
Cheetah: Lean and Fast Secure Two-Party Deep Neural Network Inference
(Full Version)

Zhicong Huang
Alibaba Group

Wen-jie Lu∗

Alibaba Group
Cheng Hong

Alibaba Group
Jiansheng Ding
Alibaba Group

Abstract
Secure two-party neural network inference (2PC-NN) can

offer privacy protection for both the client and the server and
is a promising technique in the machine-learning-as-a-service
setting. However, the large overhead of the current 2PC-NN in-
ference systems is still being a headache, especially when ap-
plied to deep neural networks such as ResNet50. In this work,
we present Cheetah, a new 2PC-NN inference system that is
faster and more communication-efficient than state-of-the-arts.
The main contributions of Cheetah are two-fold: the first part
includes carefully designed homomorphic encryption-based
protocols that can evaluate the linear layers (namely convo-
lution, batch normalization, and fully-connection) without
any expensive rotation operation. The second part includes
several lean and communication-efficient primitives for the
non-linear functions (e.g., ReLU and truncation). Using Chee-
tah, we present intensive benchmarks over several large-scale
deep neural networks. Take ResNet50 for an example, an end-
to-end execution of Cheetah under a WAN setting costs less
than 2.5 minutes and 2.3 gigabytes of communication, which
outperforms CrypTFlow2 (ACM CCS 2020) by about 5.6×
and 12.9×, respectively.

1 Introduction

To alleviate some of the privacy concerns associated with the
ubiquitous deployment of deep learning technologies, many
works [3, 7, 11, 18, 22, 35, 41, 43] in the past few years have
introduced cryptographic frameworks based on secure two-
party computation (2PC) [6] to enable privacy-preserving
(deep) neural network inference. The problem they are try-
ing to solve could be described as follows: A server holds a
valuable pre-trained neural network model F . The server is
willing to provide F as a service but does not want to give out
F directly. A client wants to use F to predict on her data x, but
she considers x as private information and does not want to
reveal it to the server. 2PC protocols could solve this dilemma

∗Wen-jie and Zhicong contribute equally in this work.

and fulfill both parties’ requirements: The participant(s) could
learn the inference result F(x) but nothing else beyond what
can be derived from F(x). A possible application is privacy-
preserving face recognition, where the server could identify
criminals from photos without viewing the photo contents.

Unfortunately, there still exist performance gaps between
the current 2PC-NN inference systems and real-world applica-
tions. Because of large computation and communication over-
head, those systems have been limited to small datasets (such
as MNIST and CIFAR) or simple models (e.g. with a few hun-
dreds of parameters). Recently the system CrypTFlow2 [49]
has made considerable improvements, and demonstrate, for
the first time, the ability to perform 2PC-NN inference at
the scale of ImageNet. Despite their advances, there remains
considerable overhead: For instance, using CrypTFlow2, the
server and the client might need more than 15 minutes to run
and exchange more than 30 gigabytes of messages to perform
one secure inference on ResNet50.
Our contribution. In this paper, we present Cheetah1, a se-
cure and fast two-party inference system for deep neural net-
works (DNN). Cheetah achieves its performance via a careful
co-design of DNN, lattice-based homomorphic encryption,
oblivious transfer, and secret-sharing. Cheetah contributes a
set of novel cryptographic protocols for the most common
linear operations and non-linear operations of DNNs. Cheetah
can perform secure inference on large models, e.g. ResNet,
and DenseNet [29], with significantly smaller computation
and communication overheads than the state-of-the-art 2PC-
NN inference systems. For instance, using Cheetah, the server
and the client can perform one secure inference on ResNet50
within 2.5 minutes, exchanging less than 2.3 gigabytes of
messages under a wide area network setting, which improves
over CrypTFlow2 by about 5.6× and 12.9×, respectively.
Potential Real World Applications. In [60], the researchers
train a DenseNet121 to predict lung diseases from chest X-
ray images.Also, [25] uses DNNs for diagnosing Diabetic
Retinopathy (one of the major causes of blindness) from reti-

1Our implementation is available from https://github.com/
Alibaba-Gemini-Lab/OpenCheetah.

1

https://github.com/Alibaba-Gemini-Lab/OpenCheetah
https://github.com/Alibaba-Gemini-Lab/OpenCheetah

nal images. A such prediction can be done securely within 3
minutes with Cheetah.

1.1 Our Techniques
The layers of modern DNNs consist of alternating linear
and non-linear operations. To design efficient 2PC-NN in-
ference systems, multiple types of cryptographic primitives
are commonly used together. For instance, DELPHI [43] and
CrypTFlow2 [49] leverage homomorphic encryption (HE)
to evaluate the linear functions of DNN and turn to garbled
circuits (GC) or oblivious transfer (OT) to compute the non-
linear functions of DNN. Cheetah is also a hybrid system
with novel insights on designing the base protocols and on
the way how to coordinate different types of cryptographic
primitives. We describe a high-level overview of our main
techniques from three aspects.

1.1.1 Achieving the Best in Two Worlds

Most of the existing 2PC-NN systems [41, 43, 45, 49] sug-
gest using the additive secret sharing technique to switch
back-and-forth between different types of cryptographic prim-
itives. There remains a question that which domain should
be used for the additive sharing, a prime field Zp or the ring
Z2`? As shown in [49], for the non-linear functions of DNNs,
OT-based protocols on the ring Z2` can perform 40%−60%
better than on the prime field Zp in terms of bandwidth con-
sumption. Another reason to use Z2` instead of Zp is that
modulo reduction in Z2` is almost free on standard CPUs.

However state-of-the-art HE-based protocols [7, 8, 11, 22,
35] in the existing 2PC-NN systems force them to export the
additive secret to the prime field Zp but not to the more effi-
cient choice Z2` . That is because these HE-based protocols
heavily utilize the homomorphic Single-Instruction-Multiple-
Data (SIMD) technique [55] to amortize the cost of homo-
morphic operations. The SIMD technique in turn demands a
prime plaintext modulus p due to some algebraic conditions.
One can use the Chinese Remainder Theorem to accept secret
shares from Z2` using a prime modulus p≈ 2` at the cost of
increasing the overhead on the HE-side by many (e.g., 3–5)
times. But this would ruin the gains of the non-linear part.
In fact, most of the current HE-hybrid systems work over a
prime field and tolerate the less efficient non-linear protocols.
This raises the question: Could we find a way to achieve the
best of both worlds? That is to enjoy amortized homomorphic
operations while keeping the efficient non-linear protocols on
the yard without extra overheads. As we will show, the an-
swer is yes with our new design of HE-based and SIMD-free
protocols for the linear functions of DNNs.

1.1.2 Fast and SIMD-free Linear Protocols

Due to the spatial property of the convolution and matrix-
vector multiplication, it is inevitable for the prior HE-based

and SIMD-tailored protocols [7, 8, 11, 22, 35] to rotate the
operands many times. Note that the rotation is an expensive
operation even compared to the multiplication in the realm of
HE, e.g., 30× more expensive cf. [7, Table 9]. These massive
homomorphic rotations have become a major obstacle to the
existing 2PC-NN inference systems.

As a comparison, the HE-based protocols in Cheetah are
free of homomorphic rotation . We present three pairs of
encoding functions (πi

F ,π
w
F) that enable us to evaluate the

linear layers F ∈ {CONV,BN,FC} of DNNs via polynomial
arithmetic circuits. These encoding functions map the values
of the input (e.g., tensor or vector) to the proper coefficients of
the output polynomial(s). By careful design of the coefficient
mappings, we not only eliminate the expensive rotations but
are also able to accept secret shares from Z2` for free. For
example, the secure convolution HomCONV(T,K) (given
later in Figure 4) in Cheetah could be computed via just a
single homomorphic multiplication between two polynomials
t̂ and k̂ where t̂ = πi

CONV(T) is the encoded tensor and k̂ =
πw

CONV(K) is the encoded kernel, respectively.
Interestingly, our new design also helps to reduce the cost

of other homomorphic operations (e.g., encryption and de-
cryption). On one hand, the rotation-based approaches use
a large lattice dimension e.g., N ≥ 8192. On the other hand,
Cheetah can use a smaller dimension (i.e., N = 4096) to offer
the same capability, i.e., using the same size of the plaintext
modulus and evaluating the same classes of linear functions.
The main reason lies in the implementation of HEs. Most of
the current implementations of lattice-based HEs apply the
special prime technique [21] to accelerate the costly homo-
morphic rotation at the cost of reducing the security level.
To bring up the security level, the rotation-based approaches
have to bump up the lattice dimension, and thus translate to
slower homomorphic operations.

1.1.3 Leaner Protocols for the Non-linear Functions

With the advent of silent OT extension [10] built upon vector
oblivious linear evaluation (VOLE), many communication-
efficient OT extensions [15, 59] are proposed, and the land-
scape of non-linear function evaluation demands further in-
depth adaptation. [10, 15, 59] suggest that general secure
two-party computation can be upgraded by using VOLE-style
OT extension, but it remains to be seen how to design special-
purpose primitives to fully benefit from VOLE-style OT. Take
the integer comparison (Millionaire) protocol, for example,
straightforwardly upgrading the OT extensions with VOLE-
style OT extensions does not achieve the best performance.

We further make improvements to the truncation protocol,
which is required after each multiplication so that the fixed-
point values will not overflow. Truncation is expensive: It
contributes more than 50% of communication overhead in
CrypTFlow2. Our improvements are based on two important
observations: First, the truncation protocol in CrypTFlow2 is

2

designed to eliminate two probability errors e0 and e1 where
Pr(|e0| = 1) = 0.5 and Pr(0 < |e1| < 2`) < ε (elaborated in
§2.4). With extensive empirical experiments, we observe that
the harsh error e1 is indeed problematic but the mild 1-bit er-
ror e0 barely harms the inference results, even for large-scale
DNNs. This motivates us to design more efficient truncation
protocols that eliminate e1 but keep e0 untouched. Our second
observation is that sometimes the most significant bit (MSB)
is already known before the truncation. For instance we know
the the MSB is 0 if the truncation protocol is executed right
after a ReLU (i.e, max(0,x)) protocol. Similar to the opti-
mization from [48], we implement a truncation protocol for
the case of known MSB using VOLE-style OT. In a word, we
made all the above optimizations, resulting in faster running
time and bringing down more than 90% of the communication
cost of CrypTFlow2 for the non-linear layers.

Overall, we compare the complexity of Cheetah’s protocols
with the state-of-the-art counterparts in Table 1.

1.2 Other Related Work

Secure computation of machine learning inference algorithms
can perhaps date back to [9,24]. CryptoNets [22] was the first
system to consider secure two-party neural network inference.
The following improvements after CryptoNets can be roughly
categorized into three classes. 1) Optimizations for the basic
operations of NN such as convolutions [11, 35], matrix mul-
tiplications [34, 42] and non-linear activation functions [20].
2) Optimizations for a specific class of NN. For instance, NN
uses linear activation functions only [8, 18, 28] and binarized
NNs [3, 50]. 3) Using mixed primitives (e.g., Garbled Circuit,
Trusted Execution Environment, HE and OT) to achieve the
best performance for both the linear and non-linear functions
in NNs [7, 35, 41, 45, 47, 56]. Some other works consider
the secure inference problem with more than two parties
such as [16, 17, 37, 37, 39, 44]. These HE-free approaches are
usually more efficient than the two-party counterparts. For
instance, [39] is more than 15× faster than CrypTFlow2 on
ResNet50.

2 Preliminaries

2.1 Notations

We denote by [[n]] the set {0, · · · ,n− 1} for n ∈ N. We use
d·e, b·c and b·e to denote the ceiling, flooring, and rounding
function, respectively. We denote Zq = Z∩ [−bq/2c,bq/2c]
for q≥ 2. Particularly, Z2 denotes the set {0,1}. For a signed
integer x, we write x� f to denote the arithmetic right-shift
of x by f -bit. λ is the security parameter. We use F to denote
a general field. The logical AND, OR and XOR is ∧, ∨ and
⊕, respectively. Let 1{P} denote the indicator function that
is 1 when P is true and 0 when P is false.

Table 1: Comparison with the state-of-the-art of secure 2PC
protocols for the linear functions and non-linear functions in
DNNs. The linear functions include the convolution (CONV),
batch normalization (BN), and fully connection (FC). The
convolution and batch normalization take as input of a 3-
dimension tensor T ∈ FC×H×W . M and h denote the number
and the size of the filters, respectively. The fully connection
takes as input of a vector ui ∈ Fni and outputs a vector uo ∈
Fno . We write n∗ = min(ni,no) and n̄ = max(ni,no). The non-
linear functions include the comparison of two `-bit private
integers and the truncation of the low f -bit of `-bit integers.
λ is the security parameter (usually λ≥ 128).

Linear Function Mult. Rotations

CONV
[43, 49] O(MCHWh2) O(MCHWh2)
Cheetah O(MCHW) 0

BN
[49] O(CHW) 0

Cheetah O(CHW) 0

FC
[26] O(noni) O(n̄(n∗+ log2(

no
n∗)))

Cheetah O(noni) 0

Non-linear Function Communication (bits)

Compare
[49] < λ`+14`

Cheetah < 11`

Trunc
[49] λ(`+ f +2)+19`+14 f

Cheetah 13`
‡ Assume MSB is already known.

We use lower-case letters with a “hat” symbol such as â to
represent a polynomial, and â[j] to denote the j-th coefficient
of â. We use the dot symbol · such as â · b̂ to represent the
multiplication of polynomials. For a 2-power number N, and
q > 0, we write AN,q to denote the set of integer polynomials
AN,q = Zq[X]/(XN +1). We use bold upper-case letters such
as T to represent multi-dimension tensors, and use T[c, i, j]
to denote the (c, i, j) entry of a 3-dimension tensor T. We use
bold lower-case letters such as a to represent vectors, and use
a[j] to denote the j-th component of a. We use a>b to denote
inner product of vectors.
Polynomial Arithmetic. Given polynomials â, b̂ ∈ AN,q, the
product d̂ = â · b̂ over AN,q is defined by

d̂[i] = ∑
0≤ j≤i

â[j]b̂[i− j]− ∑
i< j<N

â[j]b̂[N + j− i] mod q. (1)

(1) comes from the fact that XN ≡−1 mod XN +1.

2.2 Lattice-based Homomorphic Encryption

Our protocols use two lattice-based HEs, i.e., HE that based
on learning with errors (LWE) and its ring variant (ring-LWE).
These two HEs share a set of parameters HE.pp= {N,σ,q, p}

3

such that q, p∈Z and q� p > 0 where the plaintext modulus
p can be a non-prime value.

The basic asymmetric RLWE encryption scheme uses
a secret polynomial as the secret key sk = ŝ ∈ AN,q. The
associated public key is computed as pk = (û0 · ŝ+ ê0, û0)
where û0 ∈AN,q is chosen uniformly at random, and the error
ê0 ∈ AN,q is chosen by sampling its coefficients from χσ a
discrete Gaussian distribution of standard deviation of σ. The
RLWE encryption of a message m̂∈AN,p is given as a tuple of

polynomials RLWE
N,q,p
pk (m̂) = (b q

p
m̂e+ ê,0)− û ·pk ∈A2

N,p,

where the coefficients of ê ∈ AN,q is sampled from χσ and
the coefficients of û ∈ AN,q is chosen from {0,±1} uni-
formly at random. A RLWE ciphertext (b̂, â) is decrypted
as RLWE−1

sk (b̂, â) = b
p
q
(b̂+ â · ŝ)e ≡ m̂ mod p.

In our protocols, we use the notation LWE
N,q,p
s (m) to de-

note the LWE encryption of a message m ∈ Zp under a
secret vector s ∈ ZN

q . The LWE ciphertext of m is given
as a tuple (b,a) ∈ ZN+1

p and it is decrypted by computing

LWE−1
s (b,a) = b p

q
(b+a>s)e ≡ m mod p. To lighten the no-

tation, we unify the secret of LWE and RLWE ciphertexts by
identifying the LWE secret s[j] = ŝ[j] for all j ∈ [[N]]. We
write the LWE encryption of m as LWE

n,q,p
sk (m̂) from now on.

The proposed protocol leverages the following functions
supported by the RLWE encryption.

• Homomorphic addition (�) and subtraction (�). Given
RLWE ciphertexts CT0 and CT1, which respectively en-
crypts a polynomial p̂0 and p̂1, the operation CT0 �CT1
(resp. CT0 �CT1) results at an RLWE ciphertext CT′ that
decrypts to p̂0 + p̂1 ∈ AN,p (resp. p̂0− p̂1).

• Homomorphic multiplication (�). Given an RLWE ci-
phertext CT that encrypts a polynomial p̂, and given a plain
element ĉ ∈AN,p, the operation ĉ�CT results at an RLWE
ciphertext CT′ that decrypts to p̂ · ĉ ∈ AN,p.

• Extract. Given (b̂, â) = RLWE
N,q,p
pk (m̂) of m̂ we can ex-

tract an LWE ciphertext of the k-th coefficient of m̂, i.e.,
(b,a) = Extract((b̂, â),k). The tuple (b,a) is a valid LWE
ciphertext of m̂[k] under the secret key sk. This has the effect
of avoiding extra information leakage when only certain
coefficients are expected to be received by a party. We defer
the details of Extract to Chen et al.’s paper [14, §3.3].

By setting a prime p ≡ 1 mod 2N, it is possible to use the
SIMD technique [55] to amortize the cost of homomorphic
multiplications. For instance, [26] computes the inner product
of two encrypted vector of N elements using one homomor-
phic multiplication and O(log2(N)) homomorphic rotations.
Cheetah does not use SIMD and rotations, so we defer these
details to Appendix B.

2.3 Oblivious Transfer

Our protocols rely heavily on oblivious transfer (OT) for non-
linear computation (e.g., comparison). In a general 1-out-of-2
OT, denoted by

(2
1

)
-OT`, a sender inputs two messages m0 and

m1 of length ` bits and a receiver inputs a choice bit c∈ {0,1}.
At the end of the protocol, the receiver learns mc, whereas the
sender learns nothing. OT is usually realized by building a few
base OT instances with public key cryptography and extend-
ing to a large amount of instances with efficient symmetric
cryptographic operations (IKNP OT extension [32]). When
sender messages are random or correlated in a way, general
OT can be replaced with random OT (ROT) or correlated OT
(COT) which are more efficient in communication [4]. More
general 1-out-of-N OT

(n
1

)
-OT` can be implemented in an

IKNP-style OT extension, or with log2 n calls to
(2

1

)
-OTλ [46].

Recently, [10] propose silent OT extension, where a large
amount of random OT correlations can be generated with a
low-communication input-independent setup and a second
phase of pure local computation. The technique is later im-
proved with more efficient computation in Ferret [59] and
Silver [15]. With little communication cost, these VOLE-style
OTs pave the way for the possibility of next-generation secure
computation. We use VOLE-style OT as a building block for
more efficient designs of non-linear layers in DNN inference.

2.4 Arithmetic Secret Sharing

For the arithmetic secret sharing, an `-bit value x is shared
additively in the ring Z2` as the sum of two values, say 〈x〉A2`
and 〈x〉B2` . To reconstruct the value x, we compute the modulo
addition, i.e., x≡ 〈x〉A2` + 〈x〉

B
2` mod 2`. In the two-party set-

ting, value x ∈ Z2` is secretly shared between Alice and Bob,
by letting Alice hold the share 〈x〉A2` and letting Bob hold the
share 〈x〉B2` . Also, we will omit the subscript if the modulo 2`

is clear from the context.
Fixed-point Values and Truncation. Most prior works on
2PC use fixed-point arithmetic, where a real value x̃ ∈R is en-
coded as a fixed-point value x = bx̃2 f c ∈ Z under a specified
precision f > 0. The multiplication of two fixed-point values
of f -bit precision results at a fixed-point value of 2 f -bit pre-
cision. In order to do subsequent arithmetics, a truncation is
required to scale down to f -bit precision. Suppose 〈x〉A2` and
〈x〉B2` are the shares of a double-precision value, i.e., bx̃22 f c.
A faithful truncation protocol should take 〈x〉A2` and 〈x〉B2` as
input and compute the shares of bx̃22 f c � f .

2.5 Local Truncation Trade-offs

The local truncation protocol of [45] introduces probabil-
ity errors. For example, to perform the local truncation on
〈x〉A2` and 〈x〉B2` , two share holders set 〈x′〉A2` = b〈x〉

A
2` /2 f c and

〈x′〉B2` = 2`−b2`−〈x〉B2` /2 f c mod 2`, respectively. Then the

4

value x′ equals to bx̃2 f c+ e0 + e1 with two probability errors
where the small error |e0| ≤ 1 occurs at the chance of 1/2 and
the harsh error |e1|< 2` occurs with a chance of x/2`.

Many previous 2PC-NN systems that leverage the local
truncation will set a proper bit length ` to avoid the harsh
error as much as possible. For example, DELPHI [43] sets
` = 41 which can translate a probability ε ≈ 2−19 of the e1
error on their datasets. However we consider a such ε is still
not small enough for DNNs because the number of local trun-
cations needed is vast for DNNs. For instance, the number
of local truncations needed by the the first convolution layer
in ResNet50 is about 8.0× 105. In other words, the local
truncation will introduce at least one e1 error for this layer
at the chance of 1− (1− ε)8.0×105

which is about 78% for
DELPHI’s parameters. What’s worse, the large error(s) will
propagate to the following layers and finally ruin the predic-
tion. To decreases the error probability ε a larger bitlength `
is needed. This also renders a larger overhead on both of the
linear protocols and non-linear protocols. This also somehow
demonstrates why prior systems that leverage the local trun-
cation might be limited to small datasets and shadow neural
networks or introduce a large overhead.

2.6 Secure Neural Network Inference
In this section we describe an abstraction of DNN and set
up the secure neural inference problem that we will tackle in
the rest of the manuscript. DNN takes an input x (e.g., RGB
image) and processes it through a sequence of linear and non-
linear layers in order to classify it into one of the potential
classes, e.g., z = fd(fd−1(· · ·(f1(x,W1), · · ·),Wd−1),Wd)
where fd is the function evaluated in the d-th layer and Wd
is the weight parameter(s) used in that layer. Suppose we
already have 2PC protocols that take secret-shared inputs and
output secret-shared results for the functions f1, f2, · · · , fd ,
to achieve the secure inference, we can simply invoke the
corresponding 2PC protocols sequentially.

We now describe the functions we are targetting, and then
present how to evaluate those functions privately.

2.6.1 Linear Layers

Fully Connected Layer (FC). The input to a fully connected
layer is a vector v ∈ Fni of length ni and its output is a vector
u∈ Fno of length no. A fully connected layer is parameterized
by the tuple (W,b) where W ∈ Fno×ni is the weight matrix
and b is an no-sized bias vector. The output is specified by
the linear transformation u = Wv+b.
Convolution Layer (CONV). A two dimensional strided
convolution Conv2D(T,K;s) over a field F operates on a
3-dimension tensor T ∈ FC×H×W with a stride s > 0 and a set
of kernels (also called filters) represented by a 4-dimension
tensor K ∈ FM×C×h×h to generate a 3-dimension output ten-
sor T′ ∈ FM×H ′×W ′ where H ′ = b(H − h+ s)/sc and W ′ =

b(W −h+ s)/sc. If T is an RGB image then C = 3 and H,W
denote the height and width of the image, respectively. Also,
M denotes the number of kernels used in the convolution and
h is the size of the kernels.

From a mathematical viewpoint, the two dimensional
strided convolution can be seen as calculating weighted sums

T′[c′, i′, j′] = ∑
c∈[[C]]

l,l′∈[[h]]

T[c, i′s+ l, j′s+ l′]K[c′,c, l, l′]. (2)

for each position (c′, i′, j′) of the output tensor T′.
Batch Normalization Layer (BN). In DNNs, a BN layer
BN(T;α,β) takes as input of 3-dimension tensor T ∈
FC×H×W and output a 3-dimension tensor T′ of the same
shape. An BN layer is specified by the tuple (µ,θ) where
µ ∈ FC is the scaling vector and θ ∈ FC is the shift vector. For
all c ∈ [[C]], i ∈ [[H]] and j ∈ [[W]], T′ is computed via

T′[c, i, j] = µ[c]T[c, i, j]+θ[c]. (3)

By viewing each channel of T as a HW -sized vector, we can
naturally rewrite the BN evaluation to a form that involves
scalar-vector multiplications and vector additions only.

2.6.2 Non-linear Layers

In the context of deep learning, the non-linear layers consist
of an activation function that acts on each element of the input
independently or a pooling function that reduces the output
size. Typical non-linear functions can be one of several types:
the most common ones in DNNs are ReLU functions (i.e.,
ReLU(x) = max(0,x)) and max-pooling functions. In the con-
text of 2PC, truncation is also considered as a non-linear layer
because truncation is beyond the ability of arithmetic circuit.
Following the blueprint of CrypTFlow2, these non-linear lay-
ers can be evaluated securely via OT-based protocols.

2.6.3 Two-Party Inference System & Threat Model

Suppose the secure inference is executed jointly by Alice
(Server) and Bob (Client). Let IA and IB be the private input of
Alice and Bob to a two-party protocol say Π, respectively. We
write OA,OB←Π(IA, IB) to denote an execution of Π where
OA and OB are the output to Alice and Bob, respectively.

We target the same threat model of DELPHI and CrypT-
Flow2. Cheetah is designed for the two-party semi-honest
setting in which both of parties follow the specification of the
protocol and only one of the them is corrupted by an adversary.
In the context of cryptographic inference, Alice holds a DNN
while Bob holds an input to the network, typically an image.
By assuming semi-honest Alice and Bob, our system enables
Bob to learn only two pieces of information: the architecture
of the neural network (i.e., the number of layers, the type of
layers, and the size of each layer), and the inference result. Al-
ice is either allowed to learn the result or nothing, depending

5

Parameters: Shape meta ni,no > 0.
Computation: On input 〈v〉A ∈ Fni ,W ∈ Fno×ni and b ∈ Fno

from Alice and input 〈v〉B ∈ Fni from Bob, compute u = Wv+b.
Sample an uniform vector r from Fno .
Return: r to Alice and v− r ∈ F∗ to Bob.

(a) Ideal Functionality FFC

Parameters: Shape meta M,C,H,W,h and stride s > 0.
Computation: On input 〈T〉A ∈ FC×H×W ,K ∈ FM×C×h×h from
Alice and input 〈T〉B ∈ FC×H×W from Bob, compute T′ =
Conv2D(T,K;s). Sample an uniform tensor R from F with the
same shape of T′.
Return: R to Alice and T′−R ∈ F∗ to Bob.

(b) Ideal Functionality FCONV

Parameters: Shape meta C,H,W .
Computation: On input 〈T〉A ∈ FC×H×W ,µ,θ ∈ FC from Alice
and input 〈T〉B ∈ FC×H×W from Bob, compute T′ =BN(T;µ,θ).
Sample an uniform tensor R from F with the same shape of T′.
Return: R to Alice and T′−R ∈ F∗ to Bob.

(c) Ideal Functionality FBN

Figure 1: Ideal Functionalities of Linear Layers

on the application scenario. All other information about Bob’s
private inputs and the parameters of Alice’s neural network
model should be kept secret. We provide formal definitions
of threat model in Appendix A.

Like all the prior semi-honest inference systems, Cheetah
was not designed to defend against attacks based purely on
the inference results (such as the API attacks [54,57]). Indeed,
we can integrate orthogonal techniques such as differential
privacy [2,33] to provide an even stronger privacy guarantee.

3 Proposed 2PC Protocols of Linear Layers

The core computation in FC, CONV and BN can be rewritten
as a batch of inner products. In deep neural networks, the
fan-in to the inner product circuit can be large, leading a vast
number of homomorphic multiplications. To amortize the cost
of multiplications, most of the prior HE-based approaches
choose to use the SIMD technique. As we have mentioned,
the sum-step in the inner product circuit demands expensive
homomorphic rotations. Also the SIMD technique requires
plaintext from a prime field Zp such that p≡ 1 mod 2N.

On the other hand, our linear protocols are free of SIMD
and homomorphic rotation. We observe that the polynomial
multiplication (1) itself can be viewed as a batch of inner
products if we arrange the coefficients properly. In this sec-
tion, we present and use a pair of natural mappings (πi

F ,π
w
F)

to properly place the values in the input and weight to poly-
nomial coefficients for each of the functionality F in Figure 1.
With the help of (πi

F ,π
w
F), we then show how to evaluate these

Inputs & Outputs:

〈u〉A ,〈u〉B← HomFC({〈v〉A ,W,b},{〈v〉B ,sk})

W ∈ Zno×ni
p , b ∈ Zno

p , 〈v〉A ,〈v〉B ∈ Zni
p , and u = Wv+b ∈ Zno

p .
Public Parameters: pp= (HE.pp,pk,ni,no,niw,now).

• Shape meta ni,no such that ni,no > 0. The partition window
size 0 < niw ≤ ni,0 < now ≤ ni such that niwnow ≤ N.

• Set ni
′ = dni/niwe and no

′ = dno/nowe.

1: Bob first partitions its input shares 〈v〉B into subvectors
〈vα〉B ∈Zniw

p for α∈ [[n′i]]. Zero-padding them when ni - niw.
2: Bob encodes the vectors to polynomials 〈v̂α〉B = πi

fc(〈vα〉B)
for α ∈ [[n′i]]. Then Bob sends the RLWE ciphertexts
{CT′α = RLWE

N,q,p
pk (〈v̂α〉B)} to Alice.

3: Similarly, Alice first partitions its shares 〈v〉A into 〈vα〉A ∈
Zniw

p following the same manner in Step 1. Also, Alice
partitions the weight matrix W into block matris Wβ,α ∈
Znow×niw

p . Zero-padding is used to the right-most (resp.
bottom-most) blocks when ni - niw (resp. no - now). Then
Alice encodes the subvectors and block matrices to polyno-
mials 〈v̂α〉A = πi

fc〈vα〉A and ŵβ,α = πw
fc(Wβ,α) for α ∈ [[n′i]]

and β ∈ [[n′o]].
4: On receiving the ciphertexts {CT′α} from Bob, Alice oper-

ates CTβ =�α∈[[n′i]]((CT
′
α � 〈v̂α〉A)� ŵβ,α) for β ∈ [[n′o]].

5: [Extract and Re-mask.] Alice samples r∈Zno
p uniformly at

random to re-mask the computing ciphertexts. Specifically,
for each i ∈ [[no]], Alice first extracts an LWE ciphertext
cti = Extract(CTi mod n′o ,(i mod n′o)ni+ni−1) and then re-
masks it via ct′i = cti � r[i]. Alice then sends the LWE ci-
phertexts {ct′i} back to Bob.

6: Alice outputs r+b mod p as the share 〈u〉A.
7: On receiving the LWE ciphertexts {ct′i} from Alice, Bob

computes 〈u〉B [i] = LWE
−1

sk(ct
′
i) for all i ∈ [[no]].

Figure 2: Proposed Secure Fully Connection Protocol

functionalities privately. Also, πi
F and πw

F are well-defined for
any p > 1 such as p = 2`, allowing our protocols to accept
secretly shared input from the ring Z2` for free. All above
makes our protocols fundamentally different from the previ-
ous SIMD-based approaches.

3.1 Fully Connection

We present our 2PC protocol for FC layers in Figure 2. The
core computation in an FC layer is the matrix-vector multipli-
cation u = Wv which can be decomposed into inner products
of vectors. Our mapping functions πw

fc and πi
fc are specialized

for computing the inner product using polynomial arithmetic.
Intuitively, when multiplying two polynomials of degree-N,
the (N−1)-th coefficient of the resulting polynomial is the
inner product of the two coefficient vectors in opposite or-
ders. We can easily extend this idea to a batch of inner prod-

6

Toy example over Z25 .

W =

[
1 2 3
4 5 6

]
,v =

7
8
9

⇒Wv≡
[
18 26

]
mod 25

Cheetah evaluates Wv using πw
fc and πi

fc.

π
w
fc(W)→ ŵ = 3X0 +2X1 +1X2 +6X3 +5X4 +4X5 ∈ A8,25

π
i
fc(v)→ v̂ = 7X0 +8X1 +9X2 ∈ A8,25

⇓ ŵ · v̂ mod (X8 +1,25)

ŵ · v̂≡ 21X0 +6X1 +18X2+

4X3 +284 +26X5 +13X6 +4X7 mod (X8 +1,25)

⇓ Extract needed coefficients

LWE(18) = Extract(RLWE(ŵ · v̂),2)
LWE(26) = Extract(RLWE(ŵ · v̂),5)

Figure 3: Toy example for πw
fc and πi

fc with N = 8 and p = 25.

ucts. We now give the definitions of πw
fc : Zno×ni

p 7→ AN,p and
πi

fc :Zni
p 7→AN,p. Here we first require noni ≤N for simplicity.

v̂ = π
i
fc(v) where v̂[j] = v[j] (4)

ŵ = π
w
fc(W) where ŵ[i ·ni +ni−1− j] = W[i, j],

where i ∈ [[no]], j ∈ [[ni]] and all other coefficients of v̂ and
ŵ are set to 0. The multiplication of polynomials û = ŵ · v̂ ∈
AN,p directly gives the matrix–vector multiplication Wv ≡
u mod p in some of its coefficients.

Proposition 1 Given two polynomials v̂ = πi
fc(v), ŵ =

πw
fc(W) ∈ AN,p, the multiplication Wv ≡ u mod p can be

evaluated via the product û = v̂ · ŵ over the ring AN,p. That
is u[i] is computed in û[i ·ni +ni−1] for all i ∈ [[no]].

Proof 1 For each i∈ [[no]], we write ñi = i ·ni+ni−1 for sim-
plicity. By the definition of (1) and because v̂[j] = 0 for j≥ ni,
we have û[ñi] = ∑0≤ j<ni

v̂[j]ŵ[ni− j] = ∑0≤ j<ni
v[j]W[i, j]

which is exactly u[i]. �

In Proposition 1, other coefficients besides û[ñi] in û contain
extra information beyond Wv. To prevent such leakage, Alice
uses the Extract(·) function to extract the needed coefficients
from û. We present a toy example in Figure 3.

When nino > N, we can first partition the weight matrix
into sub-matrices of 0 < n̄i× n̄o elements such that n̄in̄o ≤N
(n̄i and n̄o can be chosen freely as public parameters as long as
they satisfy this constraint). Zero-padding is used when ni - n̄i
or no - n̄o. Then we convert the task of matrix multiplication
in shape ni×no to subtasks of a smaller size n̄i× n̄o.

Theorem 1 The protocol HomFC in Figure 2 realizes the
ideal functionality FFC of Figure 1a for F= Zp in presence
of a semi-honest admissible adversary.

We defer the proof to Appendix D due to the space limit. For
the complexity, Bob encrypts and sends n′i RLWE ciphertexts
to Alice. Alice operates with n′on′i =O(noni/N) homomorphic
multiplications and additions. Alice sends no LWE ciphertexts
to Bob for decryption which can be compressed to about
O((no +n′oN) log2 q) bits using the optimizations in § 5.2.

3.2 Two Dimensional Convolution
We now present how to evaluate the two dimensional con-
volution (2) using polynomial arithmetic over the ring AN,p.
Consider the most simple case of (2) such that H =W = h and
M = 1, i.e., the input tensor has the same shape as the convo-
lution kernel. Then the computation in (2) becomes an inner
product of two flatten vectors by concatenating T and K row-
by-row and channel-by-channel. For general cases, we can
view the computation of 2-dimension convolution as a batch
of inner products of h2 values. We now give the definitions of
πi

conv : ZC×H×W
p 7→AN,p and πw

conv : ZM×C×h×h
p 7→AN,p. Here

we require MCHW ≤ N for simplicity.

t̂ = π
i
conv(T) st. t̂[cHW + iW + j] = T[c, i, j] (5)

k̂ = π
w
conv(K) st. k̂[O− c′CHW − cHW − lW − l′] = K[c′,c, l, l′],

where O = HW (MC− 1)+W (h− 1)+ h− 1, and all other
coefficients of t̂ and k̂ are set to 0. The multiplication t̂ · k̂ ∈
AN,p directly gives the 2-dimension convolution in some of
the coefficients of the resulting polynomial.

Proposition 2 Given two polynomials t̂ = πi
conv(T), k̂ =

πw
conv(K) ∈ AN,p, the convolution T′ = Conv2D(T,K;s) (2)

can be evaluated by the polynomial multiplication t̂ ′ =
t̂ · k̂ over the ring AN,p. For all positions (c′, i′, j′) of T′,
T′[c′, i′, j′] is computed in the coefficient t̂ ′[O− c′CHW +
i′sW + j′s] where O = HW (MC−1)+W (h−1)+h−1.

Similarly, Alice can apply the Extract(·) function to prevent
possible leakage. We first present the basic version of our se-
cure convolution protocol in Figure 4 which demands “small
enough tensors” i.e., MCHW ≤ N.

Theorem 2 The protocol HomCONV in Figure 4 realizes
the ideal functionality FCONV of Figure 1b for F = Zp and
for inputs that MCHW ≤ N in presence of a semi-honest
admissible adversary.

We defer the correctness and security proofs to Appendix D.

3.2.1 On the Cases of Large Tensors

We need to partition large input tensors and kernels so that
each of the smaller blocks can be fit into one polynomial
in AN,p. Particularly, we define the size of partition win-
dow for the (M,C,H,W)-axis as Mw,Cw,Hw and Ww, re-
spectively. The size of the partition windows can be cho-
sen freely as long as they satisfy the following constraints:

7

Inputs and Outputs:〈
T′
〉A

,
〈
T′
〉B← HomCONV({〈T〉A ,K},{〈T〉B ,sk})

such that 〈T〉A ,〈T〉B ∈ ZC×H×W
p , K ∈ ZM×C×h×h

p and T′ =
Conv2D(T,K;s) ∈ ZM×H ′×W ′

p .
Public Parameters: pp= (HE.pp,pk,M,C,H,W,h,s).

• Shape meta M,C,H,W,h such that MCHW ≤N and h≤H,W ,
and stride s > 0.

• Set H ′ = bH−h+s
s c, W ′ = bW−h+s

s c, and O = HW (MC−1)+
W (h−1)+h−1.

1: Bob encodes its share as polynomial 〈t̂〉B = πi
conv(〈T〉

B).
Bob sends the ciphertext CT′ = RLWE

N,q,p
pk (〈t̂〉B) to Alice.

2: Alice encodes its share of input tensor and the filter as poly-
nomials 〈t̂〉A = πi

conv(〈T〉
A), k̂ = πw

conv(K).
3: Alice samples R ∈ ZM×H ′×W ′

p uniformly at random.
4: On receiving the RLWE ciphertext CT′ from Bob, Alice

operates to obtain CT= (CT′� 〈t̂〉A)� k̂.
5: [Extract and Re-mask.] For each c′ ∈ [[M]], i′ ∈ [[H ′]] and

j′ ∈ [[W ′]], Alice first extracts a LWE ciphertext ctc′,i′, j′ =
Extract(CT,O− c′CHW + i′sW + j′s) and then re-masks
it via ct′c′,i′, j′ = ctc′,i′, j′ �R[c′, i′, j′]. Alice then sends the
ciphertexts {ct′c′,i′, j′} back to Bob.

6: Alice outputs R as the share 〈T′〉A.
7: On receiving the LWE ciphertexts from Alice, Bob computes
〈T′〉B [c′, i′, j′] = LWE

−1

sk(ct
′
c′,i′, j′) for all positions (c′, i′, j′).

Figure 4: Proposed Secure Convolution Protocol (Basic Ver)

0 < Mw ≤ M, 0 < Cw ≤ C, h ≤ Hw ≤ H, h ≤ Ww ≤ W
and MwCwHwWw ≤ N. For instance, in our experiments,
to minimize the number of ciphertexts sent by Bob, we
choose the window sizes Hw and Ww that minimize the
product d C

bN/(HwWw)ce · d
H−h+1

Hw−h+1e · d
W−h+1
Ww+h−1e. When Hw and

Ww are specified, the partition window sizes along the C-
axis and M-axis is Cw = min(C,bN/(HwWw)c) and Mw =
min(M,bN/(CwHwWw)c), respectively.

By splitting the big tensor and kernel into smaller blocks
and zero-padding the margin blocks, we can apply (5) on the
corresponding pair of subtensor and subkernel. We demon-
strate why such partitions can work correctly. From the defi-
nition in (2), the convolution along the M-axis is independent
for each subkernel, and thus we can equally split the M-axis
into dM = d M

Mw
e groups and each of them contains Mw sub-

kernels. Similarly, the convolution along the C-axis requires
extra additions which are supported by HEs. Thus we can
safely partition along the C-axis without overlapping too.

When the kernel size h > 1, we need to take extra care for
the partition over the H-axis and W -axis. That is, we need
to make sure that the stride window is not split into two
adjacent partitions. Specifically, we partition along the H-axis
and W -axis into dH = d H−h+1

Hw−h+1e and dW = d W−h+1
Ww−h+1e blocks,

respectively. For the sub-block indexed by (α ∈ [[dH]],β ∈

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1

4 5

8 9

12 13

0 1 2 3

4 5 6 7

0 1

4 5

Figure 5: Partitioning the input tensor along the H-axis and W -
axis where N = 16,C = 1,H,W = 5,h = 2, and Hw,Ww = 4.
Digits represent the coefficient indices in an encoded polyno-
mial. The dashed parts are zero padding.

[[dW]]), it contains exact Hw continuous rows that starts from
the α(Hw−h+1)-th row, and exact Ww continuous columns
that starts from the β(Ww−h+1)-th column of the big tensor
T. When h> 1, there are overlapping between adjacent blocks.
We give an example of this case in Figure 5.

3.2.2 HomCONV (Full Protocol)

The full version of HomCONV is given in Appendix C due
to the space limit but we state the complexity of HomCONV.
In HomCONV, Bob sends O(CHW/N) RLWE ciphertexts to
Alice which are about O(2CHW log2 q) bits. Alice operates
O(MCHW/N) homomorphic additions and multiplications.
Alice sends back O(M

Mw
H ′W ′) LWE ciphertexts to Bob for

decryption. The computation complexity of HomCONV is
independent with the kernel size h where the previous secure
convolution protocols [11, 35, 41] scale quadratically with h.

3.3 Batch Normalization
The batch normalization (3) can be evaluated using scalar-
polynomial multiplications by mapping each channel of the
tensor to polynomials. This idea will lead to a secure BN
protocol of a communication cost of O(CdHW/Ne) cipher-
texts. We can reduce this communication cost by “stacking”
multiple channels of the tensor into a single polynomial. For
example, when C2HW ≤ N, we can even put all the chan-
nels into one polynomial. We now give the definitions of
πi

bn : ZC×H×W
p 7→ AN,p and πw

bn : ZC
p 7→ AN,p. Here we de-

mand C2HW ≤ N for simplicity.

t̂ = π
i
bn(T) s.t. t̂[cCHW + iH + j] = T[c, i, j]

â = π
w
bn(α) s.t. â[cHW] = α[c]

where c ∈ [[C]], i ∈ [[H]] and j ∈ [[W]]. All other coefficients
of t̂ and â are set to zero. The polynomial product t̂ ′ = t̂ · â

8

Inputs and Outputs:〈
T′
〉A

,
〈
T′
〉B← HomBN

({
〈T〉A ,µ,θ

}
,
{
〈T〉B ,sk

})
s.t. 〈T〉A ,〈T〉B ∈ ZC×H×W

p , µ,θ ∈ ZC
p and T′ = BN(T;µ,θ).

Public Parameters: pp= (HE.pp,pk,C,H,W,Cw,Hw,Ww).

• The partition window sizes 0 < Cw ≤ C,0 < Hw ≤ H and
0 <Ww ≤W such that C2

wHwWw ≤ N.

• Let dC = dC/Cwe, dH = dH/Hwe and dW = dW/Wwe.

1: Bob partitions its share tensor into sub-blocks
〈
Tγ,α,β

〉B ∈
ZCw×Hw×Ww

p (with zero-padding if necessary).
2: Bob then encodes the sub-blocks as polynomials

〈
t̂γ,α,β

〉B
=

πi
bn(
〈
Tγ,α,β

〉B
) for γ ∈ [[dC]], α ∈ [[dH]] and β ∈ [[dW]]. Bob

then sends {CT′
γ,α,β = RLWE

N,q,p
pk (

〈
t̂γ,α,β

〉B
)} to Alice.

3: Alice partitions and encodes its input tensor and the scaling
vector as polynomials

〈
t̂γ,α,β

〉A
= πi

bn(
〈
Tγ,α,β

〉A
) and âγ =

πw
bn(µγ), respectively.

4: Alice samples R ∈ ZC×H×W
p uniformly at random.

5: On receiving the ciphertexts {CT′
γ,α,β} from Bob, Alice

operates CTγ,α,β = (CT′
γ,α,β �

〈
t̂γ,α,β

〉A
)� âγ for γ ∈ [[dC]],

α ∈ [[dH]] and β ∈ [[dW]].
6: [Extract and Re-mask.] For each c ∈ [[C]], i ∈ [[H]] and

j ∈ [[W]], Alice first extracts a LWE ciphertext ctc,i, j =
Extract(CTc′,i′, j′ ,cCHW + cHW + iH + j), where c′ ≡
c mod dC, i′ ≡ i mod H and j′ ≡ j mod W . Then Bob re-
masks these ciphertexts via ct′c,i, j = ctc,i, j �R[c, i, j].

7: Alice sends the ciphertexts {ct′c,i, j} back to Bob, and Alice

ouputs 〈T′〉A as 〈T′〉A [c, i, j] = R[c, i, j]+θ[c] mod p.
8: On receiving the LWE ciphertexts from Alice, Bob ouputs
〈T′〉B as 〈T′〉B [c, i, j] = LWE

−1

sk(ct
′
c,i, j).

Figure 6: Proposed Secure Batch Normalization Protocol

gives the multiplication part of (3) in some of coefficients of
t̂ ′. That is t̂ ′[cCHW + cHW + iH + j] equals to T[c, i, j]α[c]
for all (c, i, j) position. When C2HW > N, we can first par-
tition T into sub-blocks in a shape of Cw×Hw×Ww such
that C2

wHwWw ≤ N. Since each channel is proceed indepen-
dently in the BN computation, we can just apply the mapping
functions πi

bn,π
w
bn to the sub-blocks of T.

Theorem 3 The protocol HomBN in Figure 6 realizes the
ideal functionality FBN of Figure 1c for the field F = Zp in
presence of a semi-honest admissible adversary.

We defer the proof to Appendix D due to the space limit. For
the complexity, Bob encrypts and sends O(CHW/N) RLWE
ciphertexts to Alice. Alice operates with O(CHW/N) ho-
momorphic operations. Finally, Alice sends O(CHW) LWE
ciphertexts to Bob for decryption.

Parameters: Bit width ` > 0.
Computation: On input x ∈ Z2` from Alice and input y ∈ Z2`

from Bob, compute b = 1{x > y}. Sample a bit r from Z2 uni-
formly at random.
Return: r to Alice and b⊕ r to Bob.

(a) Ideal Functionality F `
Mill

Parameters: Bit width ` > 0 and fixed-point precision 0 < f < `.
Computation: On input 〈x〉A2` from Alice and input 〈x〉B` from
Bob, compute x′ = bx/2 f c. Sample a uniform value r from Z2` .
Return: r to Alice and x′− r ∈ Z2` to Bob.

(b) Ideal Functionality F `, f
trunc

Figure 7: Ideal Functionalities of Non-linear Functions

Table 2: Communication complexity of various OT protocols
used in CrypTFlow2 and Cheetah. Cheetah uses VOLE-style
OT for the underlying calls to

(2
1

)
-ROTλ.

Function
Communication (bits)

CrypTFlow2 Cheetah(2
1
)
-OT` λ+2` 2`+1(2

1
)
-COT` λ+ ` `+1(n

1
)
-OT` (n≥ 3) 2λ+n` n`+ log2 n

4 Optimized 2PC Protocols of Non-Linear
Functions

For non-linear computation, [49] presents various protocols
that are tailored to be highly efficient on IKNP-style OT ex-
tension. In this section, we show that their protocols can be
simplified and optimized on VOLE-style OT extension.

Throughout this section, we make use of
(2

1

)
-OT`,

(2
1

)
-COT`

and
(n

1

)
-OT`. We instantiate

(n
1

)
-OT` with the algorithm pro-

posed by Naor and Pinkas [46] by using log2 n calls to(2
1

)
-ROTλ, whereas CrypTFlow2 implements it with the IKNP-

style OT extension proposed in [36]. Due to the usage of
VOLE-style OT, our calls to

(2
1

)
-ROTλ enjoys almost 0 amor-

tized communication cost. We provide a brief comparison
of these two approaches in Table 2. When n and the mes-
sage length ` are small, our approach demonstrates prominent
advantage, which is indeed the case in all protocols used in
neural network inference (usually, n≤ 16, `≤ 2).

4.1 Leaner and Better Millionaires’ Protocol
Millionaires’ protocol for comparing two integers (x,y ∈
{0,1}`) is the core building block of almost every non-linear
layer, such as ReLU, truncation, and pooling. Let FAND denote
the functionality that accepts boolean shares of x and y and re-
turns boolean shares of x∧ y (protocol details in Appendix F).
We briefly recall the high-level intuition of the millionaires’

9

Table 3: Communication complexity of millionaires’ proto-
cols of `-bit integers.

Millionaires’ Protocol Communication (bits)

CrypTFlow2 (m = 4, IKNP,
(n

1
)
-OT) < λ`+14`

Naive (m = 1, VOLE,
(2

1
)
-ROT) < 16`

Cheetah (m = 4, VOLE,
(2

1
)
-ROT) < 11`

protocol in [49]:

1. Each party parses its own `-bit input as smaller blocks of
m bits. Let x j and y j denote the j-th block of P0 and P1,
respectively. Two parties invoke

(2m

1

)
-OT1 to compute a

boolean share of ltj = 1{x j < y j} (similar invocation
for eq j = 1{x j = y j}).

2. Two parties use FAND to combine the former outputs in a
tree evaluation (of depth log(`/m)) with the observation:
1{x < y} = 1{x1 < y1} ⊕ (1{x1 = y1} ∧ 1{x0 < y0}),
where x = x1||x0 and y = y1||y0.

In stage 2, [49] presents various optimizations to realize FAND
efficiently in the context of IKNP-style OT extension, such as
using

(16
1

)
-OT2 to generate two beaver triples and

(8
1

)
-OT2 to

generate correlated triples. However, in Cheetah, these are less
efficient than using

(2
1

)
-ROT1 to generate the beaver triples [4].

Nevertheless, their insight in stage 1 to start working with
m-bit blocks remains important to greatly reduce the number
of AND gates compared to a naive approach of using an eval-
uation tree of depth log`. We compare the communication
complexity of the three approaches in Table 3. We reuse the
millionaires’ protocol flow from CrypTFlow2, but replace the
underlying FAND implementation with our aforementioned so-
lution. Let (〈m〉A2 ,〈m〉

B
2) =Mill`(x,y) denote the millionaires’

protocol where Alice’s input is x, Bob’s input is y, and they
receive boolean shares as output: 〈m〉A2 ⊕〈m〉

B
2 = 1{x > y}.

4.2 Approximate Truncation
In fixed-point computation, truncation is a necessary proce-
dure to maintain the precision after multiplication. CrypT-
Flow2 proposes faithful truncation that realizes the function-
ality F `, f

Trunc (Figure 7b). We observe that large overhead in
the protocol can be removed in neural network inference.

4.2.1 One-Bit Approximate Truncation

In prior works [43–45], local truncation is used to approximate
F `, f

Trunc, which leads to both a large error with small probability
and a last-bit small error with 1/2 probability. CrypTFlow2
corrects both these errors, resulting in a heavy faithful trunca-
tion protocol. Indeed, the large error destroys the result, and
in practice, the probability is actually non-negligible when

Inputs and Outputs: 〈z〉A2` ,〈z〉
B
2` ← Trunc(〈x〉A2` ,〈x〉

B
2` , f) such

that x ∈ Z2` , and z = x� f or z = (x� f)−1.
1: Alice and Bob call the millionaires’ protocol:

(〈w〉A2 ,〈w〉
B
2) =Mill`(〈x〉A ,2`−1−〈x〉B).

2: Alice and Bob invoke an instance of F 2 f

B2A with inputs
(〈w〉A2 ,〈w〉

B
2) and learn (〈w〉A2 f ,〈w〉B2 f).

3: Alice computes 〈z〉A = (〈x〉A� f)−〈w〉A2 f ·2`− f . Bob com-
putes 〈z〉B = (〈x〉B� f)−〈w〉B2 f ·2`− f .

Figure 8: Proposed One-Bit Approximate Truncation Protocol
in the F 2 f

B2A-hybrid model.

`≤ 64, which is the case in this work. Nonetheless, as shown
by [16], the last-bit small error does not affect the quality
of prediction models in machine learning which we also ex-
perimentally verify in a concrete neural network (see § 6.4).
We observe that by removing the constraint of correcting the
last-bit error, the truncation protocol can be made far more
lightweight, providing significant improvement in communi-
cation and computation.

Proposition 3 Given an unsigned `-bit integer x and its arith-
metic shares x0 and x1, define w = 1{x0 + x1 > 2`−1}. Let
c be one-bit integer 0 or 1. We have: (x0 � f) + (x1 �
f)−w ·2` = (x� f)− c.

Proof 2 The proposition follows from Corollary 4.2 in [49].
First, w denotes whether the sum of two shares wrap around
2`. If so, there will be large error for local truncation and
it should be corrected by subtracting 2`. c comes from a
probabilistic last-bit error that is decided by whether the sum
of least significant s bits of x0 and x1 wraps around 2 f . �

Let F 2 f

B2A denote the functionality that accepts boolean shares
of x ∈ {0,1} and returns arithmetic shares of x in Z2 f . We
provide an implementation of F 2 f

B2A in Appendix F. The one-
bit approximate truncation protocol is provided in Figure 8.

4.2.2 Approximate Truncation with Known MSB

As pointed out by [48], 2PC protocols could be designed in
a far more efficient way when the MSB of the inputs are
known. In these cases, truncation can be further optimized
to be a cheap operation. We consider the case of our one-bit
approximate truncation when MSB is zero (e.g., after ReLU),
and give the corresponding protocol details in Figure 9. When
MSB is known, computing boolean shares of the wrap-around
bit w can be accomplished with a single call to

(2
1

)
-OT1 instead

of the expensive Mill protocol. Indeed, when MSB is zero,
w = msb(〈x〉A)∨msb(〈x〉B). A similar protocol can also be
derived when MSB is one and w = msb(〈x〉A)∧msb(〈x〉B).

10

Inputs and Outputs: 〈z〉A2` ,〈z〉
B
2` ← Truncmsb

(
〈x〉A2` ,〈x〉

B
2` , f

)
such that x ∈ Z2` , msb(x) = 0, and z = x� f or z = (x� f)−1.

1: Alice samples 〈w〉A2 ←R {0,1}.
2: If msb(〈x〉A) = 0, Alice sets (s0,s1) = (〈w〉A2 ,1⊕〈w〉

A
2); oth-

erwise, Alice sets (s0,s1) = (1⊕〈w〉A2 ,1⊕〈w〉
A
2).

3: Alice and Bob invoke
(2

1
)
-OT1, where Alice inputs messages

(s0,s1) and Bob inputs a choice msb(〈x〉B). Bob learns 〈w〉B2
as its output.

4: Alice and Bob invoke an instance of F 2 f

B2A with inputs
(〈w〉A2 ,〈w〉

B
2) and learn (〈w〉A2 f ,〈w〉B2 f).

5: Alice computes 〈z〉A = (〈x〉A� f)−〈w〉A2 f ·2`− f . Bob com-
putes 〈z〉B = (〈x〉B� f)−〈w〉B2 f ·2`− f .

Figure 9: Proposed Truncation Protocol with Input MSB=0
in the F 2 f

B2A-hybrid model.

4.2.3 Communication Complexity

We provide a comparison of communication complexity
among the discussed truncation protocols in Table 4. CrypT-
Flow2’s faithful truncation involves a single call to F `−1

Mill ,(4
1

)
-OT`, F 2`

B2A, and F f
Mill. This leads to a communication up-

per bound of λ(`+ f +2)+19`+14 f bits when sub-block
length m = 4 in the millionaires’ protocol. A direct replace-
ment of OT with the VOLE version gives us an upper bound
of 16`+ 11 f bits, according to our complexity analysis in
Table 2 and 3 (F 2`

B2A uses a single call of
(2

1

)
-COT`). One-

bit approximate truncation involves a call to F `
Mill and F 2 f

B2A,
which gives a communication of 13` bits. When MSB is
known, the cost is reduced to f +4 bits.

5 Further Optimizations

We present some optimizations that have not been considered
in the previous inference systems [7, 35, 43, 49]. Some of our
optimizations can also be applied to these systems.

5.1 Reducing Computation Overhead
The BN layer can be placed right after a CONV or FC layer.
For instance, 58 out of the 121 BN layers in DenseNet121
are placed right after a CONV layer. We observe that we can
apply the BN fusion technique to save the computation of
HomBN since the weights of the BN layer and the CONV
layer are already known by Alice. Specifically, for each BN-
then-CONV structure in the DNN, Alice first multiplies the
weights of the BN layer (i.e., µ) to the kernel K of the CONV
layer. Then Alice and Bob jointly invoke the HomCONV
protocol on the scaled kernel. After HomCONV, Alice adds
the shift vector θ to her additive share. Interestingly, by using
BN fusion, we also save the computation of truncation since
we have saved one depth of fixed-point multiplication.

Table 4: Communication complexity of truncation protocols
of `-bit integers truncated by f bits.

Truncation Protocol Communication (bits)

Faithful [49] λ(`+ f +2)+19`+14 f

Faithful (VOLE) 16`+11 f

One-bit approx. (VOLE) 13`

One-bit approx. (VOLE, MSB) f +4

5.2 Reducing Communication Overhead
We present two orthogonal optimizations for reducing the
volume of ciphertexts sent by Alice in our protocols.

In the proposed linear protocols, Alice sends many LWE
ciphertexts back to Bob for decryption. Indeed, some of the
LWE ciphertexts will share the same vector a in their second
component if they are extracted from the same RLWE cipher-
text. To reduce the communication overhead, Alice can only
send one copy of this vector to Bob.

Our second optimization comes from an insightful ob-
servation to the (R)LWE decryption formula. Suppose Al-
ice needs to send an LWE ciphertext (b,a) ∈ ZN+1

q to Bob
for decryption. Our optimization suggests Alice send just
some of the high-end bits of b and the values in a to Bob
and skip the remaining low-end parts. In brief, Alice can
skip the low `b = blog2(q/p)c − 1 bits of b and the low
`a = blog2(q/(6.6

√
N p))c bits of the values in a when trans-

ferring the ciphertext to Bob. Bob might fail to decrypt the
“deform” ciphertext at a negligible chance (i.e., < 2−38). In-
deed, this optimization saves about 16% – 25% of the com-
munication sent by Alice in our HE-based protocols. We defer
the calculation of `b and `a to to Appendix E.

6 Evaluations

6.1 Experiment Setup
Our implementation is built on top of the SEAL library [52]
with the HEXL acceleration [31] and the EMP toolkit [58].
We also extend the Ferret2 protocol in EMP to support var-
ious application-level OT types, such as

(n
1

)
-OT`. To com-

pare, we use the open-source library SCIHE that provided
by the authors of CrypTFlow2. Besides the OT-based non-
linear protocols in CrypTFlow2, SCIHE also offers many op-
timized implementation of state-of-the-arts including the se-
cure convolution [35, 43], and the matrix–vector multiplica-
tion from [13, 26] using an old version of SEAL. For a fair
comparison, we modify the code in SCIHE to adopt the latest
version of SEAL and to apply HEXL acceleration.
Testbed Environment. All the following experiments were
performed on Alibaba Cloud ecs.c7.2xlarge instances with a

2Our protocol can use any VOLE-style OT extension such as [10, 15, 59].

11

Table 5: Comparing the running time and communication
costs of our linear protocols with the state-of-the-arts. All
runs were executed using single thread. 1MB = 220 bytes.

FC ni,no
End2End Time

Commu.
LAN WAN

[49, 51]
2048,1001 1,533ms 1,587ms 0.50MB

512,10 17ms 60ms 0.50MB

Ours
2048,1001 111ms 171ms 1.83MB

512,10 4ms 51ms 0.11MB

CONV HW,C,M,h,s
End2End Time

Commu.
LAN WAN

[49, 51]

2242,3,64,7,2 25.52s 27.28s 76.02MB
2242,3,64,3,2 7.06s 8.78s 76.02MB

562,64,256,1,1 8.21s 8.74s 28.01MB
562,256,64,1,1 7.41s 8.51s 52.02MB

Ours

2242,3,64,7,2 1.30s 2.11s 49.62MB
2242,3,64,3,2 1.33s 2.16s 49.62MB

562,64,256,1,1 0.83s 1.10s 15.30MB
562,256,64,1,1 0.70s 0.99s 17.07MB

BN HW,C
End2End Time

Commu.
LAN WAN

[49, 51]
562,64 0.28s 0.50s 12.51MB

562,256 1.14s 2.17s 49.01MB

Ours
562,64 0.22s 0.34s 6.84MB

562,256 0.88s 1.36s 27.34MB

2.70 GHz processor and 16 gigabytes of RAM. All our pro-
grams are implemented in C++ and compiled by gcc-8.4.0.
We ran our benchmarks in two network settings. The band-
width between the cloud instances were about 384 MBps
(LAN) and 44 MBps (WAN), respectively. The round-trip
time were about 0.3ms (LAN) and 40ms (WAN), respectively.
Concrete SEAL’s Parameters. We instantiate our protocols
using the SEAL parameters HE.ppCheetah = {N = 4096,q≈
2105, p = 237,σ = 3.2}. Recall that the current secure convo-
lution protocol in SCIHE [51] demands HW/s2 ≤ N/2. For
most of the time, it can be instantiated using the SEAL pa-
rameters HE.ppSCI = {N = 8192,q≈ 2180, p≈ 237,σ = 3.2}.
On the other hand, to handle the convolution on large tensors
we have to instantiate SCIHE using a larger lattice dimension
e.g., N = 32768 in their implementation. The security levels
under these parameters are not aligned but all of them can
provide at least λ = 128 bits of security according to SEAL.
DNN Architectures. We measure the performance of Chee-
tah on 6 DNNs. For instance, the ResNet50 is trained to
classify RGB images of 224×224 pixels into 1001 classes.
The ResNet50 has over 23 million trainable parameters. It
consists of 53 CONV layers, 49 BN layers and 1 FC layer. For
the non-linear operations, ResNet50 consists of 49 ReLU, 98

Table 6: Comparing the running time and communication
costs of our non-linear protocols with the state-of-the-art. All
runs were executed using single thread. The communication
and timing are accumulated for 216 runs of the protocols.

Benchmark Method
End2End Time

Commu.
LAN WAN

Millionaire
[49] 572ms 1,680ms 31.56MB
Ours 496ms 663ms 2.72MB

1.1× 2.5× 11.6×

Truncation
[49] 544ms 1,914ms 34.57MB
Ours 432ms 655ms 2.86MB

1.2× 2.9× 12.0×

Trunc. with
known MSB

[49] 213ms 716ms 14.09MB
Ours 31ms 101ms 0.16MB

6.8× 7.1× 88.0×

truncation, 1 max-pooling, 1 average-pooling and 1 argmax.
Metrics. We measure the total communication including all
the messages sent by Alice and Bob but excluding the one-
time setup (e.g., keys generation and base-OT). We measure
the end-to-end running time including the time of transferring
messages through the LAN/WAN but we rule out the time for
HE key generation and base-OT.

6.2 Microbenchmarks
6.2.1 Linear Functions

We compare the performance of the proposed linear protocols
with the counterparts implemented in SCIHE in Table 5. The
key takeaway is that our computation time is about 1.3× –
20× faster than SCIHE’s, and our communication cost is about
1.5× – 2× lower3, depending on the input size.

Moreover, our linear protocols can accept additive shares
from the ring Z2` that is more friendly for subsequent non-
linear layers, while prior approaches [26,35,43,49] that lever-
age the homomorphic rotation could only accept shares from
a prime filed Zp. To accept shares from Z2` , they need to
apply the Chinese Remainder Theorem to expand the plain-
text modulus to above (2`+ 1+ 40) bits for achieving 40-
bit statistical security [19]. The downside is that it will in-
crease the computation and communication costs by a factor
of O((2`+1+40)/`) which is about 4 for our parameters.

6.2.2 Non-linear Functions

We also benchmark the non-linear functions in Table 6, by
running SCIHE and Cheetah with a single thread under the
LAN and WAN settings. The performance accounts for 216

calls to the protocols, which resembles a scenario of batch

3The only exception is the FC layer, where our communication cost may
be 1.33MB higher than theirs.

12

Table 7: Performance comparison with DELPHI [43, Figure
13] in the LAN setting. Inputs to the benchmarks were RGB
images of 32×32 pixels. Aligned parameters of sharing mod-
ulo to Z241 and fixed-point precision to f = 11 with DELPHI
were used for Cheetah in this benchmark.

Benchmark System End2End Time Commu.

MiniONN
DELPHI [43] ≈ 110s ≈ 3.6GB

Cheetah 3.55s 0.03GB
≈ 30× ≈ 117×

ResNet32
DELPHI [43] ≈ 200s ≈ 6.5GB

Cheetah 15.95s 0.11GB
≈ 12× ≈ 58×

1GB = 230 bytes.

execution in neural network inference. From the table, we
observe that our solution significantly reduces the communi-
cation cost, i.e., by more than 10× in all non-linear protocols.
The improvements come from both the VOLE-style OT up-
grades, and our more concise protocol designs.

6.3 Comparison with DELPHI
In Table 7, we compare Cheetah with DELPHI [43], one of
the state-of-the-art 2PC-NN systems. Similar to DELPHI,
we perform these computations on the CIFAR dataset [38]
with a larger bit-width of ` = 41 in the WAN setting using
4 threads. Note that Cheetah’s HE-based protocols are also
compatible with the online/offline optimizations [5] used by
DELPHI. Thus, in Table 7, we present the sum of the offline
and online costs of DELPHI reported in their paper (updated
version). Here, Cheetah is about 1 order of magnitude faster
than DELPHI and about 2 orders of magnitude efficient than
DELPHI in terms of communication. Cheetah can give the
same output as DELPHI since both frameworks will introduce
1-bit error in each truncation if we assume the harsh truncation
error in DELPHI does not occur on shallow NNs.

6.4 Comparison with CrypTFlow2
With all our protocols and optimizations in place, we demon-
strate the performance of Cheetah by running cryptographic
inferences on large DNNs efficiently. Table 8 shows that
Cheetah is efficient enough to evaluate SqueezeNet [30],
ResNet50 [27], and DenseNet121 [29] within 3 minutes even
under the WAN setting. The end-to-end running time of
Cheetah was about 2× – 5× faster than SCIHE within 8%
bandwidth consumption of SCIHE. To the best of our knowl-
edge, no prior secure two-party inference system can evaluate
ResNet50 and DenseNet121 within 10 minutes under the
commodity hardware and network conditions as ours.
Compare with a Three-party Approach. In Table 8, we
also provide the performance of SecureQ8 [16], one of the

Table 8: Performance comparison with SCIHE and SecureQ8
(three-party) on large-scale DNNs. We used the precision f =
12 for fixed-point values and 4 threads for the benchmarks.

Benchmark System
End2End Time

Commu.
LAN WAN

SqNet
SCIHE [49] 41.1s 147.2s 5.9GB

SecureQ8 [16] 4.4s 134.1s 0.8GB
Cheetah 16.0s 39.1s 0.5GB

RN50
SCIHE [49] 295.7s 759.1s 29.2GB

SecureQ8 [16] 32.6s 379.2s 3.8GB
Cheetah 80.3s 134.7s 2.3GB

DNet
SCIHE [49] 296.2s 929.0s 35.4GB

SecureQ8 [16] 22.5s 342.6s 4.6GB
Cheetah 79.3s 177.7s 2.4GB

SqNet = SqueezeNet; RN50 = ResNet50; DNet = DenseNet121

0 1 2 3 4 5 6 7 8 9

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9

0

2

4

6

8

10

12 SCI-HE

Cheetah

Figure 10: The top-10 values in the prediction vector of 1000
values from SqueezeNet (left) and ResNet50 (right).

most efficient three-party secure inference framework. These
results are obtained by re-running their implementation [53]
under ours environment. As is shown, SecureQ8 was 3× - 4×
faster than Cheetah on LAN, while Cheetah was 2× - 3×
faster on WAN by the virtue of less communication 4 .

6.5 Effective Approximate Truncation

To demonstrate the effectiveness of our approximate trunca-
tion protocols, we performed more predictions on SqueezeNet
using an image set [1] that includes about 1,000 images from
ImageNet. For all these images, Cheetah outputs the same
classification label as SCIHE. Let’s zoom in a bit. In Figure 10,
we present the top-10 values in the prediction vectors (i.e.,
the input to the final ArgMax layer) computed by SCIHE and
Cheetah on ResNet50 and SqueezeNet. Here we can see that
Cheetah gives almost the same prediction vectors as SCIHE
which are bit-wise equivalent to the plaintext fixed-point com-
putation. Also, according to the extensive experiments in
CrypTFlow2 [49, Table 10], the prediction accuracy achieved
by fixed-point computation can match the accuracy of the
floating-point counterpart. We conclude that our approximate
truncation protocols are effective for the 2PC-NN setting.

4Note that the implementation [53] uses fixed ring sizes i.e., `∈{64,128}.

13

Conclusion

Secure two-party deep neural network inference is getting
closer to practicality. Cheetah presents a highly optimized
architecture that runs the complex ResNet50 model in less
than 2.5 minutes even under the WAN setting, consuming
2.3 GB of communication. The evidential improvement over
stage-of-the-art comes from a set of novel cryptographic pro-
tocols that are built upon a more profound exploration of the
problem-setting. Cheetah also provide better alternatives to
a wide spectrum of functional evaluation problems in secure
two-party computation.

One of our furture work is to apply orthogonal optimiza-
tions commonly adopted in DNN such as quantization and
hardware acceleration. We believe the day is not that far off
when some applications such as privacy-preserving medical
diagnosis could be done in seconds.
Availability. Cheetah is available from https://github.
com/Alibaba-Gemini-Lab/OpenCheetah.
Acknowledgment. The authors would like to thank the
anonymous reviewers for their insightful comments and Dr.
Marina Blanton for the shepherding. The authors would also
like to thank ChenKai Weng from Northwestern University
for helpful discussions on Ferret.

References

[1] Imagenet-sample-images. https://github.com/
EliSchwartz/imagenet-sample-images, 2020.
1000 images, one random image per image-net class.
For easy visualization/exploration of classes.

[2] Martín Abadi, Andy Chu, Ian J. Goodfellow, H. Brendan
McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang.
Deep learning with differential privacy. In CCS, pages
308–318, 2016.

[3] Nitin Agrawal, Ali Shahin Shamsabadi, Matt J. Kusner,
and Adrià Gascón. QUOTIENT: two-party secure neural
network training and prediction. In CCS, pages 1231–
1247, 2019.

[4] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and
Michael Zohner. More Efficient Oblivious Transfer and
Extensions for Faster Secure Computation. In Proceed-
ings of the 2013 ACM SIGSAC Conference on Com-
puter and Communications Security, pages 535–548,
New York, NY, USA, 2013.

[5] Donald Beaver. Efficient multiparty protocols using
circuit randomization. In CRYPTO, volume 576, pages
420–432, 1991.

[6] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson.
Completeness theorems for non-cryptographic fault-

tolerant distributed computation (extended abstract). In
STOC, pages 1–10. ACM, 1988.

[7] Fabian Boemer, Anamaria Costache, Rosario Cam-
marota, and Casimir Wierzynski. nGraph-HE2: A high-
throughput framework for neural network inference on
encrypted data. In WAHC, pages 45–56. ACM, 2019.

[8] Fabian Boemer, Yixing Lao, Rosario Cammarota, and
Casimir Wierzynski. nGraph-HE: a graph compiler for
deep learning on homomorphically encrypted data. In
Computing Frontiers, pages 3–13, 2019.

[9] Raphael Bost, Raluca Ada Popa, Stephen Tu, and Shafi
Goldwasser. Machine learning classification over en-
crypted data. In NDSS, 2015.

[10] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai,
Lisa Kohl, Peter Rindal, and Peter Scholl. Efficient two-
round OT extension and silent non-interactive secure
computation. In CCS, pages 291–308, 2019.

[11] Alon Brutzkus, Ran Gilad-Bachrach, and Oren Elisha.
Low latency privacy preserving inference. In ICML,
pages 812–821, 2019.

[12] Ran Canetti. Security and composition of multi-
party cryptographic protocols. Journal of Cryptology,
13(1):143–202, 2000.

[13] Hao Chen, Wei Dai, Miran Kim, and Yongsoo Song. Ef-
ficient multi-key homomorphic encryption with packed
ciphertexts with application to oblivious neural network
inference. In CCS, pages 395–412, 2019.

[14] Hao Chen, Wei Dai, Miran Kim, and Yongsoo Song.
Efficient homomorphic conversion between (ring) LWE
ciphertexts. In Kazue Sako and Nils Ole Tippenhauer,
editors, ACNS, volume 12726, pages 460–479, 2021.

[15] Geoffroy Couteau, Peter Rindal, and Srinivasan Raghu-
raman. Silver: Silent VOLE and oblivious transfer
from hardness of decoding structured LDPC codes. In
CRYPTO, pages 502–534, 2021.

[16] Anders P. K. Dalskov, Daniel Escudero, and Marcel
Keller. Secure evaluation of quantized neural networks.
Proc. Priv. Enhancing Technol., 2020(4):355–375, 2020.

[17] Anders P. K. Dalskov, Daniel Escudero, and Marcel
Keller. Fantastic four: Honest-majority four-party secure
computation with malicious security. In Michael Bailey
and Rachel Greenstadt, editors, USENIX, pages 2183–
2200, 2021.

[18] Roshan Dathathri, Olli Saarikivi, Hao Chen, Kim Laine,
Kristin E. Lauter, Saeed Maleki, Madanlal Musuvathi,
and Todd Mytkowicz. CHET: an optimizing compiler

14

https://github.com/Alibaba-Gemini-Lab/OpenCheetah
https://github.com/Alibaba-Gemini-Lab/OpenCheetah
https://github.com/EliSchwartz/imagenet-sample-images
https://github.com/EliSchwartz/imagenet-sample-images

for fully-homomorphic neural-network inferencing. In
SIGPLAN, pages 142–156, 2019.

[19] Daniel Demmler, Thomas Schneider, and Michael
Zohner. ABY - A framework for efficient mixed-
protocol secure two-party computation. In NDSS. The
Internet Society, 2015.

[20] Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul
Rachuri, and Peter Scholl. Improved primitives for
MPC over mixed arithmetic-binary circuits. In CRYPTO,
pages 823–852, 2020.

[21] Craig Gentry, Shai Halevi, and Nigel P. Smart. Homo-
morphic evaluation of the AES circuit. In CRYPTO,
pages 850–867, 2012.

[22] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine,
Kristin E. Lauter, Michael Naehrig, and John Werns-
ing. CryptoNets: Applying neural networks to encrypted
data with high throughput and accuracy. In ICML, pages
201–210, 2016.

[23] Oded Goldreich. The Foundations of Cryptography -
Volume 2: Basic Applications. Cambridge University
Press, 2004.

[24] Thore Graepel, Kristin E. Lauter, and Michael Naehrig.
ML Confidential: Machine learning on encrypted data.
In Taekyoung Kwon, Mun-Kyu Lee, and Daesung Kwon,
editors, ICISC, pages 1–21, 2012.

[25] V. Gulshan, L. Peng, M. Coram, M. C. Stumpe,
D. Wu, A. Narayanaswamy, S. Venugopalan, K. Wid-
ner, T. Madams, J. Cuadros, R. Kim, R. Raman, P. C.
Nelson, J. L. Mega, , and D. R. Webster. Development
and validation of a deep learning algorithm for detection
of diabetic retinopathy in retinal fundus photographs.
JAMA, 316:2402–2410, 2016.

[26] Shai Halevi and Victor Shoup. Algorithms in HElib. In
CRYPTO, pages 554–571, 2014.

[27] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
CVPR, pages 770–778, 2016.

[28] Ehsan Hesamifard, Hassan Takabi, Mehdi Ghasemi, and
Rebecca N. Wright. Privacy-preserving machine learn-
ing as a service. PoPETs, 2018(3):123–142, 2018.

[29] Gao Huang, Zhuang Liu, Laurens van der Maaten, and
Kilian Q. Weinberger. Densely connected convolutional
networks. In CVPR, pages 2261–2269, 2017.

[30] Forrest N. Iandola, Matthew W. Moskewicz, Khalid
Ashraf, Song Han, William J. Dally, and Kurt Keutzer.
Squeezenet: Alexnet-level accuracy with 50x fewer pa-
rameters and <1mb model size. CoRR, 2016.

[31] Intel HEXL (release 1.2.2). https://arxiv.org/abs/
2103.16400, October 2021.

[32] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank.
Extending Oblivious Transfers Efficiently. In CRYPTO,
pages 145–161, 2003.

[33] Bargav Jayaraman and David Evans. Evaluating differ-
entially private machine learning in practice. In Nadia
Heninger and Patrick Traynor, editors, USENIX, pages
1895–1912, 2019.

[34] Xiaoqian Jiang, Miran Kim, Kristin E. Lauter, and Yong-
soo Song. Secure outsourced matrix computation and
application to neural networks. In CCS, pages 1209–
1222, 2018.

[35] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha
Chandrakasan. GAZELLE: A low latency framework
for secure neural network inference. In USENIX, pages
1651–1669, 2018.

[36] Vladimir Kolesnikov and Ranjit Kumaresan. Improved
OT extension for transferring short secrets. In CRYPTO,
pages 54–70, 2013.

[37] Nishat Koti, Mahak Pancholi, Arpita Patra, and Ajith
Suresh. SWIFT: super-fast and robust privacy-
preserving machine learning. In Michael Bailey and
Rachel Greenstadt, editors, USENIX, pages 2651–2668,
2021.

[38] Alex Krizhevsky. Learning multiple layers of features
from tiny images. https://www.cs.toronto.edu/
~kriz/learning-features-2009-TR.pdf, 2009.

[39] Nishant Kumar, Mayank Rathee, Nishanth Chandran,
Divya Gupta, Aseem Rastogi, and Rahul Sharma. CrypT-
Flow: Secure tensorflow inference. In SP, pages 336–
353. IEEE, 2020.

[40] Yehuda Lindell. How to simulate it - A tutorial on the
simulation proof technique. In Yehuda Lindell, editor,
Tutorials on the Foundations of Cryptography, pages
277–346. 2017.

[41] Jian Liu, Mika Juuti, Yao Lu, and N. Asokan. Oblivious
neural network predictions via minionn transformations.
In CCS, pages 619–631, 2017.

[42] Wenjie Lu and Jun Sakuma. More practical privacy-
preserving machine learning as A service via efficient
secure matrix multiplication. In Michael Brenner and
Kurt Rohloff, editors, WAHC, pages 25–36, 2018.

[43] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srini-
vasan, Wenting Zheng, and Raluca Ada Popa. DELPHI:
A cryptographic inference service for neural networks.
In USENIX, pages 2505–2522, 2020.

15

https://arxiv.org/abs/2103.16400
https://arxiv.org/abs/2103.16400
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

[44] Payman Mohassel and Peter Rindal. ABY3: A Mixed
Protocol Framework for Machine Learning. In CCS,
pages 35–52, 2018.

[45] Payman Mohassel and Yupeng Zhang. SecureML: A
system for scalable privacy-preserving machine learning.
In SP, pages 19–38. IEEE Computer Society, 2017.

[46] Moni Naor and Benny Pinkas. Oblivious Transfer and
Polynomial Evaluation. In STOC, pages 245–254, 1999.

[47] Arpita Patra, Thomas Schneider, Ajith Suresh, and Hos-
sein Yalame. ABY2.0: improved mixed-protocol secure
two-party computation. In Michael Bailey and Rachel
Greenstadt, editors, USENIX, pages 2165–2182, 2021.

[48] Deevashwer Rathee, Mayank Rathee, Rahul Kranti Ki-
ran Goli, Divya Gupta, Rahul Sharma, Nishanth Chan-
dran, and Aseem Rastogi. SiRnn: A math library for
secure RNN inference. In SP, pages 1003–1020. IEEE,
2021.

[49] Deevashwer Rathee, Mayank Rathee, Nishant Kumar,
Nishanth Chandran, Divya Gupta, Aseem Rastogi, and
Rahul Sharma. CrypTFlow2: Practical 2-party secure
inference. In CCS, pages 325–342. ACM, 2020.

[50] M. Sadegh Riazi, Mohammad Samragh, Hao Chen,
Kim Laine, Kristin E. Lauter, and Farinaz Koushanfar.
XONN: XNOR-based oblivious deep neural network in-
ference. In Nadia Heninger and Patrick Traynor, editors,
USENIX, pages 1501–1518, 2019.

[51] Secure and correct inference (SCI) library. https:
//github.com/mpc-msri/EzPC/tree/master/SCI,
June 2021.

[52] Microsoft SEAL (release 3.7). https://github.com/
Microsoft/SEAL, September 2021. Microsoft Re-
search, Redmond, WA.

[53] Multi-protocol SPDZ. https://github.com/
data61/MP-SPDZ/tree/master, February 2022.

[54] Reza Shokri, Marco Stronati, Congzheng Song, and Vi-
taly Shmatikov. Membership inference attacks against
machine learning models. In SP, pages 3–18, 2017.

[55] Nigel P. Smart and Frederik Vercauteren. Fully ho-
momorphic SIMD operations. Des. Codes Cryptogr.,
71(1):57–81, 2014.

[56] Florian Tramèr and Dan Boneh. Slalom: Fast, verifi-
able and private execution of neural networks in trusted
hardware. In ICLR, 2019.

[57] Florian Tramèr, Fan Zhang, Ari Juels, Michael K. Re-
iter, and Thomas Ristenpart. Stealing machine learning
models via prediction apis. In USENIX, pages 601–618,
2016.

[58] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz.
EMP-toolkit: Efficient MultiParty computation toolkit.
https://github.com/emp-toolkit, 2022.

[59] Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, and
Xiao Wang. Ferret: Fast extension for correlated OT
with small communication. In CCS, pages 1607–1626,
2020.

[60] Xiaoyong Zhu, George Iordanescu, Ilia Karmanovi, and
Mazen Zawaideh. Using microsoft ai to build a lung-
disease prediction model using chest x-ray images.

A Threat Model and Security

We provide security against a static semi-honest probabilis-
tic polynomial time adversary A following the simulation
paradigm [12, 23, 40]. That is, a computationally bounded
adversary A corrupts either Alice (Server) or Bob (Client) at
the beginning of the protocol ΠF and follows the protocol
specification honestly. Security is modeled by defining two
interactions: a real interaction where Alice and Bob execute
the protocol ΠF in the presence of A and the environment E
and an ideal interaction where the parties send their inputs
to a trusted party that computes the functionality F faithfully.
Security requires that for every adversary A in the real inter-
action, there is an adversary Sim (called the simulator) in the
ideal interaction, such that no environment E can distinguish
between real and ideal interactions.

We recap the definition of a cryptographic inference proto-
col in DELPHI [43]. The server holds a model W consisting
of d layers W1, · · · ,Wd . The client holds an input vector x.

Definition 1 A protocol Π between a server having as input
model parameters W = (W1, . . . ,Wd) and a client having as
input a feature vector x is a cryptographic inference protocol
if it satisfies the following guarantees.

• Correctness. On every set of model parameters W that
the server holds and every input vector x of the client,
the output of the client at the end of the protocol is the
correct prediction W (x).

• Privacy. We require that a corrupted, semi-honest client
does not learn anything about the server’s network
parameters W . Formally, we require the existence
of an efficient simulator SimC such that ViewΠ

C ≈c
SimC(meta,out) where ViewΠ

C is the view of the client in
the execution of Π, meta includes the meta information
(i.e., the public parameters HE.pp, the public key pk, the
number of layers, the size and type of each layer, and the
activation) and out denotes the output of the inference.

We also require that a corrupted, semi-honest server
does not learn anything about the private input x of the
client. Formally, we require the existence of an efficient

16

https://github.com/mpc-msri/EzPC/tree/master/SCI
https://github.com/mpc-msri/EzPC/tree/master/SCI
https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL
https://github.com/data61/MP-SPDZ/tree/master
https://github.com/data61/MP-SPDZ/tree/master
https://github.com/emp-toolkit

Inputs and Outputs 〈T′〉A ,〈T′〉B← HomCONV
(
{〈T〉A ,K},{〈T〉B ,sk}

)
such that 〈T〉A ,〈T〉B ∈ ZC×H×W

p , K ∈ ZM×C×h×h
p

and T′ = Conv2D(T,K;s) ∈ ZM×H ′×W ′
p .

Public Parameters: pp= (HE.pp,pk,M,C,H,W,h,s).

• Shape meta M,C,H,W,h such that h2 ≤ N and stride s > 0. The optimal sizes of the partition winodws that minimize
argminHw,Ww

d C
bN/(HwWw)ced

H−h+1
Hw−h+1ed

W−h+1
Ww+h−1e such that h≤ Hw ≤ H, h≤Ww ≤W and HwWw ≤ N.

• The partition window size along the C-axis and M-axis is Cw = min(C,b N
HwWw

c) and Mw = min(M,b N
CwHwWw

c).

• Set dM = d M
Mw
e,dC = d C

Cw
e, dH = d H−h+1

Hw−h+1e and dW = d W−h+1
Ww−h+1e. Ow = HwWw(MwCw−1)+Ww(h−1)+h−1.

• Set H ′ = bH−h+s
s c, W ′ = bW−h+s

s c, H ′w = bHw−h+s
s c and W ′w = bWw−h+s

s c.

1: Bob first partitions 〈T〉B into blocks along the H-axis and W -axis
〈
Tα,β

〉B ∈ ZC×Hw×Ww
q for α ∈ [[dH]] and β ∈ [[dW]]. Each

block
〈
Tα,β

〉B consists of Hw continuous rows and Ww continuous columns of 〈T〉B. Indeed,
〈
Tα,β

〉B is taken from the

α(Hw−h+1)-th row and β(Ww−h+1)-th column of 〈T〉B. Zero-padding might be used to make sure all
〈
Tα,β

〉B blocks
contain the same number of rows and columns.

2: Bob then splits the channels of each block tensor
〈
Tα,β

〉B into non-overlapping blocks
〈
Tγ,α,β

〉B ∈ZCw×Hw×Ww
p for γ∈ [[dC]].

Also, zero-padding might be used to make sure all
〈
Tγ,α,β

〉B blocks contain the same number of channels.

3: Bob encrypts and then sends the RLWE ciphertexts {CTγ,α,β = RLWE
N,q,p
pk (πi

conv(
〈
Tγ,α,β

〉B
))} to Alice.

4: Alice partitions 〈T〉A into blocks
〈
Tγ,α,β

〉A ∈ ZCw×Hw×Ww
p following the same manner in Step 1 and Step 2. Then Alice

encodes each block to a polynomial via
〈
t̂γ,α,β

〉A
= πi

conv(
〈
Tγ,α,β

〉A
).

5: Alice then splits K into sub-kernels along the M-axis, i.e., Kθ ∈ ZMw×C×h×h
p for θ ∈ [[dM]]. Then Alice further split

each Kθ into smaller block along the C-axis, i.e., Kθ,γ ∈ ZMw×Cw×h×h
p for γ ∈ [[dC]]. Zero-padding might be used to

make sure all blocks contains the same number of elements. Then Alice encodes these block tensors into polynomials
k̂θ,γ = πw

conv(Kθ,γ,Ow).

6: Alice samples 〈T′〉A from ZM×H ′×W ′
p uniformly at random and outputs it.

7: On receiving {CTγ,α,β}, Alice computes CT′
θ,α,β = �γ∈[[dC]](CTγ,α,β �

〈
t̂γ,α,β

〉A
)� k̂θ,γ for θ ∈ [[dM]],α ∈ [[dH]] and β ∈

[[dW]].
8: [Extrat and Re-mask.]For each c′ ∈ [[M]], i′ ∈ [[H ′]], and j′ ∈ [[W ′]], Alice sends an LWE ciphertext to Bob ctc′,i′, j′ =

Extract(CT′
θ,α,β,Ow− cCwHwWw + isHw + js)� 〈T′〉A [c′, i′, j′], where the index of CT′

θ,α,β is calculated as θ = bc′/Mwc,
α = bi′s/(Hw− h+ 1)c, and β = b j′s/(Ww− h+ 1)c. The position of the extracting coefficient is determined by c ≡
c′ mod Mw, i≡ i′ mod H ′w and j ≡ j′ mod W ′w.

9: On receiving the ciphertexts {ctc′,i′, j′}, Bob outputs 〈T′〉B ∈ ZM×H ′×W ′
p where 〈T′〉B [c′, i′, j′] = LWE−1

sk (ctc′,i′, j′).

Figure 11: Proposed Secure Convolution Protocol (Full Version)

simulator SimS such that ViewΠ
S ≈c SimS(meta) where

ViewΠ
S is the view of the server in the execution of Π.

B SIMD and Homomorphic Rotation

The SIMD technique [55] uses a discrete fourier transform
over the prime field Zp to convert vectors v,u ∈ ZN

p of N ele-
ments to ring elements v̂ ∈ AN,p and û ∈ AN,p, respectively.
The product polynomial v̂ · û∈AN,p decodes to the Hadamard
product between the vectors v and u. In the context of encryp-
tion, the SIMD technique can amortize the cost of homomor-
phic multiplication by a factor of 1/N. However, once the

SIMD-encoded vector is encrypted, it is not straightforward
to manipulate the positions of the encoded values. For exam-
ple, to homomorphically right-hand-side rotate the encrypted
vector by k ∈ [1,N) unit, one needs to multiply the cipher-
text with a rotation key given as RLWE

N,q,p
sk (ρ5k mod 2N(sk))

where the automorphism ρg : AN,p 7→ AN,p is defined by
ρg(â(X)) = â(Xg) mod XN +1.

C Full Version of HomCONV

We now present the full version of HomCONV in Figure 11.
In Step 1 and Step 2 of Figure 11, Bob first partitions its share

17

of tensor (with zero-padding) into smaller blocks of the same
shape Cw×Ww×Hw along the three dimensions. Bob then
sends to Alice dCdHdW RLWE ciphertexts that each of them
encrypts one partition block of 〈T〉B in Step 3. In the next
two steps, Alice first partitions its share 〈T〉A following the
same partitioning manner in Step 1 and Step 2. After that Al-
ice partitions the kernel K into dMdC non-overlapping blocks
Then Alice can encode each of them using πw

conv with an iden-
tical parameter Ow that is because the tensor T is partitioned
into blocks of the same shape Cw×Hw×Ww. On receiving
the RLWE ciphertexts from Bob, Alice then computes the
secure convolution using dMdCdHdW homomorphic multi-
plications and homomorphic additions. Indeed, the RLWE
ciphertext CT′

θ,α,β in Step 7 corresponds to the convolution
of the block tensor Tα,β and the sub-kernels Kθ. As a result,
each RLWE ciphertext CT′

θ,α,β obtains at most MwH ′wW ′w val-
ues of T′ in its encrypted coefficients. Finally, Alice extracts
MH ′W ′ LWE ciphertexts that each of them encrypts one entry
of the output tensor T′. Similar to the basic version, in Step 8
Alice randomizes the encrypted values in the LWE ciphertexts
by homomorphically adding uniform random values before
sending back the LWE ciphertexts to Bob for decryption.

Theorem 4 The protocol HomCONV in Figure 11 realizes
the ideal functionality FCONV of Figure 1b for the field F=
Zp and for h2 ≤ N in presence of a semi-honest admissible
adversary.

D Proofs

Proof 3 (Proposition 2) We write O′ = O− c′CHW for sim-
plicity. By the definition (1) we have

t̂ ′[x] = ∑
0≤d≤x

t̂[d]k̂[x−d]− ∑
x<d<N

t̂[d]k̂[N + x−d] (6)

for all x ∈ [[N]]. Since t̂[x] is zero for all x ≥CHW and the
target position O′+ i′sW + j′s >CHW, we thus have

t̂ ′[O′+ i′sW + j′s] = ∑
d<CHW

t̂[d]k̂[O′+ i′sW + j′s−d]

= ∑
c,i, j

t̂[cHW + iW + j]k̂[O′+ i′sW + j′s− (cHW + iW + j)]

= ∑
c,i, j

t̂[cHW + iW + j]k̂[O′− cHW − (i− i′s)W − (j− j′s)]

= ∑
c,i′, j′

t̂[cHW +(i′s+ l)W + j′s+ l′]k̂[O′− cHW − lW − l′]

The last line replaces i = i′s+ l and j = j′s+ l′. Also, accord-
ing to the definition of πw

conv, the value k̂[O′−cHW − lW − l′]
is zero when l, l′ /∈ [[h]]. Thus, we only need to take care of

the positions that l, l′ ∈ [[h]]. The above equation continues.

= ∑
c∈[[C]]

l,l′∈[[h]]

t̂[cHW +(i′s+ l)W + j′s+ l′]k̂[O′− cHW − lW − l′]

= ∑
c∈[[C]]

l,l′∈[[h]]

T[c, i′s+ l, j′s+ l′]k̂[O− c′CHW − cHW − lW − l′]

= ∑
c∈[[C]]

l,l′∈[[h]]

T[c, i′s+ l, j′s+ l′]K[c′,c, l, l′]

The final line is exactly T′[c′, i′, j′]. �

Proof 4 (Theorem 2.) The correctness of Theorem 2 is di-
rectly derived from Proposition 2. We now show the the pri-
vacy part.
(Corrupted Alice.) Alice’s view of ViewHomCONV

A consists of
an RLWE ciphertext CT′. The simulator SimA for this view
can be constructed as follows.

1. Given the access to meta, SimA outputs the ciphertext
C̃T
′
= RLWE

N,q
pk (0) to Alice.

The security against a corrupted Alice (Server) is directly
reduced to the semantic security of the underly encryption.
Thus we have ViewHomCONV

A ≈c SimA(meta).
(Corrupted Bob.) Bob’s view of ViewHomCONV

B consists of
LWE ciphertexts {ctc′,i′, j′}, and the decryption of these LWE
ciphertexts, i.e., 〈T′〉B. The simulator SimC for this view can
be constructed as follows.

1. On receiving the RLWE ciphertext CT from Bob and
given the access to meta, SimB samples uniform random
polynomial r̂ ∈ AN,p and computes C̃T= RLWE

N,q
pk (r̂).

2. For each c′ ∈ [[M]], i′ ∈ [[H ′]] and j′ ∈ [[W ′]], SimB out-
puts an LWE ciphertext c̃tc′,i′, j′ = Extract(C̃T) to Bob.

3. Given the access to out, SimB outputs the tensor T̃ such
that T̃[c′, i′, j′] = r̂[O− c′CHW + i′sW + j′s] for each
c′ ∈ [[M]], i′ ∈ [[H ′]] and j′ ∈ [[W ′]].

Similarly, the LWE ciphertexts {ctc′,i′, j′} ≈c {c̃tc′,i′, j′} due to
the semantic security. Also, the values in the output tensor
〈T′〉B of Bob in HomCONV distribute uniformly in Zp which
is exact the same distribution SimB samples T̃. Thus we have
ViewHomCONV

B ≈c SimB(meta,out). �

The security proofs for the Theorems 1 3 and 4 can be given
in a similar manner.

E On the Calculation of `a and `b

Remind that the LWE ciphertext (b,a) ∈ ZN+1
q of message

m ∈ Zp is decrypted by first computing me = b+a>s which
equals to bq/pem + e for some error e. Then we obtain

18

Table 9: DNN Architectures.

Networks
linear operations non-linear operations

CONV BN FC ReLU-then-Trunc Trunc

MNet 7 0 1 7 0
RN32 34 34 1 31 37

SqNet 26 0 0 26 0
RN50 53 49 1 49 49
DNet 121 121 0 121 120

MNet = MiniONN; RN32 = ResNet32; RN50 = ResNet50
SqNet = SqueezeNet; DNet = DenseNet121

Inputs & Outputs: 〈z〉A2 ,〈z〉
B
2 ← AND

(
〈x〉A2 ,〈x〉

B
2 ,〈y〉

A
2 ,〈y〉

B
2

)
s.t. x,y,z ∈ {0,1} and z = x∧ y.

1: Alice and Bob jointly generate a beaver triple: 〈c〉A2 ⊕〈c〉
B
2 =

(〈a〉A2 ⊕〈a〉
B
2)∧ (〈b〉

A
2 ⊕〈b〉

B
2).

2: Alice computes 〈e〉A2 = 〈x〉A2 ⊕〈a〉
A
2 and 〈 f 〉A2 = 〈y〉A2 ⊕〈b〉

A
2 .

Bob computes 〈e〉B2 = 〈x〉B2 ⊕〈a〉
B
2 and 〈 f 〉B2 = 〈y〉B2 ⊕〈b〉

B
2 .

3: Alice and Bob open e and f .
4: Alice computes 〈z〉A2 = (〈a〉A2 · f)⊕(〈b〉A2 ·e)⊕〈c〉

A
2 , and Bob

computes 〈z〉B2 = (e · f)⊕ (〈a〉B2 · f)⊕ (〈b〉B2 · e)⊕〈c〉
B
2

Figure 12: Protocol for FAND.

the message as m = bme p/qe. In other words, the low `′ =
blog2(q/p)c bits of me will be dropped during the divide-then-
round and thus are useless for decryption. This motives us to
skip some of the low-end bits of b and a, and to only transfer
the remains high-end bits to reduce the communication cost
if the LWE ciphertext is sent for decryption.

We explicitly write the high-end and low-end parts of b and
a as b= bH2`b +bL and a= aH2`a +aL such that 0≤ bL < 2`b

and the values in aL are 2`a -bounded. Then me can be written

as me = bL+a>L s+bH2`b +a>Hs2`a . If the sum bL+a>L s < 2`
′

then we can just send the high-end parts bH and aH for de-
cryption. The key here is to find out an upper bound for
a>L s. Remind that the secret vector s distributes uniformly
in {0,±1}N . Since a is basically an uniform random vector,
we can assume that the values in aL distributes uniformly in
[0,2`a). Then the variance of a>L s is Var ≈ 2N

9 (2`a)2. We use
7
√
Var (i.e., 7 times standard deviation) as a high-probability

upper bound (≈ 1−2−38.5) on the value a>L s. Finally, to de-
termine the concrete `b and `a, we can either maximize the
number of bits that can be saved that is `b +N`a under the

constraints `a, `b ∈ [0,dlog2(q)e) and 7
√

2N
9 2`a + 2`b < 2`

′
,

or just setting `b = `′−1 and `a = `′−1−blog2(7
√

2N
9)c.

Inputs and Outputs: 〈d〉A2 f ,〈d〉B2 f ← B2A
(
〈c〉A2 ,〈c〉

B
2 , f

)
such

that c ∈ {0,1} and d = c.

1: Alice and Bob invoke an instance of
(2

1
)
-COT f , where Alice

is the sender with correlation function g(x) = x−2〈c〉A2 and
Bob is the receiver with input choice 〈c〉B2 . Alice learns x and
Bob learns y.

2: Alice computes 〈d〉A2 f = 〈c〉A2 −x, and Bob computes 〈d〉B2 f =

〈c〉B2 + y.

Figure 13: B2A Protocol.

F Protocols for FAND and F 2 f

B2A

We describe the classic protocol for computing FAND in Fig-
ure 12, where beaver triples are generated with

(2
1

)
-ROT1 [4].

We describe a protocol for F 2 f

B2A in Figure 13, which is also
used in CryptoFlow2 [49, 51], except that

(2
1

)
-COT f is instan-

tiated with VOLE-style OT.

19

	Introduction
	Our Techniques
	Achieving the Best in Two Worlds
	Fast and SIMD-free Linear Protocols
	Leaner Protocols for the Non-linear Functions

	Other Related Work

	Preliminaries
	Notations
	Lattice-based Homomorphic Encryption
	Oblivious Transfer
	Arithmetic Secret Sharing
	Local Truncation Trade-offs
	Secure Neural Network Inference
	Linear Layers
	Non-linear Layers
	Two-Party Inference System & Threat Model

	Proposed 2PC Protocols of Linear Layers
	Fully Connection
	Two Dimensional Convolution
	On the Cases of Large Tensors
	HomCONV (Full Protocol)

	Batch Normalization

	Optimized 2PC Protocols of Non-Linear Functions
	Leaner and Better Millionaires' Protocol
	Approximate Truncation
	One-Bit Approximate Truncation
	Approximate Truncation with Known MSB
	Communication Complexity

	Further Optimizations
	Reducing Computation Overhead
	Reducing Communication Overhead

	Evaluations
	Experiment Setup
	Microbenchmarks
	Linear Functions
	Non-linear Functions

	Comparison with DELPHI
	Comparison with CrypTFlow2
	Effective Approximate Truncation

	Threat Model and Security
	SIMD and Homomorphic Rotation
	Full Version of HomCONV
	Proofs
	On the Calculation of a and b
	Protocols for FAND and FB2A2f

