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Abstract

The algebraic group model (AGM), proposed by Fuchsbauer, Kiltz and Loss (CRYPTO
2018) has received huge attention. One of the most appealing properties of the AGM, is that,
the hardness of security games in the generic group model (GGM) can be transferred via a
generic reduction in the AGM. More concretely, for any two security games, G and H, if there
exists a generic reduction from H to G in the AGM, and H is hard in the GGM, then G is also
hard in the GGM.

In this work, we analyze the relationship between the AGM and Shoup’s GGM (Eurocrypt
1997) and give evidence that:

• hardness of security games in Shoup’s GGM cannot be transferred via a generic reduction
in the AGM;

• the AGM and Shoup’s GGM are incomparable.

1 Introduction

Computational assumptions on groups, and standard model. We have seen many elegant
cryptographic schemes and protocols using (cyclic) groups since the breakthrough results by Diffie
and Hellman [DH76]. These schemes and protocols are provably secure: an adversarial algorithm
against the scheme/protocol, can be (efficiently) transformed into another adversarial algorithm for
solving a number theoretical hard problem on (cyclic) groups. Good examples of the hard prob-
lems include the Discrete Logarithm (DLOG) problem, the Computational Diffie Hellman (CDH)
problem, and the Decisional Diffie Hellman (DDH) problem. For example, the well-known Diffie-
Hellman key-exchange protocol, can be proven passively secure, under the Decisional Diffie-Hellman
assumption [KL07]. We remark that, the adversary against the scheme/protocol is computation-
ally bounded, and other than that, there is no any additional restriction; we call such adversarial
attacking model as the standard model, or the plain model.

From standard model to generic group model. It is fundamentally important to under-
stand the hardness of these hard problems. Certain relations between these hard problems have
been demonstrated in the standard model by showing a reduction from one problem to another

∗An early version of this result, with a different title, had been submitted to Eurocrypt 2022. We are grateful to
the anonymous reviewers of Eurocrypt 2022 for their many valuable and constructive comments.
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problem. For example, the DLOG problem is harder to solve than the DDH, and an adversar-
ial algorithm solving the DLOG can be transformed into another adversarial algorithm to solve
the DDH. Unfortunately, it is extremely difficult to establish lower bounds for hardness of the
assumptions.

Interestingly, initiated by the seminal work of Nechaev [Nec94] and then formalized by Shoup [Sho97]
and Maurer [Mau05], the generic group model (GGM) has been introduced for studying the security
of many group-based intractable assumptions and cryptographic schemes. This line of research has
been extended very recently by Maurer et al [MPZ20].

In the GGM, all algorithms are restricted to be “generic” in the sense that, algorithms are
not allowed to exploit any structure of the group. Thus, “generic” algorithms can be applied
in any group. Well-known examples of generic algorithms include the baby-step giant-step algo-
rithm [PH78], and Pollard’s rho algorithm [Pol78]. The GGM, although restricted, has been used
for many years as the canonical tool to establish (certain level of) confidence for new intractable
assumptions and cryptographic schemes. Note that, for many cryptographic groups (e.g., groups
defined over some elliptic curves), the best known algorithms for assumptions on these groups, are
generic.

Algebraic group model. In [BV98,PV05], a different type of restricted algorithms have been
studied. There, algorithms are restricted to be “algebraic” in the sense that, algorithms given
a concrete group description, are only allowed to carry out group operations on group elements.
Moreover, to obtain a new group element, an algebraic algorithm must derive it via group operations
from already known group elements.

This line of research has been further extended recently by Fuchsbauer, Kiltz, and Loss [FKL18],
formalizing the algebraic group model (AGM), and then presenting multiple findings in the AGM.
The AGM by by Fuchsbauer et al [FKL18] is well received in cryptographic research commu-
nity. Since then, many research results in the AGM have been published, and multiple AGM-
related research projects have been carried out. We list a few here [MBKM19,MTT19, Lip19,
GWC19,ABB+20,AGK20,KLX20a,BDFG20,BFL20,CH20,CHM+20,FPS20,GRWZ20,KLX20b,
RS20,GT21,RZ21,ABK+21].

In [FKL18], Fuchsbauer, Kiltz, and Loss, surprisingly find that, AGM and GGM are heavily
correlated. They claim that, the AGM is, while stronger than the standard model, weaker than the
GGM. Among many results, they prove that, in the GGM, there is an alternative way to establish
the lower bounds for new number theoretical hard problems based on the known lower bounds for
a different hard problem! For the sake of introducing our main question without touching subtle
points, we present here a “fuzzy” version of their alternative approach; the formal version can be
found in [FKL18, Lemma 2.2], and also in Section 4 of this writeup.

Let G and H be two security games. Assume the following conditions:

(1) H⇒ G; that is, there exists a reduction R, so that an algebraic adversary AG
alg who

can win in game G, can be converted into another algebraic adversary AH
alg = RAG

alg

who can win in game H.

(2) game H is hard in the GGM; that is, there exists no generic adversary AH
gen who

can win in game H.

As in [FKL18], we expect to conclude that,
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(3) game G is also hard in the GGM; that is, there exists no generic adversary AG
gen

who can win in game G.

We next follow a “canonical” proof strategy with the goal of raising our doubts, and we emphasize
that this “canonical” proof strategy is not the one in [FKL18]. Let’s resume our discussions. In
order to reach the conclusion (3), a plausible proof strategy is as follows:

Step 1: We prove this by contradiction, and assume the negation of the conclusion (3); that is,

(3’) game G is not hard in the GGM; that is, there exists a generic adversary AG
gen who

can win in game G.

Step 2: Based on the generic adversary AG
gen as specified in (3’) above, ideally, we expect we can

transform such generic adversary AG
gen into an algebraic adversary AG

alg;

Step 3: Once the algebraic adversary AG
alg is defined, we can obtain an algebraic adversary AH

alg,

based on the condition (1) above, i.e., AH
alg = RAG

alg ;

Step 4: Then, based on the algebraic adversary AH
alg, ideally, we expect we can transform such

algebraic adversary AH
alg into a generic adversary AH

gen;

Step 5: Finally, we expect we complete the proof, since the existence of generic adversary AH
gen in

Step 4, contradicts to condition (2) above.

In the above “canonical” proof strategy, while steps 1, 3, 5 are clear, we must be super cautious
about steps 2 and 4. We next focus only on Step 4.

Recall that, the goal of the generic algorithm AH
gen is to solve a hard problem (e.g., DDH) in the

GGM. Existing techniques [Sho97,Mau05,MPZ20] essentially rely on the random encoding, and
the lower bounds of hardness are established with respect to generic algorithms who do not rely on
the concrete group description. This means, the generic algorithm AH

gen should not use essentially
the concrete group description, even such concrete group description is provided.

On the other hand, the generic adversary AH
gen, in Step 4, has to use the algebraic adversary

AH
alg as the subroutine. To effectively use the algebraic adversary AH

alg as the subroutine, the generic

adversary AH
gen must use concrete group description to call the subroutine AH

alg. We are now in a
dilemma!

Main questions. With the doubts, we thus have the following question:

Is it feasible to transform the hardness for one problem in the GGM to that for another
problem, via a reduction in the AGM?

We further ask:

Is the AGM weaker than the GGM, or they are incomparable?

We remark that, it is important to answer the above questions since the AGM has served as
the foundation for cryptanalysis in many research papers (see the list of citations on page 2 of this
writeup).
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1.1 Our results

We make a first attempt to answer the questions above and analyze the relationship between the
AGM and Shoup’s GGM. Based on our analysis, we present the following results:

Theorem 1.1 (Informal). The hardness of security games in Shoup’s GGM cannot be transferred
via a generic reduction in the AGM.

Theorem 1.2 (Informal). The AGM and Shoup’s GGM are incomparable.

In this work, we first focus on the generic algorithms in Shoup’s GGM [Sho97], and we say an
algorithm is Shoup-generic if it is generic in Shoup’s GGM. To show that the hardness of games
in Shoup’s GGM cannot be transferred via a generic reduction in the AGM, we first consider the
reduction is Shoup-generic. Before the analysis, in Section 3, we present some discussions on terms
in [FKL17]; we believe these terms are not explicitly defined. Then, based on the discussions,
we design two games, called Oracle-associated Diffie-Hellman (ODH in Section 4.1) and Binary-
Representation related Diffie-Hellman (BRDH in Section 4.2).

In Section 4, we build a Shoup-generic reduction from DLOG to ODH (and BRDH) in the
AGM. Note that DLOG is widely believed to be hard in the AGM, and due to the (Shoup-generic)
reduction, ODH and BRDH can be assumed to be hard in the AGM. However, we prove that both
ODH and BRDH are easy in Shoup’s GGM1. This implies that the hardness of security games in
Shoup’s GGM cannot be transferred via a Shoup-generic reduction in the AGM.

We then turn attention to the generic algorithms in Maurer’s GGM [Mau05]. Analogously,
we say an algorithm is Maurer-generic if it is generic in Maurer’s GGM. Note that, an algorithm
is Maurer-generic implies that it is Shoup-generic [MPZ20], while the opposite direction does not
hold. In fact, there exist algorithms (see the toy example in Section 2.1) that are Shoup-generic
but not Maurer-generic.

In Section 5, we strengthen the results by considering that the reduction is Maurer-generic. We
design a security game, called “variant of Dent’s example” (VDLOG in Section 5.2). We then define
another game G such that the adversary wins G if the adversary outputs its inputs. Trivial to note
that G is easy in both Shoup’s GGM and the AGM. We then build a Maurer-generic reduction
from VDLOG to G in the AGM, and prove that VDLOG is easy in the AGM but hard in Shoup’s
GGM. If the hardness of games in Shoup’s GGM can be transferred via this reduction, then G
must be hard in Shoup’s GGM. Therefore, the hardness of security games in Shoup’s GGM cannot
be transferred via a Maurer-generic reduction in the AGM.

Moreover, ODH and BRDH are easy in Shoup’s GGM but believed to be hard in the AGM
(assuming DLOG is hard in the AGM), thus we have that the AGM is not weaker than Shoup’s
GGM. On the other hand, VDLOG is easy in the AGM but hard in Shoup’s GGM, which means
that Shoup’s GGM is not weaker than the AGM either. Combing together, the AGM and Shoup’s
GGM are incomparable.

1.2 Discussions

In light of our analysis, we now briefly discuss possible research directions.

It will be great if we can show the hardness of security games in Shoup’s GGM can be transferred
via a reduction in the AGM, even with respect to some reasonable restrictions. We point out that
the three examples we present are very artificial, and they are not the security games/assumptions

1The hardness of ODH is super-poly but sub-exponential.
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that we are generally interested in. An interesting open problem is to characterize a family of
security games such that

• this family covers many security games we are interested in, e.g., DLOG, CDH, DDH;

• for any two games belonging to this family, the hardness of these two games in Shoup’s GGM
can be transferred via a reduction in the AGM.

1.3 Comparing to the Concurrent Result

In a concurrent and independent work [Zha22], Zhandry studies the GGM and the AGM; among
many results in [Zha22], Zhandry re-defines the AGM and illustrates an example to show the un-
instantiability for the AGM. In this section, we discuss the main difference between our results and
Zhandry’s, and then present additional discussions.

We first point out that there is an inconsistency between the AGM defined by Fuchsbauer
et al . [FKL17] and the one re-defined by Zhandry [Zha22]. Specifically, the AGM re-defined by
Zhandry is restricted to the Maurer’s GGM; as a result the AGM inherits the limitations of the
Maurer’s GGM2. However, the AGM in [FKL17] does not suffer from this restriction. For example,
Fuchsbauer et al . design a CCA1-secure ElGamal encryption with a very short ciphertext, while
Zhandry gives evidence that, in Maurer’s GGM, any CPA-secure encryption must have a large
ciphertext3. We stress that, in our paper, we study the AGM as the model defined in [FKL17]
(rather than the one in [Zha22]).

Comparing to the results in [Zha22], our main result is that, we provide evidences to show that
the technical lemma, i.e., Lemma 2.2 of [FKL17] does not hold. Note that, this technical lemma has
not been analyzed in [Zha22]. We remark that, without this technical lemma, it is hard to justify
the security of the reduction in the AGM and many findings in [FKL17] will become invalid. In
this paper, our goal is to provide evidences to show that the technical lemma does not hold; more
concretely, we design three examples and illustrate that the hardness of security games in Shoup’s
GGM cannot be transferred via a reduction in the AGM. Our paper also concludes that the AGM
and Shoup’s GGM are incomparable as a bonus result, which is also independently identified by
Zhandry [Zha22]. As pointed by Zhandry [Zha22], our examples only make sense in Shoup’s GGM;
we admit that those examples can be trivially ruled out if we restrict that, the AGM only works
on the security games that make sense in Maurer’s GGM.

However, ruling out our examples is not sufficient to claim the technical lemma is provably
sound. In fact, to the best of our knowledge, even with the restrictions proposed by Zhandry, it
is still unclear how to prove this technical lemma, if we apply the reduction in the AGM in the
black-box manner4.

Organization. In Section 2, we describe the preliminaries, including security games and reduc-
tions, algebraic algorithms, and generic algorithms. Before the analysis, in Section 3, we illustrate
some discussion on several terms in [FKL17]. In Section 4, we present two examples to show that
the hardness in Shoup’s GGM cannot be transferred via a Shoup-generic reduction in the AGM.

2See the elaboration on page 5 of [Zha22], “... the model inherits the limitations of the TS/Maurer model. ...”
3See the elaboration on page 21 of [Zha22], “...any CPA-secure encryption scheme in the TS model, whose domain

is bit strings (as opposed to group elements) must have a quite large ciphertexts. In particular, the number of group
elements in the ciphertext must approximately equal the bit-length of the message. ...”

4If we apply the reduction in the AGM in a non-black-box manner, then more precise and cautious treatments
are needed. We emphasize that, even sticking to the non-black-box methodology, it is still unknown how to prove
the technical lemma.
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We then strengthen our results by introducing another example in Section 5, to show that the
hardness in Shoup’s GGM cannot be transferred via a Maurer-generic reduction in the AGM. In
Appendix A, we describe the preliminary about the evasive relations on groups.

2 Preliminaries

In this section, we provide the preliminaries. We note that, the analysis of the remaining of the
paper relies on the ideas in (the full version of) Fuchsbauer et al’s paper [FKL17], and also the
ideas in Shoup’s paper [Sho97]. To make our presentation simple and to reduce the confusion, we
directly borrow many notations, and definitions from these two papers.

Algorithms. We denote by s ↞ S the uniform sampling of the variable s from the (finite) set
S. All our algorithms are probabilistic (unless stated otherwise) and written in uppercase letters
A, B. To indicate that algorithm A runs on some inputs (x1, . . . , xn) and returns y, we write
y ↞ A(x1, . . . , xn). If A has access to an algorithm B (via oracle access) during its execution, we
write y ↞ AB(x1, . . . , xn).

dlogA
G

00 x ↞ Zp

01 X := gx

02 z ↞ A(X)
03 Return (z = x)

Figure 1: Discrete Logarithm
Game dlog, relative to group
G = (G, g, p) and adversary A.

Security games. We use a variant of (code-based) security
games [BR04]. In game Gpar (defined relative to a set of pa-
rameters par), an adversary A interacts with a challenger that
answers oracle queries issued by the adversary A. It has a main
procedure and (possibly zero) oracle procedures which describe
how oracle queries are answered. We denote the output of a
game Gpar between a challenger and an adversary A via GA

par.

The adversary A is said to win if GA
par = 1. See Figure 1 for

the example of Discrete Logarithm Game dlogA
G , where par is

set to be a group G = (G, g, p). We define the advantage of A
in Gpar as AdvG

par,A := Pr[GA
par = 1] and the running time of

GA
par as TimeGpar,A.

Security reductions. Let G, H be security games. We write Hpar
(∆ϵ,∆t)
=====⇒ Gpar if there exists

an algorithm R (called (∆ϵ,∆t)-reduction) such that for all algorithms A, algorithm B defined as
B := RA satisfies

AdvH
par,B ≥

1

∆ ϵ
·AdvG

par,A, TimeHpar,B ≤ ∆t ·TimeGpar,A.

2.1 Generic algorithms

Let Zp be the additive group of integers (mod p), and let S be a set of bit strings, where the size
|S| ≥ p. Consider an encoding function σ, which is an injective map from Zp into S. We now define
generic algorithms.

Definition 2.1 (Generic Algorithms). Let Zp be the additive group of integers mod p, and let
S be a set of bit strings with size at least p. A probabilistic algorithm Agen is called generic, if
it behaves as follows: algorithm Agen may make two types of queries, the labeling queries and the
addition queries, to an oracle O. When making a labeling query, Agen specifies a value x ∈ Zp,
and then the oracle O responds to this query with σ(x). When Agen makes an addition query, it
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specifies two values s1, s2 ∈ S, the oracle O responds as follows: if s1 = σ(x1) and s2 = σ(x2) for
some x1, x2 ∈ Zp, then O responds with σ(x1 + x2); otherwise it responds with ⊥.

The algorithm Agen is based on p and S. However, Agen is not based on encoding function σ;
information about encoding function σ can be available to Agen through the oracle only. We count
both the number of bit operations, and the number of group operations (i.e., oracle queries), when
we measure the running time of a generic algorithm.

In [Mau05], Maurer proposes an alternative generic group model. In Maurer’s GGM, the generic
algorithms only receive abstract handles (or null); therefore the generic algorithms in Maurer’s
GGM are not allowed to make use of the representation of group elements. In contrast, the generic
algorithms in Shoup’s GGM is allowed to make use of the representation of group elements.

We present an example to illustrate this difference. Consider a group element σ(x), and let
b1|| · · · ||bL be the canonical binary representation of σ(x). Now let A be an algorithm that takes
σ(x) as input and outputs the bit b1. In this example, we can see that, algorithm A cannot be viewed
as a generic algorithm in Maurer’s GGM: generic algorithms in Maurer’s GGM are not allowed to
make use of the representation of group elements; however, algorithm A already makes use of the
representation of group element σ(x), i.e., b1. On the other hand, algorithm A in this example can
be viewed as a generic algorithm in Shoup’s GGM.

In this work, we say an algorithm A is Maurer-generic, if algorithm A is generic in Maurer’s
GGM. Analogously, we say an algorithm A is Shoup-generic, if A is generic in Shoup’s GGM.

2.2 Algebraic algorithms

We consider algebraic security games GG for which we set par to a fixed group description G =
(G, g, p), where G is a cyclic group of prime order p generated by g. In algebraic security games,
we syntactically distinguish between elements of group G (written in bold, uppercase letters, e.g.,
A) and all other elements, which must not depend on any group elements.

We now define algebraic algorithms. Intuitively, the only way for an algebraic algorithm to
output a new group element Z is to derive it via group multiplications from known group elements.

Definition 2.2 (Algebraic Algorithms). An algorithm Aalg executed in an algebraic game GG is
called algebraic if for all group elements Z that Aalg outputs (i.e., the elements in bold uppercase
letters), it additionally provides the representation of Z relative to all previously received group
elements. That is, if L⃗ is the list of group elements L0, . . . , Lm ∈ G that Aalg has received so far
(w.l.o.g. L0 = g), then Aalg must also provide a vector z⃗ such that Z = ΠiL

zi
i . We denote such an

output as [Z]z⃗.

2.3 Generic reductions between algebraic security games

Generic algorithms Agen are only allowed to use generic properties of group G. Informally, an
algorithm is generic if it works regardless of what group it is run in. This is usually modeled by
giving an algorithm indirect access to group elements via abstract handles. It is straight-forward
to translate all of our algebraic games into games that are syntactically compatible with generic
algorithms accessing group elements only via abstract handles.

We say that winning algebraic game GG is (ϵ, t)-hard in the generic group model if for every
generic algorithm Agen it holds that

TimeG,Agen ≤ t =⇒ AdvG,Agen ≤ ϵ.
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We remark that usually in the generic group model one considers group operations (i.e., oracle
calls) instead of the running time. In our context it is more convenient to measure the running
time instead, assuming every oracle call takes one unit time.

In Section 2.3 of the full version of Fuchsbauer et al’s paper [FKL17], generic reductions between
algebraic security games has been defined. Let GG and HG be two algebraic security games. We

write HG
(∆ϵ,∆t)
=====⇒

alg
GG if there exists a generic algorithm Rgen (called generic (∆ϵ,∆t)-reduction)

such that for every algebraic algorithm Aalg, algorithm Balg defined as Balg := R
Aalg
gen satisfies

AdvH
G,Balg

≥ 1

∆ ϵ
·AdvG

G,Aalg
, TimeHG,Balg

≤ ∆t ·TimeGG,Aalg
.

Note that we deliberately require reduction Rgen to be generic. Hence, if Aalg is algebraic, then

Balg := R
Aalg
gen is algebraic; if Aalg is generic, then Balg := R

Aalg
gen is generic. If one is only interested

in algebraic adversaries, then it suffices to require reduction Rgen to be algebraic. But in that case

one can no longer infer that Balg := R
Aalg
gen is generic in case Aalg is generic.

3 Discussions on some terms in [FKL17]

We point out that some terms in [FKL17] are not explicitly defined. For the sake of better conveying
our ideas, we here first present some discussions on these terms, before going to our technical sections
(Section 4 and Section 5).

On the term “depend on”. We quote a sentence from [FKL17] in the following gray box (see
page 6 in [FKL17]):

In algebraic security games, we syntactically distinguish between elements of group G (written in bold, uppercase
letters, e.g., A) and all other elements, which must not depend on any group elements.

We stress that, the term “depend on” is not explicitly defined. We are not attempting to formalize
this term as we believe it is hard to give a precise mathematical definition for describing the term
“depend on”. In this work, when we say an element is a non-group element, we mean that, this
element is not identical to any group element.

In [FKL17], Fuchsbauer et al . state that, in the AGM, the algebraic algorithms must avoid the
non-group elements which depend on some group elements and they call such non-group elements,
pathological. Again, we are not attempting to formalize these notions. However, we want to clarify
that, when a single bit (either “0” or “1”) is treated as a non-group element, this non-group element
is not pathological. Indeed, in [FKL17], the algebraic algorithms are allowed to have the oracle
access, where the oracle may return a single bit for each query; please see the Strong Diffie-Hellman
assumption (SDH) in [FKL17] for a concrete example.

On the term “received”. Similarly, we quote another sentence from [FKL17] in the following
gray box (part of Definition 2.2):

...That is, if L⃗ is the list of group elements L0, . . . , Lm ∈ G that Aalg has received so far (w.l.o.g. L0 = g), then
Aalg must also provide a vector z⃗ such that Z = ΠiL

zi ...

Again, the term “received” is not explicitly defined in [FKL17]. For the received group elements,
at least the following two cases should be considered:
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• Case 1: the inputs5 of algebraic algorithm Aalg only consist of group elements, e.g., L0, . . . ,Lm ∈
G;

• Case 2: the inputs of algebraic algorithm Aalg consist of group elements (e.g., L0, . . . ,Lm),
along with some bits, e.g., s1, . . . , sn ∈ {0, 1}n. We note that, these bits are non-group
elements; as discussed above, these bits are not pathological.

For the former case (Case 1), it is natural to treat L0, . . . ,Lm as the received group elements.
For the latter case (Case 2), we argue that the term “received” is not explicitly defined. Specifically,
there are two potential treatments for the latter case:

• Treatment (I): those non-group elements are ignored and L0, . . . ,Lm are treated as the re-
ceived group elements;

• Treatment (II): additional received group elements can be obtained from those non-group
elements s1, . . . , sn.

While the Treatment (I) is clear, we argue that, it is hard to formalize the Treatment (II) with a
proper justification. Below we provide our intuitive elaboration.

Let L ∈ G be a new group element and s1|| . . . ||sL be its binary representation, where L is
the length of the group element L. Multiple sub-cases can be considered when non-group elements
can be used for deriving new group elements. Next, we focus on two of them (with the goal of
illustrating our intuition):

• Subcase (i): the inputs of Aalg consist of group elements, and a single non-group element
s1 ∈ {0, 1};

• Subcase (ii): the inputs of Aalg consist of group elements, and ℓ number of non-group elements
s1, . . . , sℓ, where ℓ = L − log2(λ). (Note that, L is the length of the group element L, as
described above.)

For the first subcase (subcase (i)), it’s natural to claim that, the algebraic algorithm Aalg cannot
extract additional group elements from s1; otherwise “s1” is pathological. However, for the second
subcase (subcase (ii)), we note that, the algebraic algorithm Aalg receives all bits of L except the

last log2(λ) bits. Note that 2log
2(λ) = λlog λ is super-poly. As a result, it is natural to believe that,

in subcase (ii), no efficient algebraic algorithm can extract additional group elements from those
non-group elements, because it is hard for any efficient algebraic algorithm to guess the last log2(λ)
bits correctly with a noticeable probability.

Based on the discussions above, we can see for Treatment (II), it is non-trivial to deal with
the non-group elements in the inputs of an algebraic algorithm. In the remaining of the paper,
when the inputs of an algebraic algorithm consist of group elements, along with a single non-group
element (as in subcase (i) above), or along with multiple non-group elements as in subcase (ii)
above), we decide not to derive group elements from the non-group element(s) in the inputs.

5The inputs of an algebraic algorithm include both the initial inputs and elements received during execution, e.g.,
the response of the oracles.
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4 Hardness of security games in Shoup’s GGM cannot be trans-
ferred, via a Shoup-generic reduction in the AGM

In this section, we give evidence that hardness of security games in Shoup’s GGM cannot be
transferred via a Shoup-generic reduction in the AGM. We first recall the main lemma, i.e., their
Lemma 2.2, in [FKL17] and its proof in the grey box below.

Lemma 2.2. Let GG and HG be algebraic security games such that HG
(∆ϵ,∆t)
=====⇒

alg
GG and winning HG is

(ϵ, t)-hard in the GGM. Then, GG is (ϵ ·∆ϵ, t/∆t)-hard in the GGM.

Proof. Let Agen be a generic algorithm playing in game GG . Then by our premise there exists a generic algorithm

Balg = R
Aalg
gen such that

AdvH
G,Balg

≥ 1/∆ϵ ·AdvG
G,Aalg

, TimeH
G,Balg

≤ ∆t ·TimeG
G,Aalg

.

Assume TimeG
G,Aalg

≤ t/∆t; then TimeH
G,Balg

≤ ∆t ·TimeG
G,Aalg

≤ t. Since winning HG is (ϵ, t)-hard in the GGM,
it follows that

ϵ ≥ AdvH
G,Balg

≥ 1/∆ϵ ·AdvG
G,Aalg

and thus ϵ ·∆ϵ ≥ AdvG
G,Aalg

, which proves that GG is (ϵ ·∆ϵ, t/∆t)-hard in the GGM.

According to the proof, we note that the reduction algorithm Rgen is generic. In this section,
we consider the case that Rgen is Shoup-generic. More concretely, we design two algebraic security
games say GG and HG : there exists a Shoup-generic reduction Rgen such that winning HG in the
AGM can be reduced to winning GG in the AGM, and HG is hard in Shoup’s GGM, but GG is not
as hard as HG in Shoup’s GGM. More formally,

Theorem 4.1. There exist algebraic security games GG and HG such that

• HG
(∆ϵ,∆t)
=====⇒

alg
GG with respect to a Shoup-generic reduction Rgen;

• HG is (ϵ, t)-hard in Shoup’s GGM;

• GG is not (ϵ ·∆ϵ, t/∆t)-hard in Shoup’s GGM.

4.1 Example: Oracle-associated Diffie-Hellman (ODH)

In this section, we present our first example. We first introduce an algebraic security game, called
Oracle-associated Diffie-Hellman Assumption, as described via game o-dhG in Figure 2. Next, in
subsection 4.1.1 we show that dlogG implies o-dhG in the AGM, with respect to a Shoup-generic
reduction.

4.1.1 Shoup-generic reduction from DLOG to ODH

Claim 4.2. dlog
(2,1)
===⇒

alg
o-dh.

Proof. Let Aalg be an algebraic adversary executed in game o-dhG ; cf. Figure 3. Note that, the
inputs of Aalg is (g,X,Y) and (s1, . . . , sℓ), where s1|| . . . ||sL is the canonical binary representation
of gxy, and ℓ = L− log2(λ). According to the discussion in Section 3, the received group elements
of Aalg is (g,X,Y). Therefore, when Aalg returns a solution Z, it must return a representation

b⃗ = (b1, b2, b3) ∈ Z3
p such that
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o-dhA
G

00 x, y ↞ Zp;
01 (X,Y) := (gx, gy);
02 Z ↞ AOG,x,y(·)(X,Y);
03 Return (Z = gxy).

OG,x,y(I);

04 If I = gi and i ≤ ℓ;
Return the i-th bit of gxy;

05 Else return ⊥.

Figure 2: Oracle-associated Diffie-Hellman Game o-dh relative to G and adversary A. Here
ℓ = L − log2(λ), where L = poly(λ) is the (maximal) length of each group element; and oracle
OG,x,y(·) is parameterized with the group description G and values x, y.

Z = gb1Xb2Yb3 (1)

In the following, we construct a Shoup-generic reduction Rgen that calls Aalg exactly once such

that for Balg := R
Aalg
gen we have

Advdlog
G,Balg

≥ 1

2
Advo-dh

G,Aalg
.

o-dh
Aalg

G

00 x, y ↞ Zp;
01 (X,Y) := (gx, gy);

02 [Z]⃗
b
↞ A

OG,x,y(·)
alg (X,Y);

03 Return (Z = gxy).

OG,x,y([I]c⃗);

04 If (I = gc1Xc2Yc3) and (I = gi ∧ i ≤ ℓ);
Return the i-th bit of gxy;

05 Else return ⊥.

Figure 3: Algebraic adversary Aalg. Here ℓ = L − log2(λ), where L = poly(λ) is the (maximal)
length of each group element; and oracle OG,x,y(·) is parameterized with the group description G
and values x, y; and c⃗ = (c1, c2, c3).

Next, we present the description of the Shoup-generic reduction algorithm Rgen. On input a
challenging term X := gx, it first randomly samples y ↞ Zp and a bit b ↞ {0, 1} 6. After that,
Rgen computes Y := gy and Xy. If b = 0, then Rgen calls Aalg with inputs (X,Y), and if b = 1,
then Rgen calls Aalg with inputs (Y,X).

Next, Rgen simulates the oracle OG,x,y(·) for Aalg as follows: when Aalg sends a query [I]c⃗,
responds with the i-th bit of Xy7 if (I = gc1Xc2Yc3) and (I = gi where i ≤ ℓ), otherwise it returns
⊥.

At the end of the procedure, Aalg outputs a solution Z = gxy associated with a representation

b⃗ = (b1, b2, b3) ∈ Z3
p. The reduction Rgen computes W = gb2 , and solves x as follows:

• Case 1: If the bit b = 0 and W ̸= Y, then Rgen returns b1+b3y
y−b2

;

• Case 2: If the bit b = 1 and W = X, then Rgen returns b2;

6To ensure Rgen is a generic algorithm, we stress that y and b are independent of the description of gx.
7We remark that these operations are allowed in Shoup’s GGM, but are forbidden in Maurer’s GGM.
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• Case 3: Otherwise, returns ⊥.

In case 1, Equation (1) is equivalent to the equation xy ≡p b1+b2x+b3y, which means x ≡p
b1+b3y
y−b2

.
In case 2, due to W = X, we immediately have that x = b2. Hence the advantage that Balg wins
DLOG is

Advdlog
G,Balg

≥ Pr[(Aalg wins) ∧ (b = 0) ∧ (W ̸= Y)] + Pr[(Aalg wins) ∧ (b = 1) ∧ (W = X)].

Moreover, we note that the bit b is independent of the Aalg’s view, which means that Aalg’s
output is independent of b. Besides, when b = 0, Aalg takes inputs (X,Y), and when b = 1,
Aalg takes inputs (Y,X), where we note that from Aalg’s view, (X,Y) and (Y,X) are identical
distributed. Thus, it is apparent that,

Pr[(Aalg wins) ∧ (b = 0) ∧ (W = Y)] = Pr[(Aalg wins) ∧ (b = 1) ∧ (W = X)].

Now, we can compute the advantage of Balg as:

Advdlog
G,Balg

≥ Pr[(Aalg wins) ∧ (b = 0) ∧ (W ̸= Y)] + Pr[(Aalg wins) ∧ (b = 1) ∧ (W = X)]

≥ Pr[(Aalg wins) ∧ (b = 0) ∧ (W ̸= Y)] + Pr[(Aalg wins) ∧ (b = 0) ∧ (W = Y)]

= Pr[(Aalg wins) ∧ (b = 0)]

= Pr[Aalg wins]× Pr[b = 0] //Here b is independent of Aalg

=
1

2
Advo-dh

G,Aalg
.

4.1.2 Hardness of the ODH in Shoup’s GGM

According to the existing hardness results for Discrete Logarithm problem in Shoup’s GGM [Sho97],

we have that dlogG is (O( t
2

p ), t)-hard. By the reduction in Section 4.1.1, it suffices to prove that

o-dhG is not (O( t
2

p ), t)-hard in Shoup’s GGM.

Claim 4.3. o-dh is not (O( t
2

p ), t)-hard in Shoup’s GGM, with respect to random encoding.

Proof. We here design a Shoup-generic attacker Agen that plays game o-dhG with advantage 1
λlog(λ) .

On input challenging terms (σ(1), σ(x), σ(y)), Agen first makes ℓ labeling queries with {1, . . . , ℓ}
and obtains {σ(1), . . . , σ(ℓ)}. Then, for all i ∈ {1, . . . , ℓ}, Agen calls its oracle Oσ,x,y(·) with σ(i) and
obtains a bit si. After that, Agen uniformly samples additional log2(λ) bits: sℓ+1, . . . , sℓ+log2(λ) ↞

{0, 1}log2(λ). At the end, Agen outputs s1|| · · · ||sℓ+log2(λ).

By definition, we know that, if Agen guesses the last log
2(λ) bits correctly, then Agen wins o-dhG ,

which refers to

Advo-dh
G,Agen

≥ 1

2log
2(λ)

=
1

λlog(λ)
>

poly(λ)

p
≥ O(

t2

p
).

Remark 4.4. Careful readers might note that, game o-dh cannot be modeled in Maurer’s GGM,
because generic adversaries only receive abstract handles (or null) in Maurer’s GGM. However, we
argue that, o-dh can be modeled in Shoup’s GGM, by extending the notion of generic algorithms
so as to include an additional oracle.
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4.2 Example: Binary-Representation related Diffie-Hellman (BRDH)

In this section, we present the second example. We introduce an algebraic security game, called
Binary-Representation related Diffie-Hellman Assumption, as described via game br-dhG in Fig-
ure 4. By the description of br-dhG , we note that the main difference between o-dhG and br-dhG
is that, there is no oracle access in br-dhG and the inputs of br-dhG are all group elements. Now
we show that dlogG implies br-dhG in the AGM, with respect to a Shoup-generic reduction.

br-dhA
G

00 x, y ↞ Zp;
01 z := xy;
02 Z := gz;
03 parse group element Z into its canonical binary representation z1|| . . . ||zL;
04 (X,Y,U1, . . . ,UL) := (gx, gy, g2+z1 , . . . , g2i+zi , . . . , g2L+zL);
05 Z ↞ A(X,Y,U1, . . . ,UL);
06 Return (Z = gxy).

Figure 4: Binary-representation related Diffie-Hellman Game br-dh relative to G and adversary A.
Here L = poly(λ) is the (maximal) length of each group element.

4.2.1 Shoup-generic reduction from DLOG to BRDH

Claim 4.5. dlog
(2,1)
===⇒

alg
br-dh.

Proof. Let Aalg be an algebraic adversary executed in game br-dhG ; cf. Figure 5. Note that, the
inputs of Aalg is (g,X,Y,U1, . . . ,UL). According to the discussion in Section 3, the received group
elements of Aalg is (g,X,Y,U1, . . . ,UL). Therefore, when Aalg returns a solution Z, it must return
a representation v⃗ = (b1, b2, b3, a1, . . . , aL) ∈ Z3+L

p such that

Z = gb1Xb2Yb3Za1
1 . . .ZaL

L . (2)

In the following, we construct a Shoup-generic reduction Rgen that calls Aalg exactly once such

that for Balg := R
Aalg
gen we have

Advdlog
G,Balg

≥ 1

2
Advbr-dh

G,Aalg
.

Next, we present the description of the Shoup-generic reduction algorithm Rgen. On input a
challenging term X := gx, it first randomly samples y ↞ Zp and a bit b ↞ {0, 1}. After that, Rgen

computes Y := gy and Z := Xy. Let z1|| . . . ||zL be the canonical binary representation of Z and
Ui := g2i+zi 8. If b = 0, then Rgen calls Aalg with inputs (X,Y,U1, . . . ,UL), and if b = 1, then
Rgen calls Aalg with inputs (Y,X,U1, . . . ,UL).

At the end of the procedure, Aalg outputs a solution Z = gxy associated with a representation
v⃗ = (b1, b2, b3, a1, . . . , aL) ∈ Z3+L

p . The reduction Rgen computes W = gb2 , and solves x as follows:

8In Shoup’s GGM, generic algorithms are allowed to compute Ui, while in Maurer’s GGM, those operations are
not allowed.
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br-dh
Aalg

G

00 x, y ↞ Zp;
01 z := xy;
02 Z := gz;
03 parse group element Z into its canonical binary representation z1|| . . . ||zL;
04 (X,Y,U1, . . . ,UL) := (gx, gy, g2+z1 , . . . , g2i+zi , . . . , g2L+zL);
05 [Z]v⃗ ↞ A(X,Y,U1, . . . ,UL);
06 Return (Z = gxy).

Figure 5: binary-representation related Diffie-Hellman Game br-dh relative to G and adversary A.
Here L = poly(λ) is the (maximal) length of each group element.

• Case 1: If the bit b = 0 and W ̸= Y, then Rgen returns
b1+b3y+

∑L
i=1 ai(2i+zi)

y−b2
;

• Case 2: If the bit b = 1 and W = X, then Rgen returns b2;

• Case 3: Otherwise, returns ⊥.

In case 1, Equation (2) is equivalent to the equation

xy ≡p b1 + b2x+ b3y +
L∑
i=1

ai(2i+ zi),

which refers to x ≡p
b1+b3y+

∑L
i=1 ai(2i+zi)

y−b2
. In case 2, due to W = X, we immediately have that

x = b2. Hence the advantage that Balg wins DLOG is

Advdlog
G,Balg

≥ Pr[(Aalg wins) ∧ (b = 0) ∧ (W ̸= Y)] + Pr[(Aalg wins) ∧ (b = 1) ∧ (W = X)].

Moreover, we note that the bit b is independent of the Aalg’s view, which means that Aalg’s
output is independent of b. Besides, when b = 0, Aalg takes inputs (X,Y), and when b = 1,
Aalg takes inputs (Y,X), where we note that from Aalg’s view, (X,Y) and (Y,X) are identically
distributed. Thus, it is apparent that,

Pr[(Aalg wins) ∧ (b = 0) ∧ (W = Y)] = Pr[(Aalg wins) ∧ (b = 1) ∧ (W = X)].

Now, we can compute the advantage of Balg as:

Advdlog
G,Balg

≥ Pr[(Aalg wins) ∧ (b = 0) ∧ (W ̸= Y)] + Pr[(Aalg wins) ∧ (b = 1) ∧ (W = X)]

≥ Pr[(Aalg wins) ∧ (b = 0) ∧ (W ̸= Y)] + Pr[(Aalg wins) ∧ (b = 0) ∧ (W = Y)]

= Pr[(Aalg wins) ∧ (b = 0)]

= Pr[Aalg wins]× Pr[b = 0] //Here b is independent of Aalg

=
1

2
Advbr-dh

G,Aalg
.
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4.2.2 Hardness of the BRDH in Shoup’s GGM

It is trivial to note that br-dhG is easy in Shoup’s GGM, because Shoup-generic adversaries can
easily identify the i-th bit of σ(xy). Concretely, the i-th bit of σ(xy) is “0” if and only if Ui = σ(2i).

4.3 Discussions

First, we note that both o-dh and br-dh are easy in Shoup’s GGM but believed to be hard in
the AGM (assuming DLOG is hard in the AGM), thus we have that, the AGM is not weaker than
Shoup’s GGM.

Second, the reduction algorithms for our examples (i.e., o-dh and br-dh) are Shoup-generic but
not Maurer-generic, as both of the reductions make use of the group representation. As a result,
these two examples cannot serve as the evidence that ”hardness of security games in Shoup’s GGM
cannot be transferred via a Maurer-generic reduction in the AGM”.

5 Hardness of security games in Shoup’s GGM cannot be trans-
ferred, via a Maurer-generic reduction in the AGM

In the previous section, we see that the hardness of security games in Shoup’s GGM cannot be
transferred via a Shoup-generic reduction in the AGM. In this section, we strengthen our analysis
by showing that the hardness in Shoup’s GGM cannot be transferred, even the reduction is a
Maurer-generic in the AGM. Besides, our example in this section indicates that Shoup’s GGM is
not weaker than the AGM either; this means that the AGM and Shoup’s GGM are incomparable.
For readability, we recall again the main lemma, i.e., Lemma 2.2, in [FKL17] in the grey box below.

Lemma 2.2. Let GG and HG be algebraic security games such that HG
(∆ϵ,∆t)
=====⇒

alg
GG and winning HG is

(ϵ, t)-hard in the GGM. Then, GG is (ϵ ·∆ϵ, t/∆t)-hard in the GGM.

In the following, we design two algebraic security games say GG and HG : there exists a Maurer-
generic reduction Rgen such that winning HG in the AGM can be reduced to winning GG in the
AGM, and HG is hard in Shoup’s GGM, but GG is easy in Shoup’s GGM. More formally,

Theorem 5.1. There exist algebraic security games GG and HG such that

• HG
(∆ϵ,∆t)
=====⇒

alg
GG with respect to a Maurer-generic reduction Rgen;

• HG is (ϵ, t)-hard in Shoup’s GGM;

• GG is not (ϵ ·∆ϵ, t/∆t)-hard in Shoup’s GGM.

Intuitively, we construct a security game HG ; we note that, our idea here is inspired by the
impossibility result in [Den02]. Concretely, Dent [Den02] introduces a modified version of the
original DLOG problem, and shows that his modified DLOG problem is easy in the standard
model but is hard in the Shoup’s GGM. We then prove that our variant is also easy in the AGM
and the standard model. On the other side, we construct game GG to be a security game that,
the adversary wins GG if the adversary outputs its inputs. Trivial to note that, GG is easy in both
AGM and Shoup’s GGM.

Now, we observe that, both HG and GG are easy in the AGM, thus the adversary on HG serves
as the reduction from HG to GG . We then present a Maurer-generic adversary on HG in the
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AGM. (The reason we design a variant of Dent’s example is that, we can prove the reduction in
Maurer-generic in the variant case, and details can be found in Section 5.4.) However, in Shoup’s
GGM, HG is hard and GG is easy, which immediately refers to that the results in AGM cannot be
transferred to the hardness in Shoup’s GGM, even the reduction is Maurer-generic.

Moreover, we observe that, HG itself, serves as the evidence that the Shoup’s GGM is not
weaker than the AGM, as HG is hard in Shoup’s GGM but easy in the AGM. Combing the analysis
in Section 4, we conclude that the AGM and Shoup’s GGM are incomparable.

5.1 Dent’s Oracle-associated DLOG

In [Den02], a slightly modified DLOG problem has been introduced. Let’s use o-dlog to denote the
modified DLOG. Note that in [Den02], this modified DLOG problem serves as a counter example
to prove that the GGM is not sound; that is, o-dlog is trivial in the standard model but is secure
in the GGM.

The modified DLOG o-dlog (see Figure 6) is very similar to the original DLOG dlog (see
Figure 1), except that now the adversary A is allowed to have access to certain oracle, as defined
below. We note that, the oracle is based on an encoding ρ from Zp to a set G, and an evasive group
relation R; Please see Appendix A for the definition of evasive group relation.

The following is taken from Section 4 of [Den02]; we define oracle Oρ,R as:

Oρ,R(y, ρ(x)) =

{
x if (y, ρ(y)) ∈ R,
⊥ otherwise

(3)

o-dlogA
G

00 x ↞ Zp;
01 X := gx;
02 z ↞ AOG,R(·,·)(X);
03 Return (z = x).

Figure 6: Dent’s Modified Discrete Logarithm Game o-dlog, relative to encoding ρ, evasive relation
R and adversary A. Here we treat G as the encoding function such that ρ(i) := gi.

We now restate Theorem 2 in [Den02] as follows:

Theorem 5.2. For any evasive relation R, o-dlog is (O( t
2

p ), t)-hard in Shoup’s GGM, with respect
to random encoding.

5.2 A variant of Oracle-associated DLOG (VDLOG)

In this subsection, we introduce a variant of Dent’s example, denoted as v-dlog. This variant
v-dlog (see Figure 7) is very similar to o-dlog, except the interface of the oracle. Concretely, given
an encoding ρ, an evasive group relation R and x ∈ Zp,we define the oracle Oρ,R,x as:

Oρ,R,x(y) =

{
x if (y, ρ(y)) ∈ R,
⊥ otherwise

(4)
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Note that, the only difference between o-dlog and v-dlog is the interface of the oracle. In
o-dlog, the adversary A makes a query to Oρ,R with inputs (y, ρ(x)), while in v-dlog, when the
adversary makes a query to Oρ,R,x, it only sends y to the oracle.

v-dlogA
G

00 x ↞ Zp;
01 X := gx;
02 z ↞ AOG,R,x(·)(X);
03 Return (z = x).

Figure 7: A variant of Oracle-associated DLOG v-dlog, relative to evasive relation R and adversary
A. Here we treat G as the encoding function such that ρ(i) := gi.

Applying the same proof in [Den02], we have that,

Theorem 5.3. For any evasive relation R, v-dlog is (O( t
2

p ), t)-hard in Shoup’s GGM, with respect
to random encoding.

5.3 VDLOG is easy in the AGM

As in Theorem 5.3, v-dlogG is hard in the GGM. However, next we can see the v-dlogG is easy in
the AGM.

Claim 5.4. v-dlogG is easy in the AGM.

Proof. In Shoup’s GGM, the encoding ρ is random, while in the AGM, the encoding ρ is defined
by the group description G such that ρ(i) := gi. We now define the evasive relation R to be

R = {(1, g)}. (5)

The oracle Oρ,R,x(·) now becomes

OG,R,x(y) =

{
x if (y, gy) ∈ R,
⊥ otherwise

(6)

We can see that, there exists an adversary AOG,R,x(·)(gx) that will output x with probability 1
by just making a query to the oracle OG,R,x(·) with inputs “1”. In next subsection, we prove A is
Maurer-generic.

5.4 On the Maurer-generic reduction

In this section, we set HG to be v-dlogG and GG be the game that the adversary wins GG if
the adversary outputs its inputs. We see that both HG and GG are easy in the AGM, thus the
adversary against HG serves as the reduction from HG to GG . Now, it suffices to prove that the
adversary A in Section 5.3 is Maurer-generic. In fact, the adversary A works as follows:

• Step 1: takes (g, gx) as inputs;
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• Step 2: makes a query with input “1”;

• Step 3: Output whatever the oracle OG,R,x(·) returns.

Note that, the adversary A only makes a query with “1” and returns the response of oracle,
which means it does not make use of any group representation9. Therefore, the adversary A is
Maurer-generic, which means the reduction from HG to GG is Maurer-generic.

Remark 5.5. One may argue that, the oracle OG,R,x(·) depends on the group representation and
A cannot win v-dlog without queries to the oracle. We stress that, the oracle OG,R,x(·) is given
by the challenger in the game v-dlog, and the adversary only makes queries in the black-box way.
Therefore, no matter how the oracle performs, it would not affect that A is Maurer-generic, as long
as A makes no use of group representation.

5.5 Discussions

First, we note that v-dlog is hard in Shoup’s GGM but easy in the AGM, which refers to that the
Shoup’s GGM is not weaker than the AGM. Combing the analysis in Section 4, we conclude that
the AGM and Shoup’s GGM are incomparable.

Second, we note that, even in the standard model, our example still holds. Concretely, v-dlog
is also easy in the standard model and the adversary against v-dlog in the standard model is also
Maurer-generic. Therefore, the hardness of games in Shoup’s GGM cannot be transferred via a
Maurer-generic reduction, even in the standard model.

Third, all our examples (i.e., o-dh, br-dh, and v-dlog) cannot be characterized by the Maurer’s
GGM. As a result, these three examples cannot serve as evidence that “the hardness of games in
Maurer’s GGM cannot be transferred via a Maurer-generic reduction in the AGM”.
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A Evasive relations on groups

Based on the evasive relationship [CGH98], Dent defines evasive relations on groups, which will be
used for constructing a counter example. The following is taken from Section 3 of [Den02].

Definition A.1 (Evasive Group Relation). A relation R ⊂ G × S is said to be an evasive group
relation if for any ppt machine A we have

Pr[x← Aρ(1λ) : (x, ρ(x)) ∈ R] ≤ negl(λ),

where the probability is taken uniformly over all choices for an encoding function ρ : G → S and
the coins of A.
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