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Abstract
With the rapid growth of the blockchain market, privacy

and security issues for digital assets are becoming more and
more important. In the most widely used public blockchains
such as Bitcoin and Ethereum, all activities on user accounts
are publicly disclosed and also violate privacy regulations
such as EU GDPR. Encryption of accounts and transactions
may protect privacy, but it also raises issues of validity and
transparency: encrypted information alone cannot verify the
validity of a transaction and makes it difficult to meet anti-
money laundering, i.e. auditability.

To solve the above problem, we propose an auditable zero-
knowledge transfer framework called Azeroth. Azeroth con-
nects a zero-knowledge proof for an encrypted transaction,
enabling to check its validation while protecting its privacy.
Azeroth also allows authorized auditors to audit transactions.
Azeroth is designed as a smart contract for flexible deploy-
ment on top of an existing blockchain. According to the result
of our experiment, the additional time required to generate
a proof is about 901ms.The security of Azeroth is formally
proven under the cryptographic assumptions.

1 Introduction

With the widespread adoption of blockchains, various decen-
tralized applications (DApps) and digital assets used in DApps
are becoming popular. There are two classical models of
blockchain networks: the unspent-transaction-output (UTXO)
model and the account model. The former uses individual
UTXOs to represent assets and conducts transactions by de-
stroying and creating UTXOs on the network. The first cryp-
tocurrency based on the UTXO model, Bitcoin [14], adopts
a proof of work to implement the mining process. The latter
performs transactions on a per-account basis and continuously
updates the account status, very similar to the current custom-
ary global procedure. A representative example of this model
is Ethereum [5], which produces smart contracts that allow
users to execute functions on the network. Ethereum provides

more programmability than Bitcoin model and supports more
complex and diverse smart applications. Unlike traditional
banking systems, however, the blockchain creates privacy con-
cerns about digital assets since all transaction information is
shared across the network for strong data integrity. Various
studies have been attempted to protect transaction privacy by
utilizing cryptographic techniques such as mixers [7], ring sig-
natures [19], homomorphic encryption [4], zero-knowledge
proofs [3, 4, 12, 18], etc.

In the blockchain community, the zero-knowledge proof
(ZKP) system is a widely used solution to resolve the conflict
between privacy and verifiability. The ZKP is a proof system
that can prove the validity of the statement without reveal-
ing the witness value; users can prove arbitrary statements
of encrypted data, enabling public validation while protect-
ing data privacy. For instance, the well-known anonymous
blockchain ledger Zerocash [3], which operates on the UTXO
model, secures transactions, while leveraging zero-knowledge
proofs [10] to ensure transactions in a valid set of UTXOs.
Zether [4] based on the account model encrypts accounts
with homomorphic encryption and provides zero-knowledge
proofs [6] to ensure valid modification of encrypted accounts.
Zether builds up partial privacy for the linkability between
sender and receiver addresses, similar to Monero [19]. In the
case of Zeth [18] based on the account model, privacy is guar-
anteed by transferring assets in a form of commitments to
accounts along with zero-knowledge proofs similar to the
Zerocash approach.

As asset transactions on the blockchain increase, the de-
mand for adequate auditing capabilities is also increasing.
Moreover, if transaction privacy is protected without proper
regulation, it can be abused by criminals and terrorists for
financial transactions. Without the management of illegal
money flows, it would be also difficult to establish a mon-
etary system required to maintain a sound financial system
and enforce policies accordingly. Recently, Bittrex 1 delisted
dark coins such as Monero [19], Dash [7], and Zerocash [3].

1https://global.bittrex.com/
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Moreover, many global cryptocurrency exchanges are also
strengthening their distance from dark coin as recommended
by Financial Action Task Force (FATF) [8]. Thus, we need to
find a middle ground of contradiction between privacy preser-
vation and fraudulent practices. This paper focuses on private
transfer that provides an auditor with auditability, while pro-
tecting transaction privacy for non-auditors.

Auditable private transfer can be designed by using encryp-
tion and the ZKP. A sender encrypts a transaction so that only
its receiver and the auditor can decrypt it. At the same time,
the sender should prove that the the ciphertext satisfies all
the requirements for the validity of the transaction. In partic-
ular, we utilize zk-SNARK (zero knowledge Succinct Non-
interactive ARgument of Knowledge) [10, 11, 16] to prove
arbitrary functionalities for messages, including encryption.
Although the encryption check incurs non-negligible over-
head for the prover, it is essential for the validity and au-
ditability of the transaction; without a proof for encryption as
in Zerocash [3] , even if a ciphertext passes all other transac-
tion checks, there always exists a possibility that the wrongly
generated ciphertext, either by mistake or intentionally can be
accepted, resulting in the loss of the validity and auditability
of the transaction.

In an account based blockchain, since the externally owned
account exists in its structure, it is easy to determine whether
the account has changed or not through the transaction records.
For such reason, it should be carefully designed to maintain
private transactions in the account based blockchain. In this
paper, we employ dual accounts that constitute an encrypted
account in addition to a plain account to resolve this difficulty,
similar to Blockmaze [12]. Intuitively, the private transfer
function between the sender and receiver performs on en-
crypted accounts. A legal receiver with a proper private key
can decrypt the hidden value and deposit its amount in its
owned encrypted account.

A private transfer scheme based on dual accounts needs
to support basically deposit/withdrawal functions between
plain/encrypted accounts and a transfer function between en-
crypted accounts. These functions can be either separately
implemented, or integrated into one. In terms of anonymity
of functions, the latter solution is desired; when devised in
separate transactions as in Blockmaze [12], information about
which transaction was performed is leaked breaching transac-
tion anonymity, while it is hidden whether the user is making a
deposit, a withdrawal, or a remittance in an integrated transac-
tion. In this paper, we propose a smart contract to perform all
functions internally in one transaction. Thus, in the proposed
scheme, the same transaction is always executed regardless
of the transaction type, so privacy protection is strengthened.
Moreover, our proposal performs private transfer with fewer
number of transactions than separately implemented transac-
tions since the integrated function based on multi-input/output
can flexibly support more transfer combinations between

plain/encrypted accounts. For example, Blockmaze [12] re-
quires at least 4 transactions for private transfer, but in the
proposed scheme, 2 transactions are enough.2

In this paper, we propose an auditable zero-knowledge
transaction framework called Azeroth based on zk-SNARK
to tackle the above problems. The Azeroth framework pro-
vides privacy, verifiability, and auditability for personal dig-
ital assets while maintaining its efficiency of transactions.
Azeroth preserves the original functionality of the account-
based blockchain as well as providing the additional zero-
knowledge feature to meet the standard privacy requirements.
Azeroth is devised using encryption for two-recipients (i.e.,
the recipient and the auditor) so that the auditor can audit
all transactions. Still, the auditor’s capability is limited to
auditing and cannot manipulate any transactions. Azeroth
enhances the privacy of the transaction by performing mul-
tiple functions such as deposit, withdrawal, and transfer in
one transaction. For the real-world use, we adopt a SNARK-
friendly hash algorithm to instantiate encryption to have an
efficient proving time and execute experiments in various
platforms.

The contributions of this paper are summarized as follows:

• Framework: We design a privacy-preserving framework
Azeroth on account-based blockchain model, while in-
cluding encryption verifiability, and auditability. More-
over, since Azeroth constructed as a smart contract
does not require any modifications to the base-ledger,
it advocates flexible deployment, which means that any
blockchain models supporting smart-contract can utilize
our framework.

• Security: We revise and extend security properties of pri-
vate transaction: ledger indistinguishability, transaction
unlinkability, transaction non-malleability, balance, and
auditability, and prove that Azeroth satisfies all required
properties under the security of underlying cryptographic
primitives.

• Implementation: We implemented and tested Azeroth on
the existing account-based blockchain models, such as
Ethereum [5], Hyperledger Besu [13], and Klaytn [20].
According to our experiment, it takes 4.38s to generate a
transaction in a client and process it in a smart contract
completely on the Ethereum testnet. While Azeroth addi-
tionally supports encryption verifiability and auditability,
it shows faster performance results than other existing
schemes through implementation optimization. For the
details, refer to section 6.

2Blockmaze [12] has four algorithms; Mint, Send, Deposit, and Redeem.
If a user intends to transfer money anonymously into another user’s account
from the own account, it should proceed in the order of Mint, Send, Deposit,
and Redeem. On the other hand, our scheme requires only two transactions.
For the details refer to 5.1.
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Organizations. The paper is comprised of the following con-
tents: First, we provide the related works concerning our
proposed scheme in section 2. In section 3, we describe pre-
liminaries on our proposed system. In section 4, we give an
explanation of data structures utilized in Azeroth. Afterward,
we elucidate the overview and construction , algorithms, secu-
rity definitions, and construction in section 5. Section 6 shows
the implementation and the experimental results. Finally, we
make a conclusion in section 7.

2 Related Work

Blockchains can be categorized as an unspent-transaction-
output(UTXO) model and an account-based model. In the
UTXO model, the inputs to a new transaction are the un-
spent outputs of previous transactions. The representative
examples of UTXO model blockchain include Bitcoin [14],
Zerocash [3], Monero [19], etc. In the meanwhile, the
account-based model blockchain including Ethereum [5] and
Klaytn [20] tracks the state of accounts. Every state of ac-
counts is updated in the blockchain after the transaction ex-
ecution. In the view of blockchain privacy, various schemes
have been proposed in both approaches. Zero-knowledge
proof based schemes, ring signature based schemes and mixer
based schemes have been researched.

Privacy-preserving UTXO blockchains. Specifically, Ze-
rocash is a well-known privacy-preserving blockchain sys-
tem using ZKPs. In Zerocash, a sender makes new com-
mitments that hide the information of the transaction (i.e.,
value, receiver) which is open only to the receiver. The sender
then proves the correctness of the commitments using the
zero-knowledge proof. The proof proves that the input com-
mitments are unspent ones, and new commitments are con-
structed well. Once the proof is verified, the receiver can
use the transferred value. For accomplishing the same goal,
Monero [19] utilizes CryptoNote, a protocol based on ring
signatures [17], to cut off links between the sender and the
recipient.

Privacy-preserving account-based blockchains. Zether [4]
accomplishes the privacy-protection in the account-based
model using ZKPs (Bulletproofs [6]) and the ElGamal en-
cryption scheme. In Zether, when a sender wants to transfer
some value to a receiver, the sender makes a ciphertext of
the value with the receiver’s public key. The ciphertext can
be added to the receiver’s state, and the sender proves the
correctness of the ciphertext and whether the remaining value
of the sender’s account is positive or not. However, the sender
should generate a zero-knowledge proof for the large user
set for anonymity. Specifically, the sender generates dummy
ciphertexts with a zero value except the receiver’s ciphertext.
Zeth [18] sorts the privacy problem out by implementing
Zerocash into a smart contract. Thus, Zeth creates the anony-

mous coin within the smart contract in the form of underly-
ing the UTXO model. Thus, operations and mechanisms in
Zeth are almost the same as Zerocash and it does not support
encryption checks like Zerocash. The recent work Block-
maze [12] proposes a dual balance model for account-model
blockchains, consisting of a public balance and private bal-
ance. For hiding the internal confidential information, they em-
ploy zk-SNARKs when constructing the privacy-preserving
transactions. Thus, it performs within the transformation be-
tween the public balance and the private balance to disconnect
the linkage of users. Blockmaze is implemented by revising
the blockchain core algorithm, restricting its deployment to
other existing blockchains and does support auditability.

3 Preliminaries

In this section, we describe notations for standard crypto-
graphic primitives. Let λ be the security parameter.

Collision-resistant hash: A hash function CRH : {0,1}∗→
{0,1}poly(λ) is a collision-resistant hash function if
it is difficult to find two different inputs of which
their output is equivalent. That is, for all PPT ad-
versaries A, there exists a negligible function negl,
Pr

[
(x0,x1)←A(1λ,CRH) : x0 ̸= x1∧CRH(x0) = CRH(x1)

]
≤ negl(λ).

Commitment: A commitment scheme COM provides the
computational binding property and the statistical hiding
property. It also provides the ability to reveal the commit-
ted value later. We denote a commitment cm for a value u as
cm← COM(u;o) where o denotes the commitment opening
key. Given the values u and o, a commitment cm to a value u
can be disclosed; one can check if cm← COM(u;o).

Pseudorandom function: A pseudorandom function
PRFk(x) : {0,1}∗ → {0,1}poly(λ) is a function of a random
seed key k and an input x that is indistinguishable from a
uniform random function.

Zero-Knowledge Succinct Non-interactive Arguments of
Knowledge: As described in [10, 11], given a relation R,
a zk-SNARK is composed of a set of algorithms Πsnark =
(Setup, Prove, VerProof) that works as follows.

• Setup(λ,R)→ crs := (ek,vk), td : The algorithm takes
a security parameter λ and a relationR as input and re-
turns a common reference string crs containing an evalu-
ating key ek and a verification key vk, and a simulation
trapdoor td.

• Prove(ek,x,w)→ π : The algorithm takes an evaluating
key ek, a statement x, and a witness w such that (x,w) ∈
R as inputs, and returns a proof π.

• VerProof(vk,x,π)→ true/false : The algorithm takes a
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verification key vk, a statement x, and a proof π as inputs,
and returns true if the proof is correct, or false otherwise.

Its properties are completeness, knowledge soundness, zero-
knowledge, and succinctness as described below.
COMPLETENESS. The honest verifier always accepts the
proof for any pair (x,w) satisfying the relation R. Strictly,
for ∀λ ∈ N, ∀Rλ, and ∀(x,w) ∈Rλ, it holds as follow.

Pr
[

(ek,vk,td)← Setup(R);
π← Prove(ek,x,w)

∣∣∣∣true← VerProof(vk,x,π)
]
= 1

KNOWLEDGE SOUNDNESS. Knowledge soundness says that
if the honest prover outputs a proof π, the prover must know
a witness and such knowledge can be extracted with a knowl-
edge extractor E in polynomial time. To be more specific, if
there exists a knowledge extractor E for any PPT adversary
A such that Pr

[
GameKSRG,A,E = true

]
= negl(λ), a argument

system Πsnark has knowledge soundness.

GameKSRG,A,E → res

(R,auxR)←RG(1λ);(crs := (ek,vk), td)← Setup(R);
(x,π)←A(R,auxR,crs);w←E(transcriptA);
Return res← (VerProof(vk,x,π)∧ (x,π) /∈R)

ZERO KNOWLEDGE. Simply, a zero-knowledge means that a
proof π for (x,w) ∈R on Πsnark only has information about
the truth of the statement x. Formally, if there exists a simula-
tor such that the following conditions hold for any adversary
A, we say that Πsnark is zero-knowledge.

Pr
[

(R,auxR)←RG(1λ);(crs := (ek,vk),td)← Π.Setup(R)

: π← Prove(ek,x,w);true←A(crs,auxR,π)

]
≈

Pr
[

(R,auxR)←RG(1λ);(crs := (ek,vk),td)← Setup(R)

: πsim← SimProve(ek,td,x);true←A(crs,auxR,πsim)

]
SUCCINCTNESS. An arguments system Π is succinctness if
it has a small proof size and fast verification time.

Symmetric-key encryption: We use a symmetric-key encryp-
tion scheme SE is a set of algorithms SE = (Gen,Enc,Dec)
which operates as follows.

• Gen(1λ)→ k : The Gen algorithm takes a security pa-
rameter 1λ and returns a key k.

• Enck(msg)→ sct : The Enc algorithm takes a key k and
a plaintext msg as inputs and returns a ciphertext sct.

• Deck(sct)→msg : The Dec algorithm takes a key k and
a ciphertext sct as inputs. It returns a plaintext msg.

The encryption scheme SE satisfies ciphertext indistin-
guishability under chosen plaintext attack IND-CPA security
and key indistinguishability under chosen plaintext attack
IK-CPA security.

Public-key encryption: We use a public-key encryption
scheme PE= (Gen,Enc,Dec) which operates as follows.

• Gen(1λ)→ (sk, pk) : The Gen algorithm takes a security
parameter 1λ and returns a key pair (sk, pk).

• Encpk(msg)→ pct : The Enc algorithm takes a public
key pk and a message msg as inputs and returns a cipher-
text pct.

• Decsk(pct)→msg : The Dec algorithm takes a private
key sk and a ciphertext pct as inputs. It returns a plaintext
msg.

The encryption scheme PE satisfies ciphertext indistin-
guishability under chosen plaintext attack IND-CPA security
and key indistinguishability under chosen plaintext attack
IK-CPA security.

Remark. To prove that encryption is performed correctly
within a zk-SNARK circuit, we need random values used in
encryption as a witness. We denote the values as aux. Depend-
ing on the context in our protocol, we denote the encryption
such that it also output aux as a SNARK witness as follows:

(pct,aux)← PE.Encpk(msg)

Remark. Supporting the audit function allows the trusted
auditor to decrypt the message for the encrypted message.
Thus, we needs an encryption with two recipients. We denote
its encryption with a user public key pk and an auditor public
key apk as follows.

(pct,aux)← PE.Encpk,apk(msg)

4 Data Structures

This section describes the data structures used in our proposed
scheme Azeroth, referring to the notion.

Ledger. All users are allowed to access the ledger denoted as
L, which contains the information of all blocks. Additionally,
L is sequentially expanded out by appending new transac-
tions to the previous one (i.e., for any T′ < T, LT always
incorporates LT′ ).

Account. There are two types of accounts in Azeroth: an ex-
ternally owned account denoted as EOA, and an encrypted ac-
count denoted as ENA. The former is the same one as in other
account-based blockchains (e.g., Ethereum). EOA is main-
tained by blockchain network and interacts with the smart
contract. The latter is an account which includes a ciphertext

4



indicating an amount in the account. ENA registration and
updates are managed by a smart contract, and users cannot
see the value in ENA without its secret key.

Auditor key. An auditor generates a pair of private/public
keys (ask,apk) used in the public key system; apk is used
when a user generates an encrypted transaction, while ask is
used when an auditor needs to audit the ciphertext.

User key. Each user generates a pair of private/public keys
(usk= (kENA,skown,skenc),upk= (addr, pkown, pkenc)).

• kENA : It indicates a secret key for encrypted account of
ENA in a symmetric-key encryption system.

• (skown, pkown) : pkown is computed by hashing skown. The
key pair is used to prove the ownership of an account
in a transaction. Note that skown is additionally used to
generate a nullifier, which prevents double-spending.

• (skenc, pkenc) : These keys are used in a public-key en-
cryption system; skenc is used to decrypt ciphertexts
taken from transactions while pkenc is to encrypt trans-
actions.

• addr : It is a user address and computed by hashing
pkown and pkenc.

Commitment and Note. To build a privacy-preserving trans-
action, a commitment is utilized to hide the sensitive informa-
tion (i.e., amount, address). Our commitment is as follows:

cm= COM(v,addr;o)

The commitment scheme takes v and addr as inputs and runs
with an opening o. v is the digital asset value to be transferred
and addr is the address of a recipient. The commitment is
published on a blockchain. A recipient with addr is given the
opening key o and the value v from the encrypted transaction
and uses them when the value amount needs to be transferred.
We denote the data required to spend a commitment as a note:

note= (cm,o,v)

Note that each user stores his own notes in his wallet privately
for his convenience.

Membership based on Merkle Tree. We use a Merkle hash
tree to prove the membership of commitments in Azeroth and
denote the Merkle tree and its root as MT and rt, respectively.
MT holds all commitments in L, and it appends commitments
to nodes and updates rt when new commitments are given.
Additionally, an authentication co-path from a commitment
cm to rt is denoted as Pathcm. For any given time T, MTT in-
cludes a list of all commitments and rt of these commitments.
There are three algorithms related with MT.

• true/false←MembershipMT(rt,cm,Pathcm) : This al-
gorithm verifies if cm is included in MT rooted by rt; if
rt is the same as a computed hash value from the commit-
ment cm along the authentication path Pathcm, it returns
true.

• Pathcm ← ComputePathMT(cm) : This algorithm re-
turns the authentication co-path from a commitment cm
appearing in MT.

• rtnew← TreeUpdateMT(cm) : This algorithms appends
a new commitment cm, performs hash computation for
each tree layer, and returns a new tree root rtnew.

Value. A transaction includes several input/output asset val-
ues which are publicly visible or privately secured. In our
description, pub and priv represent a publicly visible value
and an encrypted (or committed) value respectively. In addi-
tion, "in" indicates the value to be deposited to one’s account
and "out" represents the value to be withdrawn from one’s
account. We summarize the types of digital asset values as
follows:

• vENA: The digital asset value available in the encrypted
account ENA.

• vpubin and vpubout : The digital asset value to be publicly trans-
ferred from the sender’s EOA and the digital asset value
to the receiver’s public account EOA, respectively.

• vprivin and vprivout : The digital asset value received anony-
mously from an existing commitment and the value sent
anonymously to a new commitment in MT, respectively.

5 Azeroth

5.1 Overview
We construct Azeroth by integrating deposit/withdrawal trans-
actions and public/private transfer transactions to a single
transaction zkTransfer. Since zkTransfer executes multi-
functions in the same structure, it improves the function
anonymity. One may try to guess which function is exe-
cuted by observing the input/output values in zkTransfer.
zkTransfer, however, reveals the input/output values only in
EOA; the values withdrawn/deposited from/to ENA and the
values transferred from/to MT are hidden. A membership
proof of MT hides the recipient address. As a result, the infor-
mation that an observer can extract from the transaction is that
someone’s EOA value either increases or decreases; he cannot
know whether the amount difference is deposited/withdrawn
to/from its own ENA, or is transferred from/to a new com-
mitment in MT. It is even more complicated because those
values can be mixed in a range where the sum of the input
values is equal to the sum of the output values.
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Figure 1: Overview of zkTransfer

zkTransfer implements a private transfer with only two
transactions; a sender executes zkTransfer transferred to MT
and a receiver executes zkTransfer transferred from MT. In
zkTransfer, all values in ENA and MT are processed in the
form of ciphertexts and whether remittance is between own ac-
counts or between non-own accounts is hidden, so the linking
information between the sender and receiver is protected.

Figure 1 illustrates the zkTransfer. The left box "IN" rep-
resents input values and the right box "OUT" denotes output
values. In zkTransfer, vpubin and vpubout are publicly visible val-
ues. vENA is obtained by decrypting its encrypted account
value sct. The updated vENAnew is encrypted and stored as sct∗

in ENA. The amount (vprivin ) included in a commitment can be
used as input if a user has its opening key; the opening key
is delivered in a ciphertext pct so that only the destined user
can correctly decrypt it. To prevent from double spending, for
each spent commitment a nullifier is generated by hashing
the commitment and the private key skown and appended; it
is still unlinkable between the commitment and the nullifier
without the private key skown.

Auditability is achieved by utilizing a public key encryption
with two recipients; all sct ciphertexts can be decrypted by an
auditor as well as a receiver so that the auditor can monitor
all the transactions. We note that ENA exploits a symmetric
encryption only for the performance gain although ENA can
also utilize the public key encryption. Notice that without
decrypting ENA, the auditor can still learn the value change
in ENA by computing the remaining values from vpubin , vpubout ,
vprivin , and vprivout .

Finally, for the transaction validity, zkTransfer proves that
all of the above procedures are correctly performed by gener-
ating a zk-SNARK proof.

5.2 Algorithms
Azeroth consists of three components : Client,
Smart Contract, and Relation. Client generates a transaction
which includes a ciphertext and a proof. Smart Contract
denotes a smart contract running on a blockchain. Relation
represents a zk-SNARK circuit for generating a zkTransfer
proof. The algorithms of each component are as follows:

[Azeroth Client]

• SetupClient(1λ,RZKT)→ pp: This algorithm is executed
by a trusted party. It takes a security parameter λ and a
relationRZKT as input, and returns the public parameter
pp, which are and published and available to all parties.

• KeyGenAuditClient(pp)→ (ask,apk),TxKGA: This algo-
rithm takes a public parameter pp and outputs an auditor
pair (ask,apk). It also outputs an transaction TxKGA to
register the auditor public key.

• KeyGenUserClient(pp) → (usk,upk),TxKGU:
This algorithm takes a public parameter pp
and outputs a user key pair (usk,upk) =
((kENA,skown,skenc),(addr, pkown, pkenc)). It also
returns a transaction TxKGU to register the user public
key.

• zkTransferClient(note, apk, usksend, upksend, upkrecv,
vprivout , vpubin , vpubout , EOArecv) → TxZKT: On inputs of a
note, an auditor public key apk, a sender’s key pair, a
receiver’s public key, public/private value amounts, and
the receiver account EOArecv for vpubout , this algorithm
collects values from a sender’s EOA and ENA, and a
note (or commitment), and send them to a receiver’s
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EOA, and a commitment. The remaining balance is
stored back to the sender’s ENA. The internal procedures
are described as follows:

i) Consuming note= (cm,o,v): It proves the knowledge
of the committed value v using the opening key o and
the membership of a commitment cm in MT and derives
a nullifier nf from PRF to nullify the used commitment.

ii) Generating cmnew: By executing COM(vprivout , addrrecv;
onew), a new commitment and its opening key are
obtained. Then it encrypts (onew,v

priv
out ,addr

recv) via
PE.Enc and outputs pct.

iii) Processing currency: The sender’s ENA balance is up-
dated based on vprivin (from note), vprivout , vpubin , and vpubout or
∆vENA = vprivin + vpubin - vprivout - vpubout .

With prepared witnesses and statements, the algorithm
generates a zk-SNARK proof and finally outputs a
zkTransfer transaction TxZKT = (π, rt, nf, addrsend,
cmnew, sctnew, vpubin , vpubout , pctnew, EOArecv).

• RetreiveNoteClient(L,usk,upk) → note: This algo-
rithm is a sub-algorithm computing a note used in
zkTransferClient. The key pair is parsed as (usk,upk) =
((kENA,skown,skenc),(addr, pkown, pkenc)). This algo-
rithm allows a user to find cm transferred to the user
along with its opening key and its committed value. The
algorithm decrypts using skenc each transaction pct ∈ L
to (o,v,addr∗) and stores (cm,o,v) as note in the user’s
wallet if addr∗ matches its address addr.

[Azeroth Smart Contract]

• SetupSC(vk): This algorithm deploys a smart contract
and stores the verification key vk from zk-SNARK
where vk is used to verify a zk-SNARK proof in the
smart contract.

• RegisterAuditorSC(apk): This algorithm stores an audi-
tor public key apk in Azeroth’s smart contract.

• RegisterUserSC(addr): This algorithm registers a new
encrypted account for address addr. If the address al-
ready exists in Listaddr, the transaction is reverted. Oth-
erwise, it registers a new ENA and initializes it with zero
amount.

• zkTransferSC (π, rtold, nf, addrsend, cmnew, sctnew,
pctnew, vpubin , vpubout , EOArecv): This algorithm checks the
validity of the transaction, and processes the transaction.
A transaction is valid iff: Merkle root rtold exists in root
list Listrt, a nullifier nf does not exists in the nullifier list
Listnf , addrsend exists, cmnew does not exists in Listcm,
and a proof π is valid in zk-SNARK. If the transaction
is valid, the cmnew is appended to MT, MT is updated,
a new Merkle tree root rtnew is added to Listrt and the

nullifier nf is appended to Listnf . The encrypted account
is updated. And then the public amounts are processed;
vpubin is acquired from EOAsend, and vpubout is delivered to
EOArecv. If the transaction is invalid, it is reverted and
aborted.

[Azeroth Relation]
The statement and witness of Relation RZKT are as fol-

lows:

x⃗ = (apk, rt,nf,upksend,cmnew,sctold,sctnew,v
pub
in ,vpubout ,pctnew)

w⃗ = (usksend,cmold,oold,v
priv
in ,upkrecv,onew,v

priv
out ,auxnew,Path)

where a sender public key upksend is (addrsend, pksendown , pksendenc )
and a receiver’s public key upkrecv is (addrrecv, pkrecvown , pkrecvenc ).

We say that a witness w⃗ is valid for a statement x⃗, if and only
if the following holds:

i) If vprivin > 0, then cmold must exist in MT with given rt and
Path.

ii) pksendown = CRH(sksendown ).

iii) The user address addrsend and addrrecv are well-formed.

iv) cmold and cmnew are valid.

v) nf is derived from cmold and sksendown .

vi) pctnew is an encryption of cmnew via auxnew.

vii) sctnew is an encryption of updated ENA balance.

viii) All amounts (e.g., vprivin ,vpubin , ...) are not negative.

5.3 Security
Following the similar model defined in [3, 12], we define
the security properties of Azeroth including ledger indis-
tinguishability, transaction unlinkability, transaction non-
malleability, and balance, and define auditability as a new
property.

Azeroth.GL-IND
A (λ) :

pp← Setup(λ)

(L0,L1)←AOAzeroth
0 ,OAzeroth

1 (pp)

b $←{0,1}

Q $←{KeyGenUser,zkTransfer}
ans←QueryLb

(Q)

b′←AOAzeroth
0 ,OAzeroth

1 (L0,L1,ans)

return b = b′

Figure 2: The ledger indistinguishability experiment (L-IND)
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Ledger Indistinguishability:
Informally, we say that the ledger is indistinguishable if it

does not disclose new information, even when an adversary
A can see the public information and even adaptively en-
gender honest parties to execute Azeroth functions. Namely,
even if there are two ledgers L0 and L1, designed by the ad-
versary using queries to the oracle, A cannot tell the dif-
ference between the two ledgers. We design an experiment
L-IND as shown in fig. 2. We say that Azeroth scheme
is ledger indistinguishable if |AdvL-IND

Azeroth,A−1/2| ≤ negl(λ)
for every A and adequate security parameter λ.

Azeroth.GTR-UN
A (λ) :

pp← Setup(λ)

L←AOAzeroth
(pp){

(upksend,upkrecv,aux),(upksend,upkrecv,aux)
}

←AOAzeroth
(L)

b $←{0,1}
Tx← zkTransfer(upksend,upkrecv,aux)
if b = 0

Tx′← zkTransfer(upksend,upkrecv,aux)
else if b = 1

Tx′← zkTransfer(upksend,upkrecv,aux)

b′←A(Tx,Tx′,L)

return b = b′

Figure 3: The transaction unlinkability experiment (TR-UN)

Transaction Unlinkability: Transaction unlinkability is de-
fined as an indistinguishability problem in which a PPT ad-
versary A cannot distinguish the receiver’s information. Note
that a transaction caller (sender) is always identifiable in
an existing account-based blockchain model. Still, if the re-
ceiver’s information is unlinkable, it is guaranteed that the
linkability information between the sender and the receiver
is hidden. Because the recipient information is hidden, the
sender can create a transaction with himself as the recipi-
ent privately as well. We describe an experiment TR-UN as
shown in fig. 3 where aux denotes the remaining input of
zkTransfer. Formally, let AdvTR-UN

Azeroth,A(λ) be the advantage
of A winning the game Azeroth.GTR-UN

A . Azeroth satisfies
the transaction unlinkability if for any PPT adversary A, we
have that |AdvTR-UN

Azeroth,A(λ)−1/2| ≤ negl(λ).

Transaction Non-malleability: Intuitively, a transaction is
non-malleable if no new transaction is constructed differ-
ently from the previous transactions without knowing pri-
vate data (witness) such as secret keys. Even when an
auditor tries to attack or an auditor’s secret key is ex-

Azeroth.GTR-NM
A (λ) :

pp← Setup(λ)

L←AOAzeroth
(pp,ask)

Tx′←AOAzeroth
(L)

b← VerifyTx(Tx′,L′)∧Tx /∈ L′

return b∧ (∃Tx ∈ L : Tx ̸= Tx′∧Tx.nf = Tx′.nf)

Figure 4: The transaction non-malleability experiment
(TR-NM)

posed, this property should hold. We show an experiment
Azeroth.GTR-NM

A in fig. 4. Let AdvTR−NMAzeroth,A(λ) be the advan-
tage of A winning the game TR-NM. The Azeroth satisfies
the transaction non-malleability if for any PPT adversary A,
we have that |AdvTR−NMAzeroth,A(λ)| ≤ negl(λ).

Azeroth.GBAL
A (λ) :

pp← Setup(λ)

L←AOAzeroth
(pp)

(Listcm,ENA,EOA)←AOAzeroth
(L)

(vENA,vpubout ,v
priv
out ,v

pub
in ,vprivin )

← Compute(L,Listcm,ENA,EOA)

if vENA+vpubout +vprivout > vpubin +vprivin then return 1
else return 0

Figure 5: The balance experiment (BAL)

Balance: We say that Azeroth is balanced if and only if no
attacker can spend more than what she has or receives. Let
AdvBAL

Azeroth,A(λ) be the advantage of A winning the game
BAL as described in fig. 5. For a negligible function negl(λ),
the Azeroth is balanced if for any PPT adversaryA, we have
that |AdvBALAzeroth,A(λ)| ≤ negl(λ).

Auditability. If the auditor can always monitor the confi-
dential data of any user, we informally say that the scheme
has auditability. More precisely, we define that Azeroth
is auditable if there is no transaction in which the de-
crypted plaintext is different from commitment openings. Let
AdvAUD

Azeroth,A(λ) be the advantage of A winning the game
AUD as described in fig. 6. For a negligible function negl(λ),
the Azeroth is auditable if for any PPT adversaryA, we have
that |AdvAUDAzeroth,A(λ)| ≤ negl(λ).
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Azeroth.GAUD
A (λ) :

pp← Setup(λ)

L←AOAzeroth
(pp)

(Tx,aux)←AOAzeroth
(L)

Parse Tx= (cm,pct)

b← VerifyTx(Tx,L)∧
VerifyCommit(cm,aux)∧aux ̸= Auditask(pct)

return b

Figure 6: The auditability experiment (AUD)

5.4 Construction
Given the building blocks of a public key encryption PE, a
symmetric key encryption SE, and a zk-SNARK Πsnark, we
construct Azeroth as in Figure 7. The proofs for the following
theorem appear in appendix.

Theorem 1. Let ΠAzeroth = (Setup, KeyGenAudit, Key-
GenUser, zkTransfer) be a Azeroth scheme in Figure 7.
ΠAzeroth satisfies ledger indistinguishability, transaction un-
linkability, transaction non-malleability, balance, and au-
ditability.

6 Implementation and Experiment

6.1 Implementation

Our Azeroth implementation coded in Python, C++, and So-
lidity languages consists of two parts; the client and the smart
contract. The client interacts with blockchain network using
Web3.py 3. To generate a zk-SNARK proof in Azeroth, we
use libsnark4 with Groth16 [10] and BN254 curve.
PRF, COM, and CRH: We instantiate pseudorandom func-
tion PRFk(x) where k is the seed and x is the input, using a
collision resistant hash function as follows:

PRFk(x) := CRH(k||x)

A commitment is also realized using a hash function CRH as
follows:

COM(v,addr;o) := CRH(v||addr||o)

A collision resistant hash function CRH is implemented us-
ing zk-SNARK friendly hash algorithms such as MiMC7 [1]
and Poseidon [9] as well as a standard hash function
SHA256 [15].

3https://github.com/ethereum/web3.py
4https://github.com/scipr-lab/libsnark

Symmetric-key encryption: The symmetric key encryption
needs to be efficient in the proof generation for encryption.
Therefore, we implement an efficient stream cipher based
on PRF using zk-SNARK friendly hash algorithms such as
MiMC7 and Poseidon as follows:

SE.Enck(msg)→ (r,sct)

r $← F;sct←msg+PRFk(r)

Return (r,sct)

SE.Deck(r,sct)→msg

msg← sct−PRFk(r)

Return msg

We also employ the CTR mode in case the message size is
longer than the range of PRF.
Public-key encryption: We implement public-key encryption
with two recipients of a receiver and an auditor by extending
ElGamal encryption system such that the randomness can be
re-used. (Refer to the general treatment of randomness re-use
in multi-recipient encryption in [2].) For the performance gain,
we also utilize the standard hybrid encryption; a random key
is encrypted by the public key encryption and the key is used
to encrypt the message using a symmetric encryption scheme.
Given two key pairs (pk1,sk1) and (pk2,sk2) for ElGamal
encryption, and a symmetric key encryption SE, the resulting
implementation of the public key encryption is as follows:

PE.Encpk1,pk2(msg)→ pct,aux

k $← F;r $← F
c0← Gr;c1← k · pkr

1;c2← k · pkr
2;c3← SE.Enck(msg)

pct← (c0,c1,c2,c3);aux← (k,r)

Return pct,aux

PE.Decski(pct)→msg

(c0,c1,c2,c3)← pct

k← ci+1/cski
0 ;msg← SE.Deck(c3)

Return msg

6.2 Experiment
In our experiment, the term cfgHash,Depth denotes a configu-
ration of Merkle hash tree depth and hash type in Azeroth.
For instance, cfgMiMC7,32 means that we run Azeroth with
MiMC7 [1] and its Merkle tree depth is 32. Table 1 illustrates
our system environments. For the overall performance eval-
uation, we execute all experiments on the machine Server
described in table 1 as a default machine. Without specifica-
tion of the blockchain, the default blockchain is selected as
the Ethereum testnet.
Overall performance. We show that the performance and
the gas consumption in Azeroth with cfgMiMC7,32 as shown in
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Azeroth Client
◦ SetupClient(1λ,RZKT) :

Compute (ek, vk)←Πsnark.Setup(RZKT)

Select a generator G $←G
Set a public parameter pp = (ek,vk,G)
Return pp

◦ KeyGenAuditClient(pp):

Set a new auditor key pair (ask, apk) $← PE.Gen(pp)
Set TxKGA = (apk)
Return (apk, ask), TxKGA

◦ KeyGenUserClient(pp):

Get a new user key pair (skenc, pkenc)
$← PE.Gen(pp)

Select a random kENA
$← SE.Gen(pp)

Select a random skown
$← F

Compute a user binding key for ownership pkown← CRH(skown)
Compute a user address addr← CRH(pkown||pkenc)
Set a user secret key usk= (kENA,skown,skenc)
Set a user public key upk= (addr, pkown, pkenc)
Set TxKGU = (addr)
Return (usk,upk), TxKGU

◦ RetreiveNoteClient(L,usk,upk):
Parse usk as (kENA,skown,skenc)
Parse upk as (addr, pkown, pkenc)
For each TxZKT on L:

Parse TxZKT as (cm, pct, . . . )
Compute (o,v,addr∗)← PE.Decskenc (pct)
if addr = addr∗ then

Return note = (cm,o,v)
end if

◦ zkTransferClient (note,apk, usksend, upksend, upkrecv , vprivout , vpubin , vpubout ,
EOArecv):

Parse usksend as (ksendENA, sksendown ,sksendenc )
Parse upksend as (addrsend, pksendown , pksendenc )
Parse upkrecv as (addrrecv, pkrecvown , pksendenc )

Parse note as (cmold,oold,v
priv
in ) if note ̸=⊥;

otherwise vprivin ← 0;oold
$← F;cmold← COM(vprivin ,addrsend;oold)

Get sctold← ENA[addrsend]
Compute vENAold ← SE.DecksendENA

(sctold) ; nf← PRFsksendown
(cmold)

Get rt← Listrt.Top

Compute Path← ComputePathMT(cmold) if vprivin > 0
Compute cmnew← COM(vprivout ,addr

recv;onew)
Compute pctnew,auxnew← PE.Encpkrecvenc ,apk(onew||vprivout ||addrrecv)
Set a vENAnew ← vENAold +vprivin −vprivout +vpubin −vpubout

Compute sctnew← SE.EncksendENA
(vENAnew )

x⃗ =

{
apk, rt,nf,upksend,cmnew,

sctold,sctnew,v
pub
in ,vpubout ,pctnew

}

w⃗ =

{
usksend,cmold,oold,v

priv
in ,upkrecv,

onew,v
priv
out ,auxnew,Path

}
Compute a proof π← Πsnark.Prove(ek, x⃗, w⃗)
Set TxZKT = (π, rt, nf , addrsend, cmnew , sctnew , vpubin , vpubout , pctnew ,
EOArecv)
Return TxZKT

Azeroth Smart contract
◦ SetupSC(vk) :

Store a zk-SNARK verification key vk
Initialize a Merkle Tree

◦ RegisterAuditorSC(apk) :
APK← apk

◦ RegisterUserSC(addr) :
Assert addr ̸∈ Listaddr
ENA[addr]← 0

◦ zkTransferSC (π, rtold, nf , addrsend, cmnew , sctnew , pctnew , vpubin , vpubout ,
EOArecv):

Assert rtold ∈ Listrt
Assert nf ̸∈ Listnf
Assert addrsend ∈ Listaddr
Assert cmnew ̸∈ Listcm

x⃗ =

{
APK, rtold,nf,upk

send,cmnew,

ENA[addrsend],sctnew,v
pub
in ,vpubout ,pctnew

}
Assert Πsnark.VerProof(vk,π, x⃗) = true
ENA[addrsend]← sctnew
rtnew← TreeUpdateMT(cmnew)
Listrt.append(rtnew)
Listnf .append(nf)
if vpubin > 0 then TransferFrom(EOAsend, this,vpubin )
end if
if vpubout > 0 then TransferFrom(this,EOArecv,v

pub
out )

end if

Azeroth Relation
◦ Relation R(⃗x; w⃗) :

x⃗ =

{
apk, rt,nf,upksend,cmnew,

sctold,sctnew,v
pub
in ,vpubout ,pctnew

}

w⃗ =

{
usksend,cmold,oold,v

priv
in ,upkrecv,

onew,v
priv
out ,auxnew,Path

}
Parse usksend as (ksendENA, sksendown ,sksendenc )
Parse upksend as (addrsend, pksendown , pksendenc )
Parse upkrecv as (addrrecv, pkrecvown , pksendenc )

if vprivin > 0 then
Assert true=MembershipMT(rt,cmold,Path)

end if
Assert pksendown = CRH(sksendown )
Assert addrsend = CRH(pkown||pkenc)
Assert cmold = COM(vprivin ,addrsend;oold)
Assert nf = PRFsksendown

(cmold)

Assert pctnew, auxnew = PE.Encpkrecvenc ,apk (onew||vprivout ||addrrecv)
Assert addrrecv = CRH(pkrecvown ||pkrecvenc )

Assert cmnew = COM(vprivout ,addr
recv;onew)

if sctold = 0 then vENA
old ← 0

else vENAold ← SE.DecksendENA
(sctold)

end if
Assert vENA

new ← SE.DecksendENA
(sctnew)

Assert vENA
new = vENA

old +vprivin −vprivout +vpubin −vpubout

Assert vprivout ≥ 0; vprivin ≥ 0; vpubin ≥ 0; vpubout ≥ 0
Assert vENA

new ≥ 0; vENA
old ≥ 0

Figure 7: Azeroth scheme ΠAzeroth
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Table 1: System specification

Machine OS CPU RAM
Server Ubuntu 20.04 Intel(R) Xeon Gold 6264R@3.10GHz 256GB
System1 macOS 11.2 M1@3.2GHz 8GB
System2 macOS 11.6 Intel(R) i7-8850H CPU @ 2.60GHz 32GB
System3 android 11 Exynos9820 8GB
System4 iOS 15.1 A12 Bionic 4GB

table 2.5 The execution time 4.04s of Setup is composed of
the zk-SNARK key generation time 2.2s and the deployment
time 1.84s of the Azeroth’s smart contract to the blockchain.
Setup consumes a considerable amount of gas due to the
initialization of Merkle Tree. In zkTransfer, the executed time
is 4.38s including both the Client part and the Smart Contract
part. The gas is mainly consumed to verify the SNARK proof
and update the Merkle hash tree. Varying the hash function,
the further analysis of zkTransfer is available in section 6.2.

Table 2: Execution time and gas consumption of Azeroth with
cfgMiMC7,32

Azeroth
Setup RegisterAuditor RegisterUser zkTransfer Audit

Time (s) 4.04 0.02 0.017 4.38 0.03
Gas 5,790,800 63,179 45,543 1,555,957 N/A

zk-SNARK performance. We evaluate the performance of
zk-SNARK used to execute zkTransfer on various systems
Server,System1, · · · ,System4 as described in table 1. Table 3
shows the setup time, the proving time, and the verification
time respectively on each system with cfgMiMC7,32. Although
System3 has the lowest performance, still its proving time of
4.56s is practically acceptable.

Table 3: Execution time of zk-SNARK in zkTransfer

Server System1 System2 System3 System4
Πsnark.Setup (s) 2.311 4.19 4.13 8.529 5.529
Πsnark.Prove (s) 0.901 2.581 2.77 4.557 3.15
Πsnark.Verify (s) 0.057 0.041 0.079 0.062 0.054

Hash type and tree depth. We evaluate Azeroth performance
depending on hash tree depths and hash types as shown in
fig. 8, fig. 9, and fig. 10.

Figure 8 illustrates the execution time of zk-SNARK for
MiMC7 [1], Poseidon [9]6, and SHA256 [15] where the
hash tree depth is 32. The SNARK key generation times
are 2.311s, 2.182s, and 53.393s respectively. The proving
times for MiMC7 and Poseidon are 1.04s and 0.582s respec-
tively, while it takes 20.69 seconds with SHA256; SHA256

5The result includes the execution time of our smart contract on the
Ethereum testnet.

6We utilize a well-optimized Poseidon smart contract from cir-
comlib(https://github.com/iden3/circomlib/tree/feature/
extend-poseidon).

is about 20x and 40x slower than MiMC7 and Poseidon in
zk-SNARK. The verification time is almost independent of
the hash type. However, when each hash function is executed
natively, SHA256 shows the best performance as shown in
fig. 8(d), which is similar to the gas consumption trend shown
in fig. 8(e).

Figure 9 shows the key size. The proving key size is
proportional to the tree depth, whereas the verification key
size remains 1KB.7 Poseidon has the smallest sizes of ek
and constraints. Specifically, in depth 32, the ek sizes of
Poseidon, MiMC7, and SHA256 are 3,341KB, 4,339KB, and
255,000KB respectively. The circuit size of SHA256 is enor-
mous due to numerous bit operations. The circuit size of
Poseidon is 30% smaller than MiMC7’s.

Figure 10 shows that MiMC7 and Poseidon hashes con-
sume relatively more gas than SHA256 since not only is
SHA256 natively supported in Ethereum [5], but also it shows
better native performance as shown in fig. 8(e).

The number of constraints. We measure the number of con-
straints for each algorithm component as shown in table 4.
The membership proof algorithm performs the hash execu-
tion as many as the tree depth. SE.Dec conducts the one hash
computation and PE.Enc executes the group operation (i.e.,
exponentiation) three times internally. Note that in the table,
the number of constraints for CRH is obtained when a sin-
gle input block is provided to the hash and the number of
constraints is proportional to the number of input blocks.

Table 4: Number of constraints for circuits

MembershipMT(32) CRH(1) SE.Dec PE.Enc GroupOp
MiMC7 11,713 364 364 7,211 2,035
Poseidon 7,745 213 240 6,758 2,035
SHA256 1,465,473 25,725 45,794 83,294 2,035

Performance analysis of smart contract. We analyze the
execution time and the gas consumption in smart contract
zkTransferSC. Table 5 shows the gas consumption for each
function in smart contract zkTransferSC. In the smart contract,
the most time consuming functions are the proof verification
Πsnark.Verify and the Merkle hash tree update TreeUpdate.
The gas consumption for TreeUpdate depends on hash tree
depth and hash type while Πsnark.Verify remains constant.

Figure 11 represents the execution time of Πsnark.Verify
and TreeUpdate. The verification time is 11.9ms, and the
execution time of TreeUpdate is 12.8ms, 17.4ms, and 7.3ms
on MiMC7, Poseidon, and SHA256 respectively.

Table 5: Gas consumption in smart contract zkTransferSC

F Πsnark.Verify MiMC7 SHA256 Poseidon Etc

gas 402,922 23,405 1,506 32,252 42,143

7We omit the graph of vk, since it is constant.
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Deployment to various blockchains. We execute Azeroth
with cfgMiMC7,8 on various blockchains such as Ethereum [5],
Hyperledger Besu [13], and Klaytn [20], in which the gas
consumption is shown in table 6.

Comparison to other existing schemes. We compare the pro-
posed scheme Azeroth with other privacy-preserving transfer
schemes such as Zeth [18], and Blockmaze [12] in table 7.
Our proposal shows even better performance than the exist-
ing schemes, even if Azeroth provides an additional function
of auditability. Zeth and Blockmaze are implemented with
cfgMiMC7,32 and cfgSHA256,8 respectively and the same config-
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Figure 11: The execution time of functions in zkTransferSC

Table 6: Gas consumption on various blockchains with
cfgMiMC7,32

Ethereum Besu Klaytn
Setup 3,778,604 4,382,410 4,845,674

RegisterAuditor 63,179 66,115 68,891

RegisterUser 45,543 55,215 56,967

zkTransfer 854,110 1,773,406 951,220

uration is applied to the proposed scheme for fair comparison.
The experiment is conducted on Server. Note that the proof
generation time in the table excludes the circuit loading time
for fair comparison.

In comparison with Zeth8, we utilize ganache-cli9 as our
test network. Note that since the open source code for Zeth
generates a zk-SNARK proof in a docker container, it has
low performance. Due to the circuit optimization of Azeroth,
the resulting circuit size is 4x smaller and the size of pp is
22x smaller than Zeth. Azeroth has two registration func-
tions (e.g., RegisterUser,RegisterAuditor) which correspond
to CreateAccount of Zeth. In zkTransfer, Azeroth reduces
the execution time by 90% compared with Zeth’s Mix func-
tion.

8https://github.com/clearmatics/zeth
9https://github.com/trufflesuite/ganache
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Table 7: Comparison between our proposed scheme and existing work

(a) Comparison between Azeroth and Zeth with cfgMiMC7,32

Azeroth
Setup RegisterAuditor RegisterUser zkTransfer

time pp time apk ask time upk usk time txsize
2.846s 4.32MB 16ms 32B 32B 17ms 32B 32B 0.983s 1,186B

Zeth
10.646s 94.24MB 44ms 64B 64B 10.47s 1,380B

time pp time pk sk time txsize
Setup CreateAccount Mix

(b) Comparison between Azeroth and BlockMaze with cfgSHA256,8

Azeroth
Setup RegisterAuditor RegisterUser zkTransfer

time pp time apk ask time upk usk time txsize
26.765s 113MB 16ms 32B 32B 17ms 32B 32B 10.0166s 1,186B

BlockMaze
125.063s 323MB 904ms 64B 32B 6.689s 817B 6.948s 815B 9.224s 899B 18.609s 815B

time pp time pk sk time txsize time txsize time txsize time txsize
Setup CreateAccount Mint Redeem Send Deposit

While BlockMaze10 has four transactions of Mint,
Redeem, Send, Deposit, Azeroth provides the equivalent
functionality using a single transaction zkTransfer. Note that
Blockmaze requires 20 seconds to load its proving key. Hence
if it is considered, the performance improvement of Azeroth
increases.

7 Conclusion

In this paper, we propose an auditable privacy preserving
digital asset transferring system called Azeroth which hides
the receiver, and the amount value to be transferred while the
transferring correctness is guaranteed by a zero-knowledge
proof. In addition, the proposed Azeroth supports the auditing
functionality which is required by an anti-money laundry law
for an authorized auditor to trace transactions. Its security is
proven formally and it is implemented in various platforms
including an Ethereum testnet blockchain. The experimental
results show that the proposed Azeroth is efficient enough to
be practically deployed.
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scheme ΠAzeroth is secure if it satisfies ledger indistinguisha-
bility, transaction unlinkability, transaction non-malleability,
balance, and auditability.

In the elucidation of the security for each property and its
experiment, we assume that there exists a (stateful) Azeroth
oracle OAzeroth answering queries from an adversary A utiliz-
ing a challenger C which is the role of the performer about
the experiment sanity checks. We first recount how OAzeroth

works as below.
Given a list of public parameters pp, the oracle OAzeroth is

initialized and retains its state of which it has the elements
internally : [I] L, a ledger; [II] Acct, a set of account key
pairs; [III] CMT, a set of a commitment; [IV] ENA, a set of
an encrypted account which includes the user account address
in itself; [V] EOA, a set of an external-owned account being
similar with ENA excepting for whether its encryption. In the
beginning, all of the elements are empty. Additionally, we
denote ∗ as renewal.

Now, we present each type of query Q and how it works.

• Q(KeyGenUser) : C generates a user key pair
(upk,usk) using KeyGenUser algorithm, where upk =
(addr, pkown, pkenc). C then registers public key to the
smart contract and initializes ENA[addr]. The generated
key pair and ENA[addr] are stored into Acct and ENA,
respectively. Finally C outputs upk.

• Q(zkTransfer,upksend,upkrecv,vprivout ,v
pub
in ,vpubout ,EOA) :

C generates a transaction TxZKT for corresponding in-
puts using zkTransfer algorithm. Once TxZKT is submit-
ted to ledger, the EOA and ENA stores updated amount,
and the commitment is stored into CMT as well.

• Q(Insert,Tx) : C simply submits the received transac-
tion (i.e., TxZKT, TxKGU). If Tx is invalid, the smart con-
tract reverts and nothing happens.

A.1 Ledger Indistinguishability
We describe ledger indistinguishability using an experiment
L-IND including a PPT adversaryA struggling to find a crack
of a given Azeroth scheme.

Intuitively, the meaning of the above equation is that
AdvL-IND

A , the advantage of A in the L-IND experiment, is
at most negl(λ).

We now describe public consistency for two queries
(Q,Q′) which must be the same type and publicly consis-
tent in A’s viewpoint. First of all, it must be equal to the
public information in the pair of queries such as the follow-
ing: vprivout , the value to be transferred; addrsend, the receiver
address. Moreover, the commitment, a nullifier, and the ci-
phertexts are valid in both queries. In addition, each of the
different query types has to fulfill the following restriction
respectively.

For KeyGenUser, the independent pair of queries (Q,Q′)
must satisfy the following restriction :

• The user account address addr in the query must corre-
spond to the address existing in Acct

• Both oracles must generate and return the same address

For zkTransfer, the independent pair of queries (Q,Q′) must
satisfy the following restrictions :

• The commitment cmold in Q must correspond to com-
mitment that appears in CMT

• The vENAold+vpubin is equal to vENAnew+vpubout .

• The account address addrsend should match that in ENA

We now give a formal definition of an experiment L-IND as
follows:

i) Compute a public parameter pp, provide it to an
adversary A, and initialize two distinct oracles
OAzeroth

0 ,OAzeroth
1 .

ii) C chooses a random bit b ∈ {0,1}.

iii) A sends public consistency queries (Q,Q′) to C as many
times she wants, and C answers the queries as following:

a) Set (Lb,L1−b) as a ledger tuple. These ledgers are
corresponding to OAzeroth

b ,OAzeroth
1−b respectively.

b) Give a ledger tuple to A in each stage, and send Q
to OAzeroth

b and Q′ to OAzeroth
1−b .

c) Obtain two oracle answers (ab,a1−b) and return it
to A.

d) Repeat the process b), c) until A outputs a bit b′.

iv) If b = b′ then the experiment L-IND returns 1; otherwise,
0.

Definition 1. Let ΠAzeroth = (Setup, KeyGenAudit,
KeyGenUser, zkTransfer) be a Azeroth scheme. We say that,
for every A and adequate security parameter λ, ΠAzeroth is
L-IND secure if the following equation holds:

Pr
[
Azeroth.GL-IND

A (λ) = 1
]
≤ 1

2
+negl(λ)

A.2 Transaction Unlinkability
We formally describe the transaction unlinkability experiment
TR-UN as follows.

i) Compute a public parameter pp, and provide it to an
adversary A.

ii) A makes a query (zkTransfer) to OAzeroth and receives
its answer along with the ledger L.
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iii) Repeat the above procedure (Step ii) until A
outputs a pair of tuples: (upksend,upkrecv,aux),
(upksend,upkrecv,aux), satisfied with the following
conditions: (a) upksend,upkrecv,upksend,upkrecv are
public keys from accounts in Acct; (b) both queries
must generate valid transactions.

iv) Set TxZKT as a transaction output from
Q(upksend,upkrecv,aux)

v) if b = 0, make TxZKT
′ with query Q(upksend, upkrecv,

aux), else make TxZKT
′ with Q(upksend,upkrecv,aux).

vi) A receives a tuple (TxZKT,TxZKT
′) and returns b′.

vii) If b = b′ then the experiment TR-UN returns 1; other-
wise, 0.

Definition 2. Let ΠAzeroth = (Setup, KeyGenAudit,
KeyGenUser, zkTransfer) be a Azeroth scheme. We say that,
for every A and adequate security parameter λ, ΠAzeroth is
TR-UN secure if the following equation holds:

Pr
[
Azeroth.GTR-UN

A (λ) = 1
]
≤ 1

2
+negl(λ)

A.3 Transaction Non-malleability
We define an experiment TR-NM with PPT adversary A try-
ing to break a given Azeroth scheme. Note that A includes
an AUD trying to attack our scheme. Now we illustrate the
TR-NM experiment in detail.

i) Compute a public parameter pp, and provide it to an
adversary A.

ii) A makes a query (zkTransfer) to OAzeroth and receives
its answer along with the ledger L.

iii) Repeat the above procedure (Step ii) until A sends a
transaction Tx′, satisfied with the following conditions:

a) There exists a transaction Tx ∈ L

b) Tx′ ̸= Tx

c) a nullifier nf appeared in Tx′ is the same nullifier
revealed in Tx.

d) VerifyTx(Tx′,L′) = 1, where L′ is the snapshot of
the previous ledger state which does not contain
Tx yet;

iv) If the transaction satisfying all conditions exists, then
the experiment TR-NM returns 1; otherwise, 0.

Definition 3. Let ΠAzeroth = (Setup, KeyGenAudit,
KeyGenUser, zkTransfer) be a Azeroth scheme. We say that,
for every A and adequate security parameter λ, ΠAzeroth is
TR-NM secure if the following equation holds:

Pr
[
Azeroth.GTR-NM

A (λ) = 1
]
≤ negl(λ)

A.4 Balance
We define an experiment BAL with PPT adversary A trying
to break a given Azeroth scheme. Now we characterize an
experiment BAL as follows:

i) Compute a public parameter pp, and provide it to an
adversary A.

ii) A makes a query (zkTransfer) to OAzeroth and receives
its answer along with the ledger L.

iii) Repeat the above procedure (Step ii) untilA sends CMT.

iv) C calculates each value mentioned above, and checks if
the following equation holds:

vENA+vpubout +vprivout > vpubin +vprivin

v) If the values satisfy the equation, then the experiment
BAL returns 1; otherwise, 0.

Definition 4. Let ΠAzeroth = (Setup, KeyGenAudit,
KeyGenUser, zkTransfer) be a Azeroth scheme. We say that,
for every A and adequate security parameter λ, ΠAzeroth is
BAL secure if the following equation holds:

Pr
[
Azeroth.GBALA (λ) = 1

]
≤ negl(λ)

A.5 Auditability
Let aux be the auxiliary input consisting of the committed
value and its opening, utilized when verifying the commit-
ment. If the commitment is correct then the function returns 1,
otherwise returns 0. We now define precisely the experiment
AUD as follows.

i) Compute a public parameter pp, and provide it to an
adversary A.

ii) A requests a zkTransfer query to OAzeroth and receives
a response.

iii) Repeat the above procedure (Step ii) until A sends a
tuple (TxZKT,aux), satisfied with the following condi-
tions:

a) TxZKT is valid.

b) aux and the commitment cmnew in TxZKT is valid.

c) The decrypted message of ciphertext pctnew is not
equal to (onew,v

priv
out ,addr

send).

iv) If the tuple (TxZKT,aux) satisfies with all conditions
above, then the experiment AUD returns 1; otherwise, 0.
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Definition 5. Let ΠAzeroth = (Setup, KeyGenAudit,
KeyGenUser, zkTransfer) be a Azeroth scheme. We say that,
for every A and adequate security parameter λ, ΠAzeroth is
AUD secure if the following equation holds:

Pr
[
Azeroth.GAUDA (λ) = 1

]
≤ negl(λ)

B Proofs of Security

We now formally prove theorem 1 by showing that Azeroth
construction satisfies ledger indistinguishability, transaction
unlinkability, transaction non-malleability, balance, and au-
ditability.

B.1 Ledger indistinguishability
By using a hybrid game, we prove ledger indistinguishability.
Thus, we say that it is indistinguishable if the difference be-
tween a real game GameReal and a simulation game GameSim
is negligible. All Games are executed by interaction of an
adversary A with a challenger C, as in the L-IND experi-
ment. However, GameSim has a distinctness from the others
since it runs regardless of a bit b where b means b of the
L-IND experiment. Thus, for GameSim, the advantage of A
is 0. Moreover, the zk-SNARK keys are generated as (ek, vk,
td)← Πsnark.Sim(R) to obtain the zero-knowledge trapdoor
td. We now show that AdvL-IND

ΠAzeroth,A is at most negligibly dif-
ferent than AdvGameSim . First of all, we define the notations
as follows.

Table 8: Notations

Symbol Meaning
GameReal The original L-IND experiment
Gamei A hybrid game altered from GameReal
GameSim The fake L-IND experiment
qKGU The total number of KeyGenUser queries by A
qZKT The total number of zkTransfer queries by A

AdvGame The advantage of A in Game
AdvPRF The advantage of A in distinguishing PRF from random
AdvSE The advantage of A in SE’s IND-CPA

AdvCOM The advantage of A against the hiding property of COM

We describe how the challenger C responses to the answer
of each query to provide it with the adversary A in the simu-
lation game GameSim. The challenger C responds to each A’s
query as below :

• Query(KeyGenUser) (i.e., (Q,Q′) = KeyGenUser): C
actions under the Q(KeyGenUser) query, except that
it does the following modifications: C generates
user key pair (upk = (addr, pkown, pkenc), usk) ←
KeyGenUser(pp), supersedes pkown, pkenc to a random
string of the appropriate length, and then computes the
user address addr ← CRH(pkown, pkenc). C also puts

these elements in a table and returns upk to A. C does
the above procedure for Q′.

• Query(zkTransfer,upksend, upkrecv, vprivout , vpubin , vpubout ,
EOArecv) (i.e., (Q,Q′) = zkTransfer): C actions under
the Q(zkTransfer) query, except that it does the
following modifications: by default, we assume that
upksend exists in the table. If upksend does not exist
in the table, we abort the queries. C comes up with
random strings and replaces nf and cmnew to these
values, respectively. If upkrecv is a public key generated
by a previous query to KeyGenUser, then C sets sctnew
and pctnew to an arbitrary string. Otherwise, C computes
these elements as in the zkTransfer algorithm. Also, C
stores the changed elements to the table.

We now define each of games to prove the ledger indistin-
guishability of Azeroth. Once again, AdvGameSim

A is 0 sinceA
is computed independently of the bit b where b is chosen by
C in the experiments.

• Game1. We now define the Game1 which is equal to
GameReal except that C simulates the zk-SNARK proof. For
zkTransfer, the zk-SNARK key is generated as (ek,vk, tdZKT)
← Πsnark.Sim(RZKT) instead of Πsnark.Setup(RZKT) to pro-
cure the trapdoor tdZKT. After obtaining the tdZKT, C com-
putes the proof πsim without a proper witness. The view of the
simulated proof πsim is identical to that of the proof computed
in GameReal. In addition, when A asks for the KeyGenUser
query, we replace the elements of public key upk as a random
string . The simulated (usk,upk) distribution is also identical
to that of the key pairs computed in GameReal. In a nutshell,
AdvGame1 = 0.

• Game2. We define the Game2 which is equal to Game1
except that C uses a random string r of a suitable length to
replace the ciphertext pctnew. If the address addr of upksend

in A’s zkTransfer query exists in the C’s table, C computes
sctold as r. Otherwise, C aborts. By Lemma 1, |AdvGame2 −
AdvGame1 | ≤ qZKT ·AdvPE.

• Game3. We define the Game3, which is the same as
Game2 with one modification where C changes the cipher-
text sctnew from correct to an acceptable random string r.
Specifically, if the address addr of upksend exists in the table,
C computes sctnew as r. Otherwise, C aborts. By Lemma 2,
|AdvGame3 −AdvGame2 | ≤ qZKT ·AdvSE.

• Game4. We define the Game4 which is same as Game3
except that C uses a random string to change the nullifier
nf created by PRF. By Lemma 3, |AdvGame4 −AdvGame3 | ≤
qZKT ·AdvPRF.

• GameSim. GameSim is identical to Game4, except that
C replaces commitments (e.g., cmold, cmnew) computed by
COM to an arbitrary string. By Lemma 4, |AdvGameSim −
AdvGame4 | ≤ qZKT ·AdvCOM.

By summing over all the above A’s advantages in the
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games, A’s advantage in the L-IND experiment can be com-
puted as follows:

AdvL-IND
Π,A (λ)≤ qZKT · (2 ·AdvPE+AdvSE+AdvPRF+AdvCOM)

Since AdvL-IND
Π,A (λ) = 2 ·Pr[AzerothL-IND

Π,A (λ) = 1]−1 and
A’s advantage in the L-IND experiment is negligible for λ, we
can make a conclusion that it provides ledger indistinguisha-
bility.

Lemma 1. Let AdvΠPE beA’s advantage in ΠPE’s IND-CPA
and IK-CPA experiments. If A’s zkTransfer query occurs
qZKT, then |AdvGame2 −AdvGame1 | ≤ 2 ·qZKT ·AdvPE.

Proof. To prove that AdvGameH is negligibly different
from AdvGame1 , we define a security model of our encryp-
tion scheme PE. It performs with the interaction between
the adversary A and the IND-CPA challenger. A queries the
encryption for a random message, and then C returns the ci-
phertext of it. After querying, A sends two messages M0,M1

to the challenger C. C chooses one of the two received mes-
sages and returns the ciphertext to the adversary A. If the
adversary A correctly answers which message is encrypted,
A wins. We denote this experiment as Ereal. We define another
experiment Esim which simulates the real one with only the
following modification: When encrypting a message, replace
SE.Enc’s output with a random string. A cannot distinguish
the Esim from Ereal but a negligible probability, due to the
security of SE. The probability of A distinguishes the cipher-
texts in Esim is 1/2; a ciphertext pctold from Esim is uniformly
distributed in A’s view. Overall, the advantage of A in distin-
guishing the ciphertexts is negligible, which means that PE
is IND-CPA. Finally, the advantage of AdvGameH is equal to
AdvPE, hence |AdvGameH −AdvGame1 | ≤ qZKT ·AdvPE.

Like the above, Game2 is the same as GameH except that
it encrypts plaintext by setting the key to a new public key in-
stead of the public key obtained by querying KeyGenUser. Af-
ter querying KeyGenUser, A queries the IK-CPA challenger
to gain upk0, whereas upk1 is obtained from the KeyGenUser
query. The IK-CPA challenger encrypts the same plaintext
as pct∗ using upkb where b is the bit selected by the IK-CPA
challenger per zkTransfer query. The challenger sets pct in
TxZKT to pct∗ and appends it to L.A outputs a bit b by guess-
ing b with respect to the IK-CPA experiment. If b = 0 then
A’s view is equal to Game2, whereas if b = 1 thenA’s view is
GameH . If the maximum advantage for IK-CPA experiment
is AdvPE, then we can say that |AdvGame2 −AdvGameH | ≤
qZKT ·AdvPE.

As a result, the sum of A’s two advantages is |AdvGame2 −
AdvGame1 | ≤ 2 ·qZKT ·AdvPE.

Lemma 2. Let AdvΠSE be A’s advantage in ΠSE’s IND-CPA
experiment. If A’s zkTransfer query occurs qZKT times, then
|AdvGame3 −AdvGame2 | ≤ qZKT ·AdvSE.

Proof. To prove that AdvGame3 is negligibly different
from AdvGame2 , we define a security model of our encryp-
tion scheme SE. It performs with the interaction between

the adversary A and the IND-CPA challenger. A queries
the encryption for a random message, and then C returns
the ciphertext of it. After querying, A sends two messages
M0,M1 to the challenger C. C chooses one of the two re-
ceived messages and returns the ciphertext to the adversary
A. If the adversary A correctly answers which message is
encrypted, A wins. However, since SE is based on PRF,
A cannot distinguish the ciphertexts with all but negligi-
ble. the advantage of AdvGame2 is equal to AdvSE. Hence,
|AdvGame3 −AdvGame2 | ≤ qZKT ·AdvSE.

Lemma 3. Let AdvPRF be A’s advantage in distinguishing
PRF from a true random function. If A makes qZKT queries,
then |AdvGame4 −AdvGame3 | ≤ qZKT ·AdvPRF.

Proof. We now describe that the difference between
Game4 and Game3 is negligibly different. In zkTransfer
algorithm, nf is computed by PRFsksendown

(cmold). Thus, the
advantage of Game4 is only related to PRF’s advantage.
In other words, the advantage AdvPRF is negligible and
|AdvGame4 −AdvGame3 | ≤ qZKT ·AdvPRF.

Lemma 4. Let AdvCOM be A’s advantage against the
hiding property of COM. If A makes qZKT queries, then
|AdvGameSim −AdvGame4 | ≤ qZKT ·AdvCOM

Proof. On zkTransfer query, the challenger C substitutes
the commitment cmnew←COM(vprivout ,addr

recv;onew) as a ran-
dom string r of an acceptable length. The advantage of adver-
sary A is at most like that of COM. Thus, since the commit-
ment cmnew exists only in the zkTransfer query, C performs
one replication of each zkTransfer query. Hence, we conclude
that |AdvGameSim −AdvGame4 | ≤ qZKT ·AdvCOM.

B.2 Transaction Unlinkability
Let T be the transaction set that contains TxZKT produced by
OAzeroth in response to Q(zkTransfer). A wins the TR-UN
experiment on any occasion A outputs b′ which is the same
as b chosen by OAzeroth. Suppose A is given a pair of transac-
tions (Tx,Tx′) as follows:

Tx= (π, rt,nf,addrsend,cmnew,sctnew,v
pub
in ,vpubout ,pctnew,EOA)

cmold = COM(vprivin ,addrsend;oold)

cmnew = COM(vprivout ,addr
recv;onew)

pctnew = PE.Encpkrecvenc ,apk(onew||v
priv
out ||addrrecv)

Tx′ = (π, rt,nf,addrsend,cmnew,sctnew,v
pub
in ,vpubout ,pctnew,EOA)

cmold = COM(vprivin ,addrsend;oold)

cmnew = COM(vprivout ,addr
recv;onew)

pctnew = PE.Encpkrecvenc ,apk
(onew||vprivout ||addrrecv)
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We analyze the case in which A finds out whether the
transaction recipients are the same or different. There are
three chances for A to get knowledge of whether addrrecv =
addrrecv:

i) distinguish the address from zk-SNARK proofs (π,π).

ii) distinguish the address from ciphertexts
(pctnew,pctnew);

iii) distinguish the address from generated commitments
(cmnew,cmnew);

For condition (i),Amust distinguish (addrrecv,addrrecv) from
two different zk-SNARK proofs (π,π), which imply that A
should find a crack for zero knowledge property of the zk-
SNARK. For condition (ii), if A can distinguish the address
from ciphertexts (pctnew,pctnew), it suggests that A wins the
IND-CPA experiment in Lemma 2 so meets contradiction.
For condition (iii), if A can distinguish the address from
the commitments without its opening key and inputs (e.g.,
oold,v

priv
in ,addrsend), it means that A breaks the hiding prop-

erty of the COM scheme in Lemma 4. By the security of
COM, zk-SNARK and IND-CPA, a PPT-adversary A cannot
distinguish the recipient from the commitments, ciphertexts,
and the zk-SNARK proof.

Remark.A can try extracting vprivout from π,pctnew,cmnew, and
tracking the recipient. For example, if vprivout is a specific value
that is easy to distinguish from other values, A pulls out vprivin

from later transactions and grasps the recipient. However, by
the security of COM, zk-SNARK, and IND-CPA mentioned
above, a PPT-adversary A cannot get such knowledge and
distinguish the receiver.

B.3 Transaction Non-malleability
Let T be the transaction set that contains TxZKT produced by
OAzeroth in response to Q(zkTransfer). A wins the TR-NM
experiment whenever A outputs transaction Tx′ which holds
following conditions:

i) There is a transaction Tx ∈ T.

ii) Tx′ ̸= Tx

iii) VerifyTx(Tx′,L′) = 1, where L′ is the snapshot of the
previous ledger state which not contains Tx yet.

iv) A nullifier nf appeared in Tx′ is the same nullifier re-
vealed in Tx.

Suppose that A outputs a transaction Tx′ as following:

Tx′=(π, rt,nf,addrsend,cmnew,sctnew,v
pub
in ,vpubout ,pctnew,EOA)

Define ε1 := AdvTR−NMAzeroth,A(λ), and let QRegisterUser =
{usk1, ...,uskqKGU} be the set of internal address keys cre-
ated by C in response to A’s KeyGenUser queries. Now we

argue that the probability of ε1 is negligible in λ. For formal
proof, we utilize zk-SNARK witness extractor denoted as E
for A. Since A wins only if Tx′ is verified successfully, a
proof π for Tx′ has valid witnesses (skown,cmold) which sat-
isfies PRFskown(cmold) = nf. We use this fact to construct an
algorithm B finding collision for PRF with non-negligible
probability as follows:

i) Run A (simulating its interaction with the challenger C
and obtain Tx′).

ii) Run E to extract a witness w⃗ for a zk-SNARK proof π

for Tx′.

iii) Set x⃗ = (apk, rt,nf,upk,cmnew,sctold,sctnew,v
pub
in ,vpubout ,

pctnew) and check whether w⃗ is a valid witness for x⃗ or
not. If verification fails, then B aborts and outputs 0.

iv) Parse w⃗ as (usk,cmold,oold,v
priv
in ,upkrecv,onew,v

priv
out ,aux,

Pathc,).

v) Find a transaction Tx ∈ T that contains nf.

vi) If a transaction Tx is found, let (sk′own,cm
′
old) be the cor-

responding witness in Tx attained from E . If skown ̸=
sk′own, then output ((skown,cmold),(sk′own,cm

′
old)). Oth-

erwise, output 0.

Seeing that the proof π for a transaction Tx is valid, with all
but negligible probability, the extracted witness w⃗ is valid.
Moreover, Pr[skown = sk′own] =

1
2l where l is the bit length

of skown. Thus, its probability is negl. Putting all the above
probabilities together, we conclude that B finds a collision for
PRF with probability ε1−negl(λ).

B.4 Balance

In this section, we show that AdvBAL is at most negligible.
For each zkTransfer transaction on the ledger L, the chal-
lenger C computes a witness w⃗ for the zk-SNARK instance
x⃗ corresponding to the transaction TxZKT in the BAL experi-
ment. It does not affect A’s view. For such a way, C obtains
an augmented ledger (L,W⃗ ) in which w⃗i means a witness
for the zk-SNARK instance x⃗i of i-th zkTransfer transaction
in L. Note that we can parse an augmented ledger as a list
of matched pairs (TxZKT, w⃗i) where TxZKT is a zkTransfer
transaction and w⃗i is its corresponding witness.

Balanced ledger. We say that an augmented ledger L is
balanced if the following conditions hold.

• Condition 1: In each (TxZKT, w⃗), the opening of unique
commitment cmnew exists, and the commitment cmnew

is also a result of previous TxZKT before depositing the
value form it on L.

• Condition 2: The two different openings in (TxZKT, w⃗)
and (TxZKT

∗, w⃗∗) are not openings of a single commit-
ment.
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• Condition 3: Each (TxZKT, w⃗) contains openings of
cmold and cmnew, and values, satisfying that vENA +
vprivin = vENA

∗ where we denote an updating of the value
as ∗.

• Condition 4: The values used to compute cmnew are
the same as the value for cm∗new, if the value of cmold is
equal to that of cmnew.

• Condition 5: If (TxZKT, w⃗) was inserted by A, and
cmnew contained in TxZKT is the result of an earlier
zkTransfer transaction Tx′, then the recipient’s account
address addrsend does not exist in Acct.

We say that (L, w⃗) is balanced, if the following equation
holds :

vENA+vpubout +vprivout = vpubin +vprivin

For each of the above conditions, we use a contraction to
prove that the probability of each case is at most negligible.
Note that, for better legibility, we denote the A’s win probabil-
ity of each case as Pr[A(C1) = 1], which means A wins but
violates Condition i.
An infringing on condition 1. Each (TxZKT, w⃗) ∈ (L,W⃗ ),
not inserted by A, always satisfies condition 1; The prob-
ability Pr[A(C1) = 1] is that A inserts TxZKT to build a pair
(TxZKT, w⃗) where cmold in w⃗ is not the output of all previ-
ous transactions before receiving the value by zkTransfer.
However, each TxZKT utilizes the witness w⃗, containing the
commitment cmold taken as input for making a nullifier nf, to
generate the proof by proving the validity of TxZKT. Namely,
it means that there is a violation of condition 1 if its commit-
ment corresponding to nf does not exists in L. The meaning of
the violation is equal to break the binding property of COM;
Hence Pr[A(C1) = 1] is negligible.

An infringing on condition 2. Each (TxZKT, w⃗) ∈ (L,W⃗ ),
not inserted by A, always satisfies condition 2; The prob-
ability Pr[A(C2) = 1] is that there are two transaction
(TxZKT,TxZKT

′) in which their commitment is the same but
has different two nullifiers nf and nf ′. However, it contra-
dicts the binding property of COM; Thus, Pr[A(C2) = 1] is
negligible.

An infringing on condition 3. In each (TxZKT, w⃗) ∈ (L,W⃗ ),
there exists a zk-SNARK proof, which can guarantee each of
values vENA, v, and v∗ENA, satisfying the following equation:
vENA+ vprivin = vENA

∗. Pr[A(C3) = 1] is a probability that its
equation does not hold. However, this is a violation of the
proof knowledge property of the zk-SNARK; It is negligible.

An infringing on condition 4. Each (TxZKT, w⃗) ∈ (L,W⃗ ) en-
compasses the values taken as the commitment (e.g., vprivout ,
addrrecv, and onew). Pr[A(C4) = 1] is a probability that its
commitment are equal, and all values related to commitment
inputs in two transactions (TxZKT,TxZKT∗) are equivalent

except for the amount (i.e., vprivout ̸= vprivout

∗
) where TxZKT

∗ a
pre-existing zkTransfer transaction. However, since it is con-
tradictory to the binding property of COM, it happens negli-
gibly.

An infringing on condition 5. Each (TxZKT, w⃗) ∈ (L,W⃗ )
publishes the recipient’s address of a commitment cmnew.
If the zkTransfer transaction inserted by A issues addrrecv,
the output of a previous zkTransfer transaction TxZKT

′ whose
recipient’s account address is in Acct, it is the violation of the
condition 5; Thus, Pr[A(C5) = 1]. However, this contradicts
the collision resistance of CRH.

To sum up, we prove the Definition 4 hold since it is at most
negligible that the opposite happens, as mentioned above.

B.5 Auditability
In the AUD experiment, A wins if the tuple (TxZKT,aux)
holds the following conditions where aux consists of
(onew,v

priv
out ,addr

recv):

i) TxZKT passes the transaction verification.

VerifyTx(TxZKT,L) = true

ii) aux and the commitment cmnew in TxZKT are verified.

VerCommit(cmnew,aux) = true

iii) The decrypted message of pctnew and the values
(onew,v

priv
out ,addr

recv) in aux are not the same.

(onew,v
priv
out ,addr

recv) ̸= Auditask(pctnew)

If A wins in the experiment, when the auditor decrypts
pctnew, it implies that the auditor obtains an arbitrary string,
not a correct plaintext. However, A’s winning probability is
negligible since it breaks the binding property of COM. Also,
assume that there exists an extractor χ which can extract the
witness. When obtaining the witness using χ, it is obvious
that aux is equal to (onew,v

priv
out ,addr

recv). Thus, A’s winning
should also break the proof of knowledge property of the zk-
SNARK. Consequently, since the binding property of COM
and the proof of knowledge property of zk-SNARK, the audi-
tor with an authorized key (i.e., ask) can always observe the
correct plaintext and surveil illegal acts in transactions.
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