
Through the Looking-Glass:
Benchmarking Secure Multi-Party Computation

Comparisons for ReLU’s

Abdelrahaman Aly1,2[0000−0003−2038−5668], Kashif Nawaz1[0000−0002−3887−7364],
Eugenio Salazar1, and Victor Sucasas1[0000−0002−7981−401X]

1 Cryptography Research Centre, Technology Innovation Institute, Abu Dhabi, UAE.
2 imec-COSIC, KU Leuven, Leuven, Belgium.

{firstname.lastname}@tii.ae

Abstract. Comparisons are a basic component of the commonly used
ReLU functions, ever more present in Machine Learning and specifically
in Neural Networks. Motivated by the increasing interest on privacy-
preserving Artificial Intelligence, we explore the current state of the art
of MPC protocols for privacy preserving comparisons. We then intro-
duce constant round variations of these protocols, which are compatible
with commonly used fixed point arithmetic MPC protocols, and geared
towards realistic ReLU implementations. Furthermore, we provide novel
constructions, inspired by other commonly used comparisons, and incor-
porate state of the art elements. Additionally, we translate these results
into practice, using state of the art MPC tools and providing an open
source implementation. Finally, we cater for an extensive benchmark-
ing of the described protocols on various adversarial settings, and offer
conclusions about their viability when adopted for privacy-preserving
Machine Learning.

Keywords: Secure Multi-Party Computation · ReLU Functions · Ap-
plied Cryptography.

1 Introduction

Secure Multi-Party Computation (MPC), has continued to evolve, through the
years, becoming more practical, and useful. This is specially true in the last few
years, when fundamental results have considerably reduced computing times. It
was just logical, for researchers to start asking questions regarding how they can
build useful applications on top of these protocols. New results followed, intro-
ducing novel ways to achieve basic functionality, that was all but indispensable,
for the vast array of applications that could make use of MPC. Among them, new
ways to interpret rational numbers, via fixed point arithmetic, and, of course,
how to perform inequality tests (INQ).

Since then, MPC has been considered as a viable option, for many modern
applications [1]. Among them, Privacy Preserving Machine Learning (PPML),

2 Aly A. et al.

has gathered attention in the field, given the need for faster performing protocols,
for a variety of different tasks. This is especially true, of course, for comparisons
and fixed point arithmetic. We can name for instance, the contributions from
Makri et al [2] and Catrina and De Hoogh [3] on INQ and Catrina et al. [4]
on and fixed point arithmetic. Building blocks, that are indispensable tools to
implement activation functions such as ReLU’s, which are increasingly more pop-
ular. Additionally, given their simplicity, ReLU’s are becoming a viable vehicle
for the implementation of privacy preserving machine learning. Any practical
deployment of ReLU’s, fully depend on the combination of these 2 elements and
their performance.

Modern Multiparty frameworks, such as the popular SCALE-MAMBA [5] or
the well known MP-SPDZ [6], already incorporate some of these results, (specif-
ically [3, 4]), and have given developers the opportunity to build and deploy
solutions that incorporate MPC. In this work, we continue these efforts and pro-
vide researchers and implementers, with the means to also assess, incorporate
and combine state of the art results. Among them, the results from Makri et
al., commonly referred to as Rabbit, as well as other families of comparisons,
are included in this paper. We go a step further and, besides the conventional
flavors, offer our own variations of the protocols. Our main focus are ReLU’s
(we include basic formulations), and any other realistic application, that use the
common tools and protocols aforementioned.

Furthermore, and thanks to recent contributions, of the likes of Zaphod [7],
we also show how these protocols could be implemented in constant rounds. We
introduce variations that exploit the characteristics of the environments where
they would run, specifically SCALE-MAMBA, and give developers the necessary
tools for the selection of the underlying MPC protocols, via exhausting bench-
marking. Basically, in this work, we answer the questions, i). What do we need
to implement state of the art comparison protocols? ii). How can we improve
them? and, iii). What protocols perform better in the context of implementing
ReLU’s mixed with fixed point arithmetic?

1.1 Related Work

Besides the existing body of work, related to secure comparisons from MPC,
starting with [8], we focus our attention to both of the most recent contributions
that motivated this work, i.e. Makri et al. [2] or Rabbit, and Escudero et al. [9]
or edaBits. Both introduced comparison mechanisms that reduce the number
of rounds, by mixing Boolean and Arithmetic circuit evaluations via edaBits.
Maybe, the more notable difference however is on adoption and practicality. We
are interested on making our protocols compatible with existing frameworks,
specifically SCALE-MAMBA, and commonly used results for, among others, fixed
point arithmetic and Zaphod. With this in mind, we also make available our
implementation and include extensive benchmarking. Besides this, we would
like to explore some of the main differences with the state of the art:

Through the Looking Glass 3

On the Elimination of Slack: One of the main contributions from Rabbit [2] is
that it does not require slack, which MPC frameworks typically set at 40 bits.
This implies that private comparisons of integers represented with 64 bits can be
performed with smaller data-types of 64 bits, instead of the 128 of previous pro-
tocols. However, inequality tests (INQ) are common tools on applications that
do extensive use of other representations, besides integers, namely fixed point.
Current state of the art [4] does still require extended domains beyond 64 bits,
to have meaningful precision, and they would nonetheless require the presence
of slack during truncation (the precision adjustment after multiplication). Ad-
ditionally, albeit slack might not be present in the protocols for comparisons,
it still is ever present in several protocols that are required by Rabbit and its
adaptations, e.g. Zaphod [7] or daBits [10] or even edaBits [9]. These factors,
in turn, still force application designers, to use larger prime sizes. Hence, our
work pursues to exploit the advantages of Rabbit whilst still bounded to to the
realities of practical deployments.

On Randomness Sampling: Another differentiator, with the current state of the
art, is how we sample randomness. Both Escudero et al. and Makri et al. rely on
edaBits [9] for the sampling. We instead, rely on Zaphod and daBits, as presented
in [7]. This gives us the control over each random bit, but more importantly, it
allows us to execute our protocols relying on, for instance Garbled Circuits (GC)
for Boolean and SPDZ [11] for Arithmetic circuits.

On Boolean Evaluation: Our protocols incorporate a selection of the most ef-
ficient elements of both Rabbit and edaBits, for all things related to Boolean
Circuits. We then adapt them to be able to use them in constant round, over
Zaphod. This includes mixing (much in the style of Escudero et al.), for instance
the principles used by Catrina and De Hoogh in their LTZ construciton, with
bitwise LTEQZ test introduced in Rabbit.

1.2 Our Contributions

- We present newly constant round variations of the state of the art protocols
on privacy preserving comparisons, introduced by Makri et al. [2], together
with some constant-round inspired new designs. We focus our attention to
the use case at hand, that is, the implementation of ReLU’s. We introduce,
implement and benchmark 3 flavors, of such protocols, using, among others,
the techniques, succinctly mentioned by the authors on [2]. The variations
are namely the following:
i). Rejection List Rabbit: Regardless of the Fq, we sample randomness

in Z⌈log2 q⌉, and reject samples that are above q. As we see, because of
setup restrictions, q needs to be relatively large in realistic setups, e.g.
q > 2121.

ii). Conventional Rabbit: The sampling happens either from above, ⌈log2 q⌉
or, below ⌊log2 q⌋. It is assumed q is close to a power of 2. This makes,
Rabbit probabilistic in nature.

4 Aly A. et al.

iii). Slack Rabbit: An original variation of the protocol, where we relax secu-
rity (becoming statistical, instead of information theoretic, from an ideal
perspective), so that it can exploit the setup, whilst used in conjunction
with protocols that require slack for fixed point representation and other
protocols.

- Much in the style of Escudero et al. [9], we adapt and optimize the commonly
used comparison construction of Catrina et al [3]. More precisely:
i). We transform it into a constant round construction, thanks to Aly et al.

Zaphod [7] and Hazay et al. [HSS17] [12];
ii). we replace the fundamental bitwise less than (LT) construction, by the

recently introduced bitwise, less than equal (LTEQ) protocol from [2].
- A thorough benchmark, aimed towards implementers that, on top of the
basic Rabbit LTZ construction, and the variations mentioned above, also
includes the optimized protocol for ReLU’s from [2]. Our benchmark in-
cludes different compilations of the same bitwise LTEQ comparison circuit
from Makri et al., including:
i). AND XOR′s: The circuit as presented in [2], mixing xor with and gates,

to benefit from free-xor.
ii). AND NOT′s: The same circuit, as it would be typically derived by com-

monly used synthesizers. The circuit, in this case, is entirely made of
and mixed with not gates.

- More importantly, usability. We provide open source implementations on
publicly available repositories for our code written for SCALE-MAMBA.

Note that Zaphod and SCALE-MAMBA, adjust the number of rounds (based on the
circuit depth) when the setup is honest majority, instead of Full Threshold with
SPDZ. We also explore such setups in our Benchmarking.

Our Implementation A priority of this work is implementability/usability. In
that sense, we make use, of current available tooling that is supported by the
community. Given that, our protocols make use of Zaphod, [HSS17], and SPDZ;
we focus on SCALE-MAMBA, specifically version 1.3 or above [5], which is read-
ily available. In contrast, MP-SPDZ, currently, does not support field conversion
between their BMR processor and LSSS.

Note that our protocol descriptions are based on our implementations, specif-
ically over SCALE-MAMBA. Hence we, at times, and, w.l.g., adapt the protocols and
pseudocode accordingly. By doing so, we believe we provide better tools to im-
plementers, albeit the minor optimizations that are being omitted.

1.3 Outline

This work is structured as follows, Section 1, we present the main contributions
of this work as well some basic comparison with the state of the art. Section 2,
introduces some general aspects needed for understanding our contributions,
from a theoretical and practical perspective. We explore the relevant minutiae

Through the Looking Glass 5

of Rabbit, as introduced by [2], on Section 3. This Section also incorporates
variations of some Rabbit constructions, including some of our contributions. We
then continue to explore our contributions on Section 4, where we present a novel
constant round LTEQZ construction, mixing Rabbit and Catrina and Hoogh [3].
Finally, we include our extensive benchmarking on Section 5 and some further
discussion and conclusions in Section 6.

2 Preliminaries

In this section, we discuss some of the main aspects that are necessary to un-
derstand the contributions ahead. We give main emphasis on including imple-
mentation aspects to the mathematical definitions, to facilitate the work of im-
plementers.

2.1 Notation

Let q be a sufficiently large prime such that i). it can instantiate an MPC pro-
tocol, ii). supports fixed point arithmetic, with a public bitwise precision p and,
iii). sufficient statistical security sec. Additionally, constants and vectors are
uppercased R.
We make use of the same integer representation commonly used by the ex-
isting tooling, e.g. SCALE-MAMBA. That is, we identify the finite field Fq with
the centered (integer) interval [− q

2 ,
q
2) ∩ Z and, similarly, the ring Z2k with

[−2k−1, 2k−1) ∩ Z. Note that, in this work we assume k = 64.
We encode any negative number x on Fq as: q − x, e.g. −1 becomes q − 1.

In Z264 , we use a similar formulation 264 − x, e.g. 264 − 1. Notice, however that,
because of the requirements of fixed point arithmetic, a typical mantissa size e.g.
40 bits, requires larger q’s, in this case, of at least 121 bits. Hence, sizes of the 2
domains are vastly different. We choose this homogeneic representation, albeit
it complicates the design of protocols of this kind, as this is more in line, to the
available tooling, e.g. [5, 6].
More precisely, we adopt the fixed point representation introduced by Catrina
and Saxena [4], used by, among others, SCALE-MAMBA, and MP-SPDZ. Addition-
ally, we differentiate between a secret shared fixed point element ([[x]]) and, secret
integers (⟨y⟩), by the use square brackets. Integers can be shared in both Fq and
Z2k , whereas fixed point only in base Fq.
Inputs on Fq, can be expressed, either implicitly ([[x]]) or explicitly ([[x]]q). Whereas,
inputs base 2k, are explicitly indicated by using the suffix 2k i.e., [[x]]2k . Values
on F2 follow the same principle, and use the explicit suffix 2 i.e., [[x]]2.
Let [[v]] be a mantissa bounded by some 2l, and p the bitwise fixed point precision.
We can have a ⟨x⟩, a secret shared fixed point number, such that:

⟨x⟩ = [[v]] · 2p mod q. (1)

For simplicity and, w.l.g., we assume l = 40 bits. This way multiplications can

6 Aly A. et al.

be supported whilst using the typical prime size selections, e.g. a 128 bits prime.
This is because the bitsize of the multiplication (before truncation), doubles,
e.g. 80 bits. Additional sec bits (typically sec = 40), need to be added as well.
This comes from the probabilistic truncation protocol introduced in [4]. Hence,
in regards to the field size, q should be much larger than 22·l+sec for Fq.

2.2 Arithmetic Black Box

To simplify the theoretical analysis of the functionalities we present in this work,
we abstract the underlying MPC protocols, via an arithmetic black box (FABB).
The original concept was introduced by [13], and it is flexible enough to al-
low extensions, so that more complex applications have long make use of it,
e.g. [8, 14,15]. It has been used by works of similar nature, with an emphasis of
implementation, e.g. [16]. In our case these extensions correspond to fixed point
arithmetic functionality and a set of complex building blocks, specifying the re-
alizations, we based this functionality from. We define our arithmetic black box,
or FABB , as follows:

Functionality Description Rounds Prot.
x← [[x]] Opening secret field element 1 -
[[x]]← x Storing public input in a secret field ele-

ment
1 -

[[z]]← [[x]] + [[y]] Addition: of secret inputs 0 -
[[z]]← [[x]] + y Addition: (mixed) secret and public in-

puts
0 -

[[z]]← [[x]] · [[y]] Multiplication: of secret inputs 1 -
[[z]]← [[x]] · y Multiplication: (mixed) secret and public

inputs
0 -

⟨z⟩ ← ⟨x⟩+ ⟨y⟩ Addition: secret fixed point 0
⟨z⟩ ← ⟨x⟩+ y Addition: (mixed) secret and public fixed

point
0

⟨z⟩ ← [[x]] + ⟨y⟩ Addition: secret fixed point with secret
input

0

⟨z⟩ ← ⟨x⟩ · ⟨y⟩ Multiplication: secret fixed point 2 [3, 4]
⟨z⟩ ← ⟨x⟩ · y Multiplication: (mixed) secret and public

fixed point
1 [3, 4]

⟨z⟩ ← [[x]] · ⟨y⟩ Multiplication: secret fixed point with se-
cret input

2 [3, 4]

—Complex Building Blocks—
[[r]]q, [[R]]q, [[r]]2k , [[R]]2 ←

get r from dabits list(size)
Returns daBits list of size size, and their
respective combination.

0 trivial

[[R]]q, [[R]]2 ← get dabits list(size) Returns vector of daBits of size size. 0 trivial
[[r]]q, [[r]]2k ←

combine dabits([[R]]q, [[R]]2)
Returns vector combinations of [[R]]q ,
[[R]]2, daBits.

0 trivial

[[rκ]]← PRandInt(size) Returns some randomness in [0, 2size). 0 [3, 4]
[[x]]q ← conv sint([[y]]2) Conversion from Z2 to Fq . 1 [5, 7, 10]
[[c]]q ← rabbit sint([[y]]) Rabbit encapsulation routine. 4 This Work
[[c]]q ← bitwise lteq([[y]]q) bitwise LTEQZ. Constant round when im-

plemented using GC, via Zaphod.
2 [2]

Table 1: Secure Arithmetic operations provided by the FABB .

Through the Looking Glass 7

Invoking Rabbit (rabbit sint([[y]])): For simplicity, we provide an encapsulation
of the invocation of rabbit. The method is just an abstract tool, for the invocation
of any of the variations of Rabbit, presented in this work. This way, protocols,
that depend on them, such as our construction of a ReLU. It simply extracts the
system parameters and then invokes any desired Rabbit construction. Let sint
be a register type for elements in Fq, then construction can be simply expressed
as indicated by Figure 1.

rabbit sint([[x]])
1 //instantiate vector params

2 //with system parameters for default rabbit mode.

3 PARAMS[] := get_system_params(rabbit.mode);

4 c := rabbit.mode(PARAMS, [[x]]);

5 return: type(c) != sint ? conv_sint(c): c;

Fig. 1: Rabbit Encapuslation

Arithmetic Black Box in Practice. The abstraction, albeit useful, from a
theoretical perspective, meets some limitations in practice. In reality an imple-
menter have to adjust with, among other things, what is provided by the tooling,
in this concrete case SCALE-MAMBA. MPC frameworks of this kind, tend to oper-
ate storing secret and public inputs, in the form of registers. Frameworks also
include a selection of instructions (RISK and CISC), to interact with these
registers. Additionally, the parametrization and coupling of different contribu-
tions across the field, in a single tool, are also challenging. In the most ambitious
setting, for our use case, our constructions require constant round evaluation of
Garbled Circuits (hence, Boolean Circuits), mixing them with arithmetic opera-
tions over Full Threshold, using LSSS protocols such as Low Gear Overdrive [11]
(A member of the SPDZ’s family of protocols). Zaphod [7], in this case, allows us
to realize such setting, implementing in SCALE-MAMBA a variation of [12,17], for
modulo 2 arithmetic, and [11] on modulo q. Note that, SCALE-MAMBA, is the only
framework currently available, that includes all the elements that are necessary
to use Zaphod, hence the one used by this work.
On finer grain, we can see that, in general terms, our FABB defines 4 types of
operations:

i). Fixed point arithmetic: Operations are implemented using the protocols
introduced [3, 4] as presented in [5]. This representation is independent of
the underyilng protocols that instantiate Fq arithmetic.

ii). Integer arithmetic modulo some prime q: Instantiated by Zaphod [7]
and implemented by [5]. We consider mainly 2 flavors: Full Threshold (Over-
drive, Low Gear) [11] and, Honest Majorities, with error correction [18].

8 Aly A. et al.

iii). Integer/boolean arithmetic modulo 2k: We consider the approach taken
by Zaphod [7] and, implemented on [5], which is a flavor of[HSS17] [12],
incorporating elements from [17].

iv). Complex Building Blocks: Such as the conversion between elements mod-
ulo 2k and q. Implementations of these mechanisms are as indicated by their
respective authors. However, we do provide a small revision in regards to the
conversion, further in this section, as it is of interest for complexity analysis.

Conversion Z2 ← Fq (conv sint([[y]]2)): Our constructions are thought to be
used by conventional implementations, mixing with fixed point operations. Just
in the same way the results from Rabbit [2], the protocols in this work return
results on F2. However they can be trivially converted to Fq, by using a single
daBit. This process is also explained in SCALE-MAMBA’s documentation, and is
derived from [10]. Let [[y]]2 be a secret element in F2. We locally calculate the
xor , between a fresh daBit (modulo 2) and [[y]]2. We then, simply open the result
and xor the result again, just that this time with the daBits modulo q. The
process requires a single round. We refer the reader to [5], for a more detailed
description.

2.3 Implementation Challenges

Modulo Size We prioritize prime selection for other environmental needs rather
than comparisons. Moreover, in our experimentation we do not exploit the natu-
ral advantages of working in 64 bits. We are more interested on scenarios, where
implementations of ReLU’s, require a field with a bigger modulo. Essentially,
where multiplications, of the form discussed above, are present and, more im-
portantly, fixed point number representations, is already present, and imposing
its own limitations. In practice, this means that, realistic uses for, ReLU’s (with
mantissas, that are larger than 40 bits) require longer fields e.g. 128 bits.
One might be tempted to assume, that, regardless the size of q, we could work
directly on 64 bits, exclusively when computing INQ. Trivially, this could be en-
abled via field conversion, which would offset, any benefit acquired by the field
reduction. We test an analogous proposition via the implementation of the ReLU
optimized Rabbit variation, introduced by [2].

Domain Shifting We give special attention to the number domain. That is,
the interaction between the numeric domain used in Fq and Z2k . This is further
complicated by the fact that some of Rabbit constructions consider that the sign
is directly encoded in the MSB. Note that,given our setup, protocols need to mix
values that are in different domains.

2.4 ReLU

The basic ReLU, requires only a simple INQ, to be constructed. An consists on
the following test:

Through the Looking Glass 9

f(x) =

{
0 for(x < 0);

x for(x ≥ 0).
(2)

It is clear that a ReLU activation function can be constructed from a LTEQZ
protocol. However, a ReLU activation layer is part of a whole Neural Network ar-
chitecture, composed of linear transformations, folding layers and more complex
activation functions, frequently based on exponential operations (e.g. sigmoid or
softmax). Thus, the LTEQZ protocol adopted for ReLU must be compatible with
the MPC protocols supporting the operations for the other layers. This implies
slack and fixed point arithmetic [4].

3 Ad(a/o)pting Rabbit

In this section, we explore the basic building blocks an ideas behind Rabbit [2],
as well as our propose variations and various aspects, necessary for adoption in
practice.

3.1 Inequality Tests

We mainly concern with one specific instance of INQ, more specifically, Less
than Equal Zero (LTEQZ) tests. By using LTEQZ we can trivially instantiate
any other INQ, in various configurations. However, and for the purpose of this
work, and the applications tackle, we can define the problem as follows:

LTEQ(x, 0)→ LTEQZ(x) : Z→ {0, 1} ⊆:

{
LTEQZ(x) = 1 if(x ≤ 0);

LTEQZ(x) = 0 otherwise.
(3)

The problem The state of the art proposes mechanisms for comparison, mainly
based on bit decomposition. Such constructions tend to be expensive, in terms
of multiplicative depth and work for both, MPC and HE schemes. They also
tend to be sublinear with some associated non-negligible constant cost.
To solve this issue, the literature has proposed to relax the security model, as a
trade-off for efficiency. The principle is to reduce the impact of bit decomposition
in exchange of security under statistical constraints, i.e. statistical security. This
statistical security should not be confused with cryptographic security, and it
rather relates to the probability distribution over masked inputs.
The current state of the art (the protocol that is discussed in this section) ad-
dresses this, reducing the impact of bit decomposition overall and keeping the
more robust security model than previous works.

The Rabbit Principle The method itself is based on the commutative prop-
erties of addition. It formulates 2 different but equivalent equations. Generally
speaking, it derives a simplified algebraic construction, comprised of 3 INQ, one

10 Aly A. et al.

of which, relies solely on public inputs, whereas, the other 2 partially depend on
public inputs as well and can be executed in parallel. Furthermore, the secret
shared inputs are some precomputed randomness.
To make it competitive against statistical secure constructions, the authors make
use of edaBits [9]. For the purpose of this section, we abstract edaBits, as a con-
struction that allows us to generate some randomness in Z2k and its bit expan-
sion, at the same time, over Z2.
Let ZM be some commutative ring bounded by M ∈ Z, [[x]] and [[r]], some secret
shared input and randomness in ZM and, R be some public element of ZM .
Then, we can establish the following:

B = M −R, (4)

[[a]] = [[x]] + [[r]], (5)

[[b]] = [[x]] + [[r]] +B, (6)

[[c]] = [[x]] +B. (7)

If we also observe carefully the constructions above, we can appreciate that B is
simply the complement of R. Before, we discuss the algebraic elements of Rabbit,
let us, now consider the following statement:

[x+ y] =

{
[[x]] + [[y]]−M · LT([[x+ y]], [[x]]);

[[x]] + [[y]]−M · LT([[x+ y]], [[y]]).
(8)

Which is always true for any element of ZM . Given the equations above, we can
establish the following relations, let us start with [a+B]:

[[b]] = [[a+B]]

= [[a]] +B −M · ([[a+B]] < B)

= [[x]] + [[r]]−M([[x+ r]] < r) +B −M · ([[a+B]] < B).

When we expand [[c+ r]] in the same fashion we can derive the following:

[[b]] = [[c+ r]]

= [[c]] + r −M · ([[c+ r]] < [[r]])

= [[x]] + [[b]]−M · ([[x+B]] < [[r]]) + [[r]]−M · ([[c+ r]] < [[r]]).

If we equate both expansions of [[b]], using [[a+B]] and [[c]] + [[r]], we can obtain
the following (after simplifications):

[[a < r]] + [[b < B]] = [[c < B]] + [[b < r]].

Let us now replace a, b and c, and express the equation above, in terms of [[x]]
and [[r]]:

[[x+ r]] < [[r]] + [[c+ r]] < B = [[x+B]] < B + [[x+ r +B]] < [[r]],

[[x+B]] < B = [[x+ r]] < [[r]] + [[x+B + r]] < B − [[x+ r +B]] < [[r]].

Through the Looking Glass 11

The INQ that we have conveniently now placed on the left of the equation,
expresses the relation between x and the complement of R. In this case the INQ
would be true, only if x is greater than R, minding we are still working on ZM ,
as any excess over R would force an overflow, and a subsequent wraparound.
Consider that R is some public element of ZM , including 0. From this point, we
can trivially build the LTEQZ(x) functionality, as described at the beginning of
this section.
Given that we can freely disclose masked secret [[x]] + [[r]] without compromising
security, the equation above would finally look like:

[[x+B]] < B = (x+ r) < [[r]] + (x+B + r) < B − (x+ r +B) < [[r]].

As previously stated both inequalities can be calculated in parallel, and the
tests themselves, implemented bitwise, by using an offline phase, or edaBits di-
rectly. This method has sublinear performance, without any associated hidden
cost.

3.2 Rabbit Variations

We focus our attention on 2 of the main protocols introduced by [2]. First, the
basic test against a constant value (what we call, conventional Rabbit) and, its
ReLU optimized version (optimized Rabbit). We propose 2 flavors for the former,
and provide some discussion and benchmarking for the latter.Note that,all vari-
ations proposed in this and further sections, return LTEQZ. INQ tests can then
trivially be derived from any of the following constructions.

Conventional Rabbit: Following the discussion from [2]. It is clear, the conven-
tional rabbit construction, as presented by the authors could not achieve perfect
security3, when implemented over Fq. However, and although it could nonethe-
less be sadistically close, a rejection list, might be needed to achieve the desired
level of security. We, therefore, explore these 2 scenarios, and present constant
round, implementation oriented flavors of the protocol.

Probabilistic (Statistical Security): This is an inline (as is) version of Rabbit,
with the contributions outlined by [2]. For security reasons, implementers should,
when working over Fq, pay attention, to the prime selection, which has to be
close to a power of 2. This is motivated by the fact that, as indicated by the
original work [2], the gap defined as |q − ⌈log2(q)⌉| affects either security or
correctness.

3 The ideal functionality. In practice, realizations of the underlying protocols for share
conversion, can only achieve statistical security.

12 Aly A. et al.

Protocol 1: Simple Rabbit (rabbit fp)

Input: The prime: (q), the prime flag: (above), and
secret input: ([[x]]q).
Output: secret shared LTEQZ (x) in F2

Pre:
1 k = int(⌊log2(q)⌋) + 1; // int converts to integer

2 R = ⌈(q − 1)/2⌉
3 if above == 1 then
4 [[r]]q, [[R]]q, [[r]]2k , [[R]]2 ← get r from dabits list(k);
5 else
6 [[R]]q, [[R]]2 ← {0}k;
7 [[R]]q, [[R]]2 ← get dabits list(k− 1);
8 [[r]]q, [[r]]2k ← combine dabits([[R]]q, [[R]]2);
Pos:

9 [[a]]← ([[r]]q + [[x]]q);
10 a← [[a]];
11 b = (a+ q − R);
12 [[w1]]2 ← bitwise lteq (a, [[R]]2, k);
13 [[w2]]2 ← bitwise lteq (b, [[R]]2, k);
14 [[w3]]2 = b+ R < cint(q− R) + R; //cint converts to register

15 return [[w1]]2 − [[w2]]2 + [[w3]];
16 in return conv sint converts to Fq

Protocol 1: Rabbit for Fq with statistical security

Correctness: The protocol is correct, as demonstrated by [2], using the principles
explained earlier in this section. We also control for oversampling.

Complexity: When implemented, using Zaphod, complexity is constant, with 2
parallelizabe invocations of the bitwise lteq, which translate in 2 rounds. It
includes 1 opening. Note that the result given is modulo 2, hence an extra round
for conversion is be required, with 4 in total.

Observations: As noted in previous sections, we deal with the domain shift,
by adding R, in places such as line 14. Besides this, and for implementations
purposes, we have to also to trivially adapt the protocol, so that it can dis-
card/reduce a bit from the randomness sampling. Note that, we also include
some specificities from SCALE-MAMBA, e.g. (cint invocation to transform input
to a SCALE-MAMBA register). Security follows from [2], on the same terms, as in-
dicated. Note that, because of the nature of the sampling (which is not in Fq),
security is probabilistic in nature.

Rejection List: We extend the previous construction by eliminating the proba-
bilistic sampling, and incorporating a rejection list. We show how to perform this

Through the Looking Glass 13

inclusion in a way that, from an ideal perspective, could give this construction
perfect security. The protocol is described as follows:

Protocol 2: Rejection List Rabbit (req list)

Input: The prime: (q), word size: (k) i.e. 64,
and secret input ([[x]]q).
Output: secret shared LTEQZ (x) in F2

Pre:
1 k = int(⌊log2(q)⌋) + 1; // int converts to integer

R = ⌈(q − 1)/2⌉
2 repeat
3 [[R]]q, [[R]]2 ← fill dabits array(k);
4 [[above]]2 ←bitwise lteq (q, [[R]]2, k);
5 above← [[above]]2;

6 until (above == 1);
7 [[r]]q, [[r]]2k ← combine dabits([[R]]q, [[R]]2);
Pos:

8 [[a]]← ([[r]]q + [[x]]q);
9 a← [[a]];

10 b = (a+ q − R);
11 [[w1]]2 ← bitwise lteq (a, [[R]]2, k);
12 [[w2]]2 ← bitwise lteq (b, [[R]]2, k);
13 [[w3]]2 = b+ R < cint(q− R) + R; //cint converts to register

14 return [[w1]]2 − [[w2]]2 + [[w3]];
15 //in return conv sint converts to Fq

Protocol 2: Perfect Secure Rabbit for Fq.

Correctness: The correctness, once again follows from [2]. In this case, no further
adaptations to the sampling are needed, as it always returns some randomness
bounded by q. After sampling, Rabbit then proceeds as expected.

Complexity: We still have the previous 3 basic invocations (one opening and 2
rounds from the parallel calls to bitwise lteq. However, because of the rejection
list (that involves additional calls to bitwise lteq), performance now depends
on the prime, where probability (ϕ) of every subsequent 2 rounds can be defined
as:

ϕ =
2⌈log2(q)⌉ − q

2⌈log2(q)⌉
. (9)

Just as in previous cases, the protocol delivers an output on modulo 2. Hence,
1 additional round for conversion to modulo q should be added.

14 Aly A. et al.

Observations: As before, we incorporate elements that are relatively important
the protocol implementation, in SCALE-MAMBA. Note that in this case, the prime
selection is also important i.e. the prime is not far below the immediate next
power of 2, as the sampling, will have a lower probability of requiring extra
rounds per execution. The importance of this constructions is predicated on the
fact that the incorporation of the rejection list, is the only method available with
which any Rabbit variation can (ideally) achieve prefect security in Fq.

Optimized Rabbit for ReLU’s: Rabbit contributions, in [2], also explore, an op-
timized comparison protocol, specifically for ReLU’s. Assuming words w.l.g., of
64 bits, they imagine scenarios where the ring size is compatible with the afore-
mentioned word size. Whilst using a specific number representation, the protocol
itself is quite different to the constructions we present in this paper and can be
summarized as follows:

2. Conversion of some secret [[x]]q to modulo 2k.
3. Extract the MSB from [[x]]2k .
4. Interpret and return the MSB as the result of the comparison.

To make it compatible to Fq, and [4], we rely on the rather expensive primi-
tive Fq to Z264 conversion from Zaphod, also described in SCALE-MAMBA. We have
implemented this variation as well, for benchmarking purposes. We call our con-
struction rabbit conv, and it uses the already built-in primitives included in
SCALE-MAMBA, for conversion. No further adaptations are required, given that
the framework also uses words of 64 bits.

Slack Rabbit One of the contributions of this work is the inclusion of a variation
of Rabbit, that reduces the sizes of the bitwise inequality tests bitwise lteq. It
achieves this, by relaxing the security of the protocol to statistical. Basically, the
protocol reduces the number of daBits the protocol requires (whilst still working
on larger q’s. Further adaptations where required to incorporate, among other
things, shifts in the numeric domain, that originated by the now shorter circuits,
as we later explain. The protocol is described as follows:

Through the Looking Glass 15

Protocol 3: Slack Rabbit (rabbit slack)

Input: The prime: (q), input size: (k), sec param: (κ),
and secret input: ([[x]]q).
Output: secret shared LTEQZ (x) in F2

Pre:
1 M2 = 2k;
2 l = k+ κ;
3 R = ⌈ M22 ⌉ − 1;
4 [[rκ]]← PRandInt(κ);
5 [[r]]q, [[R]]q, [[r]]2k , [[R]]2 ← get r from dabits list(k);
Pos:

6 [[z]]← [[x]]q + R;
7 [[a]]← ([[r]]q + [[z]]) + [[rκ]] · 2k;
8 a← [[a]];
9 b← a+ M2 − R;

10 //domain shift

11 a mod = a mod 2k;
12 a sign = a >> k− 1; //right shift

13 a′2 = a mod+ (2k−1) · a sign;
14 //domain shift

15 b mod = b mod 2k;
16 b sign = b >> k− 1; //right shift

17 b′2 = b mod+ (2k−1) · b sign;
18 //comparisons
19 [[w1]]2 ← bitwise lteq (a′, [[R]]2, k);
20 [[w2]]2 ← bitwise lteq (b′, [[R]]2, k);
21 [[w3]] = b− cint(M2 + R) < 0; //cint converts to register

22 return 1− ([[w1]]2 − [[w2]]2 + [[w3]]);

Protocol 3: Rabbit on statistical security.

Correctness: The basic inner workings of the protocol use the same Rabbit princi-
ple, explored in previous sections, hence it follows from [2]. Changes were applied
to the generation of the random mask. To guarantee it correctly masks inputs,
we follow the common construction process utilized by [3, 19]. This in turn, re-
duces the security of the protocol from abstract perfect security, to a statistically
secure on the size of security parameter κ.

Complexity: Complexity remains the same, i.e. constant round O(1). The im-
provement comes from a reduction on the number of daBits invocations. In this
case we require k, instead of ⌈log2(q)⌉. Furthermore, the size of the circuit used
by the bitwise lteq’s invocations is reduced to k, e.g. 64 bits. Given that the
bottleneck is no longer communication, upticks on, CPU time, RAM, and pre-
processing, could be of importance.

16 Aly A. et al.

Observations: This version incorporates some elements of Lipmaa and Toft [19]
and Catrina and Hoogh [3]. A preprocessing phase reconstructs some bounded
randomness using a mix of k daBits (that are later used as the bit expansion of the
masked randomness in Z2k , i.e. 64 bits) and PRandInt, of the size of our security
parameter κ. After some domain switching (see Section 2.1), which is further
complicated by the types limitations in SCALE-MAMBA, we can then proceed to
the familiar flow of Rabbit, but over k, instead of q. Security trivially follows,
from the discussion on [3, 19], as there is no further openings, nor leakage.
Note that the protocol below could be further customized to include smaller
sizes smaller domains than 64 bits. Randomness generation parameters, in the
protocol, could be then tuned, accordingly so that the bitsize of comparison can
be reduced. This could be achieved by invoking PRandInt(k+ κ− m), instead of
κ.

Selection Criteria for ReLU Implementation The original Rabbit pro-
tocol, requires comparisons to be done against edaBits directly, for which the
protocol already holds a bit decomposition. This, does not hold when the ex-
traction of the MSB is considered, as removing the mask in modulo 2k itself
requires a subtraction modulo mod p.

There are 2 circumstances, however when the optimization becomes more
efficient:

1. Inputs and Masks are bounded (elements of Z⟨k⟩ and Zk+κ, respectively).
implying statistical security on the size of κ. In this case no mod p arithmetic
is required.

2. All values are elements of some space Z⟨k⟩, as it is indeed the case on SPDZ2k .
Noting, the implementation of security related primitives becomes cumber-
some, and implementations scarce, as well the limitations that might appear
during preprocessing.

If the scenario contemplates any of the items exposed above, the recommendation
is to implement the ReLU, based on the extraction of the MSB.

4 Constant Round Catrina and De Hoogh

In this section, we explore a one round variation of the commonly used LTZ
formulation from Catrina and De Hoogh [3], adapted with some of the enhances
introduced by Rabbit. To achieve this, we once again make use Zaphod, and
present 2 protocols i).to solve the modulo 2m of any secret shared input and, ii).
A LTZ adaptation that summarizes some of the contributions from [3].

4.1 Modulo 2m (mod2m)

We start, by discussing our mod2m construction, in Protocol 4. It reflects the same
process flow of its namesake protocol from Catrina and De Hoogh [3]. However,
we introduced some notable changes:

Through the Looking Glass 17

- Randomness: We sample the random mask using daBits, in the first k bits,
instead of using the 1 round construction from [8]. Note how Escudero et
al. in [9], when adapting Catrina and De Hoogh results, replace them, using
edaBits instead. One key difference, however, is that we keep the original call
to PRandInt(k′), to construct the mask material that is not subject to the
comparison.

- Bitwise INQ: We replace the original bitwise LTZ provided by Catrina and
De Hoogh, by the low complexity LTEQZ test provided by Rabbit. This
change forces us, however to further adapt the protocol, so that it can still
mimic the original result. To achieve this, we manipulate the daBits random-
ness material in Fq.

- Conversion to Fq: The result of the bitwise comparison, is obtained via Za-
phod, using, for instance, Garbled Circuits. Hence, we invoke the 1 round /
1 daBits, conversion protocol (conv sint([[x]])), to transform the result back
to Fq, and be able to adhere to the process flow, from the original Catrina
and De Hoogh results.

The protocol is denoted as follows:

Protocol 4: constant round mod 2m (mod2m)

Input: the bitlength of inputs:(k), a power of Two: (m), sec
param: (κ), and secret input: ([[x]]p).

Output: secret shared LTZ (x) in Fq

Pre:
1 // size of κ + non dabits bits,

2 // if any e.g. 40 + 1

3 k′ = k+ κ− m;
4 [[rκ]]← PRandInt(k′);
5 [[r]]q, [[R]]q, [[r]]2k , [[R]]2 ← get r from dabits list(m);
6 [[r]]q = [[r]]q + 1;
Pos:

7 [[a]]← 2k−1 + [[r]]q + [[x]]q + [[rκ]] · 2m;
8 a← [[a]];
9 a′ = a mod 2m;

10 [[w]]2 ← bitwise lteq (a′, [[R]]2, k);
11 [[w]]q ← conv sint([[w]]2) ;
12 return a′ − [[r]]q + (2m) · [[w]]q;

Protocol 4: Constant round Catrina and De Hoogh mod 2m .

Correctness: The protocol replicates the process from Catrina and De Hoogh [3].
The main source of concern is the change of the bitwise INQ test from LTZ to
LTEQZ. This is addressed in line 6.. There, we add a 1 to the value is secretly
contained in [[r]]q. This small change then propagates to a. as a result the compo-
sition of a′ is altered as it might contain [[r]]q+1 instead of [[r]]q. What this means

18 Aly A. et al.

in practice, is that the comparison below, when using the unaltered modulo 2
version of the mask, behaves just as the original LTZ would do. This achieves
to subside any issue originated by the switch, given that, all related behaviour
is the same. Besides the LTEQZ, other changes introduced to the protocol are
orthogonal to its correctness.

Complexity: Protocol has a constant round count, similar to other protocols
studied in this paper (4 rounds). Caused by an opening, 1 invocation of a GC
circuit, and a 1 extra round for the conversion fromline 11. Results are delivered
in Fq, hence no further changes are required.

Observations: Protocol keeps the basic and simple flow, that made it so popular
to use with fixed point values. Given that, in principle, the protocol flow did not
change, this means security remains unscaved, as the statistical security of the
protocol is the same than in [3]. This means, in practice, that the typical 40 bits
of security present in frameworks such as SCALE-MAMBA, can remain unchanged.
Simulation also remains the same, given that there are no additional openings or
leakage, and the generation of the random mask and conversion can be modeled
as ideal functionalities. Finally, we could envision a circuit that merge line 10,
and line 11, and thus further reducing the round count by 1.

4.2 Catrina and De Hoogh Constant Round LTZ (cons ltz)

We can now make use of our mod2m construction, to build the INQ protocol in-
troduced by Catrina and De Hoogh. For simplicity, we sintetize thir results on
a single protocol, replacing the modulo 2k invocation, by our own mod2m. Tradi-
tionally, Catrina and de Hoogh construction returns LTZ. We notice, however,
that it can be trivially adapted to return a LTEQZ (reverting the input size and
negating the output). The Protocol can be constructed as follows:

Protocol 5: constant round LTZ (cons ltz)

Input: the bitlength of inputs:(k) sec param: (κ), and secret
input: ([[x]]q).

Output: secret shared LTZ (x) in Fq

1 [[x′]]← mod2m (k, k − 1, κ, [[x]]);

2 [[z]] = [[x]]−[[x′]]
2m mod q;

3 return −[[z]];

Protocol 5: Constant round Catrina and Hoogh.

Correctness: It follows from [3]. Although, we have replaced some elements in
the mod2m construction, as analysed. Assuming behaviour mimics the original,
this protocol is basically the integration of the truncation and the LTZ primitives
introduced by Catrina and De Hoogh.

Through the Looking Glass 19

Complexity: It is bound to mod2m. As it does not include operations that require
round based computations. So in this case it maintains in 3 rounds. Its complex-
ity matches all Rabbit constructions, after conversion to Fq, however, the number
of invocations of bitwise lteq, is reduce to 1, as previously stated.

Observations: The protocol meant to be intuitive and simple. For simplicity,
we omitted the construction of a non probabilistic truncation protocol, however
it can be trivially derived from Protocol 5. Security in this case also follows
from mod2m, as there are no openings nor leakage originated by the protocol. As
with previous works, simulation in this case is also trivial (hybrid model [20],
given that, besides than the no leakage, we would only compose it with ideal
functionalities.

4.3 Constant Round ReLU’s

Our ReLU’s, follow the same line of thought defined in Section 2. As you may
appreciate, Catrina and Saxena representation is heavily interlinked with the
protocol. Furthermore, Protocol 6, optimizes the fixed point multiplication, by
skipping the probabilistic truncation (PRTrunc).

In line with the definitions, introduced in Section 2.4. Our constant round
ReLU can be trivially implemented as follows:

Protocol 6: constant round ReLU (relu(x))

Input: ⟨x⟩.
Output: secret shared relu(⟨x⟩) in Fq

1 [[v]]q ← [[x.v]]q;
2 [[c]]q ← 1− rabbit sint(v)q;

3 [[x.v]]q ← [[c]]q · [[v]]q; // zero otherwise

4 return ⟨x⟩;

Protocol 6: Constant round protocol for ReLU’s.

Complexity: The protocol has, once more, constant round complexity (O(1)).
It consists of 1 round (from the multiplication on line 3)., plus the selected
comparison mechanism e.g.(cons ltz, adds 2 rounds).

Observations: Given that our ReLU’s do not invoke PRTrunc, gaining on perfor-
mance. One might also say, that the sec parameter (assumed 40 bits), no longer
impede us to work on smaller fields, of say 64 bits. However, ReLU’s, might be
surrounded by more complex fixed point operations, that require conventional
fixed point multiplications e.g. [21]. To be able to use smaller fields, e.g. 64
bits, we would require field conversion. Marbled Circuits [10] initially showed to
achieve this, but as we have been able to see, it has a non-negligible associated

20 Aly A. et al.

cost. This is nonetheless, a more convoluted and expensive approach than using
the conversion based comparison (rabbit conv), introduced by [2], that we also
analyze and include in our benchmark. In that sense, it would be more desirable,
in terms of performance, to remain working on the larger field.

5 Benchmarking

In this section, we explore the various properties of our prototype, our testing
environment, results and relevant issues, practitioners may encounter, in various
settings. We benchmark comparisons, given that, as from our analysis of ReLU’s,
the problem, can be reduced to solving INQ efficiently. Note, that the focus of
our work is adoption and practicality, hence, the importance to provide imple-
menters with a library that is easy to incorporate in their own development, as
open source.

5.1 Prototype

As mentioned in previous sections, our implementation was built on top of
SCALE-MAMBA. This open source framework is aligned to our specific needs, it
is well maintained and has an active community of developers. Furthermore,
it used for experimentation for various applications, including topics related to
machine learning, e.g. [16,22]. More importantly, SCALE-MAMBA incorporates Za-
phod [7], and a variation of HSS17 [12]. On LSSS, the framework offers several
protocol flavors, that can be combined with Boolean circuit evaluation via Za-
phod. We are particularly interested in two: i) Low Gear Overdrive, a member of
the SPDZ’s family [11], and refereed to as Full Threshold configuration (FT) in
this section; and ii) the SCALE-MAMBA Shamir adaptation of Smart andWood [18],
simply referred to as Shamir in this section.
Among the different development avenues available, our prototype was built on
MAMBA. We made this design decision, as it was more meaningful contribution for
the community. Indeed, there are no high level functionality available in MAMBA,
for manipulation of the daBits instruction. Hence, our prototype required also to
build all the daBits apparatus, described by our FABB . Our prototype comprises
the following:

- Extensions to library.py, for random sampling using the daBits instruction.
- Extensions to comparison.py, where we incorporate bitwise lteq con-
structions, using Z2 instructions, i.e. reactive.

- Two precompiled circuit versions bitwise lteq, in Bristol Fashion, man-
ually edited, to conform to circuit design, and generated via the limited
tooling already available in SCALE-MAMBA. Both are used by invoking the GC
instruction:

i). AND XOR: Circuit from [2], as is. Convenient for [HSS17] [12]4.

4 See SCALE-MAMBA documentation.

Through the Looking Glass 21

ii). AND NOT: A simple depth reduction. Convenient for LSSS [18]4.

- Library rabbit lib.py, the implementation of all INQ tests described in
this paper, including all our Rabbit variations and our Catrina and De Hoogh
adaptation (i.e. cons ltz).

- Library relu lib.py, includes variations to the basic ReLU, thought specifi-
cally for Machine Learning, including 2 and 3 dimensional ReLU invocations.

- Extensive test programs for all the functionality presented/required by this
work.

For completeness, we have also incorporated in our benchmarking, the already
original LTZ implementation from Catrina and De Hoogh [3], which is already
in SCALE-MAMBA. This protocol works exclusively over LSSS in Fq, and is fully
compatible with our fixed point representation. In our tests, we refer to this
protocol as lsss ltz.

Finally, and as already mentioned, the prototype is fully available as open
source 5.

Environment: Our test bed comprises up to 5 locally managed, physical servers
connected with Gigabit LAN connections. Each one has a static fixed memory
allocation of 512 GB of RAM memory. All servers are equipped with 2 Intel(R)
Xeon(R) Silver 4208 @ 2.10GH CPUs. All machines are running Ubuntu 18.
The approximate default ping time of 0.15 ms. This allows us to control net-
work conditions,in our benchmarks, by adding and or substracting latency via
/sbin/tc.

5.2 Results

The following results mimic the standard configuration described in this work.
We use a prime q of 128 bits, with sec = 40, a matching κ and a k = 64 for all
our protocols. The size of the mantissa for fixed point is 40.

Table 2 shows the performance evaluation in one machine, with no real com-
munications. Time complexity is entirely dominated by the computation costs.
As expected, Shamir outperforms FT in all the protocols we consider. This is due
to the extra costs related to operating with information theoretic macs, circuit
garbling and evaluation. On the other hand, the LSSS version of Catrina and
De Hoogh (lsss ltz) remained mostly unaffected by the configuration. This is
because it does not requires Garbled Circuits. It is worth noting that our Rabbit
rejection list req list, Rabbit with conversion rabbit conv and simple Rabbit
rabbit fp protocols, significantly underperform. This phenomena is due to the
large size of their corresponding circuits, for the evaluation of Fq elements.

Regarding the circuit choice, AND XOR, underperfoms AND NOT, on Shamir.
This is explained by the higher circuit depth, which translates into more rounds
(see [5]). On the other hand, for FT there is no meaningful difference between

5 https://github.com/Crypto-TII/beyond_rabbit

https://github.com/Crypto-TII/beyond_rabbit

22 Aly A. et al.

Table 2: Performance evaluation in one machine

Protocol Circuit
No Comms

Shamir FT

rabbit slack AND NOT 2.3ms 8.5ms

cons ltz AND NOT 1.3ms 4.2ms

rabbit slack AND XOR 3.1ms 8.1ms

cons ltz AND XOR 1.5ms 4.0ms

rabbit conv - 8.4ms 12.7ms

req list - 44.0ms 119.7ms

rabbit fp - 30.7ms 64.0ms

lsss ltz - 1.7ms 1.8ms

both circuits when applied in both rabbit slack and cons ltz, given their
smaller size.

From the results it is also clear that our variation of Catrina and De Hoogh,
cons ltz, outperforms the original lsss ltz on Shamir. However, this is the
opposite on FT, mainly due to the time spent garbling in cons ltz. This could
be corrected by garbling the circuit offline. Unfortunately this functionality is
not compatible with the reactiveness from Zaphod, and hence, it has been post-
poned for future work.

Table 3 shows the results when the protocols run on several machines with
real communications. Specifically, the setup considers 3 machines for Shamir
and 2 machines for FT with different latencies 0.15ms, 10ms and 20ms (one-way
latency). We restrict the evaluation to rabbit slack, cons ltz and lsss ltz

since the other Rabbit versions are clearly less efficient.

Results show that rabbit slack and cons ltz are more affected by delay
on Shamir than on FT. Indeed, for 10ms delay, FT configuration becomes faster
than Shamir. This is explained by the fact that Shamir incurs in more com-
munication rounds for circuit evaluation. The main result however is that the
classical Catrina and De Hoogh lsss ltz significantly outperforms the other
protocols. In the case of FT configuration, this may be counter-intuitive, since
lsss ltz has 7 rounds and cons ltz only 4, hence increasing the latency should
render cons ltz more efficient. However, this is not the case because the TCP
throughput is affected by latency and the quantity of transmitted data is higher
in cons ltz than in lsss ltz.

The intuition, when implementing MPC protocols, dictates that higher la-
tency favours protocols with less rounds. This is not necessarily the case when
the communication channel implements TCP (or TLS if it is a secure channel)
because TCP throughput is heavily affected by latency and packet loss rate. This
is due to TCP’s congestion control mechanisms and slow start procedure. As a
result, sending less data in more rounds may yield better results than sending
more data in less rounds. This however could be solved by applying secure com-

Through the Looking Glass 23

Table 3: Performance evaluation with 2/3 machines (FT / Shamir)

Protocol Circuit
D=0.1ms D=10ms D=20ms

Shamir FT Shamir FT Shamir FT

rabbit slack AND NOT 8.8ms 13.4ms 623.1ms 297.6ms 1236.2ms 577.2ms

cons ltz AND NOT 4.4ms 6.8ms 317.7ms 148.6ms 627.7ms 289.1ms

rabbit slack AND XOR 12.8ms 16.4ms 1031.5ms 295.7ms 2045.2ms 575.2ms

cons ltz AND XOR 6.2ms 8.4ms 522.0ms 148.6ms 1033.0ms 288.1ms

lsss ltz - 3.1ms 2.9ms 74.9ms 75.2ms 144.9ms 144.6ms

munications protocols based on UDP, such as QUIC, since UDP throughput is
unaffected by latency.

Additionally, compilation of SCALE-MAMBA programs uses optimizers to re-
duce the number of rounds. Otherwise the number of communication rounds for
Catrina and de Hoogh lsss ltz construction increases drastically. This means,in
practice, the construction, would require as many rounds as multiplications,
which for a 128 bit prime implies 121 rounds. The use of these optimizations,
however is too inefficient at compilation time, becoming even impractical, for
complex protocols such as MPC-based neural networks where the ReLU layers
are applied. In such case, cons ltz becomes reasonable alternative, as this is
not the case with the constant time constructions proposed by this work.

Results also show that in general, any Rabbit variation underperforms both
Catrina and De Hoogh lsss ltz and cons ltz, which, for small application
sizes should be the choice when implementing in SCALE-MAMBA. Note that, if
future framework iterations, replace the communication channels by QUIC and
the garbling is done offline, cons ltz should outperform lsss ltz for FT con-
figuration.

6 Conclusion, Discussion and Future Work

This paper presents a series of variations of Rabbit, adapted for machine learning
applications over MPC, specifically for ReLU’s, with a focus on adoption and
geared towards the needs of practitioners. We considered current state of the
art protocols for fixed point arithmetic, such as [4], together with the constant
round evaluation of Boolean circuits thanks to Zaphod [7]. We then introduce
a new protocol variation (cons ltz), a constant round LTZ version of Catrina
and De Hoogh [3], which incorporates elements from Rabbit. We accompany our
findings with thorough benchmarking.
Results show that:

i). The Rabbit variations, studied in this work, under the configurations explored
by the benchmarking, under-perform the original Catrina and De Hoogh
lsss ltz (which is the default comparison protocol in SCALE-MAMBA).

ii). Our constant round protocol, cons ltz, performs better than the Rabbit
variations presented, but it also under-performs with respect to the classical
LSSS Catrina and De Hoogh in almost all configurations.

24 Aly A. et al.

iii). Online garbling is a sufficiently strong factor, to justify the use of offline
garbling in frameworks such as SCALE-MAMBA.

iv). When compiling without round optimization, cons ltz is still better choice
than classic Catrina and De Hoogh lsss ltz. Thus, the importance of the
open source code provided with this paper.

Alternatively, future work could contemplate an implementation of the gar-
bling in the offline phase, and replacing TLS by QUIC, as this should suffice
for cons ltz to over-perform classical Catrina and De Hoogh lsss ltz.
On a lighter note, this paper also raises novel questions on the use of Boolean cir-
cuits, namely regarding circuit optimization via hardware oriented frameworks.
It offers interesting and unanswered research questions in an area under active
investigation.

Acknowledgements

Authors would like to thank Dragos Rotaru, Titouan Tanguy, Chiara Marcolla,
Eduardo Soria-Vasquez and Santos Merino, for their fruitful discussion, that
undoubtedly raised the quality of the present work.

References

1. Archer, D.W., Bogdanov, D., Lindell, Y., Kamm, L., Nielsen, K., Pagter, J.I.,
Smart, N.P., Wright, R.N.: From keys to databases – real-world applications of se-
cure multi-party computation. Cryptology ePrint Archive, Report 2018/450 (2018)
https://eprint.iacr.org/2018/450.

2. Makri, E., Rotaru, D., Vercauteren, F., Wagh, S.: Rabbit: Efficient comparison for
secure multi-party computation. In Borisov, N., Diaz, C., eds.: Financial Cryp-
tography and Data Security, Berlin, Heidelberg, Springer Berlin Heidelberg (2021)
249–270

3. Catrina, O., de Hoogh, S.: Improved primitives for secure multiparty integer com-
putation. In Garay, J.A., Prisco, R.D., eds.: SCN 10. Volume 6280 of LNCS.,
Springer, Heidelberg (September 2010) 182–199

4. Catrina, O., Saxena, A.: Secure computation with fixed-point numbers. In Sion,
R., ed.: FC 2010. Volume 6052 of LNCS., Springer, Heidelberg (January 2010)
35–50

5. Aly, A., Keller, M., Orsini, E., Rotaru, D., Scholl, P., Smart, N.P., Wood, T.:
SCALE and MAMBA documentation (2018) https://homes.esat.kuleuven.be/

~nsmart/SCALE/.

6. Keller, M.: MP-SPDZ: A versatile framework for multi-party computation. In Lig-
atti, J., Ou, X., Katz, J., Vigna, G., eds.: ACM CCS 2020, ACM Press (November
2020) 1575–1590

7. Aly, A., Orsini, E., Rotaru, D., Smart, N.P., Wood, T.: Zaphod: Efficiently com-
bining lsss and garbled circuits in scale. In: Proceedings of the 7th ACM Workshop
on Encrypted Computing & Applied Homomorphic Cryptography. WAHC’19, New
York, NY, USA, Association for Computing Machinery (2019) 33–44

https://eprint.iacr.org/2018/450
https://homes.esat.kuleuven.be/~nsmart/SCALE/
https://homes.esat.kuleuven.be/~nsmart/SCALE/

Through the Looking Glass 25

8. Damg̊ard, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure
constant-rounds multi-party computation for equality, comparison, bits and expo-
nentiation. In: Theory of Cryptography Conference, Springer (2006) 285–304

9. Escudero, D., Ghosh, S., Keller, M., Rachuri, R., Scholl, P.: Improved primitives
for MPC over mixed arithmetic-binary circuits. In Micciancio, D., Ristenpart,
T., eds.: CRYPTO 2020, Part II. Volume 12171 of LNCS., Springer, Heidelberg
(August 2020) 823–852

10. Rotaru, D., Wood, T.: MArBled circuits: Mixing arithmetic and Boolean circuits
with active security. In Hao, F., Ruj, S., Sen Gupta, S., eds.: INDOCRYPT 2019.
Volume 11898 of LNCS., Springer, Heidelberg (December 2019) 227–249

11. Keller, M., Pastro, V., Rotaru, D.: Overdrive: Making SPDZ great again. In
Nielsen, J.B., Rijmen, V., eds.: EUROCRYPT 2018, Part III. Volume 10822 of
LNCS., Springer, Heidelberg (April / May 2018) 158–189

12. Hazay, C., Scholl, P., Soria-Vazquez, E.: Low cost constant round MPC combining
BMR and oblivious transfer. In Takagi, T., Peyrin, T., eds.: ASIACRYPT 2017,
Part I. Volume 10624 of LNCS., Springer, Heidelberg (December 2017) 598–628

13. Damg̊ard, I., Nielsen, J.B.: Universally composable efficient multiparty computa-
tion from threshold homomorphic encryption. In Boneh, D., ed.: CRYPTO 2003.
Volume 2729 of LNCS., Springer, Heidelberg (August 2003) 247–264

14. Aly, A., Abidin, A., Nikova, S.: Practically efficient secure distributed exponentia-
tion without bit-decomposition. In Meiklejohn, S., Sako, K., eds.: FC 2018. Volume
10957 of LNCS., Springer, Heidelberg (February / March 2018) 291–309

15. Atapoor, S., Smart, N.P., Alaoui, Y.T.: Private liquidity matching using mpc.
In Galbraith, S.D., ed.: Topics in Cryptology – CT-RSA 2022, Cham, Springer
International Publishing (2022) 96–119

16. Aly, A., Smart, N.P.: Benchmarking privacy preserving scientific operations. In
Deng, R.H., Gauthier-Umaña, V., Ochoa, M., Yung, M., eds.: ACNS 19. Volume
11464 of LNCS., Springer, Heidelberg (June 2019) 509–529

17. Wang, X., Ranellucci, S., Katz, J.: Authenticated garbling and efficient maliciously
secure two-party computation. In Thuraisingham, B.M., Evans, D., Malkin, T.,
Xu, D., eds.: ACM CCS 2017, ACM Press (October / November 2017) 21–37

18. Smart, N.P., Wood, T.: Error detection in monotone span programs with appli-
cation to communication-efficient multi-party computation. In Matsui, M., ed.:
CT-RSA 2019. Volume 11405 of LNCS., Springer, Heidelberg (March 2019) 210–
229

19. Lipmaa, H., Toft, T.: Secure equality and greater-than tests with sublinear online
complexity. In Fomin, F.V., Freivalds, R., Kwiatkowska, M.Z., Peleg, D., eds.:
ICALP 2013, Part II. Volume 7966 of LNCS., Springer, Heidelberg (July 2013)
645–656

20. Canetti, R.: Security and composition of multiparty cryptographic protocols. Jour-
nal of Cryptology 13(1) (January 2000) 143–202

21. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W.,
Jackel, L.D.: Backpropagation Applied to Handwritten Zip Code Recognition.
Neural Computation 1(4) (12 1989) 541–551

22. Makri, E., Rotaru, D., Smart, N.P., Vercauteren, F.: EPIC: Efficient private image
classification (or: Learning from the masters). In Matsui, M., ed.: CT-RSA 2019.
Volume 11405 of LNCS., Springer, Heidelberg (March 2019) 473–492

	Through the Looking-Glass:Benchmarking Secure Multi-Party Computation Comparisons for ReLU's

