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Abstract—With the rapid growth of the blockchain market,
privacy and security issues for digital assets are becoming more
important. In the most widely used public blockchains such as
Bitcoin and Ethereum, all activities on user accounts are publicly
disclosed, which violates privacy regulations such as EU GDPR.
Encryption of accounts and transactions may protect privacy,
but it also raises issues of validity and transparency: encrypted
information alone cannot verify the validity of a transaction and
makes it difficult to meet anti-money laundering regulations, i.e.
auditability.

In this paper, we propose Azeroth, an auditable zero-
knowledge transfer framework. Azeroth connects a zero-
knowledge proof to an encrypted transaction, enabling it to
check its validation while protecting its privacy. Azeroth also
allows authorized auditors to audit transactions. Azeroth is
designed as a smart contract for flexible deployment on existing
blockchains. We implement the Azeroth smart contract, execute it
on various platforms including an Ethereum testnet blockchain,
and measure the time to show the practicality of our proposal.
The end-to-end latency of an privacy-preserving transfer takes
about 4.4s. In particular, the client’s transaction generation time
with a proof only takes about 0.9s. The security of Azeroth is
proven under the cryptographic assumptions.

I. INTRODUCTION

With the widespread adoption of blockchains, various de-
centralized applications (DApps) and digital assets used in
DApps are becoming popular. Unlike traditional banking sys-
tems, however, the blockchain creates privacy concerns about
digital assets since all transaction information is shared across
the network for strong data integrity. Various studies have
been attempted to protect transaction privacy by utilizing
cryptographic techniques such as mixers [3], [25], [26], ring
signatures [31], homomorphic encryption [8], zero-knowledge
proofs [6], [8], [21], [30], etc.

In the blockchain community, the zero-knowledge proof
(ZKP) system is a widely used solution to resolve the conflict
between privacy and verifiability. The ZKP is a proof system
that can prove the validity of the statement without reveal-
ing the witness value; users can prove arbitrary statements
of encrypted data, enabling public validation while protect-
ing data privacy. For instance, the well-known anonymous
blockchain ledger Zerocash [6], which operates on the UTXO
model, secures transactions, while leveraging zero-knowledge

proofs [19] to ensure transactions in a valid set of UTXOs.
Zether [8] based on the account model encrypts accounts
with homomorphic encryption and provides zero-knowledge
proofs [10] to ensure valid modification of encrypted accounts.
Zether builds up partial privacy for unlinkability between
sender and receiver addresses, similar to Monero [31].

As asset transactions on the blockchain increase, the demand
for adequate auditing capabilities is also increasing. Moreover,
if transaction privacy is protected without proper regulation,
financial transactions can be abused by criminals and terrorists.
Without the management of illegal money flows, it would
be also difficult to establish a monetary system required
to maintain a sound financial system and enforce policies
accordingly. Recently, Bittrex1 delisted dark coins such as
Monero [31], Dash [15], and Zerocash [6]. In fact, many
global cryptocurrency exchanges are also strengthening their
distance from the dark coins as recommended by Financial
Action Task Force (FATF) [16]. Thus, we need to find a
middle ground of contradiction between privacy preservation
and fraudulent practices. This paper focuses on a privacy-
preserving transfer that provides auditability for auditors while
protecting transaction information from non-auditors.

Auditable private transfer can be designed by using encryp-
tion and the ZKP. A sender encrypts a transaction so that
only its receiver and the auditor can decrypt it. At the same
time, the sender should prove that the ciphertext satisfies all
the requirements for the validity of the transaction. In partic-
ular, we utilize zk-SNARK (Zero-Knowledge Succinct Non-
interactive ARgument of Knowledge) [19], [20], [29] to prove
arbitrary functionalities for messages, including encryption.
Although the encryption check incurs non-negligible overhead
for the prover, it is essential for the validity and auditability
of the transaction. Indeed, without a proof for encryption as in
Zerocash [6], even if a ciphertext passes all other transaction
checks, there always exists a possibility that an incorrectly
generated ciphertext, either accidentally or intentionally, will
be accepted, resulting in the loss of the validity and auditability
of the transaction.

There are two main privacy considerations in a transfer
transaction: confidentiality (concealing a balance and a transfer
amount) and anonymity (concealing a sender and a recipi-
ent). Confidentiality can be provided by utilizing encryption,
while anonymity can be provided by utilizing an accumu-
lator. Specifically, we employ dual accounts that constitute
an encrypted account in addition to a plain account, similar

1https://global.bittrex.com/
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to Blockmaze [21]. A user may execute deposit/withdrawal
transactions between its own plain/encrypted accounts. At the
same time, the user may send some encrypted value from its
accounts to the accumulator (implemented as an Merkle tree).
The owner of the encrypted value may receive it from the
accumulator to the user’s accounts.

We construct a single transaction to execute all these
functions of deposit/withdrawal/send/receive simultaneously.
Information about the transaction can be inferred only from
the plain account state transition; if the plain account state
keeps the same, it cannot learn even the function type as well
as the value amount. We also add auditability by utilizing
two recipients encryption so that an authorizer as well as the
receiver can decrypt the transaction. The auditor’s ability can
be distributed through a threshold scheme. In order to have this
strong anonymity with auditablity, the most challenging part
is how to adopt and implement zk-SNARKs for this complex
relation proof.

In this paper, we propose Azeroth, an auditable zero-
knowledge transaction framework based on zk-SNARK. The
Azeroth framework provides privacy, verifiability, and au-
ditability for personal digital assets while maintaining the
efficiency of transactions. Azeroth preserves the original func-
tionality of the account-based blockchain as well as providing
the additional zero-knowledge feature to meet the standard
privacy requirements. Azeroth is devised using encryption for
two-recipients (i.e., the recipient and the auditor) so that the
auditor can audit all transactions. Still, the auditor’s capability
is limited to auditing and cannot manipulate any transactions.
Azeroth enhances the privacy of the transaction by performing
multiple functions such as deposit, withdrawal, and transfer in
one transaction. For the real-world use, we adopt a SNARK-
friendly hash algorithm to instantiate encryption to have an
efficient proving time and execute experiments on various
platforms.

The contributions of this paper are summarized as follows.

• Framework: We design a privacy-preserving framework
Azeroth on an account-based blockchain model, while
including encryption verifiability, and auditability. More-
over, since Azeroth constructed as a smart contract
does not require any modifications to the base-ledger,
it advocates flexible deployment, which means that any
blockchain models supporting smart-contract can utilize
our framework.
• Security: We revise and extend the security properties of

private transactions: ledger indistinguishability, transac-
tion unlinkability, transaction non-malleability, balance,
and auditability, and prove that Azeroth satisfies all
required properties under the security of underlying cryp-
tographic primitives.
• Implementation: We implemented and tested Azeroth on

the existing account-based blockchain models, such as
Ethereum [9]. According to our experiment, it takes 4.38s
to generate a transaction in a client and process it in
a smart contract completely on the Ethereum testnet.

While Azeroth additionally supports encryption verifia-
bility and auditability, it shows better performance results
than the other existing schemes through implementation
optimization. To show the practicality of our scheme, we
implement the client side on various devices including
Android/iOS mobile phones. For the details, refer to
section VI.

Organizations. The paper is comprised of the following
contents: First, we provide the related works concerning our
proposed scheme in section II. In section III, we describe
preliminaries on our proposed system. In section IV, we
give an explanation of data structures utilized in Azeroth.
Afterward, we elucidate the overview and construction, al-
gorithms, construction, and security definitions in section V.
Section VI shows the implementation and the experimental
results. Finally, we make a conclusion in section VII.

II. RELATED WORK

The blockchain has been proposed for integrity rather than
privacy. To provide privacy in blockchain, various schemes
have been proposed along several lines of work.

A mixing service(or tumbler) such as CoinJoin [25],
Möbius [26], and Tornado Cash [3] offers a service for
mixing identifiable cryptocurrency transfer with others, so as
to obscure the trail back to the transfer’s original source. Thus,
the mixer supports personal privacy protection for transactions
on the blockchain. However, since the mixers take heed of
anonymity, it exists the possibility of a malevolent problem.

Zerocash [6] provides a well-known privacy-preserving
transfer on UTXO-model blockchains. In Zerocash, a sender
makes new commitments that hide the information of the
transaction (i.e., value, receiver) which is open only to the
receiver. The sender then proves the correctness of the com-
mitments using the zero-knowledge proof. As an extension to
a smart contract, Zeth [30] sorts the privacy problem out by
implementing Zerocash into a smart contract. Zeth creates the
anonymous coin within the smart contract in the form of un-
derlying the UTXO model. Thus, operations and mechanisms
in Zeth are almost the same as Zerocash. ZEXE [7], extending
Zerocash with scripting capabilities, supports function privacy
that nobody knows which computation is executed in off-line.
Hawk [24] is a privacy-preserving framework for building
arbitrary smart contracts. However, there exists a manager,
entrusted with the private data, that generates a zk-SNARK
proof to show that the process is executed correctly.

Blockmaze [21] proposes a dual balance model for account-
model blockchains, consisting of a public balance and private
balance. For hiding the internal confidential information, they
employ zk-SNARK when constructing the privacy-preserving
transactions. Thus, it performs within the transformation be-
tween the public balance and the private balance to disconnect
the linkage of users. Blockmaze is implemented by revising
the blockchain core algorithm, restricting its deployment to
other existing blockchains.

Quisquis [17] is a new anonymity system without a trusted
setup. However, it has the possibility of a front-running attack
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by updating the public keys in an anonymity set before
the transaction is broadcasted. Moreover, this system is a
standalone cryptocurrency not supporting deployment on any
smart contract platform.

Zether [8] accomplishes the privacy protection in the
account-based model using ZKPs (Bulletproofs [10]) and the
ElGamal encryption scheme. While Zether is stateful, it does
not hide the identities of parties involved in the transaction.
Moreover, since the sender should generate a zero-knowledge
proof for the large user set for anonymity, it has limitation to
support a high level of anonymity. Diamond [14] proposes
“many out of many proofs” to enhance proving time for
a subset of a fixed list of commitments. Nevertheless, the
anonymity corresponding to all system users is not supported.

Among the privacy-preserving payment systems, some
approaches allow auditability. Solidus [11] is a privacy-
preserving protocol for asset transfer in which banks play a
role as an arbitrator of mediation. Solidus utilizes ORAM to
support update accounts without revealing the values, but it
cannot provide a dedicated audit function. Specifically, it can
only offer auditing by revealing whole keys to an auditor, and
opening transactions.

zkLedger [27] and FabZK [23] enable anonymous payments
via the use of homomorphic commitments and NIZK while
supporting auditability. However, since these systems are de-
signed based on organizational units, there is the problem
of performance degradation as the number of organizations
increases. Thus, they are practical only when there are a small
number of organizations due to the performance issue.

PGC [12] aims for a middle ground between privacy and
auditability and then proposes auditable decentralized confi-
dential payment using an additively homomorphic public-key
encryption. However, the anonymity set size should be small
in the approach. The work [4] proposes a privacy-preserving
auditable token management system using NIZK. However,
the work is designed for enterprise networks on a permissioned
blockchain. Moreover, whenever transferring a token, a user
should contact the privileged party called by Certifier that
checks if the transaction is valid.

III. PRELIMINARIES

In this section, we describe notations for standard crypto-
graphic primitives. Let λ be the security parameter.

Collision-resistant hash. A hash function CRH :
{0, 1}∗ → {0, 1}poly(λ) is a collision-resistant hash
function if it is difficult to find two different inputs of
which their output is equivalent. That is, for all PPT
adversaries A, there exists a negligible function negl,
Pr

[
(x0, x1)← A(1λ,CRH) : x0 ̸= x1 ∧ CRH(x0) = CRH(x1)

]
≤ negl(λ).

Commitment. A commitment scheme COM provides the
computational binding property and the statistical hiding prop-
erty. It also provides the ability to reveal the committed
value later. We denote a commitment cm for a value u as
cm ← COM(u; o) where o denotes the commitment opening

key. Given the values u and o, a commitment cm to a value
u can be disclosed; one can check if cm← COM(u; o).

Pseudorandom function. A pseudorandom function
PRFk(x) : {0, 1}∗ → {0, 1}poly(λ) is a function of a random
seed key k and an input x that is indistinguishable from a
uniform random function.

Zero-Knowledge Succinct Non-interactive Arguments of
Knowledge. As described in [19], [20], given a relation R, a
zk-SNARK is composed of a set of algorithms Πsnark = (Setup,
Prove, VerProof,SimProve) that works as follows.

• Setup(λ,R)→ crs := (ek, vk), td : The algorithm takes a
security parameter λ and a relation R as input and returns
a common reference string crs containing an evaluating
key ek and a verification key vk, and a simulation trapdoor
td.

• Prove(ek, x, w)→ π : The algorithm takes an evaluating
key ek, a statement x, and a witness w such that (x,w) ∈
R as inputs, and returns a proof π.

• VerProof(vk, x, π) → true/false : The algorithm takes
a verification key vk, a statement x, and a proof π as
inputs, and returns true if the proof is correct, or false
otherwise.

• SimProve(ek, td, x) → πsim : The SimProve algorithm
takes a evaluating key ek, a simulation trapdoor td, and a
statement x as inputs, and returns a proof πsim such that
VerProof(vk, x, πsim)→ true.

Its properties are completeness, knowledge soundness, zero-
knowledge, and succinctness as described below.

COMPLETENESS. The honest verifier always accepts the proof
for any pair (x,w) satisfying the relation R. Strictly, for ∀λ ∈
N, ∀Rλ, and ∀(x,w) ∈ Rλ, it holds as follow.

Pr

[
(ek, vk, td)← Setup(R);
π ← Prove(ek, x, w)

∣∣∣∣ true← VerProof(vk, x, π)

]
= 1

KNOWLEDGE SOUNDNESS. Knowledge soundness says that
if the honest prover outputs a proof π, the prover must
know a witness and such knowledge can be extracted with
a knowledge extractor E in polynomial time. To be more
specific, if there exists a knowledge extractor E for any PPT
adversary A such that Pr

[
GameKSRG,A,E = true

]
= negl(λ), a

argument system Πsnark has knowledge soundness.

GameKSRG,A,E → res

(R, auxR)← RG(1λ); (crs := (ek, vk), td)← Setup(R);
(x, π)← A(R, auxR, crs);w ← E(transcriptA);
Return res← (VerProof(vk, x, π) ∧ (x, π) /∈ R)

ZERO KNOWLEDGE. Simply, a zero-knowledge means that
a proof π for (x,w) ∈ R on Πsnark only has information
about the truth of the statement x. Formally, if there exists
a simulator such that the following conditions hold for any
adversary A, we say that Πsnark is zero-knowledge.
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Pr

[
(R, auxR)←RG(1λ); (crs := (ek, vk), td)← Π.Setup(R)

: π ← Prove(ek, x, w); true← A(crs, auxR, π)

]
≈

Pr

[
(R, auxR)← RG(1λ); (crs := (ek, vk), td)← Setup(R)

: πsim ← SimProve(ek, td, x); true← A(crs, auxR, πsim)

]
SUCCINCTNESS. An arguments system Π is succinctness if
it has a small proof size and fast verification time.

|π| ≤ Poly(λ)(λ+ log|w|)
TimeVerProof ≤ Poly(λ)(λ+ log|w|+ |x|)

Symmetric-key encryption. We use a symmetric-key encryp-
tion scheme SE is a set of algorithms SE = (Gen,Enc,Dec)
which operates as follows.
• Gen(1λ) → k : The Gen algorithm takes a security

parameter 1λ and returns a key k.
• Enck(msg)→ sct : The Enc algorithm takes a key k and

a plaintext msg as inputs and returns a ciphertext sct.
• Deck(sct)→ msg : The Dec algorithm takes a key k and

a ciphertext sct as inputs. It returns a plaintext msg.
The encryption scheme SE satisfies ciphertext indistin-

guishability under chosen-plaintext attack IND-CPA security
and key indistinguishability under chosen-plaintext attack IK-
CPA security.

Public-key encryption. We use a public-key encryption
scheme PE = (Gen,Enc,Dec) which operates as follows.
• Gen(1λ)→ (sk, pk) : The Gen algorithm takes a security

parameter 1λ and returns a key pair (sk, pk).
• Encpk(msg) → pct : The Enc algorithm takes a public

key pk and a message msg as inputs and returns a
ciphertext pct.

• Decsk(pct) → msg : The Dec algorithm takes a private
key sk and a ciphertext pct as inputs. It returns a plaintext
msg.

The encryption scheme PE satisfies ciphertext indistin-
guishability under chosen-plaintext attack IND-CPA security
and key indistinguishability under chosen-plaintext attack IK-
CPA security.

Remark. To prove that encryption is performed correctly
within a zk-SNARK circuit, we need random values used
in encryption as a witness. We denote the values as aux.
Depending on the context in our protocol, we denote the
encryption such that it also outputs aux as a SNARK witness
as follows.

(pct, aux)← PE.Encpk(msg)

Remark. Supporting the audit function allows the trusted
auditor to decrypt the message for the encrypted message.
Thus, we need an encryption with two recipients. We denote
its encryption with a user public key pk and an auditor public
key apk as follows.

(pct, aux)← PE.Encpk,apk(msg)

IV. DATA STRUCTURES

This section describes the data structures used in our pro-
posed scheme Azeroth, referring to the notion.

Ledger. All users are allowed to access the ledger denoted as
L, which contains the information of all blocks. Additionally, L
is sequentially expanded out by appending new transactions to
the previous one (i.e., for any T′ < T, LT always incorporates
LT′ ).

Account. There are two types of accounts in Azeroth: an
externally owned account denoted as EOA, and an encrypted
account denoted as ENA. The former is the same one as in
other account-based blockchains (e.g., Ethereum) and the latter
is an account that includes a ciphertext indicating an amount
in the account. EOA is maintained by blockchain network and
interacts with the smart contract, while ENA registration and
updates are managed by a smart contract, and users cannot see
the value in ENA without its secret key.

Auditor key. An auditor generates a pair of private/public keys
(ask, apk) used in the public key system; apk is used when
a user generates an encrypted transaction, while ask is used
when an auditor needs to audit the ciphertext.

User key. Each user generates a pair of private/public keys
(usk = (kENA, skown, skenc), upk = (addr, pkown, pkenc)).
• kENA : It indicates a secret key for encrypted account of

ENA in a symmetric-key encryption system.
• (skown, pkown) : pkown is computed by hashing skown. The

key pair is used to prove the ownership of an account
in a transaction. Note that skown is additionally used to
generate a nullifier, which prevents double-spending.

• (skenc, pkenc) : These keys are used in a public-key en-
cryption system; skenc is used to decrypt ciphertexts taken
from transactions while pkenc is to encrypt transactions.

• addr : It is a user address and computed by hashing pkown
and pkenc.

Commitment and Note. To build a privacy-preserving trans-
action, a commitment is utilized to hide the sensitive infor-
mation (i.e., amount, address). Our commitment is noted as
follows.

cm = COM(v, addr; o)

To commit, it takes v, addr as inputs and runs with an opening
o. v is the digital asset value to be transferred and addr is the
address of a recipient. Once cm is published on a blockchain,
the recipient given the opening key o and the value v from the
encrypted transaction uses them to make another transfer. We
denote the data required to spend a commitment as a note:

note = (cm, o, v)

Note that each user stores his own notes in his wallet privately
for his convenience.

Membership based on Merkle Tree. We use a Merkle hash
tree to prove the membership of commitments in Azeroth and
denote the Merkle tree and its root as MT and rt, respectively.
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MT holds all commitments in L, and it appends commitments
to nodes and updates rt when new commitments are given. Ad-
ditionally, an authentication co-path from a commitment cm to
rt is denoted as Pathcm. For any given time T, MTT includes
a list of all commitments and rt of these commitments. There
are three algorithms related with MT.
• true/false ← MembershipMT(rt, cm,Pathcm) : This al-

gorithm verifies if cm is included in MT rooted by rt;
if rt is the same as a computed hash value from the
commitment cm along the authentication path Pathcm,
it returns true.
• Pathcm ← ComputePathMT(cm) : This algorithm returns

the authentication co-path from a commitment cm appear-
ing in MT.
• rtnew ← TreeUpdateMT(cm) : This algorithms appends

a new commitment cm, performs hash computation for
each tree layer, and returns a new tree root rtnew.

Value Type. A transaction includes several input/output asset
values which are publicly visible or privately secured. In our
description, pub and priv represent a publicly visible value and
an encrypted (or committed) value respectively. “in” indicates
the value to be deposited to one’s account and “out” represents
the value to be withdrawn from one’s account. We summarize
the types of digital asset values as follows.
• vENA: The digital asset value available in the encrypted

account ENA.
• vpubin and vpubout : The digital asset value to be publicly

transferred from the sender’s EOA and the digital asset
value to the receiver’s public account EOA, respectively.

• vprivin and vprivout : The digital asset value received anony-
mously from an existing commitment and the value sent
anonymously to a new commitment in MT, respectively.

V. Azeroth
A. Overview

We construct Azeroth by integrating deposit/withdrawal
transactions and public/private transfer transactions into a
single transaction zkTransfer. Since zkTransfer executes multi-
functions in the same structure, it improves the function
anonymity. One may try to guess which function is executed
by observing the input/output values in zkTransfer. zkTransfer,
however, reveals the input/output values only in EOA; the
values withdrawn/deposited from/to ENA and the values trans-
ferred from/to MT are hidden. A membership proof of MT
hides the recipient address. As a result, the information that
an observer can extract from the transaction is that someone’s
EOA value either increases or decreases; he cannot know
whether the amount difference is deposited/withdrawn to/from
its own ENA, or is transferred from/to a new commitment in
MT. It is even more complicated because those values can be
mixed in a range where the sum of the input values is equal
to the sum of the output values.

zkTransfer implements a private transfer with only two
transactions; a sender executes zkTransfer transferred to MT
and a receiver executes zkTransfer transferred from MT. In

zkTransfer, all values in ENA and MT are processed in
the form of ciphertexts and whether remittance is between
own accounts or between non-own accounts is hidden, so
the linking information between the sender and receiver is
protected.

Figure 1 illustrates the zkTransfer. The left box “IN”
represents input values and the right box “OUT” denotes
output values. In zkTransfer, vpubin and vpubout are publicly visible
values. vENA is obtained by decrypting its encrypted account
value sct. The updated vENAnew is encrypted and stored as sct∗

in ENA. The amount (vprivin ) included in a commitment can
be used as input if a user has its opening key; the opening
key is delivered in a ciphertext pct so that only the destined
user can correctly decrypt it. To prevent double spending, for
each spent commitment a nullifier is generated by hashing the
commitment and the private key skown and appended; it is still
unlinkable between the commitment and the nullifier without
the private key skown. Finally, for the transaction validity,
zkTransfer proves that all of the above procedures are correctly
performed by generating a zk-SNARK proof.

Auditability is achieved by utilizing public-key encryption
with two recipients; all pct ciphertexts can be decrypted by an
auditor as well as a receiver so that the auditor can monitor
all the transactions. We note that ENA exploits symmetric-
key encryption only for the performance gain although ENA
can also utilize the public-key encryption. Notice that without
decrypting ENA, the auditor can still learn the value change
in ENA by computing the remaining values from vpubin , vpubout ,
vprivin , and vprivout .

B. Algorithms

Azeroth consists of three components: Client,
Smart Contract, and Relation. Client generates a transaction
which includes a ciphertext and a proof. Smart Contract
denotes a smart contract running on a blockchain. Relation
represents a zk-SNARK circuit for generating a zkTransfer
proof. The our system is a tuple of algorithms defined as
follows.

[Azeroth Client]

• SetupClient: A trusted party runs this algorithm only
once to set up the whole system. It also returns public
parameter pp.

• KeyGenAuditClient: This algorithm generates an auditor
key pair (ask, apk). It also outputs the key pair and a
transaction TxKGA.

• KeyGenUserClient: This algorithm generates a user key
pair (usk, upk). It also returns a transaction TxKGU to
register the user’s public key.

• zkTransferClient: A user executes this algorithm for trans-
fer. The internal procedures are described as follows:
i) Consuming note = (cm, o, v): It proves the knowledge of

the committed value v using the opening key o and the
membership of a commitment cm in MT and derives a
nullifier nf from PRF to nullify the used commitment.
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Fig. 1: Overview of zkTransfer

ii) Generating cmnew: By executing COM(vprivout , addrrecv; onew),
a new commitment and its opening key are obtained. Then it
encrypts (onew, v

priv
out , addr

recv) via PE.Enc and outputs pct.
iii) Processing currency: The sender’s ENA balance is updated

based on vprivin (from note), vprivout , vpubin , and vpubout or ∆vENA =
vprivin + vpubin - vprivout - vpubout .

With prepared witnesses and statements, the algorithm
generates a zk-SNARK proof and finally outputs a
zkTransfer transaction TxZKT .
• RetreiveNoteClient: This algorithm is a sub-algorithm

computing a note used in zkTransferClient. It allows a user
to find cm transferred to the user along with its opening
key and its committed value. Then, a user decrypts the
ciphertext using skenc each transaction pct ∈ L to
(o, v, addr∗) and stores (cm, o, v) as note in the user’s
wallet if addr∗ matches its address addr.
• Audit: An auditor with a valid ask runs this algorithm to

audit a transaction by decrypting the ciphertext pct in the
transaction.

[Azeroth Smart Contract]
• SetupSC: This algorithm deploys a smart contract and

stores the verification key vk from zk-SNARK where vk
is used to verify a zk-SNARK proof in the smart contract.

• RegisterAuditorSC: This algorithm stores an auditor pub-
lic key apk in Azeroth’s smart contract.

• RegisterUserSC: This algorithm registers a new encrypted
account for address addr. If the address already exists in
Listaddr, the transaction is reverted. Otherwise, it registers
a new ENA and initializes it with zero amount.

• zkTransferSC: This algorithm checks the validity of the
transaction, and processes the transaction. A transaction
is valid iff: Merkle root rtold exists in root list Listrt,
a nullifier nf does not exists in the nullifier list Listnf ,
addrsend exists, cmnew does not exists in Listcm, and
a proof π is valid in zk-SNARK. If the transaction is

valid, the cmnew is appended to MT, MT is updated, a
new Merkle tree root rtnew is added to Listrt and the
nullifier nf is appended to Listnf . The encrypted account
is updated. And then the public amounts are processed;
vpubin is acquired from EOAsend, and vpubout is delivered to
EOArecv. If the transaction is invalid, it is reverted and
aborted.

[Azeroth Relation] The statement and witness of Relation
RZKT are as follows:

x⃗ = (apk, rt, nf, upksend, cmnew, sctold, sctnew, v
pub
in , vpubout , pctnew)

w⃗ = (usksend, cmold, oold, v
priv
in , upkrecv, onew, v

priv
out , auxnew,Path)

where a sender public key upksend is (addrsend, pksendown , pksendenc )
and a receiver’s public key upkrecv is (addrrecv, pkrecvown , pkrecvenc ).

We say that a witness w⃗ is valid for a statement x⃗, if and only
if the following holds:
• If vprivin > 0, then cmold must exist in MT with given rt

and Path.
• pksendown = CRH(sksendown ).
• The user address addrsend and addrrecv are well-formed.
• cmold and cmnew are valid.
• nf is derived from cmold and sksendown .
• pctnew is an encryption of cmnew via auxnew.
• sctnew is an encryption of updated ENA balance.
• All amounts (e.g., vprivin , vpubin , ...) are not negative.
Given the building blocks of a public-key encryption PE,

a symmetric-key encryption SE, and a zk-SNARK Πsnark, we
construct Azeroth as in Figure 2.

C. Security

Following the similar model defined in [6], [21], we de-
fine the security properties of Azeroth including ledger in-
distinguishability, transaction unlinkability, transaction non-
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Azeroth Client

◦ SetupClient(1
λ,RZKT) :

(ek, vk)← Πsnark.Setup(RZKT)

G
$← G

Return pp = (ek, vk, G)

◦ KeyGenAuditClient(pp):

(ask, apk) $← PE.Gen(pp)
TxKGA = (apk)
Return (apk, ask), TxKGA

◦ KeyGenUserClient(pp):

(skenc, pkenc)
$← PE.Gen(pp)

kENA
$← SE.Gen(pp)

skown
$← F; pkown ← CRH(skown)

addr← CRH(pkown||pkenc)
usk = (kENA, skown, skenc)
upk = (addr, pkown, pkenc)
TxKGU = (addr)
Return (sk, pk), TxKGU

◦ RetreiveNoteClient(L, sk, pk):
Parse usk as (kENA, skown, skenc)
Parse upk as (addr, pkown, pkenc)
For each TxZKT on L:

Parse TxZKT as (cm, pct, . . . )
(o, v, addr∗) ← PE.Decskenc (pct)

if addr = addr∗ then
Return note = (cm, o, v)

end if

◦ zkTransferClient (note, apk, usksend, upksend, upkrecv , vprivout , vpubin , vpubout , EOArecv):
Parse usksend as (ksendENA, sksendown , sk

send
enc )

Parse upksend as (addrsend, pksendown , pk
send
enc )

Parse upkrecv as (addrrecv, pkrecvown, pk
send
enc )

Parse note as (cmold, oold, v
priv
in ) if note ̸= ⊥;

otherwise vprivin ← 0; oold
$← F; cmold ← COM(vprivin , addrsend; oold)

sctold ← ENA[addrsend]
vENA
old ← SE.Dec

ksend
ENA

(sctold) ; nf ← PRF
sksendown

(cmold)

rt← Listrt.Top
Path ← ComputePathMT(cmold) if vprivin > 0

cmnew ← COM(vprivout , addr
recv; onew)

pctnew, auxnew ← PE.Encpkrecvenc ,apk(onew||vprivout ||addr
recv)

vENA
new ← vENA

old + vprivin − vprivout + vpubin − vpubout

sctnew ← SE.Enc
ksend
ENA

(vENA
new )

x⃗ =

{
apk, rt, nf, upksend, cmnew,

sctold, sctnew, v
pub
in , vpubout , pctnew

}

w⃗ =

{
usksend, cmold, oold, v

priv
in , upkrecv,

onew, v
priv
out , auxnew,Path

}

π ← Πsnark.Prove(ek, x⃗, w⃗)
TxZKT = (π, rt, nf, addrsend, cmnew , sctnew , vpubin , vpubout , pctnew , EOArecv)
Return TxZKT

◦ Audit(ask,pct):
msg ← PE.Decask(pct)
Return msg

Azeroth Smart contract

◦ SetupSC(vk) :
Store a zk-SNARK verification key vk
Initialize a Merkle Tree

◦ RegisterAuditorSC(apk) :
APK← apk

◦ RegisterUserSC(addr) :
Assert addr ̸∈ Listaddr
ENA[addr]← 0

◦ zkTransferSC (π, rtold, nf, addrsend, cmnew , sctnew , pctnew , vpubin , vpubout , EOArecv):
Assert rtold ∈ Listrt
Assert nf ̸∈ Listnf
Assert addrsend ∈ Listaddr
Assert cmnew ̸∈ Listcm

x⃗ =

{
APK, rtold, nf, upk

send
, cmnew,

ENA[addrsend], sctnew, v
pub
in , vpubout , pctnew

}

Assert Πsnark.VerProof(vk, π, x⃗) = true
ENA[addrsend]← sctnew
rtnew ← TreeUpdateMT(cmnew)
Listrt.append(rtnew)
Listnf .append(nf)
if vpubin > 0 then TransferFrom(EOAsend, this, v

pub
in )

end if
if vpubout > 0 then TransferFrom(this, EOArecv, v

pub
out )

end if

Azeroth Relation

◦ Relation R(x⃗; w⃗) :

x⃗ =

{
apk, rt, nf, upksend, cmnew,

sctold, sctnew, v
pub
in , vpubout , pctnew

}

w⃗ =

{
usksend, cmold, oold, v

priv
in , upkrecv,

onew, v
priv
out , auxnew,Path

}

Parse sksend as (ksendENA, sksendown , sk
send
enc )

Parse upksend as (addrsend, pksendown , pk
send
enc )

Parse upkrecv as (addrrecv, pkrecvown, pk
send
enc )

if vprivin > 0 then
Assert true = MembershipMT(rt, cmold,Path)

end if
Assert pksendown = CRH(sksendown )
Assert addrsend = CRH(pkown||pkenc)
Assert cmold = COM(vprivin , addrsend; oold)
Assert nf = PRF

sksendown
(cmold)

Assert pctnew , auxnew = PE.Encpkrecvenc ,apk (onew||vprivout ||addr
recv)

Assert addrrecv = CRH(pkrecvown||pk
recv
enc )

Assert cmnew = COM(vprivout , addr
recv; onew)

if sctold = 0 then vENAold ← 0
else vENAold ← SE.Dec

ksend
ENA

(sctold)

end if
Assert vENAnew ← SE.Dec

ksend
ENA

(sctnew)

Assert vENAnew = vENAold + vprivin − vprivout + vpubin − vpubout

Assert vprivout ≥ 0; vprivin ≥ 0; vpubin ≥ 0; vpubout ≥ 0

Assert vENAnew ≥ 0; vENAold ≥ 0

Fig. 2: Azeroth scheme ΠAzeroth

malleability, and balance, and define auditability as a new
property.

Ledger Indistinguishability. Informally, we say that the
ledger is indistinguishable if it does not disclose new in-
formation, even when an adversary A can see the public

information and even adaptively engender honest parties to
execute Azeroth functions. Namely, even if there are two
ledgers L0 and L1, designed by the adversary using queries
to the oracle, A cannot tell the difference between the two
ledgers. We design an experiment L-IND as shown in fig. 3.
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Azeroth.GL-INDA (λ) :

pp← Setup(λ)

(L0, L1)← AOAzeroth
0 ,OAzeroth

1 (pp)

b
$← {0, 1}

Q $← {KeyGenUser, zkTransfer}
ans← QueryLb

(Q)

b′ ← AOAzeroth
0 ,OAzeroth

1 (L0, L1, ans)

return b = b′

Fig. 3: The ledger indistinguishability experiment (L-IND)

We say that Azeroth scheme is ledger indistinguishable if
|AdvL-IND

Azeroth,A − 1/2| ≤ negl(λ) for every A and adequate
security parameter λ.

Azeroth.GTR-UN
A (λ) :

pp← Setup(λ)

L← AOAzeroth

(pp){
(pksend, pkrecv, aux), (pksend, pkrecv, aux)

}
← AOAzeroth

(L)

b
$← {0, 1}

Tx← zkTransfer(pksend, pkrecv, aux)

if b = 0

Tx′ ← zkTransfer(pksend, pkrecv, aux)

else if b = 1

Tx′ ← zkTransfer(pksend, pkrecv, aux)

b′ ← A(Tx,Tx′, L)
return b = b′

Fig. 4: The transaction unlinkability experiment (TR-UN)

Transaction Unlinkability. Transaction unlinkability is de-
fined as an indistinguishability problem in which a PPT ad-
versary A cannot distinguish the receiver’s information. Note
that a transaction caller (sender) is always identifiable in an ex-
isting account-based blockchain model. Still, if the receiver’s
information is unlinkable, it is guaranteed that the linkability
information between the sender and the receiver is hidden. Be-
cause the recipient information is hidden, the sender can create
a transaction with himself as the recipient privately as well.
We say that a transaction is unlinkable if it does not disclose
the correlation between its sender and receiver. We describe an
experiment TR-UN as shown in fig. 4 where aux denotes the
remaining input of zkTransfer. Formally, let AdvTR-UN

Azeroth,A(λ)
be the advantage of A winning the game Azeroth.GTR-UN

A .
Azeroth satisfies the transaction unlinkability if for any PPT
adversary A, we have that |AdvTR-UN

Azeroth,A(λ)−1/2| ≤ negl(λ).

Azeroth.GTR-NM
A (λ) :

pp← Setup(λ)

L← AOAzeroth

(pp, ask)

Tx′ ← AOAzeroth

(L)

b← VerifyTx(Tx′, L′) ∧ Tx /∈ L′

return b ∧ (∃Tx ∈ L : Tx ̸= Tx′ ∧ Tx.nf = Tx′.nf)

Fig. 5: The transaction non-malleability experiment (TR-NM)

Transaction Non-malleability. Intuitively, a transaction is
non-malleable if no new transaction is constructed differ-
ently from the previous transactions without knowing pri-
vate data (witness) such as secret keys. Even when an
auditor tries to attack or an auditor’s secret key is ex-
posed, this property should hold. We show an experiment
Azeroth.GTR-NM

A in fig. 5. Let AdvTR−NM
Azeroth,A(λ) be the advan-

tage of A winning the game TR-NM. The Azeroth satisfies
the transaction non-malleability if for any PPT adversary A,
we have that |AdvTR−NM

Azeroth,A(λ)| ≤ negl(λ).

Azeroth.GBALA (λ) :

pp← Setup(λ)

L← AOAzeroth

(pp)

(Listcm,ENA,EOA)← AOAzeroth

(L)

(vENA, vpubout , v
priv
out , v

pub
in , vprivin )

← Compute(L, Listcm,ENA,EOA)

if vENA + vpubout + vprivout > vpubin + vprivin then return 1

else return 0

Fig. 6: The balance experiment (BAL)

Balance. We say that Azeroth is balanced if and only if no
attacker can spend more than what she has or receives. Let
AdvBAL

Azeroth,A(λ) be the advantage of A winning the game
BAL as described in fig. 6. For a negligible function negl(λ),
the Azeroth is balanced if for any PPT adversary A, we have
that |AdvBAL

Azeroth,A(λ)| ≤ negl(λ).

Auditability. If the auditor can always monitor the confi-
dential data of any user, we informally say that the scheme
has auditability. More precisely, we define that Azeroth
is auditable if there is no transaction in which the de-
crypted plaintext is different from commitment openings. Let
AdvAUD

Azeroth,A(λ) be the advantage of A winning the game
AUD as described in fig. 7. For a negligible function negl(λ),
the Azeroth is auditable if for any PPT adversary A, we have
that |AdvAUD

Azeroth,A(λ)| ≤ negl(λ).

Theorem 5.1: Let ΠAzeroth = (Setup, KeyGenAudit, Key-
GenUser, zkTransfer) be a Azeroth scheme in Figure 2.
ΠAzeroth satisfies ledger indistinguishability, transaction un-
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Azeroth.GAUDA (λ) :

pp← Setup(λ)

L← AOAzeroth

(pp)

(Tx, aux)← AOAzeroth

(L)

Parse Tx = (cm, pct)

b← VerifyTx(Tx, L)∧
VerifyCommit(cm, aux) ∧ aux ̸= Auditask(pct)

return b

Fig. 7: The auditability experiment (AUD)

linkability, transaction non-malleability, balance, and au-
ditability.
Proof. The proofs for the above theorem are described in
appendix A.1 A.2.

D. Extension to threshold auditing

In a blockchain, the presence of a privileged entity(e.g., an
auditor) who can infringe on the privacy of all participants
is able to induce another baleful problem. One solution to
mitigate this problem is to use a threshold scheme. In a
threshold public-key encryption [13], the message is encrypted
using a public key, and the private key is shared among the
participants. Several participants more than some threshold
number t must cooperate in the decryption procedure to
decrypt an encrypted message.

Our audit function can be extended to a threshold public-
key encryption using a standard secret sharing scheme. Briefly,
let the secret key k be shared secret key among P1, . . . , Pn

using a polynomial f of degree t where t is a threshold,
meaning that the encryption tolerates the passive corruption of
t parties. In key generation phase, a trusted manager chooses
t+ 1 random coefficients a0, a1, a2, . . . , at+1 s.t. a0 = k and
computes f(x) = a0 + a1x+ a2x

2 + · · ·+ at+1x
t+1 mod q

where q is a field prime number. The dealer sends a split
secret key (skj = f(j)) to each Pj for all j. In the encryption
phase, all processes are the same as the standard ElGamal
encryption with pk = gk. Thus, the ciphertext consists of
(c0, c1) = (Gr, pkr · m) for the message m. For threshold
decryption, an auditor sends a decryption request to other
auditors. Upon receiving a decryption request on (c0, c1), an
auditor Ai computes a decryption share cski

0 and sends it back
to the requestor (or other auditors in case of group auditing).
Upon receiving shares from a set of t+1 parties, the auditors
can compute the message m.

The role of the trusted manager can be also distributed [32]
so that the participants jointly choose shares corresponding to
a (t, n)-secret sharing of a random value for a system without
the trusted manager. Each participant Pi arbitrary selects a
polynomial fi(x) of degree t over Zq and sends fi(j) to every
participant Pj . Next, Pj obtains its share aj = f(j) where
f(j) =

∑n
k=1 fk(j). Note that the values (a1, . . . , an) make

up a (t, n)-threshold secret sharing. Thus, in order to audit

a transaction, the mutual cooperation of auditors exceeding a
certain quorum is unconditionally required.

VI. IMPLEMENTATION AND EXPERIMENT

A. Implementation

Our Azeroth implementation coded in Python, C++, and
Solidity languages consists of two parts; the client and the
smart contract. The client interacts with blockchain network
using Web3.py2. To generate a zk-SNARK proof in Azeroth,
we use libsnark3 with Groth16 [19] and BN254 curve.

PRF, COM, and CRH: We instantiate pseudorandom function
PRFk(x) where k is the seed and x is the input, using a
collision resistant hash function as follows.

PRFk(x) := CRH(k||x)

A commitment is also realized using a hash function CRH as
follows.

COM(v, addr; o) := CRH(v||addr||o)

A collision resistant hash function CRH is implemented
using zk-SNARK friendly hash algorithms such as MiMC7 [2]
and Poseidon [18] as well as a standard hash function
SHA256 [28].

Symmetric-key encryption: The symmetric-key encryption
needs to be efficient in the proof generation for encryption.
Therefore, we implement an efficient stream cipher based
on PRF using zk-SNARK friendly hash algorithms such as
MiMC7 and Poseidon as follows.

SE.Enck(msg)→ (r, sct)

r
$← F; sct← msg + PRFk(r)

Return (r, sct)

SE.Deck(r, sct)→ msg
msg← sct− PRFk(r)

Return msg

We also employ the CTR mode in case the message size is
longer than the range of PRF.

Public-key encryption: We implement public-key encryption
with two recipients of a receiver and an auditor by extending
ElGamal encryption system such that the randomness can be
re-used. (Refer to the general treatment of randomness re-
use in multi-recipient encryption in [5].) For the performance
gain, we also utilize the standard hybrid encryption; a random
key is encrypted by the public key encryption and the key is
used to encrypt the message using a symmetric-key encryption
scheme. Given two key pairs (pk1, sk1) and (pk2, sk2) for
ElGamal encryption, and the symmetric-key encryption SE,
the resulting implementation of the public key encryption is
as follows.

2https://github.com/ethereum/web3.py
3https://github.com/scipr-lab/libsnark
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PE.Encpk1,pk2(msg)→ pct, aux

k
$← F; r $← F

c0 ← Gr; c1 ← k · pkr
1 ; c2 ← k · pkr

2 ; c3 ← SE.Enck(msg)

pct← (c0, c1, c2, c3); aux← (k, r)

Return pct, aux

PE.Decski(pct)→ msg
(c0, c1, c2, c3)← pct

k ← ci/c
ski
0 ;msg← SE.Deck(c3)

Return msg

B. Experiment

In our experiment, the term cfgHash,Depth denotes a configu-
ration of Merkle hash tree depth and hash type in Azeroth.
For instance, cfgMiMC7,32 means that we run Azeroth with
MiMC7 [2] and its Merkle tree depth is 32. Table I(a) illus-
trates our system environments. For the overall performance
evaluation, we execute all experiments on the machine Server
described in Table I(a) as a default machine. And the default
blockchain is the Ethereum testnet. The used proof system is
Gro16 [19].

Overall performance. We show that the performance and the
gas consumption in Azeroth with cfgMiMC7,32 as shown in
Table I (b).4 The execution time 4.04s of Setup is composed of
the zk-SNARK key generation time 2.2s and the deployment
time 1.84s of the Azeroth’s smart contract to the blockchain.
Setup consumes a considerable amount of gas due to the
initialization of Merkle Tree. In zkTransfer, the executed time
is 4.38s including both the Client part and the Smart Contract
part. The gas is mainly consumed to verify the SNARK proof
and update the Merkle hash tree. Varying the hash function,
the further analysis of zkTransfer is described in the following
experiments.

zk-SNARK performance. We evaluate the performance of
zk-SNARK used to execute zkTransfer on various systems
Server,System1, · · · ,System4 as described in Table I (b).
Table I (c) shows the setup time, the proving time, and the
verification time respectively on each system with cfgMiMC7,32.
Although System3 has the lowest performance, still its proving
time of 4.56s is practically acceptable.

Hash type and tree depth. We evaluate Azeroth performance
depending on hash tree depths and hash types as shown in
Figure 8 and Figure 9.

Figure 8 illustrates the execution time of zk-SNARK for
MiMC7 [2], Poseidon [18]5, and SHA256 [28] where the
hash tree depth is 32. The SNARK key generation times
are 2.311s, 2.182s, and 53.393s respectively. The proving
times for MiMC7 and Poseidon are 0.901s and 0.582s respec-
tively, while it takes 20.69 seconds with SHA256; SHA256

4The result includes the execution time until the task of receiving the receipt
of the transaction.

5We utilize a well-optimized Poseidon smart contract from circomlib(https:
//github.com/iden3/circomlib/tree/feature/extend-poseidon).

is about 20x and 40x slower than MiMC7 and Poseidon in
zk-SNARK. The verification time is almost independent of
the hash type. However, when each hash function is executed
natively, SHA256 shows the best performance as shown in
Figure 8 (d), which is similar to the gas consumption trend
shown in Figure 8 (e).

Figure 9 shows the key size. The proving key (ek) size is
proportional to the tree depth, whereas the verification key
size remains 1KB.6 Poseidon has the smallest sizes of ek and
constraints. Specifically, in depth 32, the ek sizes in Poseidon,
MiMC7, and SHA256 are 3,341KB, 4,339KB, and 255,000KB
respectively. The circuit size of SHA256 is enormous due to
numerous bit operations, and Poseidon has 30% smaller size
than MiMC7’s. Figure 9 (c) shows that MiMC7 and Poseidon
hashes consume relatively more gas than SHA256 since not
only is SHA256 natively supported in Ethereum [9], but also
it shows better native performance as shown in Figure 8 (e).

The number of constraints. We measure the number of
constraints for each algorithm component as shown in Table II.
The membership proof algorithm performs the hash execution
as many as the tree depth. SE.Dec conducts the one hash
computation and PE.Enc executes the group operation (i.e.,
exponentiation) three times internally. Note that in the table,
the number of constraints for CRH is obtained when a single
input block is provided to the hash and the number of
constraints is proportional to the number of input blocks.

Performance analysis of smart contract.
We analyze the execution time and the gas consumption

in smart contract zkTransferSC. Table III shows the gas con-
sumption for each function in smart contract zkTransferSC.
In the smart contract, the most time-consuming functions are
the proof verification Πsnark.Verify and the Merkle hash tree
update TreeUpdate. The gas consumption for TreeUpdate
depends on hash tree depth and hash type while Πsnark.Verify
remains constant.

Figure 10 represents the execution time of Πsnark.Verify
and TreeUpdate. The verification time is 11.9ms, and the
execution time of TreeUpdate is 12.8ms, 17.4ms, and 7.3ms
on MiMC7, Poseidon, and SHA256 respectively.

Deployment to various blockchains. We execute Azeroth
with cfgMiMC7,8 on various blockchains such as Ethereum [9],
Hyperledger Besu [22], and Klaytn [1] which support a smart
contract. The gas consumption result is shown in table IV.

Comparison with the other existing schemes. We com-
pare the proposed scheme Azeroth with the other privacy-
preserving transfer schemes such as Zeth [30], Block-
maze [21], Zether [8], and PGC [12] in Table V. Our proposal
shows better performance than the existing schemes, even
if Azeroth provides an additional function of auditability.
Zeth and Blockmaze are implemented with cfgMiMC7,32 and
cfgSHA256,8 respectively and the same configuration is applied
to the proposed scheme for a fair comparison. The experiment

6We omit the graph of vk, since it is constant.
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TABLE I: Benchmark of Azeroth

(a) System specification

Machine OS CPU RAM
Server Ubuntu 20.04 Intel(R) Xeon Gold 6264R@3.10GHz 256GB
System1 macOS 11.2 M1@3.2GHz 8GB
System2 macOS 11.6 Intel(R) i7-8850H CPU @ 2.60GHz 32GB
System3 android 11 Exynos9820 8GB
System4 iOS 15.1 A12 Bionic 4GB

(b) Execution time and gas consumption of Azeroth with cfgMiMC7,32

Azeroth
Setup RegisterAuditor RegisterUser zkTransfer Audit

Time (s) 4.04 0.02 0.017 4.38 0.03
Gas 5,790,800 63,179 45,543 1,555,957 N/A

(c) Execution time of zk-SNARK in zkTransfer

Server System1 System2 System3 System4

Πsnark.Setup (s) 2.311 4.19 4.13 8.529 5.529
Πsnark.Prove (s) 0.901 2.581 2.77 4.557 3.15
Πsnark.Verify (s) 0.017 0.041 0.079 0.062 0.054
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Fig. 8: Performance with 32 hash tree depth. (a)-(c): The execution time of zk-SNARK’s algorithms where the y axis is time(s).
(d): The native execution time of each hash algorithm written in C++ where the y axis is time(s). (e): The gas consumption
where the y axis denotes the gas consumption.
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Fig. 9: Key size, constraints in circuits and gas consumption by varying hash tree depth and hash type

TABLE II: The number of constraints for each algorithm
component

Membership32 CRH(1) SE.Dec PE.Enc GroupOp
MiMC7 11,713 364 364 7,211 2,035
Poseidon 7,745 213 240 6,758 2,035
SHA256 1,465,473 25,725 45,794 83,294 2,035

TABLE III: Gas cost for each function

F Πsnark.Verify MiMC7 SHA256 Poseidon Etc
gas 402,922 23,405 1,506 32,252 42,143

is conducted on Server. Note that the proof generation time in
the table excludes the circuit loading time for a fair compari-
son, and the loading time is significantly long in Blockmaze.
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TABLE IV: Gas consumption on various blockchains with
cfgMiMC7,32

Ethereum Besu Klaytn
Setup 3,778,604 4,382,410 4,845,674

RegisterAuditor 63,179 66,115 68,891
RegisterUser 45,543 55,215 56,967

zkTransfer 854,110 1,773,406 951,220

On the other hand, PGC [12] and Zether [8] use standard ElGa-
mal encryption and NIZK to provide confidentiality instead of
utilizing Merkle Tree. The performance results in these works
exclude anonymity, which means that the anonymity set size
is 2. Note that the performance degrades as the anonymity set
size increases in PGC and Zether, since the number of Elliptic
curve operations in the smart contract increases proportionally
to the anonymity set size.

In comparison with Zeth7, we utilize ganache-cli8 as our
test network. Due to the circuit optimization of Azeroth, the
resulting circuit size is 4x smaller and the size of pp is
22x smaller than Zeth. In zkTransfer, Azeroth reduces the
execution time by 90% compared with Zeth’s Mix function.

While BlockMaze9 has four transactions of Mint, Redeem,
Send, Deposit, Azeroth provides the equivalent functionality
using a single transaction zkTransfer. Note that it takes 20s
to load the proving key in Blockmaze while it is only 1s in
Azeroth. Hence Azeroth provides much better performance
than Blockmaze in practice.

Zether [8] and PGC [12] are stateful10 schemes using
ElGamal encryption and NIZK. Due to the large difference
in structure, the comparison experiment compares the gas
cost and transaction size generated per transfer. Zether and
PGC require 4.6 times and 5.3 times more gas than Azeroth
respectively due to the Elliptic curve operations in the smart
contract. In terms of transaction size, Azeroth generates a
smaller transaction than Zether and PGC although Azeroth
provides higher anonymity than them.

7https://github.com/clearmatics/zeth
8https://github.com/trufflesuite/ganache
9https://github.com/Agzs/BlockMaze
10The meaning is that the account is renewed immediately through one

transaction.
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Fig. 10: The execution time of functions in zkTransferSC

VII. CONCLUSION

In this paper, we propose an auditable privacy-preserving
digital asset transferring system called Azeroth which hides
the receiver, and the amount value to be transferred while
the transferring correctness is guaranteed by a zero-knowledge
proof. In addition, the proposed Azeroth supports an auditing
functionality in which an authorized auditor can trace trans-
actions to comply an anti-money laundry law. Its security is
proven formally and it is implemented in various platforms
including an Ethereum testnet blockchain. The experimental
results show that the proposed Azeroth is efficient enough to
be practically deployed.
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transaction privacy. volume 2018, pages 105–121, 2018.
[27] Neha Narula, Willy Vasquez, and Madars Virza. zkLedger: Privacy-

Preserving auditing for distributed ledgers. USENIX Association, April
2018.

[28] National Institute of Standards and Technology (NIST). Fips180-2:
Secure hash standard. 2002.

[29] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinoc-
chio: Nearly practical verifiable computation. In 2013 IEEE Symposium
on Security and Privacy, pages 238–252, 2013.

[30] Antoine Rondelet and Michal Zajac. ZETH: on integrating zerocash on
ethereum. CoRR, abs/1904.00905, 2019.

[31] N. Nicolas Saberhagen. Cryptonote v2.0. https://cryptonote.org/
whitepaper.pdf, 2013.

[32] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613,
nov 1979.

APPENDIX

A. Security of Azeroth

In section V-C, we briefly explain the security, such as
the model and the probability. From now on, we describe

the formal security of Azeroth. Once restating Theorem 5.1,
a Azeroth scheme ΠAzeroth is secure if it satisfies ledger
indistinguishability, transaction unlinkability, transaction non-
malleability, balance, and auditability.

In the elucidation of the security for each property and its
experiment, we assume that there exists a (stateful) Azeroth
oracle OAzeroth answering queries from an adversary A utiliz-
ing a challenger C which is the role of the performer about
the experiment sanity checks. We first recount how OAzeroth

works as below.
Given a list of public parameters pp, the oracle OAzeroth,

and auditor public key apk is initialized and retains its state of
which it has the elements internally : [I] L, a ledger; [II] Acct,
a set of account key pairs; [III] CMT, a set of a commitment;
[IV] ENA, a set of an encrypted account which includes the
user account address in itself; [V] EOA, a set of an external-
owned account being similar with ENA excepting for whether
its encryption. In the beginning, all of the elements are empty.
Additionally, we denote ∗ as renewal.

Now, we present each type of query Q and how it works.
• Q(KeyGenUser) : C generates a user key pair
(pk, sk) using KeyGenUser algorithm, where pk =
(addr, pkown, pkenc). C then registers public key to the
smart contract and initializes ENA[addr]. The generated
key pair and ENA[addr] are stored into Acct and ENA,
respectively. Finally C outputs pk.

• Q(zkTransfer, apk, pksend, pkrecv, vprivout , v
pub
in , vpubout ,EOA) :

C generates a transaction TxZKT for corresponding inputs
using zkTransfer algorithm. Once TxZKT is submitted to
ledger, the EOA and ENA stores updated amount, and the
commitment is stored into CMT as well.

• Q(Insert,Tx) : C simply submits the received transaction
(i.e., TxZKT, TxKGU). If Tx is invalid, the smart contract
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reverts and nothing happens.
1) Ledger Indistinguishability: We describe ledger indis-

tinguishability using an experiment L-IND including a PPT
adversary A struggling to find a crack of a given Azeroth
scheme.

Intuitively, the meaning of the above equation is that
AdvL-IND

A , the advantage of A in the L-IND experiment, is
at most negl(λ).

We now describe public consistency for two queries
(Q,Q′) which must be the same type and publicly consistent
in A’s viewpoint. First of all, it must be equal to the public
information in the pair of queries such as the following: vprivout ,
the value to be transferred; addrsend, the receiver address.
Moreover, the commitment, a nullifier, and the ciphertexts are
valid in both queries. In addition, each of the different query
types has to fulfill the following restriction respectively.

For KeyGenUser, the independent pair of queries (Q,Q′)
must satisfy the following restriction :
• The user account address addr in the query must corre-

spond to the address existing in Acct
• Both oracles must generate and return the same address

For zkTransfer, the independent pair of queries (Q,Q′) must
satisfy the following restrictions :
• The commitment cmold in Q must correspond to commit-

ment that appears in CMT
• The vENAold + vpubin is equal to vENAnew + vpubout .
• The account address addrsend should match that in ENA

We now give a formal definition of an experiment L-IND as
follows:

i) Compute a public parameter pp, provide it to an adversary
A, and initialize two distinct oracles OAzeroth

0 ,OAzeroth
1 .

ii) C chooses a random bit b ∈ {0, 1}.
iii) A sends public consistency queries (Q,Q′) to C as many

times she wants, and C answers the queries as following:
a) Set (Lb, L1−b) as a ledger tuple. These ledgers are

corresponding to OAzeroth
b ,OAzeroth

1−b respectively.
b) Give a ledger tuple to A in each stage, and send Q to
OAzeroth

b and Q′ to OAzeroth
1−b .

c) Obtain two oracle answers (ab, a1−b) and return it to
A.

d) Repeat the process b), c) until A outputs a bit b′.
iv) If b = b′ then the experiment L-IND returns 1; otherwise,

0.
Definition A.1: Let ΠAzeroth = (Setup, KeyGenAudit,

KeyGenUser, zkTransfer) be a Azeroth scheme. We say that,
for every A and adequate security parameter λ, ΠAzeroth is
L-IND secure if the following equation holds:

Pr
[
Azeroth.GL-IND

A (λ) = 1
]
≤ 1

2
+ negl(λ)

2) Transaction Unlinkability: We denote T as the table of
zkTransfer transactions generated by OAzeroth in response to
the zkTransfer query. We formally describe the transaction
unlinkability experiment TR-UN as follows:

i) Compute a public parameter pp, and provide it to an
adversary A.

ii) A makes a query (zkTransfer) to OAzeroth and receives
its answer along with the ledger L.

iii) Repeat the above procedure (Step ii) until A
outputs a pair of tuples: (pksend, pkrecv, aux),
(pksend, pkrecv, aux), satisfied with the following
conditions: (a) pksend, pkrecv, pksend, pkrecv are public
keys from accounts in Acct; (b) both queries must
generate valid transactions.

iv) Set TxZKT as a transaction output from
Q(pksend, pkrecv, aux)

v) If b = 0, make TxZKT
′ with query Q(pksend, pkrecv, aux),

else make TxZKT
′ with Q(pksend, pkrecv, aux).

vi) A receives a tuple (TxZKT,TxZKT
′) and returns b′.

vii) If b = b′ then the experiment TR-UN returns 1; otherwise,
0.

Definition A.2: Let ΠAzeroth = (Setup, KeyGenAudit,
KeyGenUser, zkTransfer) be a Azeroth scheme. We say that,
for every A and adequate security parameter λ, ΠAzeroth is
TR-UN secure if the following equation holds:

Pr
[
Azeroth.GTR-UN

A (λ) = 1
]
≤ 1

2
+ negl(λ)

3) Transaction Non-malleability: Let T be the TxZKT set
generated by OAzeroth in response to zkTransfer queries. We
define an experiment TR-NM with PPT adversary A trying to
break a given Azeroth scheme. Note that A includes an AUD
trying to attack our scheme. Now we illustrate the TR-NM
experiment in detail.

i) Compute a public parameter pp, and provide it to an
adversary A.

ii) A makes a query (zkTransfer) to OAzeroth and receives
its answer along with the ledger L.

iii) Repeat the above procedure (Step ii) until A sends a
transaction Tx′, satisfied with the following conditions:

a) There exists a transaction Tx ∈ L
b) Tx′ ̸= Tx
c) A nullifier nf appeared in Tx′ is the same nullifier

revealed in Tx.
d) VerifyTx(Tx′, L′) = 1, where L′ is the snapshot of the

previous ledger state which does not contain Tx yet;
iv) If the transaction satisfying all conditions exists, then the

experiment TR-NM returns 1; otherwise, 0.
Definition A.3: Let ΠAzeroth = (Setup, KeyGenAudit,

KeyGenUser, zkTransfer) be a Azeroth scheme. We say that,
for every A and adequate security parameter λ, ΠAzeroth is
TR-NM secure if the following equation holds:

Pr
[
Azeroth.GTR-NM

A (λ) = 1
]
≤ negl(λ)

4) Balance: We define an experiment BAL with PPT ad-
versary A trying to break a given Azeroth scheme. Now we
characterize an experiment BAL as follows:

i) Compute a public parameter pp, and provide it to an
adversary A.
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ii) A makes a query (zkTransfer) to OAzeroth and receives
its answer along with the ledger L.

iii) Repeat the above procedure (Step ii) until A sends CMT.
iv) C with key pair calculates each value mentioned above,

and checks if the following equation holds:

vENA + vpubout + vprivout > vpubin + vprivin

v) If the values satisfy the equation, then the experiment
BAL returns 1; otherwise, 0.

Definition A.4: Let ΠAzeroth = (Setup, KeyGenAudit,
KeyGenUser, zkTransfer) be a Azeroth scheme. We say that,
for every A and adequate security parameter λ, ΠAzeroth is
BAL secure if the following equation holds:

Pr
[
Azeroth.GBALA (λ) = 1

]
≤ negl(λ)

5) Auditability: Let aux be the auxiliary input consisting of
the committed value and its opening, utilized when verifying
the commitment. If the commitment is correct then the func-
tion returns 1, otherwise returns 0. We now define precisely
the experiment AUD as follows:

i) Compute a public parameter pp, and provide it to an
adversary A.

ii) A requests a zkTransfer query to OAzeroth and receives a
response.

iii) Repeat the above procedure (Step ii) until A sends a tuple
(TxZKT, aux), satisfied with the following conditions:

a) TxZKT is valid.
b) aux and the commitment cmnew in TxZKT is valid.
c) The decrypted message of ciphertext pctnew is not

equal to (onew, v
priv
out , addr

send).

iv) If the tuple (TxZKT, aux) satisfies with all conditions
above, then the experiment AUD returns 1; otherwise,
0.

Definition A.5: Let ΠAzeroth = (Setup, KeyGenAudit,
KeyGenUser, zkTransfer) be a Azeroth scheme. We say that,
for every A and adequate security parameter λ, ΠAzeroth is
AUD secure if the following equation holds:

Pr
[
Azeroth.GAUDA (λ) = 1

]
≤ negl(λ)

B. Proofs of Security

We now formally prove 5.1 by showing that Azeroth
construction satisfies ledger indistinguishability, transaction
unlinkability, transaction non-malleability, balance, and au-
ditability.

1) Ledger indistinguishability: By using a hybrid game,
we prove ledger indistinguishability. Thus, we say that it
is indistinguishable if the difference between a real game
GameReal and a simulation game GameSim is negligible. All
Games are executed by interaction of an adversary A with a
challenger C, as in the L-IND experiment. However, GameSim
has a distinctness from the others since it runs regardless of
a bit b where b means b of the L-IND experiment. Thus,
for GameSim, the advantage of A is 0. Moreover, the zk-

SNARK keys are generated as (ek, vk, td) ← Πsnark.Sim(R)
to obtain the zero-knowledge trapdoor td. We now show that
AdvL-IND

ΠAzeroth,A is at most negligibly different than AdvGameSim .
First of all, we define the notations as follows.

TABLE VI: Notations

Symbol Meaning
GameReal The original L-IND experiment
Gamei A hybrid game altered from GameReal
GameSim The fake L-IND experiment
qKGU The total number of KeyGenUser queries by A
qZKT The total number of zkTransfer queries by A

AdvGame The advantage of A in Game

AdvPRF The advantage of A in distinguishing PRF from random
AdvSE The advantage of A in SE’s IND-CPA
AdvCOM The advantage of A against the hiding property of COM

We describe how the challenger C responses to the answer of
each query to provide it with the adversary A in the simulation
game GameSim. The challenger C responds to each A’s query
as below :
• Query(KeyGenUser) (i.e., (Q,Q′) = KeyGenUser): C

actions under the Q(KeyGenUser) query, except that it
does the following modifications: C generates user key
pair (pk = (addr, pkown, pkenc), sk) ← KeyGenUser(pp),
supersedes pkown, pkenc to a random string of the ap-
propriate length, and then computes the user address
addr← CRH(pkown, pkenc). C also puts these elements in
a table and returns pk to A. C does the above procedure
for Q′.

• Query(zkTransfer,pksend, pkrecv, vprivout , vpubin , vpubout ,
EOArecv) (i.e., (Q,Q′) = zkTransfer): C actions under
the Q(zkTransfer) query, except that it does the following
modifications: by default, we assume that pksend exists
in the table. If pksend does not exist in the table, we
abort the queries. C comes up with random strings and
replaces nf and cmnew to these values, respectively. If
pkrecv is a public key generated by a previous query
to KeyGenUser, then C sets sctnew and pctnew to an
arbitrary string. Otherwise, C computes these elements as
in the zkTransfer algorithm. Also, C stores the changed
elements to the table.

We now define each of games to prove the ledger indistin-
guishability of Azeroth. Once again, AdvGameSim

A is 0 since A
is computed independently of the bit b where b is chosen by
C in the experiments.
• Game1. We now define the Game1 which is equal to

GameReal except that C simulates the zk-SNARK proof. For
zkTransfer, the zk-SNARK key is generated as (ek, vk, tdZKT)
← Πsnark.Sim(RZKT) instead of Πsnark.Setup(RZKT) to pro-
cure the trapdoor tdZKT. After obtaining the tdZKT, C com-
putes the proof πsim without a proper witness. The view of the
simulated proof πsim is identical to that of the proof computed
in GameReal. In addition, when A asks for the KeyGenUser
query, we replace the elements of public key pk as a random
string. The simulated (sk, pk) distribution is also identical to
that of the key pairs computed in GameReal. In a nutshell,
AdvGame1 = 0.
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• Game2. We define the Game2 which is equal to Game1
except that C uses a random string r of a suitable length to
replace the ciphertext pctnew. If the address addr of pksend

in A’s zkTransfer query exists in the C’s table, C computes
sctold as r. Otherwise, C aborts. By Lemma A.1, |AdvGame2−
AdvGame1 | ≤ qZKT ·AdvPE.

• Game3. We define the Game3, which is the same as
Game2 with one modification where C changes the cipher-
text sctnew from correct to an acceptable random string r.
Specifically, if the address addr of pksend exists in the table,
C computes sctnew as r. Otherwise, C aborts. By Lemma A.2,
|AdvGame3 −AdvGame2 | ≤ qZKT ·AdvSE.

• Game4. We define the Game4 which is same as Game3
except that C uses a random string to change the nullifier nf
created by PRF. By Lemma A.3, |AdvGame4 −AdvGame3 | ≤
qZKT ·AdvPRF.

• GameSim. GameSim is identical to Game4, except that
C replaces commitments (e.g., cmold, cmnew) computed by
COM to an arbitrary string. By Lemma A.4, |AdvGameSim −
AdvGame4 | ≤ qZKT ·AdvCOM.

By summing over all the above A’s advantages in the
games, A’s advantage in the L-IND experiment can be com-
puted as follows:

AdvL-IND
Π,A (λ) ≤

qZKT · (2 ·AdvPE +AdvSE +AdvPRF +AdvCOM)

Since AdvL-IND
Π,A (λ) = 2 · Pr[AzerothL-IND

Π,A (λ) = 1] − 1
and A’s advantage in the L-IND experiment is negligible
for λ, we can make a conclusion that it provides ledger
indistinguishability.

Lemma A.1: Let AdvΠPE be A’s advantage in ΠPE’s
IND-CPA and IK-CPA experiments. If A’s zkTransfer query
occurs qZKT, then |AdvGame2−AdvGame1 | ≤ 2·qZKT·AdvPE.

Proof. To prove that AdvGameH is negligibly different from
AdvGame1 , we define a security model of our encryption
scheme PE. It performs with the interaction between the adver-
sary A and the IND-CPA challenger. A queries the encryption
for a random message, and then C returns the ciphertext of
it. After querying, A sends two messages M0,M1 to the
challenger C. C chooses one of the two received messages
and returns the ciphertext to the adversary A. If the adversary
A correctly answers which message is encrypted, A wins. We
denote this experiment as Ereal. We define another experiment
Esim which simulates the real one with only the following
modification: When encrypting a message, replace SE.Enc’s
output with a random string. A cannot distinguish the Esim
from Ereal but a negligible probability, due to the security of
SE. The probability of A distinguishes the ciphertexts in Esim
is 1/2; a ciphertext pctold from Esim is uniformly distributed
in A’s view. Overall, the advantage of A in distinguishing the
ciphertexts is negligible, which means that PE is IND-CPA.
Finally, the advantage of AdvGameH is equal to AdvPE, hence
|AdvGameH −AdvGame1 | ≤ qZKT ·AdvPE.

Like the above, Game2 is the same as GameH except that

it encrypts plaintext by setting the key to a new public key
instead of the public key obtained by querying KeyGenUser.
After querying KeyGenUser, A queries the IK-CPA challenger
to gain pk0, whereas pk1 is obtained from the KeyGenUser
query. The IK-CPA challenger encrypts the same plaintext as
pct∗ using pkb where b is the bit selected by the IK-CPA
challenger per zkTransfer query. The challenger sets pct in
TxZKT to pct∗ and appends it to L. A outputs a bit b by
guessing b with respect to the IK-CPA experiment. If b = 0
then A’s view is equal to Game2, whereas if b = 1 then
A’s view is GameH . If the maximum advantage for IK-CPA
experiment is AdvPE, then we can say that |AdvGame2 −
AdvGameH | ≤ qZKT ·AdvPE.

As a result, the sum of A’s two advantages is |AdvGame2−
AdvGame1 | ≤ 2 · qZKT ·AdvPE.

Lemma A.2: Let AdvΠSE be A’s advantage in ΠSE’s
IND-CPA experiment. If A’s zkTransfer query occurs qZKT
times, then |AdvGame3 −AdvGame2 | ≤ qZKT ·AdvSE.

Proof. To prove that AdvGame3 is negligibly different from
AdvGame2 , we define a security model of our encryption
scheme SE. It performs with the interaction between the adver-
sary A and the IND-CPA challenger. A queries the encryption
for a random message, and then C returns the ciphertext of
it. After querying, A sends two messages M0,M1 to the
challenger C. C chooses one of the two received messages
and returns the ciphertext to the adversary A. If the adversary
A correctly answers which message is encrypted, A wins.
However, since SE is based on PRF, A cannot distinguish the
ciphertexts with all but negligible. the advantage of AdvGame2

is equal to AdvSE. Hence, |AdvGame3 − AdvGame2 | ≤
qZKT ·AdvSE.

Lemma A.3: Let AdvPRF be A’s advantage in distinguish-
ing PRF from a true random function. If A makes qZKT
queries, then |AdvGame4 −AdvGame3 | ≤ qZKT ·AdvPRF.

Proof. We now describe that the difference between Game4
and Game3 is negligibly different. In zkTransfer algorithm,
nf is computed by PRFsksend

own
(cmold). Thus, the advantage

of Game4 is only related to PRF’s advantage. In other
words, the advantage AdvPRF is negligible and |AdvGame4−
AdvGame3 | ≤ qZKT ·AdvPRF.

Lemma A.4: Let AdvCOM be A’s advantage against the
hiding property of COM. If A makes qZKT queries, then
|AdvGameSim −AdvGame4 | ≤ qZKT ·AdvCOM

Proof. On zkTransfer query, the challenger C substitutes the
commitment cmnew ← COM(vprivout , addr

recv; onew) as a random
string r of an acceptable length. The advantage of adversary
A is at most like that of COM. Thus, since the commitment
cmnew exists only in the zkTransfer query, C performs one
replication of each zkTransfer query. Hence, we conclude that
|AdvGameSim −AdvGame4 | ≤ qZKT ·AdvCOM.

2) Transaction Unlinkability: Let T be the transaction
set that contains TxZKT produced by OAzeroth in response
to Q(zkTransfer). A wins the TR-UN experiment on any
occasion A outputs b′ which is the same as b chosen by
OAzeroth. Suppose A is given a pair of transactions (Tx,Tx′)
as follows.
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Tx = (π, addrsend, cmnew, pctnew, aux)

cmold = COM(vprivin , addrsend; oold)

cmnew = COM(vprivout , addr
recv; onew)

pctnew = PE.Encpkrecv
enc ,apk(onew||v

priv
out ||addrrecv)

Tx′ = (π, addrsend, cmnew, pctnew, aux)

cmold = COM(vprivin , addrsend; oold)

cmnew = COM(vprivout , addr
recv; onew)

pctnew = PE.Encpkrecv
enc ,apk

(onew||vprivout ||addrrecv)

We analyze the case in which A finds out whether the
transaction recipients are the same or different. There are three
chances for A to get knowledge of whether recipients of two
transactions are the same.

(i) distinguish the address from zk-SNARK proofs (π, π).
(ii) distinguish the address from ciphertexts (pctnew, pctnew).

(iii) distinguish the address from generated commitments
(cmnew, cmnew).

For condition (i), A must distinguish (addrrecv, addrrecv) from
two different zk-SNARK proofs (π, π), which imply that A
should find a crack for zero knowledge property of the zk-
SNARK. For condition (ii), if A can distinguish the address
from ciphertexts (pctnew, pctnew), it suggests that A wins the
IND-CPA experiment in Lemma A.2 so meets contradiction.
For condition (iii), if A can distinguish the address from
the commitments without its opening key and inputs (e.g.,
oold, v

priv
in , addrsend), it means that A breaks the hiding prop-

erty of the COM scheme in Lemma A.4. By the security of
COM, zk-SNARK and IND-CPA, a PPT-adversary A cannot
distinguish the recipient from the commitments, ciphertexts,
and the zk-SNARK proof.

Remark. A can try extracting vprivout from π, pctnew, cmnew, and
tracking the recipient. For example, if vprivout is a specific value
that is easy to distinguish from other values, A pulls out vprivin

from later transactions and grasps the recipient. However, by
the security of COM, zk-SNARK, and IND-CPA mentioned
above, a PPT-adversary A cannot get such knowledge and
distinguish the receiver.

3) Transaction Non-malleability: Let T be the transaction
set that contains TxZKT produced by OAzeroth in response to
Q(zkTransfer). A wins the TR-NM experiment whenever A
outputs transaction Tx′ which holds following conditions:

i) There is a transaction Tx ∈ T.
ii) Tx′ ̸= Tx

iii) VerifyTx(Tx′, L′) = 1, where L′ is the snapshot of the
previous ledger state which not contains Tx yet.

iv) A nullifier nf appeared in Tx′ is the same nullifier
revealed in Tx.

Suppose that A outputs a transaction Tx′ as follows:

Tx′ = (π, rt, nf, addrsend, cmnew, sctnew, v
pub
in , vpubout , pctnew,EOA)

Define ϵ1 := AdvTR−NM
Azeroth,A(λ), and let QRegisterUser =

{sk1, ..., skqKGU} be the set of internal address keys created
by C in response to A’s KeyGenUser queries. Now we argue
that the probability of ϵ1 is negligible in λ. For formal proof,
we utilize zk-SNARK witness extractor denoted as E for A.
Since A wins only if Tx′ is verified successfully, a proof
π for Tx′ has valid witnesses (skown, cmold) which satisfies
PRFskown(cmold) = nf. We use this fact to construct an
algorithm B finding collision for PRF with non-negligible
probability as follows:

i) Run A (simulating its interaction with the challenger C
and obtain Tx′).

ii) Run E to extract a witness w⃗ for a zk-SNARK proof π
for Tx′.

iii) Set x⃗ = (apk, rt, nf, pk, cmnew, sctold, sctnew, v
pub
in , vpubout ,

pctnew) and check whether w⃗ is a valid witness for x⃗
or not. If verification fails, then B aborts and outputs 0.

iv) Parse w⃗ as (sk, cmold, oold, v
priv
in , pkrecv, onew, v

priv
out , aux,

Pathc, ).
v) Find a transaction Tx ∈ T that contains nf.

vi) If a transaction Tx is found, let (sk′own, cm
′
old) be the

corresponding witness in Tx attained from E . If skown ̸=
sk′own, then output ((skown, cmold), (sk

′
own, cm

′
old)). Oth-

erwise, output 0.
Seeing that the proof π for a transaction Tx is valid, with
all but negligible probability, the extracted witness w⃗ is valid.
Moreover, Pr[skown = sk′own] =

1
2l

where l is the bit length
of skown. Thus, its probability is negl. Putting all the above
probabilities together, we conclude that B finds a collision for
PRF with probability ϵ1 − negl(λ).

4) Balance: In this section, we show that AdvBAL is at
most negligible. For each zkTransfer transaction on the ledger
L, the challenger C computes a witness w⃗ for the zk-SNARK
instance x⃗ corresponding to the transaction TxZKT in the BAL
experiment. It does not affect A’s view. For such a way,
C obtains an augmented ledger (L, W⃗ ) in which w⃗i means
a witness for the zk-SNARK instance x⃗i of i-th zkTransfer
transaction in L. Note that we can parse an augmented ledger
as a list of matched pairs (TxZKT, w⃗i) where TxZKT is a
zkTransfer transaction and w⃗i is its corresponding witness.

Balanced ledger. We say that an augmented ledger L is
balanced if the following conditions hold.
• Condition 1: In each (TxZKT, w⃗), the opening of unique

commitment cmnew exists, and the commitment cmnew

is also a result of previous TxZKT before depositing the
value form it on L.

• Condition 2: The two different openings in (TxZKT, w⃗)
and (TxZKT

∗, w⃗∗) are not openings of a single commit-
ment.

• Condition 3: Each (TxZKT, w⃗) contains openings of
cmold and cmnew, and values, satisfying that vENA+vprivin =
vENA

∗ where we denote an updating of the value as ∗.
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• Condition 4: The values used to compute cmold are the
same as the value for cm∗new, if cmold = cm∗new where
cmold is the commitment employed in (TxZKT, w⃗), and
cm∗new is the output of a previous transaction before
TxZKT.

• Condition 5: If (TxZKT, w⃗) was inserted by A, and
cmnew contained in TxZKT is the result of an earlier
zkTransfer transaction Tx′, then the recipient’s account
address addrsend does not exist in Acct.

We say that (L, w⃗) is balanced, if the following equation
holds :

vENA + vpubout + vprivout = vpubin + vprivin

For each of the above conditions, we use a contraction to
prove that the probability of each case is at most negligible.
Note that, for better legibility, we denote the A’s win prob-
ability of each case as Pr[A(Ci) = 1], which means A wins
but violates Condition i.
An infringing on condition 1. Each (TxZKT, w⃗) ∈ (L, W⃗ ),
not inserted by A, always satisfies condition 1; The prob-
ability Pr[A(C1) = 1] is that A inserts TxZKT to build a
pair (TxZKT, w⃗) where cmold in w⃗ is not the output of all
previous transactions before receiving the value by zkTransfer.
However, each TxZKT utilizes the witness w⃗, containing the
commitment cmold taken as input for making a nullifier nf, to
generate the proof by proving the validity of TxZKT. Namely, it
means that there is a violation of condition 1 if its commitment
corresponding to nf does not exist in L. The meaning of the
violation is equal to break the binding property of COM;
Hence Pr[A(C1) = 1] is negligible.

An infringing on condition 2. Each (TxZKT, w⃗) ∈ (L, W⃗ ),
not inserted by A, always satisfies condition 2; The prob-
ability Pr[A(C2) = 1] is that there are two transaction
(TxZKT,TxZKT

′) in which their commitment is the same but
has different two nullifiers nf and nf ′. However, it contradicts
the binding property of COM; Thus, Pr[A(C2) = 1] is
negligible.

An infringing on condition 3. In each (TxZKT, w⃗) ∈ (L, W⃗ ),
there exists a zk-SNARK proof, which can guarantee each of
values vENA, v, and v∗ENA, satisfying the following equation:
vENA + vprivin = vENA

∗. Pr[A(C3) = 1] is a probability that
its equation does not hold. However, this is a violation of the
proof knowledge property of the zk-SNARK; It is negligible.

An infringing on condition 4. Each (TxZKT, w⃗) ∈ (L, W⃗ )
encompasses the values taken as the commitment (e.g., vprivout ,
addrrecv, and onew). Pr[A(C4) = 1] is a probability that the
commitments are equal, and all values related to commitment
inputs in two transactions (TxZKT,TxZKT∗) are equivalent
except for the amount (i.e., vprivout ̸= vprivout

∗
) where TxZKT

∗

a pre-existing zkTransfer transaction. However, since it is
contradictory to the binding property of COM, it happens
negligibly.

An infringing on condition 5. Each (TxZKT, w⃗) ∈ (L, W⃗ )
publishes the recipient’s address of a commitment cmnew. If

the zkTransfer transaction inserted by A issues addrrecv, the
output of a previous zkTransfer transaction TxZKT

′ whose
recipient’s account address is in Acct, it is the violation of the
condition 5; Thus, Pr[A(C5) = 1]. However, this contradicts
the collision resistance of CRH.

To sum up, we prove the Definition A.4 holds since it is at
most negligible that the opposite happens, as mentioned above.

5) Auditability: In the AUD experiment, A wins if the
tuple (TxZKT, aux) holds the following conditions where aux
consists of (onew, v

priv
out , addr

recv):
i) TxZKT passes the transaction verification.

VerifyTx(TxZKT, L) = true

ii) aux and the commitment cmnew in TxZKT are verified.

VerCommit(cmnew, aux) = true

iii) The decrypted message of pctnew and the values
(onew, v

priv
out , addr

recv) in aux are not the same.

(onew, v
priv
out , addr

recv) ̸= Auditask(pctnew)

If A wins in the experiment, when the auditor decrypts
pctnew, it implies that the auditor obtains an arbitrary string,
not a correct plaintext. However, A’s winning probability
is negligible since it breaks the binding property of COM.
Also, assume that there exists an extractor χ which can
extract the witness. When obtaining the witness using χ, it is
obvious that aux is equal to (onew, v

priv
out , addr

recv). Thus, A’s
winning should also break the proof of knowledge property of
the zk-SNARK. Consequently, since the binding property of
COM and the proof of knowledge property of zk-SNARK, the
auditor with an authorized key (i.e., ask) can always observe
the correct plaintext and surveil illegal acts in transactions.
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