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Abstract. Comparisons are an essential component of Rectified Linear
Unit functions (ReLU’s), ever more present in Machine Learning, specifi-
cally in Neural Networks. Motivated by the increasing interest in privacy-
preserving Artificial Intelligence, we explore the current state of the art in
Multi-Party Computation (MPC) protocols for privacy preserving com-
parisons. We systematize them, and introduce constant round variations
that are compatible with customary fixed point arithmetic over MPC.
Furthermore, we provide novel combinations, inspired by popular com-
parison protocols, equipped with state of the art elements. Our main
focus is implementation and benchmarking; hence, we translate our re-
sults into practice via an open source library, compatible with current
MPC software tools, showcasing our contributions. Additionally, we in-
clude a comprehensive comparative study on various adversarial settings.
Indeed, our results improve running times in practical scenarios. Finally,
we offer conclusions about the viability of these protocols when adopted
for privacy-preserving Machine Learning.

Keywords: Secure Multi-Party Computation · ReLU Functions · Ap-
plied Cryptography.

1 Introduction

Secure Multi-Party Computation has continued to evolve through the years, be-
coming more practical and useful. This is specially true in the last few years,
when fundamental results have considerably reduced computing times. It was
just logical for researchers to start asking questions regarding how they can build
useful applications. New results followed, introducing novel ways to achieve basic
functionalities for the vast array of applications that could make use of MPC.
Among them, new ways to interpret rational numbers, via fixed point arithmetic,
and how to perform inequality tests (INQ).

MPC has been considered as a viable option for many modern applica-
tions [1]. Among them, Privacy Preserving Machine Learning (PPML) has gath-
ered attention due to the strong privacy requirements from machine learning
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model owners and clients. This has highlighted the need for faster performing
protocols for a variety of different tasks, especially for comparisons and fixed
point arithmetic. We can name for instance, the contributions from Makri et
al [2] and Catrina and De Hoogh [3] on INQ and, Catrina et al. [4] on fixed point
arithmetic. Building blocks, that are indispensable tools to implement activation
functions such as ReLU’s, which are basic components in modern neural network
architectures.

Modern Multiparty frameworks, such as the popular SCALE-MAMBA [5] or
MP-SPDZ [6], already incorporate some of these results, (specifically [3, 4]). The
aim of these tools is to give developers the opportunity to build and deploy ap-
plications that incorporate state of the art MPC. In this work, we continue these
efforts and provide researchers and implementers with a more complete view of
the state of the art INQ protocols. Among them, the results from Makri et al.,
commonly referred to as Rabbit, as well as other families of comparisons. We go
a step further and, besides the conventional flavors, we offer our own variations
and combinations, improving performance. Notice that our main interest are
the implementation of fast performing ReLU’s (for which we also include a basic
formulation in Appendix B).

Furthermore, and thanks to recent contributions of the likes of Zaphod [7],
we show how comparison protocols can be implemented in constant rounds3.

Finally, we provide implementers with the necessary tools for protocol selec-
tion. For this reason, we have included an exhaustive benchmark (under various
adversarial settings) to answer the questions: i). What do we need to implement
state of the art comparison protocols ii). How can we improve them and, iii).
What protocols perform better in the context of implementing ReLU’s mixed
with fixed point arithmetic.

1.1 Related Work

Putting aside the large existing body of work related to secure comparisons from
MPC (for instance, the seminal work from Damg̊ard et al. [8]), we focus our at-
tention on both of the most recent contributions that motivated this work, i.e.
Makri et al. [2] or Rabbit, and Escudero et al. [9] or edaBits. Both introduced com-
parison mechanisms that reduce communication complexity, by mixing Boolean
and Arithmetic circuit evaluations via edaBits. In this section we discuss some
of the key differences:

On the Elimination of Slack: One of the main contributions from Rabbit [2] is
that the protocols do not require slack (unused domain space required to achieve
statistical security). This implies, for instance, that private comparisons of 64 bits

3 Following common practice in MPC, we evaluate protocols using round complexity
as metric
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integers require a 64 bits domain. However, inequality tests (INQ) are common
tools for applications that extensively use fixed point arithmetic. The current
state of the art on the topic [4] still needs extended domains. More precisely, it
requires the presence of slack during truncation (the precision adjustment after
multiplication). Additionally, albeit slack might not be present in the protocols
for comparisons, it is still present in several protocols that are required by Rabbit,
e.g. edaBits [9]. These factors still force application designers to use larger prime
sizes. Hence, our work pursues to exploit the advantages of Rabbit whilst still
bounded to the realities of state of the art and of practical deployments.

On Round Evaluation: Our novel combinations assimilate a selection of the
most efficient elements from both Makri et al. and Escudero et al to reduce
round complexity. We also incorporate Zaphod as means to achieve constant
round complexity (via the multiparty garbled circuit evaluation of boolean com-
ponents). For instance, mixing the protocol structure used by Catrina and De
Hoogh [3], with the bitwise LTEQZ (Less Than Equal to Zero) test explored by
Rabbit and daBits 2.0 (simply referred to as daBits in this work) as required by
Zaphod, to sample randomness.

Tool Selection: We pursue to produce comparison protocols compatible with
commonly used results for fixed point arithmetic [4] and circuit evaluation, i.e.
Zaphod. Both of which are only present in SCALE-MAMBA. To the best of our
knowledge, MP-SPDZ currently does not implement conversion between their BMR
and LSSS processors.

1.2 Our Contributions

- We present a series of constant round variations and adaptations of the
privacy preserving comparison protocols, introduced by Makri et al. [2]. Our
designs are focused on the implementation of ReLU’s in the context of fixed
point arithmetic. We introduce, implement and benchmark three different
flavors using, in the two first instances, techniques succinctly mentioned by
the authors, but not fully explored. Let q be a sufficiently large prime e.g.
128 bits, then the variations are namely the following:
i). Conventional Rabbit: Our closest interpretation to traditional Rabbit.

Here, bitwise sampling happens either from above i.e. ⌈log2 q⌉ or below
i.e. ⌊log2 q⌋, as suggested by the original authors. It is assumed q is close
to a power of 2. This makes Rabbit probabilistic in nature.

ii). Rejection List Rabbit: Regardless of the Fq, we sample randomness in
Z2⌈log2 q⌉ , and reject samples that are above q.

iii). Slack Rabbit: A variation of the protocol where we relax security (be-
coming statistical instead of information theoretic, from an ideal per-
spective). We do this so that it can exploit the setup of protocols that
require slack to instantiate fixed point representation.

- Much in the style of Escudero et al. [9], we adapt and optimize the commonly
used comparison construction of Catrina et al. [3], more precisely:
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i). We transform it into a constant round construction, thanks to Aly et al.
Zaphod [7] and Hazay et al. [HSS17] [10];

ii). we replace the fundamental bitwise less than (LT) construction, by the
recently introduced bitwise, less than equal (LTEQ) protocol from [2] and;

iii). we incorporate share conversion when needed.
- A thorough benchmark aimed towards implementers. It includes the Rabbit
constructions and results from above, and the optimized comparison protocol
for ReLU’s from [2]. We also consider different compilation styles4 (VHDL
to Bristol Fashion) of the same bitwise LTEQ circuit, including:
i). AND XOR′s: The circuit as presented in [2], mixing xor with and gates

to benefit from free-xor.
ii). AND NOT′s: The same circuit as it would be typically derived by com-

monly used synthesizers. The circuit in this case, is entirely made of
and mixed with not gates.

- We give special emphasis to Usability. Hence, we provide open source
ReLU and comparison libraries on publicly available repositories, written
for SCALE-MAMBA.

1.3 Outline

This work is structured as follows: In Section 1, we present the main motivations
for this work as well some basic comparison with the state of the art. Section 2,
introduces some generalities needed for understanding our contributions. Sec-
tions 3 and 4 explore our novel Rabbit and non-Rabbit protocol combinations.
Finally, we include an extensive benchmarking on Section 5 and some further
discussion and our conclusions in Section 6. We have also included comprehen-
sive Annexes, explaining in detail the background and inner workings of Rabbit
and of our privacy preserving ReLU protocol.

2 Preliminaries

2.1 Notation

Let q be a sufficiently large prime such that: i). It can instantiate the under-
lying MPC protocol; ii). Supports fixed point arithmetic with a public bitwise
precision p and; iii). Allows for a sufficiently large statistical security parameter
sec.

We make use of the same integer representation employed by the existing
tooling, e.g. SCALE-MAMBA and MP-SPDZ. That is, we identify the finite field Fq

with the centered (integer) interval [− q−1
2 , q−1

2 ) ∩ Z and similarly, the ring Z2k

with [−2k−1, 2k−1) ∩ Z, often assumed to be k = 64.
We encode any negative number x on Fq as: q − |x|, e.g. −1 becomes q − 1.

In Z264 , we use a similar formulation 264 − |x| e.g. 264 − 1. Because of the re-
quirements of fixed point arithmetic, a typical mantissa of 40 bits would require

4 Note that, as stated in Zaphod, SCALE-MAMBA adjusts the number of rounds (based
on the circuit depth) when the setup is honest majority, instead of Full Threshold.
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larger q’s, in this case, of at least 121 bits as we see later on. Note that the sizes
of the 2 domains are vastly different. We choose this homogenic representation,
albeit it complicates the design of protocols of this kind, as this is more in line
with the available tooling.
Additionally, we differentiate between secret shared fixed point elements (⟨x⟩)
and secret integers ([[y]]), by the use square brackets. Integers can be shared in
both Fq and Z2k , whereas fixed points only in Fq.
Inputs on Fq, can be expressed, either implicitly ([[x]]) or explicitly ([[x]]q). Whereas,
inputs base 2k, are explicitly indicated by using the suffix 2k i.e. [[x]]2k . Values
on F2 follow the same principle, and use the explicit suffix 2 i.e. [[x]]2.
More precisely, we adopt the fixed point representation introduced by Catrina
and Saxena [4] used by, among others, SCALE-MAMBA and MP-SPDZ. Let [[v]] be a
mantissa bounded by some 2l, and p the bitwise fixed point precision. We can
have a secret shared fixed point number ⟨x⟩, such that:

⟨x⟩ = [[v]] · 2p mod q. (1)

For simplicity and w.l.g. we also assume l = 40 bits. This way multiplications
can be supported whilst using typical prime size selections, e.g. a 128 bits prime.
This is because the bitsize of the multiplication (before truncation), doubles i.e.
80 bits. Furthermore, extra sec bits (typically sec = 40), need to be added as
well. This comes from the probabilistic truncation protocol introduced in [4].
Hence, in regards to the field size, q should be much larger than 22·l+sec for Fq.
Finally, following convention, constants and vectors are uppercased. For com-
pletness, in this work we differentiate our protocols security parameter κ from
sec. However, in practice they are the same.

2.2 Arithmetic Black Box

To simplify the theoretical analysis of our constructions, we abstract the un-
derlying MPC protocols via an ideal arithmetic black box (FABB). The orig-
inal concept was introduced by [11] and it is flexible enough to allow exten-
sions. This technique has been commonly used by other applications in the area
e.g. [8, 12, 13]. Furthermore, it has been employed by works of similar nature,
with an emphasis of implementation e.g. [14]. In our case, the extensions cor-
respond to (ideally extendable): fixed point arithmetic functionality and, a set
of complex building blocks. We also specify the UC secure [15] realizations, we
based this functionality from. We define our arithmetic black box, or FABB , as
specified in Table 1.

Invoking Rabbit (rabbit sint([[y]])): For simplicity, we provide an encapsula-
tion of the invocation of Rabbit. The method is just an abstraction tool, for the
invocation of any of the variations of Rabbit presented in this work. The method
simply extracts the system parameters and then invokes any desired Rabbit con-
struction. Let sint be a register type for elements in Fq, then construction can
be simply expressed as indicated by Figure 1.
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Functionality Description Rounds Prot.
x← [[x]] Opening secret field element 1 -
[[x]]← x Storing public input in a secret field ele-

ment
1 -

[[z]]← [[x]] + [[y]] Addition: of secret inputs 0 -
[[z]]← [[x]] + y Addition: (mixed) secret and public in-

puts
0 -

[[z]]← [[x]] · [[y]] Multiplication: of secret inputs 1 -
[[z]]← [[x]] · y Multiplication: (mixed) secret and public

inputs
0 -

⟨z⟩ ← ⟨x⟩+ ⟨y⟩ Addition: secret fixed point 0 -
⟨z⟩ ← ⟨x⟩+ y Addition: (mixed) secret and public fixed

point
0 -

⟨z⟩ ← [[x]] + ⟨y⟩ Addition: secret fixed point with secret
input

0 -

⟨z⟩ ← ⟨x⟩ · ⟨y⟩ Multiplication: secret fixed point 2 [3, 4]
⟨z⟩ ← ⟨x⟩ · y Multiplication: (mixed) secret and public

fixed point
1 [3, 4]

⟨z⟩ ← [[x]] · ⟨y⟩ Multiplication: secret fixed point with se-
cret input

2 [3, 4]

—Complex Building Blocks—
[[r]]q, [[R]]q, [[r]]2k , [[R]]2 ←

get r from dabits list(size)
Returns daBits list of size size, and their
respective combination.

0 trivial

[[R]]q, [[R]]2 ← get dabits list(size) Returns vector of daBits of size size. 0 trivial
[[r]]q, [[r]]2k ←

combine dabits([[R]]q, [[R]]2)
Returns vector combinations of [[R]]q ,
[[R]]2, daBits.

0 trivial

[[rκ]]← PRandInt(size) Returns some randomness in [0, 2size). 0 [3, 4]
[[x]]q ← conv sint([[y]]2) Conversion from Z2 to Fq . 1 [5, 7, 16]
[[c]]q ← rabbit sint([[y]]) Rabbit encapsulation routine. 4 This Work
[[c]]q ← bitwise lteq([[y]]q) bitwise LTEQZ circuit evaluation, realized

via Zaphod.
2 [2, 7]

Table 1: Secure Arithmetic operations provided by the FABB .

Arithmetic Black Box in Practice. The abstraction, albeit useful, from a
theoretical perspective, meets some limitations in practice. In reality an imple-
menter has to adjust to what is provided by the tooling, e.g. SCALE-MAMBA. MPC
frameworks of this kind, tend to operate storing secret and public inputs, in the
form of registers. Frameworks also include a selection of instructions (RISC
and CISC), to interact with these registers. In the most ambitious setting,
our constructions require constant round evaluation of Garbled Circuits (hence,
Boolean Circuits), mixing them with arithmetic operations over Full Threshold,
using LSSS protocols such as Low Gear Overdrive [17] (a member of the SPDZ’s
family of protocols). Zaphod [7] achieves this, allowing us to combine a variation
of [10,18], for modulo 2 arithmetic, and [17] on modulo q via daBits 2.0. As men-
tioned, SCALE-MAMBA, is the only framework currently available, implementing
Zaphod, hence the one used by this work.

On the Conversion Z2 ← Fq (conv sint([[y]]2)): Just in the same way the results
from Rabbit [2], the protocols in this work return results on F2. However they
can be trivially converted to Fq, by using a single daBit. This process is also
explained in SCALE-MAMBA’s documentation, and is derived from [16]. Let [[y]]2
be a secret element in F2. We locally calculate the xor , between a fresh daBit
(modulo 2) and [[y]]2. We then, simply open the result and xor the result again,
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rabbit sint([[x]])
1 //instantiate vector params

2 //with system parameters for default rabbit mode.

3 PARAMS[] := get_system_params(rabbit.mode);

4 c := rabbit.mode(PARAMS, x);

5 return: type(c) != sint ? conv_sint(c): c;

Fig. 1: Rabbit Encapuslation

just that this time with the daBits modulo q. The process requires a single round.
We refer the reader to [5], for a more detailed description.

2.3 ReLU

Rectified Linear Unit functions are simple activation functions, popular in deep
learning. They are of special interest for PPML, given that their linearity, makes
their performance more competitive versus sigmoidal functions. A ReLU can be
defined as follows:

ReLU(x) =

{
0 for(x < 0);

x for(x ≥ 0).
(2)

From this definition, It is clear that a ReLU can be derived from any LTEQZ
protocol. For context, a ReLU activation layer is part of a whole Neural Net-
work architecture, composed of linear transformations, folding layers and more
complex activation functions frequently based on exponential operations (e.g.
sigmoid or softmax). Thus, the LTEQZ protocol adopted for ReLU’s must be
compatible with the MPC protocols supporting the operations for the other
layers. This implies slack and fixed point arithmetic [4].

3 Ad(a/o)pting Rabbit

We explore our novel protocol combinations and discuss various aspects, neces-
sary for their adoption in practice. For a complete revision on the definitions of
Rabbit that are used in this section, we kindly refer the reader to Appendix A.

3.1 Inequality Tests

Our main interest is the implementation of Less than Equal Zero (LTEQZ) tests.
By using LTEQZ we can trivially instantiate any other form of INQ test. We can
define the problem as follows:

LTEQ(x, 0)→ LTEQZ(x) : Z→ {0, 1} ⊆:

{
LTEQZ(x) = 1 if(x ≤ 0);

LTEQZ(x) = 0 otherwise.
(3)
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3.2 Rabbit for Fixed Point

Let us consider one of the main protocols introduced by [2]. The basic test
against a constant value. In this section, We discuss 3 flavors of such protocol,
including one novel slack based version, later in this section.

Conventional Rabbit Following the discussion from Marki et al. [2]: Consider
the sampling distribution of the random masks the protocol uses. It is clear,
that the vanilla Rabbit construction, as presented by the authors cannot achieve
perfect security,5 when implemented over Fq. To address this, authors succinctly
mentioned possible alternatives, namely: i). selecting a prime close to a power of
2 and, ii). the use of a rejection list for sampling. We, therefore, provide our own
understanding of these 2 scenarios, and present constant round protocol flavors
of both cases:

Probabilistic (Statistical Security): We propose a version of Rabbit, in line
(as is) with the original contributions outlined by [2]. Hence, this is the most
basic of the constructions shown in this work. It is our interpretation of the
author’s original intent. The main difference being, the use of constant round
building blocks and the adaptations we put in place for the domain shifting.
Notice that the selection of the prime field Fq is of importance. For security
reasons, it has to be close to a power of 2. This is motivated by the fact that, as
indicated by the original work [2], the gap defined as |q − ⌈log2(q)⌉| affects its
security. We take this into account in our implementation and benchmarking.
Furthermore, depending on the implementation, it could also affect correctness
given that oversampling of the bitwise mask could cause incongruousness, i.e.
sampled randomness is bigger than q causing discrepancies between its value in
Fq and its bit expansion. Our design addresses this latter concern as well.

Correctness: The protocol is correct, as demonstrated by [2]. We revise these
principles on Appendix A. We also control for oversampling.

Complexity: Complexity is constant, with 2 parallel invocations of bitwise lteq,
which translates into 2 rounds. We also have to take into account 1 opening in
line 9. Note that the result given is modulo 2, hence an extra round for con-
version is required, adding up to 4 rounds in total. This last step is critical, to
operate on fixed point arithmetic.

Discussion: As noted in previous sections, we deal with the domain shift, by
adding R, in places such as line 13. Besides this, and for implementation purposes,
we have to trivially adapt the protocol so that it can discard/reduce a bit from
the randomness sampling. We also include some specificities from SCALE-MAMBA,
e.g. (cint invocation to transform input to a SCALE-MAMBA register). Security

5 Furthermore, in practice realizations of the underlying protocols for share conversion,
can only achieve statistical security.
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Protocol 1: Simple Rabbit (rabbit fp)

Input: The prime: (q), the prime flag: (above), and
secret input: ([[x]]q).
Output: secret shared LTEQZ (x) in F2

Pre:
1 k = int(⌊log2(q)⌋) + 1; // int converts to integer

2 R = ⌈(q − 1)/2⌉
3 if above == 1 then
4 [[r]]q, [[R]]q, [[r]]2k , [[R]]2 ← get r from dabits list(k);
5 else
6 [[R]]q, [[R]]2 ← get dabits list(k− 1);
7 [[r]]q, [[r]]2k ← combine dabits([[R]]q, [[R]]2);

Pos:
8 [[a]]← ([[r]]q + [[x]]q);
9 a← [[a]];

10 b = (a+ q − R);
11 [[w1]]2 ← bitwise lteq (a, [[R]]2, k);
12 [[w2]]2 ← bitwise lteq (b, [[R]]2, k);
13 w 32 = b+ R < cint(q − R) + R; //cint converts to register

14 return [[w1]]2 − [[w2]]2 + w3;
15 in return conv sint converts to Fq

Protocol 1: Rabbit for Fq with statistical security

follows directly from [2], i.e. simulation remains the same given that we do not
perform any additional opening and the FABB functionality is ideally modeled.
Thus trivially secure under composition as in the original proofs (we remind the
reader that the hybrid model allows us to replace UC secure realizations for ideal
ones [15]). This is also true for all constructions present in this work, hence we
do not come back to it later. For specificities regarding the statistical properties
of the security proof, we refer the reader to the original work in [2].

Rejection List: We extend the previous construction by modifying the sam-
pling, and incorporating a rejection list. We show how to perform this inclusion
in a way that, from an ideal perspective, gives this construction perfect security
(see [2]. We present our interpretation of Rabbit rejection list in Protocol 2.

Correctness: The correctness, once again follows from [2]. In this case, no further
adaptations to the sampling are needed, as it always returns some randomness
bounded by q. After sampling, Rabbit then proceeds as expected.

Complexity: We still have the previous 3 invocations (one opening and 2 rounds
from the parallel calls to bitwise lteq. However, because of the rejection list
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(that involves additional calls to bitwise lteq), performance depends on the
prime, where probability (ϕ) of every subsequent 2 rounds can be defined as:

ϕ =
2⌈log2(q)⌉ − q

2⌈log2(q)⌉
. (4)

Just as in previous cases, the protocol delivers an output on modulo 2. Hence 1
additional round for conversion to modulo q should be added.

Protocol 2: Rejection List Rabbit (req list)

Input: The prime: (q), word size: (k) i.e. 64,
and secret input ([[x]]q).
Output: secret shared LTEQZ (x) in F2

Pre:
1 k = int(⌊log2(q)⌋) + 1; // int converts to integer

2 R = ⌈(q − 1)/2⌉;
3 repeat
4 [[R]]q, [[R]]2 ← fill dabits array(k);
5 [[above]]2 ←bitwise lteq (q, [[R]]2, k);
6 above← [[above]]2;

7 until (above == 1);
8 [[r]]q, [[r]]2k ← combine dabits([[R]]q, [[R]]2);
Pos:

9 [[a]]← ([[r]]q + [[x]]q);
10 a← [[a]];
11 b = (a+ q − R);
12 [[w1]]2 ← bitwise lteq (a, [[R]]2, k);
13 [[w2]]2 ← bitwise lteq (b, [[R]]2, k);
14 [[w3]]2 = b+ R < cint(q− R) + R; //cint converts to register

15 return [[w1]]2 − [[w2]]2 + [[w3]];
16 //in return conv sint converts to Fq

Protocol 2: Perfect Secure Rabbit for Fq.

Discussion: As before, we incorporate elements that are relatively important
for the protocol implementation, in SCALE-MAMBA. Note that in this case, the
prime selection is also important i.e. the prime is not far below the immediate
next power of 2, as the sampling, will have a lower probability of requiring extra
rounds per execution. Security, as indicated, it also trivially follows from [2].
Moreover, as indicated in the original work, the incorporation of the rejection
list, is the only method available by which any Rabbit variation can (ideally)
achieve prefect security in Fq.

Slack Rabbit We also propose novel variation of Rabbit that reduces the sizes of
the bitwise inequality tests bitwise lteq. This significantly reduce the number
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of daBits the protocol requires whilst still working on larger q’s. We achieve
this by borrowing and adapting the randomness generation from Catrina and
De Hoogh, and mixing them with daBits. Further adaptations were required to
incorporate, among other things, shifts in the numeric domain, that originated
by the now shorter circuits, as we later explain. The protocol is described as
follows:

Protocol 3: Slack Rabbit (rabbit slack)

Input: The prime: (q), input size: (k), sec param: (κ),
and secret input: ([[x]]q).
Output: secret shared LTEQZ (x) in F2

Pre:
1 M = 2k;
2 R = ⌈ M22 ⌉ − 1;
3 [[rκ]]← PRandInt(κ);
4 [[r]]q, [[R]]q, [[r]]2k , [[R]]2 ← get r from dabits list(k);
Pos:

5 [[z]]← [[x]]q + R;
6 [[a]]← ([[r]]q + [[z]]) + [[rκ]] · 2k;
7 a← [[a]];
8 b← a+ M− R;
9 a′ = a mod 2k;

10 b′ = b mod 2k;
11 //comparisons
12 [[w1]]2 ← bitwise lteq (a′, [[R]]2, k);
13 [[w2]]2 ← bitwise lteq (b′, [[R]]2, k);
14 [[w3]] = b− cint(M+ R) < 0; //cint converts to register

15 return 1− ([[w1]]2 − [[w2]]2 + [[w3]]);

Protocol 3: Rabbit on statistical security.

Correctness: The protocol uses the same principles from Rabbit, employed by
previous protocols (see Appendix A). Note that changes were applied to the
generation of the random mask. As indicated by [3, 19], by using black box
random bit generation (via daBits 2.0), combined with PRandInt, we can build a
statistically hiding mask. At the same time, we also hold the relevant randomness
bit decomposition.

Complexity: Complexity remains the same, i.e. constant round O(1) and 4
rounds in total. The improvement comes from a reduction on the number of
daBits invocations. In this case we require k, instead of ⌈log2(q)⌉. Furthermore,
the size of the circuit used by the bitwise lteq’s invocations is reduced to k,
e.g. 64 bits.
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Discussion: The protocol begins by reconstructing some bounded randomness. It
mixes k daBits (that are later used as the bit expansion of the masked randomness
in Z2k , i.e. 64 bits) and PRandInt (on the size of our security parameter κ).
After some domain switching (see Section 2.1), which is further complicated by
the types limitations in SCALE-MAMBA (negative number encoding), the protocol
proceeds to the familiar flow of Rabbit. A relevant observation from the original
contribution, is that the bitwise comparisons can be done over the domain i.e.
k, rather than q. A fact that we exploit on lines 12) and 13). Security analysis
is also trivial, as it follows directly from the discussion on [3,19].This is also the
case for the statistical properties of the mask.

3.3 Optimized Rabbit for ReLU ’s

For completeness we also explore the optimized comparison protocol designed
specifically for ReLU’s from Makri et al. [2]. Authors imagine scenarios where,
w.l.g., the 64 bits domain coincides with the ring size. The protocol itself is
quite different to the constructions we present in this paper. In fairly general
terms it can be summarized as follows: The protocol proposes challenges when

1. Conversion of some secret [[x]]q to modulo 2k (if needed).
2. Extract the MSB from [[x]]2k .
3. Interpret and return the MSB as the result of the comparison.

used in the context of the applications explored by this work. More precisely, to
make it compatible with Fq, and with the results from Catrina and Saxena [4]
(fixed point arithmetic), we have to rely on the rather expensive Fq to Z264

conversion primitive from Zaphod6. We have implemented this variation as well
for benchmarking purposes. We call our construction rabbit conv.

4 Constant Round Catrina and De Hoogh

In this section, we explore our constant round adaptation of the commonly used
LTZ formulation from Catrina and De Hoogh [3], combined with some of the en-
hances introduced by Rabbit. More formally, we present 2 protocols to: Solve the
modulo 2m of any secret shared input and then, an oblivious LTZ construction
based on the former.

6 The details of the conversion and its development are also explored in detail in
SCALE-MAMBA.
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4.1 Modulo 2m (mod2m)

We start, by discussing our mod2m construction, in Protocol 4. It reflects the same
process flow of its namesake protocol from Catrina and De Hoogh [3]. However,
we introduced some notable changes:

- Randomness: We sample the random mask using daBits, in the first k
bits, instead of the construction from [8]. A notable difference with other
adaptation efforts i.e. [9] is that we can make use of PRandInt(k′) to generate
the slack.

- Bitwise INQ: We replace the original bitwise LTZ provided by Catrina and
De Hoogh, by the low complexity LTEQZ test provided by Rabbit. This
change forces us to further adapt the protocol so that it can still mimic the
original result.

- Conversion to Fq: The result of the bitwise comparison is obtained via
Garbled Circuits, with an output on Z2. Hence, we invoke conv sint([[x]])
to transform the result back to Fq.

Protocol 4: constant round mod 2m (mod2m)

Input: the bitlength of inputs:(k), a power of Two: (m), sec param:

(κ), and secret input: ([[x]]p).
Output: secret shared LTZ (x) in Fq

Pre:
1 // size of κ + non dabits bits,

2 // if any e.g. 40 + 1

3 k′ = k+ κ− m;
4 [[rκ]]← PRandInt(k′);
5 [[r]]q, [[R]]q, [[r]]2k , [[R]]2 ← get r from dabits list(m);
6 [[r]]q = [[r]]q + 1;

Pos:
7 [[a]]← 2k−1 + [[r]]q + [[x]]q + [[rκ]] · 2m;
8 a← [[a]];
9 a′ = a mod 2m;

10 [[w]]2 ← bitwise lteq (a′, [[R]]2, k);
11 [[w]]q ← conv sint([[w]]2) ;
12 return a′ − [[r]]q + (2m) · [[w]]q;

Protocol 4: Constant round Catrina and De Hoogh mod 2m .

Correctness: Correctness follows directly from Catrina and De Hoogh [3]. Note
the change of the bitwise INQ test, from an LTZ to LTEQZ (on line 6 ). To obtain
the equivalent behaviour, we add a 1 to the value that is secretly contained in
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[[r]]q. This small change propagates to a. As a result, the composition of a′ is
altered i.e. [[r]]q + 1 instead of [[r]]q. This change suffices for a′ ≤ [[r]]q to match
the expected behaviour. Besides the LTEQZ, other changes introduced to the
protocol are orthogonal to its correctness.

Complexity: The protocol has a constant round complexity, similar to other
protocols studied in this paper (4 rounds). An opening, 1 invocation of a GC
circuit (2 rounds), and a 1 extra round for the conversion in line 11. Hence,
results are delivered in Fq, hence no further changes are required.

Discussion: Protocol keeps the basic and simple flow, that made it so popular
to use with fixed point values. Security and the statistical properties of the mask
trivially follow from [3]. Once again, the simulation is the same, given that there
are no additional openings, and the generation of the random mask and conver-
sion are modeled as ideal functionalities. As a technical observation, we could
envision a circuit that merges line 10, and line 11, and thus further reducing
the round count by 1. Finally, in practice, this means that the typical 40 bits of
security present in frameworks such as SCALE-MAMBA can remain unchanged.

4.2 Catrina and De Hoogh Constant Round LTZ (cons ltz)

We can now make use of our mod2m construction to build the INQ protocol
introduced by Catrina and De Hoogh. For simplicity, we synthesize their results
and produce a single protocol, replacing the modulo 2k invocation by our own
mod2m. Traditionally, Catrina and de Hoogh construction returns LTZ. We notice,
however, that it can be trivially adapted to return a LTEQZ (reverting the input
size and negating the output). The Protocol can be constructed as follows:

Protocol 5: constant round LTZ (cons ltz)

Input: the bitlength of inputs:(k) sec param: (κ), and secret
input: ([[x]]q).

Output: secret shared LTZ (x) in Fq

1 [[x′]]← mod2m (k, k − 1, κ, [[x]]);

2 [[z]] = [[x]]−[[x′]]
2m mod q;

3 return −[[z]];

Protocol 5: Constant round Catrina and Hoogh.

Correctness: It follows directly from [3]. Note we have replaced some elements
in the mod2m construction, namely the bitwise INQ test. However, as previously
stated the behaviour does mimic the original. This protocol can be seen as the
integration of the truncation and the LTZ primitives introduced by Catrina and
De Hoogh.
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Complexity: It is bound to mod2m. As it does not feature any additional opera-
tion that require round based computations, it is just 4 rounds. Its complexity
matches all Rabbit constructions introduced in this work. However, we reduce
the number of invocations of bitwise lteq to 1.

Discussion: The protocol description is meant to be intuitive and simple. It can
also be trivially adapted to derive a probabilistic truncation protocol. Security
follows directly from mod2m, as there are no other openings originated by the
protocol. As a reminder, simulation in this case is trivial (hybrid model [15]),
given that, there is no opening and we only compose it with ideal functionalities.

5 Benchmarking

In this section, we provide a performance evaluation geared towards imple-
menters of our results and other protocols. The section also provides details
of our testing environment and our prototype.

5.1 Prototype

Our implementation was built on top of SCALE-MAMBA version 1.13 and it is
compatible with version 1.14. This open source framework is well maintained and
it has an active community of developers behind it. Furthermore, it is used for
experimentation by various applications, including on topics related to machine
learning [14, 20]. On setups, the framework offers several protocol flavours that
can be combined with Boolean circuit evaluation thanks to Zaphod. We are
particularly interested in two: i). Low Gear Overdrive, a member of the SPDZ’s
family [17], what we call from this point forward Full Threshold configuration
(FT) and ii). A custom made SCALE-MAMBA adaptation to evaluate the case when
Garbling is done Offline, as intended in HSS17 [10] and referred to as FT(OG).
For completeness, we have included also the SCALE-MAMBA Shamir based protocol
from Smart and Wood [21], simply referred to as Shamir. Note that Garbled
Circuits via HSS17 can only be used in combination with FT setups. It is worth
commenting that there are no high level functionalities available in MAMBA related
to daBits (except the instruction itself). Hence, our prototype required to build
all the daBits apparatus described by our FABB . More formally, our prototype
comprises of the following:

- Extensions to library.py, for random sampling using the daBits instruction.
- Extensions to comparison.py, where we incorporate bitwise lteq con-
structions using Z2 instructions, i.e. reactive.

- Two precompiled VHDL circuit versions of bitwise lteq (Bristol Fashion).
We add few minor manual edits to conform to circuit design. They were
generated via the limited tooling already available in SCALE-MAMBA. Both
target rabbit slack and cons ltz (our fastest protocols), note that they
make use the GC instruction in 64 bits. More precisely:
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i). AND XOR: Circuit from [2] as is. Convenient for [HSS17] [10]7.
ii). AND NOT: With a simple depth reduction. Convenient for LSSS [21]7.

- Library rabbit lib.py. Implements all INQ tests described in this paper.
- Library relu lib.py. Implements variations of ReLU’s, specifically for Ma-
chine Learning, including 2 and 3 dimensional ReLU’s.

- Extensive test programs for all the functionality presented/required by this
work.

For completeness, we have also incorporated in our benchmarking the original
LTZ from Catrina and De Hoogh [3], which is already present in SCALE-MAMBA.
This protocol works exclusively over LSSS in Fq. In our tests, we refer to this
protocol as lsss ltz.
Finally, we note the prototype is fully available as open source 8.

Performance Evaluation Setup: Our test bed comprises up to 5 locally managed,
physical servers connected with Gigabit LAN connections. Each one has a static
fixed memory allocation of 512 GB of RAM memory. All servers are equipped
with 2 Intel(R) Xeon(R) Silver 4208 @ 2.10GH CPUs. All machines are run-
ning Ubuntu 18. The approximate default ping time is 0.15 ms. This allows
us to control network conditions by tuning latency via /sbin/tc. In terms of
SCALE-MAMBA configuration (default), a prime q of 128 bits, with sec = 40, a
matching κ and a k = 64 for all our protocols. The size of the mantissa for fixed
point is 40. It is also worth commenting that all times (expressed in ms) in our
performance evaluation correspond exclusively to the online phase.

It is important to note that the setup considers the smallest party subsets
supported by by Smart and Wood [21] and Hazay et al. [10] i.e. 3 and 2 parties,
respectively. Any further party setup can be trivially extrapolated.

5.2 Results

Table 2 shows the performance evaluation in one machine, with no real com-
munications. Time complexity is entirely dominated by computation costs. As
expected, Shamir outperforms FT in all the protocols. This is due to the ex-
tra costs related to operating with information theoretic macs, circuit garbling
and evaluation. On the other hand, the LSSS version of Catrina and De Hoogh
(lsss ltz) remained mostly the same in both configurations. This is because it
does not require Garbled Circuits. It is worth noting that Rabbit rejection list
req list, Rabbit with conversion rabbit conv and simple Rabbit rabbit fp

protocols significantly underperform the rest. This phenomena is due to the
large size of their corresponding circuits for the evaluation of Fq elements.

Regarding the circuit choice, AND XOR underperfoms AND NOT on Shamir. This
is explained by the higher circuit depth, which translates into more rounds
(see [5]). On the other hand, for FT there is no meaningful difference between

7 See SCALE-MAMBA documentation.
8 https://github.com/Crypto-TII/beyond_rabbit

https://github.com/Crypto-TII/beyond_rabbit
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Table 2: Performance evaluation (ms) in one machine

Protocol Circuit
No Comms

Shamir FT FT(GO)

rabbit slack AND NOT 2.3 8.5 1.4

cons ltz AND NOT 1.3 4.2 1.2

rabbit slack AND XOR 3.1 8.1 1.3

cons ltz AND XOR 1.5 4.0 1.0

rabbit conv - 8.4 12.7 -

req list - 44.0 119.7 -

rabbit fp - 30.7 64.0 -

lsss ltz - 1.7 1.8 -

Table 3: Performance evaluation (ms) with 2/3 machines (FT / Shamir)

Protocol Circuit
D=10ms D=20ms

Shamir FT FT(GO) Shamir FT FT(GO)

rabbit slack AND NOT 623.1 297.6 124.7 1236.2 577.2 245.1

cons ltz AND NOT 317.7 148.6 62.6 627.7 289.1 122.7

rabbit slack AND XOR 1031.5 295.7 124.7 2045.2 575.2 244.6

cons ltz AND XOR 522.0 148.6 62.5 1033.0 288.1 122.5

lsss ltz - 74.9 75.2 - 144.9 144.6 -

both circuits when applied in both rabbit slack and cons ltz, given their small
size(≈ less than 200 gates). From the results it is also clear that our variation of
Catrina and De Hoogh (cons ltz) outperforms the original lsss ltz on Shamir.
However, this is the opposite on FT, mainly due to the time spent for garbling in
cons ltz. This is clear when observing the results for the case when the garbling
is done offline, i.e. FT(GO). In such case, the proposed cons ltz is noticeably
more efficient than lsss ltz (and slightly more efficient than rabbit slack).

Table 4 shows the results when the protocols run on several machines with
real communications. Specifically, with two different latencies 10ms and 20ms
(one-way latency). We restrict the evaluation to rabbit slack, cons ltz and
lsss ltz since the other Rabbit versions are clearly less efficient. Results show
that rabbit slack and cons ltz are more affected by delay on Shamir than on
FT. Indeed, with only 10ms delay, FT configuration becomes faster than Shamir.
This is explained by the fact that Shamir incurs in more communication rounds
for circuit evaluation.

When considering the case for garbling offline our proposed cons ltz outper-
forms all other protocols, including lsss ltz. This result is consistent for both
latencies 10ms and 20ms, and it also the case for no communications (Table 4).

In the case of the FT configuration, lsss ltz is faster than its counter-
parts. Increasing the delay does not favour cons ltz over lsss ltz. This may
be counter-intuitive, since lsss ltz has 7 rounds and cons ltz only 4, hence
increasing the latency should render cons ltz more efficient. However, this is
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not the case because the TCP throughput is affected by latency and the quantity
of transmitted data is higher in cons ltz than in lsss ltz. The intuition when
implementing MPC protocols dictates that higher latency favours protocols with
lesser rounds. This is not necessarily the case when the communication channel
implements TCP (or TLS if it is a secure channel), because TCP throughput is
heavily affected by latency and packet loss rate. This is due to TCP’s congestion
control mechanisms and slow start procedure. To solve this, framework design-
ers could apply secure communications protocols based on UDP, such as QUIC,
since UDP throughput is unaffected by latency. Although such profound change
falls out of the scope of this work, we believe it as an interesting unexplored
research line. Hence, we strongly encourage framework developers, namely for
SCALE-MAMBA and MP-SPDZ, to incorporate it in future releases.

5.3 Practical Scenarios

Realistically, frameworks such as SCALE-MAMBA rely on circuit optimizers to re-
duce the number of communication rounds during compilation time. Without
them, round complexity for the Catrina and de Hoogh (lsss ltz) protocol in-
creases drastically. Namely, the construction requires as many rounds as multi-
plications which, for a 128 bit prime implies 121 rounds instead of 7. It has to be
stressed that because of their nature, optimizers require to load the dependency
graph to memory, becoming impractical for large circuits e.g. neural networks
(see [5]). In such scenarios, cons ltz (with AND NOT) becomes the far better al-
ternative in all configurations. We tested this case by compiling the comparisons
without such optimizations9. We show this results in Table 4. While cons ltz

is unaffected by this new configuration, lsss ltz’s performance is significantly
impaired.

Table 4: Performance evaluation (ms) with 2/3 machines (FT / Shamir)

Protocol Circuit
No Comms D=10ms D=20ms
Shamir FT Shamir FT Shamir FT

cons ltz-O1 AND NOT 1.3 4.6 317.8 148.6 627.7 289.2

cons ltz-O1 AND XOR 1.6 3.9 522.1 148.6 1033.0 288.2

lsss ltz-O1 - 4.1 4.0 1243.8 1238.8 2453.8 2449.2

6 Conclusion, Discussion and Future Work

We presented a series of variations and novel combinations of Rabbit and other
comparison protocols for MPC, with ReLU’s in mind. Our results are compatible

9 We achieve this via the -O1 compilation flag, as recommended by the SCALE-MAMBA

documentation [5]
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with the current state of the art for fixed point arithmetic( [4]) and, constant
round evaluation of Boolean circuits thanks to Zaphod [7]. We accompany our
findings with thorough benchmarking and provide an open source implementa-
tion. Our results show that:

i). The conventional Rabbit variations studied in this work underperform our
novel slack based formulation. Furthermore, our constant round protocol,
cons ltz, performs better than all Rabbit variations presented in all settings.

ii). As latency increases, all constructions perform worse than the original Cat-
rina and De Hoogh lsss ltz when Garbling is done Online.

ii). Our cons ltz performs better than classical LSSS Catrina and De Hoogh
and any other protocol when Garbling is performed Offline. This is true for
all latency configurations.

iii). When compiling without optimizations, cons ltz and rabbit slack are a
far better choice (by orders of magnitude) than classic Catrina and De Hoogh
lsss ltz under any setup i.e. Shamir, FT and FT(OG). This is specially
relevant for Machine Learning, due to the severe compiler limitations of
SCALE-MAMBA for large circuits.

Regarding future work, we believe that the use of QUIC can be an interesting
avenue of research for framework developers. Notice that this work also raises
novel questions regarding the process of compiling Boolean circuits i.e. Circuit
optimization via hardware oriented synthesizers.
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A Rabbit Definitions

A.1 The problem

A majority of previous results have proposed mechanisms for comparison, mainly
based on bit decomposition. Such constructions tend to be expensive in terms of
multiplicative depth. In general terms, they are compatible with both MPC and
Homomorphic Encryption (HE) schemes. They also tend to be sublinear with
some associated non-negligible constant cost. An example of this, is the seminal
work from Damg̊ard et al. [8] previously mentioned by this work.
To solve this issue, the literature has proposed to relax the security model, as
a trade-off for efficiency e.g. [3, 19]. The principle is to reduce the impact of bit
decomposition in exchange of security under statistical constraints, i.e. statistical
security. This statistical security should not be confused with cryptographic
security, and it rather relates to the probability distribution over masked inputs.

A.2 The Rabbit Principle

The method itself is based on the commutative properties of addition. It for-
mulates 2 different but equivalent equations. Generally speaking, it derives a
simplified algebraic construction comprised of 3 INQ’s, one of which relies exclu-
sively on public inputs. The other 2 depend on public inputs and secret share
precomputed randomness. Furthermore, they can be executed in parallel.
To generate randomness, Rabbit authors rely on edaBits [9] (which is exclusively
present on MP-SPDZ). For the purpose of this section, we abstract edaBits, as a
construction that allows us to generate (together with its bit expansion) some
bounded randomness in Z2k .
Let ZM be some commutative ring bounded by M ∈ Z, [[x]] and [[r]] be some
secret shared input and randomness in ZM and, R be some public element of
ZM . Then we can establish the following:

B = M −R, (5)

[[a]] = [[x]] + [[r]], (6)

[[b]] = [[x]] + [[r]] +B, (7)

[[c]] = [[x]] +B. (8)

If we observe carefully the constructions above, we can appreciate that B is
simply the complement of R. Prior discussing the algebraic elements of Rabbit,
let us now consider the following statement:

[x+ y] =

{
[[x]] + [[y]]−M · LT([[x]] + [[y]], [[x]]);

[[x]] + [[y]]−M · LT([[x]] + [[y]], [[y]]).
(9)
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Which is always true for any element of ZM . Given the equations above, we can
establish the following relations, let us start with ([[a]] +B):

[[b]] = [[a]] +B

= [[a]] +B −M · ([[a+B]] < B)

= [[x]] + [[r]]−M · ([[x+ r]] < [[r]]) +B −M · ([[a+B]] < B).

When we expand [[c+ r]] in the same fashion we can derive the following:

[[b]] = [[c+ r]]

= [[c]] + r −M · ([[c+ r]] < [[r]])

= [[x]] + [[b]]−M · ([[x+B]] < [[r]]) + [[r]]−M · ([[c+ r]] < [[r]]).

If we equate both expansions of [[b]], using [[a+B]] and [[c]] + [[r]], we can obtain
the following (after simplifications):

[[a < r]] + [[b < B]] = [[c < B]] + [[b < r]].

Let us now replace a, b and c, and express the equation above, in terms of [[x]]
and [[r]]:

[[x+ r]] < [[r]] + [[c+ r]] < B = [[x+B]] < B + [[x+ r +B]] < [[r]],

[[x+B]] < B = [[x+ r]] < [[r]] + [[x+B + r]] < B − [[x+ r +B]] < [[r]].

The INQ that we have conveniently now placed on the left of the equation,
expresses the relation between x and the complement of R. In this case the INQ
would be true, only if x is greater than R. Note that we are still working on
ZM , meaning as any excess over R would force an overflow and a subsequent
wraparound. Now, let us abuse the notation and consider R to be some public
element on ZM e.g. 0.
Given that we can freely disclose masked secret [[x]] + [[r]] without compromising
security, the equation above would finally look like:

[[x+B]] < B = (x+ r) < [[r]] + (x+B + r) < B − (x+ r +B) < [[r]].

As previously stated both inequalities can be calculated in parallel. The tests
themselves should be executed bitwise, using for instance, edaBits or any other
mean to obtain the bit decomposition offline.

B Constant Round ReLU Protocol

Our proposed ReLU construction, follows the same line of thought from previ-
ous sections. Indeed, Catrina and Saxena’s fixed point representation is heavily
interlinked with the protocol. In fact, Protocol 6, optimizes the fixed point mul-
tiplication needed by the ReLU, extracting the mantissa from ⟨x⟩.

In line with the definitions, introduced in Section 2.3. Our constant round
ReLU can be trivially implemented as follows:
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Protocol 6: constant round ReLU (relu(x))

Input: ⟨x⟩ (with a mantissa [[v]]q and precision p).
Output: secret shared relu(⟨x⟩) in Fq

1 [[v]]q ← [[x.v]]q;
2 [[c]]q ← 1− rabbit sint(v)q;

3 [[x.v]]q ← [[c]]q · [[v]]q; // zero otherwise

4 return ⟨x⟩;

Protocol 6: Constant round protocol for ReLU’s.

Complexity: The protocol has constant round complexity (O(1)). It consists of
1 round (from the multiplication on line 3), plus what is added by any selected
comparison mechanism introduced by this work i.e. 4 rounds.

Discussion: We manage to eliminate 1 invocation of PRTrunc. Note that ReLU’s
are typically surrounded by more complex fixed point operations, that do require
conventional fixed point multiplications e.g. [22] (hence the presence of slack and
an invocation of PRTrunc per multiplication gate).
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