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Abstract. Kyber is a candidate in the third round of the National In-
stitute of Standards and Technology (NIST) Post-Quantum Cryptog-
raphy (PQC) Standardization. However, because of the protocol’s inde-
pendence assumption, the bound on the decapsulation failure probability
resulting from the original analysis is not tight. In this work, we give a
rigorous mathematical analysis of the actual failure probability calcula-
tion, and provides the Kyber security estimation in reality rather than
only in a statistical sense. Our analysis does not make independency
assumptions on errors, and is with respect to concrete public keys in
reality. Through sample test and experiments, we also illustrate the dif-
ference between the actual failure probability and the result given in the
proposal of Kyber. The experiments show that, for Kyber-512 and 768,
the failure probability resulting from the original paper is relatively con-
servative, but for Kyber-1024, the failure probability of some public keys
is worse than claimed. This failure probability calculation for concrete
public keys can also guide the selection of public keys in the actual ap-
plication scenarios. What’s more, we measure the gap between the upper
bound of the failure probability and the actual failure probability, then
give a tight estimate. Our work can also re-evaluate the traditional 1− δ
correctness in the literature, which will help re-evaluate some candidates’
security in NIST post-quantum cryptographic standardization.

Keywords: Post-Quantum Cryptography · Learning with Errors ·
Key Encapsulation Mechanism · Decryption Failure.

1 Introduction

Cryptographic systems based on learning with errors (LWE) and related prob-
lems are the central topics of recent cryptographic research. Factorization and
discrete logarithm problems have always been the basis of modern cryptogra-
phy, but due to the development of quantum computing, cryptographic schemes
based on these problems are no longer secure in the post-quantum era. Lattice-
based cryptography makes it possible to implement a rich set of cryptographic
primitives, including key exchange, key encapsulation, encryption, and digital
signatures, and more advanced structures such as fully homomorphic encryp-
tion.
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Therefore, post-quantum cryptography (PQC) should be developed to avoid
security problems in future systems to replace the existing public-key algorithms.
The National Institute of Standards and Technology(NIST) is running a PQC
standardization project. One type of candidate is designed based on learning
with errors (LWE) and related problems such as Module-LWE. Unlike tradi-
tional public-key schemes, LWE-based schemes have the possibility of decryp-
tion failures. Last year, the third round of the NIST PQC project began, and
only 15 candidates remained. Seven of them are finalists, and eight alternative
algorithms also moved to the third round of the process. Kyber is a promis-
ing candidate for the key encapsulation mechanism (KEM), which is based on
module-LWE (MLWE). For the recommended parameter sets, the failures of
the Kyber decryption procedure are pretty small. For Kyber-512/768/1024 ac-
cording to the NIST security categories I, III and V, the decryption failures
claimed are about 2−139, 2−164, 2−174 respectively [2]. These upper bounds are
low enough to discourage reaction attacks. However, in the current estimation
technology of decryption failure probability for KEM schemes based on LWE and
its variants, it assumes the failure independence in individual bits of the trans-
mitted message. It then calculates the overall failure probability of the scheme.
However, it is difficult to estimate the gap between this assumption and the ac-
tual situation, and it may cause unpredictable consequences when applying this
type of encryption scheme. Therefore, this paper considers the upper bound of
the actual decryption failure probability of this type of encryption scheme. This
paper takes the Kyber scheme as an example to provide an analysis more in line
with the actual situation. The failure probability estimation method proposed
in this paper will also impact the effect of failure-boosting technology based on
the independence of failure probability assumption.

Contribution. Our main contribution is to give a rigorous mathematical
analysis of the actual failure probability for Kyber in reality, and then discuss
the traditional 1− δ correctness analysis. Our analysis of the Kyber decryption
failure probability mainly focuses on the impact of the non-independence of the
random vectors, and shows that the independence assumption in the traditional
1 − δ correctness analysis may affect the security of the encryption schemes
in reality. This impact is not only related to Kyber. In the failure probability
analysis, we need to consider the probability of ||e1s1 + e2s2 + e3 ||∞ < t, where
e1, s1, e2,s2, e3 obey certain distributions, and t is some threshold. This formula
is the cornerstone of error rate analysis. The rigorous mathematical analysis of
this basic problem is worthy of in-depth study, which also greatly eliminates the
gap between theoretical error rate and the error rate in actual applications for
KEM schemes based on LWE and its variants. For the samples we selected, the
difference between the upper and lower bounds in the power of 2 is usually less
than 40, which means that the upper bound of the error given in this work can
approximately represent its actual error rate.

Through the analysis method proposed in this paper, the failure probability
of Kyber512 and Kyber768 can be considered as an overestimation of the actual
situation, while Kyber1024 has a certain underestimation. The number of public
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keys that make the corresponding failure probability higher than the probability
claimed in [2] is not negligible, which means that the security level of Kyber-
1024 under certain public keys will be reduced after using technologies such as
directional failure boosting.

Our analysis method can estimate the gap between the theoretical error rate
and the actual error rate, quantitatively analyzes the error rate of a given public
key, and provides the Kyber security estimation in actual applications rather
than only in a statistical sense. Our work can also re-evaluate the traditional 1−δ
correctness in the literature, which will help re-evaluate some candidates’ security
in the third round of NIST post-quantum cryptographic standardization.

Related Work. D’Anvers et al. rejected the assumption that the failure
independence in individual bits of the transmitted message theoretically and
practically [7]. They provided a method to estimate the probability of decryption
failure, taking the correlation of bit failures into account. Therefore, Kyber, as
a KEM scheme based on the MLWE problem, the deviation between its actual
decryption failure rate and the theoretical decryption failure rate given in the
NIST proposal is also worthy of attention. This paper proposes an estimation
method to calculate the tight failure probability upper bound of Kyber, which
does not make the assumption of independence of errors. It effectively avoids
the problem that the gap (between the theoretical failure probability and the
actual failure probability) caused by the independence assumption is difficult to
measure.

The impact of the failure probability on the encryption scheme is also re-
flected in the security of it. Guo et al. proposed a key recovery attack against
LWE-based KEM schemes that use error correction codes to lower error proba-
bilities. When their method is applied to LAC256-v2, the pre-computation com-
plexity is 2−171, and the success probability is 2−64 [8]. Bindel et al. showed
that the adversary could use the first successful decryption information to in-
crease the probability of getting the subsequent successful decryption. They also
re-evaluated some candidates’ security for the NIST PQC standardization [1].
When the side information about decryption failure is available, Dachman-Soled
et al. proposed a cryptanalysis framework for lattice-based schemes [4]. This
framework summarizes the primitive reduction attack, and allows for the grad-
ual integration of prompts before running the final reduction step. This tech-
nique includes the sparsity of the grid, projection onto the hyperplane, and the
distribution of the vector corresponding to the secret key that intersects the hy-
perplane. Their main contribution is to propose a toolbox and a method that can
integrate this information into grid reduction attacks and can use side informa-
tion to predict these grid reduction attacks’ performance. They provided several
end-to-end applications, such as the improvement of Frodo’s single-track attack
proposed by Bos et al. [3]. In particular, even with little side information, this
study can also perform security loss estimation, bringing a smooth calculation
trade-off for side-channel attacks. D’Anvers et al. studied the effect of decryption
failure on the security of lattice-based encryption schemes, and attacked some
NIST candidate encryption schemes [6]. The results show that the attack will
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significantly reduce the security of the lattice-based encryption schemes with a
relatively high failure rate. After applying their model to some NIST candidate
cryptographic schemes, they believe that the actual security level is lower than
their declared security level. Therefore, it is essential to give a failure rate anal-
ysis method that the deviation can be estimated and the theoretical bound is
tight. Especially in the actual application scenarios, the public key is fixed once
and for all rather than randomly selected each time, which means the failure
rate in the sense of mathematical expectation cannot precisely indicate the error
rate of a given public key. The failure probability estimation method proposed
in this paper will provide the upper bound of the actual error rate, and conducts
simulation experiments for concrete public keys. The analysis of the number of
public keys corresponding to different error rates will be able to provide guidance
for the public key selection.

Besides, the failure-boosting attack showed that the first decryption failure
requires special attention. For example, D’Anvers et al. expanded their technol-
ogy proposed in 2019 [6] and called it the “directional failure boosting” technol-
ogy [5], which can speed up the search for the next decryption error. They also
made an in-depth discussion on the quotient ring of the polynomial ring modu-
lus

〈
xN + 1

〉
over the finite field, and used the Kyber/Saber schemes based on

module lattices to test the technology. They showed that after the decryption
fails once, it can speed up the finding of the subsequent failed decryption. They
proved that for such a single-target key model, the cryptographic algorithm de-
sign needs to make the first decryption failure difficult, while for the multi-target
key model, the attack method is more effective. We noticed that the error anal-
ysis of D’Anvers et al.[5] is based on the analysis results given in the Kyber
proposal where the independence of errors is assumed.

2 Preliminaries

2.1 Kyber

The complete description of CRYSTALS-Kyber can be found in [1]. Here we
mainly focus on the failure probability analysis part of it. The system parameters
are a ring R, positive integer k, dt, du, dv, and n=256. The ciphertexts are of
the form (u, v) ∈ {0, 1}256·kdu × {0, 1}256·dv . The public-key encryption scheme
Kyber.CPA=KeyGen, Enc, Dec as described in Algorithms 1 to 3.

Algorithm 1 Kyber.CPA.KeyGen(): key generation
1: ρ, σ ← {0, 1}256
2: A ∼ Rk×k

q := Sam(ρ)
3: (s, e) ∼ βk

η × βk
η := Sam(ρ)

4: t := Compressq(As+ e, dt)
5: return (pk := (t, ρ), sk := s)
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Algorithm 2 Kyber.CPA.Enc(pk = (t, ρ),m ∈M): encryption
1: r ← {0, 1}256
2: t := Decompressq(t, dt)
3: A ∼ Rk×k

q := Sam(ρ)
4: (r, e1, e2) ∼ βk

η × βk
η × βη := Sam(τ)

5: u := Compressq(A
Tr+ e1, du)

6: v := Compressq(t
Tr+ e2 + ⌊ q2⌉ ·m, dv)

7: return c := (u, v)

Algorithm 3 Kyber.CPA.Dec(sk = s, c = (u, v)): decryption
1: u := Decompressq(u, du)
2: v := Decompressq(v, dv)
3: return Compressq(v − sTu, 1)

The compression and decompression function are defined as:

Compressq(x, d) = ⌊
2d

q
· x⌉ mod +2d,

Decompressq(x, d) = ⌊
q

2d
· x⌉.

2.2 Distributions on R

Notation. For a finite set S, |S| denotes its cardinality, and we write s← S to say
that s is sampled uniformly from S. Denote with Zq the ring of integers modulo
q, represented in (− q

2 ,
q
2 ]. Let Rq be the ring Zq(X)/(XN + 1), with N a power

of two. For a vector V (or matrix A), we denote by vT (or AT ) its transpose.
Denote with ⟨., .⟩ the Eulidean inner product, and with ⌊x⌉ the nearest in-

teger function. Let | · | denote taking the absolute value. These notations can
be natually extended to vectors, matrices and polynomials element wise. For an
element x ∈ Zq, we write ||x||∞ to mean |x mod ± q| and ||x||2 to mean |x| .
Elements of R = Z[x]/(xn + 1) can be viewed as vectors in Rn by identifying
the power basis {1, x, x2, . . . , xn−1} of R as an orthonormal basis of Rn, so for
x = (x0, . . . , xn−1), we define l∞ norm and l2 norm as following:

||x||∞ = max
i
||xi||∞

||x||2 =

√√√√n−1∑
i=0

||xi||2.
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Denote with P[E] the probability of an event E, with E[ε] the expectation of
the random variable ε.

The centered binomial distribution Bη are defined as follows:
Sample {(ai, bi)}ηi=1 ← ({0, 1}2)η and output

∑η
i=1(ai − bi).

If v is an element of R, we write v ← βη to mean that v ∈ R is generated from
a distribution where each of its coefficients is generated according to Bη. Simi-
larly, a k-dimensional vector of polynomials v ∈ Rk can be generated according
to the distrbution βk

η .

3 Analysis of Decryption Failure Probability

Decryption failure refers to an event in which the correct ciphertext cannot
be successfully restored during decryption after the decryption steps described
in the algorithm are performed. The probability of decryption failure usually
depends on the functions of the secret terms, denoted as s1, s2, e1, e2, e3. Take
Kyber as an example, when

|| ⟨e+ ct, r⟩ − ⟨s, e1 + cu⟩+ e2 + cv||∞ ≤ B = ⌊q
4
⌉,

the ciphertext can be decrypted successfully. And in the theorem of 1 − δ cor-
rectness,

|| ⟨e+ ct, r⟩ − ⟨s, e1 + cu⟩+ e2 + cv||∞ ≥ B = ⌊q
4
⌉

is usually defined as the error rate of decryption failure. In general, the error
rate analysis mainly discusses the probability that

||
〈
e
′
, s

′′
〉
+

〈
e
′′
, s

′
〉
+ e

′′′
|| ≤ B,

where e
′
, e

′′
, e

′′′
, s

′
, s

′′ obey a certain distribution, B is the threshold.
In the work of Kyber et al.[2], after expressing the failure probability prob-

lem in the above form, they adopted the independence assumption, that is,
e
′
, e

′′
, e

′′′
, s

′
, s

′′ are regarded as independent distributions for error rate calcula-
tion. However, it will bring deviations that are difficult to evaluate in the error
rate calculation. Here we give a simple example to explain. It does not mean
that the central binomial distribution and parameters used by Kyber are con-
sistent with the parameters’ distribution in the example. This example is to
show that the independence assumption will bring massive deviations. Assume
ε1, ε2, ε3 are independent, ε1, ε2 obeys the Gaussian distribution ε1, ε2 ∼ N (0, 4)
, then define c1 = ε1+ε2

2 , c2 = ε2−ε1
2 , so c1, c2 also obey the Gaussian distribution

c1, c2 ∼ N (0, 4). Consider the probability of

||ε1c1 + ε2c2 + ε3|| ≤ B,

Since we are mainly concerned with the influence of the independence assumption
here, we might as well set ε3 to 0. At this time, we consider the difference in
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probability calculated before and after adopting the assumption of independence.
When the independence assumption is not taken, the probability is

P(||ε21 + ε22|| ≤ 2B),

and ε21 + ε22 ∼ χ2(2), where χ2(2) is the chi-square distribution with 2 degrees
of freedom. The probability density function is

f1(x) =
1

2
e−

x
2 , x ≥ 0.

Then consider to adopt the independence assumption, the distribution can
be regarded as the sum of two independent and identically distributed random
variables, each of which is the product of two normally distributed variables.

The probability density function of the product is f(u) =
B(0,

√
u2

4 )

4π , where B

is the second kind of modified Bessel function, B(0, x) =
∫∞
0

cos(x sinh t)dt. In
this case, the probability density function is

f2(x) =

∫
R
f(x−u)f(u)du =

1

16π2

∫
R
(

∫ ∞

0

cos((x−u) sinh t)dt
∫ ∞

0

cos(u sinh t)dt)du.

By comparing f1(x) and f2(x), it can be seen that the distribution of the cor-
responding random variables before and after the independence assumption is
very different. Therefore, it is very important to consider the distribution of the
real situation.

3.1 Decryption Failures

The Kyber key generation procedure involves ring elements s, e and matrix A.
Key encapsulation involves ring elements r, e1, e2. The condition that decryption
failure probability is less than δ is the following formula holds:

P(|| ⟨e+ ct, r⟩ − ⟨s, e1 + cu⟩+ e2 + cv||∞ ≤ B) ≤ δ,

where
cu = ⌊ q

2du
(⌊2

du

q
(AT r + e1)⌉) mod +2du⌉ − (AT r + e1)

ct = ⌊
q

2dt
(⌊2

dt

q
(As+ e)⌉) mod +2dt⌉ − (As+ e)

cv = ⌊ q

2dv
(⌊2

dv

q
(tT r + e2 + ⌊

q

2
⌉m)⌉) mod +2dv⌉ − (tT r + e2 + ⌊

q

2
⌉m)

and t = As+ e+ ct. The distribution of s, e, r, e1, e2, A is introduced in section
3.1.
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3.2 Formula Derivation

Define ai =
2di

q , f(i, x) = x− ⌊ 1
ai
⌊aix⌉⌉.

Then
|| ⟨e+ ct, r⟩ − ⟨s, e1 + cu⟩+ e2 + cv||∞ ≤ B = ⌊q

4
⌉

can be written as

|| ⟨e, r⟩ −
〈
⌊ 1
at
⌊at(As+ e)⌉⌉, r

〉
− ⟨s, e1⟩+

〈
s, ⌊ 1

au
⌊au(AT r + e1)⌉⌉

〉
+e2 − ⌊

1

av
(⌊av((As+ e+ ct)

T r + e2)⌉||∞ ≤ B

Which is equal to

|| ⟨e, r⟩ − ⟨As+ e, r⟩+ ⟨f(t, As+ e), r⟩ − ⟨s, e1⟩+
〈
s,AT r + e1

〉
−
〈
s, f(u,AT r + e1)

〉
+ e2 − ⟨f(t, As+ e), r⟩ − e2 + f(v, ⟨f(t, As+ e), r⟩+ e2)||∞ ≤ B

It’s equal to

||f(v, ⟨f(t, As+ e), r⟩+ e2)−
〈
f(u,AT r + e1), s

〉
||∞ ≤ B.

We found that
||f(i, x)||∞ ≤

1

2ai
+

1

2
,

Consider the triangular inequality of the norm, a sufficient condition is

||
〈
f(u,AT r + e1), s

〉
||∞ ≤ B

′
= ⌊q

4
⌉ − 1

2av
− 1

2
.

Now we discuss about ||
〈
f(u,AT r + e1), s

〉
||∞.

Firstly,
A← Rk×k

q , r ← βk
η , e1 ← βk

η , s← βk
η

If we write A, r, e1, s as A = (a(ij))1≤i,j≤k, e1 = (e(i))ki=1, r1 = (r(i))ki=1, s1 =
(s(i))ki=1, Then the formula can be written as

||
k∑

j=1

(sj(

k∑
i=1

a(ji)r(i) + e(j) − ⌊ 1
au
⌊au(

k∑
i=1

a(ji)r(i) + e(j))⌉⌉))||∞ ≤ B
′
,

where a(ji) =
∑n−1

m=0 a
(ji)
m xm, r(i) =

∑n−1
m=0 r

(i)
m xm, e(j) =

∑n−1
m=0 e

(j)
m xm.

Consider to define

a(ji)r(i) =

n−1∑
m=0

bmxm
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Then

bn−1 =

n−1∑
k=0

a
(ji)
k r

(i)
n−1−k

and for m < n− 1,

bm =

m∑
k=0

a
(ji)
k r

(i)
m−k −

n−1∑
k=m+1

a
(ji)
k r

(i)
m+n−k

3.3 The deviation between the theoretical failure probability and
the actual failure probability

Consider the following theorem in Kyber [2]
Theorem 1. Let k be a positive integer parameter. Let s, e, r, e1, e2 be

random variables that have the same distribution. Also, let ct ← φk
dt
, cu ←

φk
du
, cv ← φdv be distributed according to the distribution φ defined as follows:
Let φk

d be the following distribution over R:

– Choose uniformly-random y ← Rk

– return (y −Decompressq(Compressq(y, d), d)) mod ±q.

Denote

δ = Pr[|| ⟨e, r⟩+ e2 + cv − ⟨s, e1⟩+ ⟨ct, r⟩ − ⟨s, cu⟩ ||∞ ≥ ⌊
q

4
⌉].

Then Kyber.CPA is (1− δ)- correct.
Review our previous analysis, i.e.

||f(v, ⟨f(t, As+ e), r⟩+ e2)−
〈
f(u,AT r + e1), s

〉
||∞ ≤ B.

Because
|f(i, x)| ≤ 1

2ai
+

1

2
,

The bound of the actual failure probability can be restricted between the
sufficient condition and the necessary condition.

The sufficient condition can be writen as:

||
〈
f(u,AT r + e1), s

〉
||∞ ≥ B

′
= ⌊q

4
⌉ − 1

2av
− 1

2
,

which is the upper bound of the failure probability. And the necessary condition
is:

||
〈
f(u,AT r + e1), s

〉
||∞ ≥ B

′′
= ⌊q

4
⌉+ 1

2av
+

1

2
,

which can be seen as the lower bound of the failure probability.
For a given public key A, the actual failure probability is between these two,

and the bound is tight. We draw the graph with the upper and lower bounds
corresponding to the selected range of random variables to illustrate:
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Fig. 1. The orange part corresponds to the sufficient condition we gave. The light
blue part is the gap between the actual failure probability and the sufficient condition.
The dark blue part is the gap between the necessary condition and the actual failure
probability.

For the 900 samples we selected, the difference between the upper and lower
bounds in the power of 2 is usually less than 40, which means that the upper
bound of the error given can approximately represent its actual error rate. The
deviation is 12 orders of magnitude.

4 Experiment and Sample Test

The paremeter set for KYBER can be seen in the following table.

n k q η1 η2 du, dv δ

KYBER512 256 2 3329 3 2 (10,4) 2−139

KYBER768 256 3 3329 2 2 (10,4) 2−164

KYBER1024 256 4 3329 2 2 (11,5) 2−174

Table 1. Paremeter Set for KYBER

In practical applications, the public key is usually fixed rather than randomly
selected every time. The error rate of the mathematical expectation given in the
traditional analysis cannot give the actual decryption failure probability of the
fixed public key. Therefore, we give the error rate analysis for a given public
key, consider the number of public keys corresponding to different error rates,
and guide public key selection. The failure probability corresponding to the pub-
lic key can be further discussed. This paper studies more about the probability
distribution of the decryption failure. This paper uses the non-parametric es-
timation method proposed by Rosenblatt [10] and Parzen [9] to estimate the
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probability density function. This method calculates the probability density of
the corresponding parameter by calculating the number of samples in a given
area. For the Parzen window method, the estimated area volume used in different
areas is fixed. The window function is

ϕ(x) =

1, |xi| ≤
1

2
; i = 1, . . . , d

0, otherwise

By calculating pn(x) =
1
n

∑n
i=1

1
hdϕ(

x−xi

hn
). Where hd = Vn, the density func-

tion is obtained. Through kernel density estimation, it is able to give the proba-
bility that a given public key’s failure probability is greater than the threshold.
Therefore, this method will help the higher-order moment analysis of the failure
probability, and thus have a deeper understanding of the moment characteristics
of the public keys. The corresponding kernel density estimation curve is shown
in Figure 2, 3, 4.

The calculation process is quite time-consuming. It takes several hours to
calculate the decryption failure probability for a given public key. As a conse-
quence, we only testes 300 samples for each parameter set. The differences in
the decryption failure probability before and after the independence assumption
are given in Figure 2, 3, 4, respectively.

Fig. 2. Frequency histograms of Kyber512. The red line is the mean of all samples, the
orange line is the median of all samples, and the black line is the failure probability
provided in the original paper. The blue line is the kernel density estimation curve.
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Fig. 3. Frequency histograms of Kyber768. The red line is the mean of all samples, the
orange line is the median of all samples, and the black line is the failure probability
provided in the original paper. The blue line is the kernel density estimation curve.

Fig. 4. Frequency histograms of Kyber1024. The red line is the mean of all samples,
the orange line is the median of all samples, and the black line is the failure probability
provided in the original paper. The blue line is the kernel density estimation curve.

We select 300 random matrices A for each Kyber parameter set for testing
and then draw their corresponding frequency histograms. It can be seen that
the failure probability of most samples is lower than the probability given in
the original paper, and the mean of the sample is less than the median of the
sample.
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original [2] mean median max min

KYBER512 2−139 2−188 2−186 2−148 2−221

KYBER768 2−164 2−233 2−222 2−166 2−366

KYBER1024 2−174 2−255 2−232 2−142 2−592

Table 2. Comparison of failure probabilities before and after adopting the assumption
of independence.
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