution.

Method
# keys # mult

σ2acc/σ
2
�(in RLWE′) (in �)

AP [AP14, DM15] 2dr(Br − 1)n 2dr

(
1− 1

Br

)
n 2dr

(
1− 1

Br

)
n

GINX [GINX16, CGGI20, MP21] 2|U |n 2|U |n 4|U |n
GINX* [KDE+21, BIP+22] 4n 2n 8n

Ours (Alg. 4) 2n+ w + 3 3n+ w−1
w κ+ N

w 3n+ w−1
w κ+ N

w

Ours (Alg. 5) 4n+ w + 1 2n+ w−1
w κ+ N

w + 2 2n+ w−1
w κ+ N

w + 2

Ours (Alg. 6) 2n+ w + 3 2n+ w−1
w κ+ N

w + 2 2n+ w−1
w κ+ N

w + 2

Ours (Alg. 7) 2n+ w + 1 2n+ w−1
w κ+ N

w 2n+ w−1
w κ+ N

w

Table 2: Optimized parameter sets for FHEW schemes. Error variance is 3.2 and for TFHE, we
put error variance instead of q and Q as it is defined over Torus

Parameter set key n q N Q Qks dg dks λmin

128 Ours/AP σ = 3.2 458 1024 1024 228 214 3 2 128.2
128 tGINX ternary 531 2048 1024 226 214 4 2 128.5
128 bGINX binary 571 2048 1024 225 214 4 2 128.1

STD128 OPT [MP21] ternary 502 1024 1024 227 214 4 2 121.0
TFHE [TFH] binary 630 σ = 2−15 1024 σ = 2−25 − 3 2 115.11

5.1 Parameter Sets

The full procedure for FHEW bootstrapping is presented in Figure 2. Using the unique characteris-
tics of each blind rotation technique and the choice of secret key distribution, in Table 2 we provide
optimized parameter sets for FHEW schemes with AP, GINX, and our new technique. Following to
[DM15], we choose the best parameters to have the smallest key size and runtime while keeping the
gate bootstrapping (NAND) failure probability below 2−32. According to these criteria, we propose
new 128-bit secure parameter sets 128 Ours/AP, 128 tGINX, and 128 bGINX for Ours/AP with
Gaussian secrets, GINX∗ with ternary secrets, and GINX with binary secrets, respectively. For
comparison purposes, Table 2 also provides optimized parameters for AP and GINX from previous
works which have smaller security considering the latest cryptoanalysis. The security is estimated
using the lattice estimator [APS15] (commit 09e235).

Let σ2ms1, σ
2
ks, and σ2ms2 denote the error variances introduced by modulus switching from Q to

Q′ < Q, key switching from ~z to ~s, and modulus switching from Q′ to q, respectively. LWEq,~s(q/4·m)
has the greatest noise, whose variance is

ς2 =
q2

Q2
· 2σ2acc +

q2

Q′2
(
σ2ks + σ2ms1

)
+ σ2ms2.
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Table 3: Bootstrapping failure probability of each blind rotation method. The failure probability
of Alg. 7 is estimated for the worst case, i.e., the number of automorphism is (1−1/w)n+ (1/w)N .

Parameter set Alg. 7 AP GINX* GINX-binary

128 Ours/AP 2−43.51 2−40.22 x x
128 tGINX 2−60.03 2−54.24 2−35.79 x
128 bGINX 2−40.68 2−37.26 x 2−37.26

STD128 OPT [MP21] 2−57.81 2−55.91 2−53.65 x
TFHE [TFH] 2−37.77 2−30.57 x 2−30.57

Table 4: Timing results (average of 400), blind rotation key size, and failure probability for FHEW
bootstrapping (NAND gate).

Parameter set Method Runtime [ms] Key size [MB] Fail. prob.

128 Ours/AP Alg. 7 80.1 12.67 2−43.51

128 Ours/AP AP 127.8 776.45 2−40.22

128 tGINX GINX* 89.7 40.45 2−35.79

128 bGINX GINX 84.1 20.91 2−37.26

Similar to [DM15] we estimate

σ2ms1 =
‖~z‖2 + 1

12
, σ2ks = σ2Ndks, σ

2
ms2 =

‖~s‖2 + 1

12
.

We assume ‖~z‖ ≤
√
N/2 and ‖~s‖ ≤

√
n/2 for binary or ternary secrets [DM15], and ‖~z‖ =

√
Nσ2

and ‖~s‖ =
√
nσ2 for Gaussian secrets. The decryption fails when the noise of LWEq,~s(q/4 · m)

exceeds q/8, and thus the decryption failure probability per NAND is given by 1− erf( q/82ς ).

Table 3 provides the estimated bootstrapping failure probability 1 − erf( q/82ς ). It shows that
among all the existing methods, the proposed blind rotation has the least error. As our blind
rotation and AP take advantage of smaller q, we replaced q = 1024 for our blind rotation and AP
in this table. In this estimate, we set w = 10.

5.2 Runtime Results

In order to provide a fair comparison of bootstrapping algorithms, we have implemented all of them
using identical libraries and computing environments. The evaluation environment is PALISADE
v.1.11.5 on Intel(R) Xeon(R) Gold 6240 CPU @ 2.60GHz, running Ubuntu 20.04.3 LTS. We com-
piled with clang 12 and the following CMake flags: NATIVE SIZE=32, WITH OPENMP=OFF,
WITH NATIVEOPT=ON.

Table 4 shows runtime results and blind rotation key size for NAND gate evaluation of FHEW.
We provide experimental results for different parameter sets for binary, ternary, and Gaussian
secret key distributions. This table demonstrates that the proposed algorithm with the parameter
set 128 Ours/AP has the best performance. In this experiment, we set the window size w to 10.

The impact of different window sizes is demonstrated in Figure 5.2 where runtime results for
NAND gate evaluation of FHEW are presented depending on the window size. We can see that
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Figure 3: Bootstrapping performance results of Alg. 7 method for different window sizes

with a window size of 10 and greater, the running time of the proposed blind rotation technique is
approximately the same. This is consistent with our complexity analysis in Section 3.

6 Applications to Threshold Homomorphic Encryption

The proposed blind rotation technique supports arbitrary secret key distribution and has reasonable
complexity and small key size with the smallest blind rotation error among all known blind rotation
techniques. In this section, we outline a threshold HE scheme which takes advantage of the proposed
blind rotation technique. The simple structure of our blind rotation keys gives us an instinctive
design of FHEW-like threshold HE with the approach proposed in [AJLA+12].

Following the basic concept described in Section 1.3, to enable threshold HE using the FHEW
scheme, we define the algorithms for distributed evaluation key generation. Each participant j has
the secret keys ~sj for LWE encryption and zj for RLWE encryption, where j ∈ J and J denotes
the set of participants with |J |= k. The common secret keys are defined as ~s∗ =

∑
j∈J ~sj and

z∗ =
∑

j∈J zj .

6.1 Distributed Generation of Evaluation Keys

The distributed generation of evaluation key for threshold version of Algorithm 3 explained in
this section is naturally extended to other proposed variants by simple modifications. We omit a
description of the LWE switching key which is not the main interest of this paper and is straight-
forward.

6.1.1 Public Key Generation

The public key for implicit secret keys z∗ =
∑

j∈J zj is generated by the following proce-

dures [AJLA+12].

• Each participant j ∈ J independently generates their own secrets ~sj and zj .

20



• Given common random string acrs, each participant calculates bj = −acrs ·zj+ej and shares
them to other participants, where ej ← χerr.

• The public key is generated as pkRLWE
z∗ = (acrs,

∑
j∈J bj).

6.1.2 Generation of Automorphism Keys

The generation of automorphism keys consists of the following two stages.

• Using the shared public key pkRLWE
z∗ , each participant generates encryptions akThrj,i =

RLWE′z∗
(
zj(X

i)
)

as

akThrj,i :=
(
EncRLWE(B0

g · zj(Xi)), . . . , EncRLWE(B
dg−1
g · zj(Xi))

)
for each i, where ~Bg = (B0

g , B
1
g , . . . , B

dg−1
g ) is a gadget vector. The error for encryption is

sampled from χsmenc, which is a special distribution for a large error to “smudge out” small
differences in distributions [AJLA+12], we denote its variance by σsmenc in the later analysis.
Next, each participant sends akThrj,i to the computing party.

• The computing party generates automorphism keys akThri as follows

akThri :=
∑
j∈J

akThrj,i =
∑
j∈J

RLWE′z∗
(
zj(X

i)
)

= RLWE′z∗
(
z∗(X

i)
)
.

6.1.3 Generation of Blind Rotation Keys

The difference from the generation of the automorphism keys is that, as the sum of components
sj,i is done in the exponent, the merging is done by RGSW ~ RGSW multiplications, instead of
additions.

• Each participant generates the partial encryption brkThrj,i = RGSWz∗(X
sj,i) for i ∈ [0, n− 1],

where sj,i is the i-th component of ~sj . We can generate the RGSW key using the following
equation:

brkThrj,i :=
(
RLWE′z∗(z∗ ·X

sj,i),RLWE′z∗(X
sj,i)
)
.

Then, each party sends brkThrj,i to the computing party.

• The computing party calculates brkThri = RGSWz∗(X
s∗,i) for i ∈ [0, n−1] using the following

equation (note that the error is additive.):

brkThri :=
∏
j∈J

brkThrj,i =
∏
j∈J

RGSWz∗(X
sj,i) = RGSWz∗(X

s∗,i).

Any party can use these keys to perform secure computations without revealing the secrets of
any participants, including the binary gate evaluation [DM15] using the proposed blind rotation
technique.
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6.2 Performance Analysis

Computational Complexity and Key Size

Following the above evaluation key generation, the computing party finds the evaluation keys:
brkThri = RGSWz∗ (Xs∗,i) , i ∈ [0, n− 1]

akThru = RLWE′z∗
(
z∗(X

gu)
)
, u ∈ [1, w]

akThr−1 = RLWE′z∗
(
z∗(X

−g)
) .

Thus, the computation of blind rotation and the structure of the keys are the same as in Algorithm 3.
In other words, the computational complexity and key size are the same as in Table 1 in terms of
the number of � multiplications (computational complexity) and RLWE′ ciphertexts (key size).

The number of possible si in Gaussian secret is 2 · 12σ + 1 ≈ 78, so it is for the case that
there are 39 participant with ternary secrets (equivalently 77 participant with binary secrets.) This
implies that the proposed blind rotation is preferable for threshold HE as it takes advantage of fast
evaluation and the small key size regardless of the secret key distribution.

Error Analysis

The analysis of the blind rotation error for threshold HE assumes that each zj is a ternary key.
This analysis is similar to Section 4, except for the fact that ak and brk now have higher error
variance. The variance of pkRLWE

z∗ error epk is equal to kσ2 as it is the sum of errors ej of all parties.
The error of each RGSWz(Xsj,i) is equal to v · epk + e0 · z∗+ e1. Hence, the error variance is given
as σ2fresh = 2kN

3 σ2 + 2kN
3 σ2smenc + σ2smenc. RGSWz (Xsi) is obtained by consecutive multiplication of

RGSW~ RGSW and introduces additive error, whose variance is equal to σ2brk = 2k · dgN
B2
g

12 σ
2
fresh.

For automorphism keys, again each RLWE′z
(
zj(X

t)
)

has the error of variance σ2fresh. Thus the
error of RLWE′z

(
z(Xt)

)
is equal to σ2ak = kσ2fresh.

The total variance after blind rotation in Algorithm 3 can be estimated as

σ2acc = dgN
B2
g

12
·
(

2n · σ2brk +

(
κ+

N − κ
w

)
· σ2ak

)
.

Similarly, the error variance after Algorithms 4 and 5 can be estimated as

σ2acc-me = dgN
B2
g

12
·
(

(3n+ 2) · σ2brk +

(
κ+

N − κ
w

)
· σ2ak

)
,

σ2acc-ce = dgN
B2
g

12
·
(

(2n+ 2) · σ2brk +

(
κ+

N − κ
w

)
· σ2ak

)
,

respectively.
The blind rotation algorithm for AP can be also extended in a similar way, whose blind rotation

keys are RGSWz∗(Y
vBtrs∗,i) for i ∈ [0, n− 1], t ∈ [0, dr − 1], and v ∈ ZBr . Then, the error after AP

blind rotation is

σ2acc = dgN
B2
g

12
·
(

2dr

(
1− 1

Br

)
n · σ2brk

)
.

Since σbrk is much greater than σak, the proposed blind rotation has less error than the AP variant
by exploiting the ring automorphism as well as the less key size. FHEW-like HE parameters are
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error-sensitive; as our algorithm also produces the least error, our algorithm is more favorable in
threshold HE.

7 Conclusion

A new blind rotation technique for homomorphic encryption is proposed with several variants
which provide tradeoffs between key size and complexity. We used ring automorphism for scalar
multiplication on the exponent, which substitutes the consecutive RGSW multiplications used by
the previous AP technique and simplifies the blind rotation procedure. The proposed method
offers the best of both previous AP and GINX bootstrapping simultaneously and further improves
on them. We demonstrate that our method is better than both approaches in terms of running
time and evaluation key size. It offers the additional advantage of reducing the amount of noise
introduced during blind rotation, even for the case of the binary key that is the most favorable to
GINX.

We also showed a simple threshold HE scheme based on FHEW. This scheme takes advantage
of the proposed blind rotation technique since it requires computations under secret keys with
distributions wider than binary or ternary. Our analysis showed that the performance and key size
could be kept relatively low with increasing the number of participants, unlike GINX blind rotation.
This is an important property for the distributed computation settings, which is also supported by
AP blind rotation. However, we demonstrated that the proposed blind rotation is better in terms
of run time and key size. This demonstrates the high potential of FHEW-like schemes in different
applications where the secret key distribution is wider than binary or ternary.
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