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Abstract. This work introduces new key recovery attacks against the
Rainbow signature scheme, which is one of the three finalist signature
schemes still in the NIST Post-Quantum Cryptography standardization
project. The new attacks outperform previously known attacks for all the
parameter sets submitted to NIST and make a key-recovery practical for
the SL 1 parameters. Concretely, given a Rainbow public key for the
SL 1 parameters of the second-round submission, our attack returns the
corresponding secret key after on average 53 hours (one weekend) of
computation time on a standard laptop.

1 Introduction

The Rainbow signature scheme [8], proposed by Ding and Schmidt in 2005, is one
of the oldest and most studied signature schemes in multivariate cryptography.
Rainbow is based on the (unbalanced) Oil and Vinegar signature scheme [16, 11],
which, for properly chosen parameters, has withstood all cryptanalysis since
1999. In the last decade, there has been a renewed interest in multivariate cryp-
tography, because it is believed to resist attacks from quantum adversaries. The
goal of this paper is to improve the cryptanalysis of Rainbow, which is an im-
portant objective because Rainbow is currently one of three finalist signature
schemes in the NIST Post-Quantum Cryptography standardization project.

Related Work. The cryptanalysis of Rainbow and its predecessors was an ac-
tive area of research for some years in the early 2000s. Attacks from this era
include the MinRank attack, HighRank attack, the Billet-Gilbert attack, UOV
reconciliation attack, and the Rainbow Band Separation Attack [12, 18, 5, 10, 9].
After 2008 the cryptanalysis seemed to have stabilized, until the participation
of Rainbow in the NIST PQC project motivated more cryptanalysis. During the
second round of the NIST project, Bardet et al. proposed a new algorithm for
solving the MinRank problem [3]. This drastically improved the efficiency of the
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MinRank attack, although not enough to threaten the parameters submitted
to NIST. A more memory-friendly version of this algorithm was proposed by
Baena et al. [2]. Perlner and Smith-Tone tightened the analysis of the Rainbow
Band Separation attack, showing that the attack was more efficient than previ-
ously assumed [17]. This prompted the Rainbow team to increase the parameters
slightly for the third round. During the third round, Beullens introduced new
attacks [4] which reduced the security level of Rainbow by a factor of 220 for the
SL 1 parameters. The Rainbow team argued that despite the new attacks, the
Rainbow parameters still meet the NIST requirements [1].

Contributions. This paper introduces two new key-recovery attacks. Recall
that if P : Fn

q → Fm
q is a Rainbow public key, then the corresponding secret

key contains, among some other information, a subspace O2 ⊂ Fn
q , such that

P(O2) = 0.

Our attacks are based on the simple observation that for a randomly chosen
x ∈ Fn

q , the differential

Dx : Fn
q → Fm

q : y 7→ P(x+ y)− P(x)− P(y)

(which is a linear map) has a kernel vector in O2 with probability ≈ 1/q. Given
this observation, we first propose the following simple attack: Guess a vector x,
and try to solve for a vector o such that{

Dxo = 0

P(o) = 0
.

If we find such a solution o, then with high probability we found a vector in
O2, after which a full key recovery is easy. Otherwise, if no solution exists, we
try again with a different guess for x. In fields of odd characteristic, we find
that the quadratic systems that arise in the attack behave exactly like random
systems. In fields of characteristic 2 (which includes all the parameters submitted
to NIST in the second and third rounds), the systems have some structure that
can be exploited to solve the systems slightly more efficiently. This simple attack
is efficient enough to do a key recovery attack in practice for the SL1 parameter
set from the second-round submission to the NIST PQC project. For a single
guess of x, it takes only 3 hours and 32 minutes to solve the resulting system,
and a guess is good with a probability of approximately 1/15.06, so on average,
a full attack takes 15.06 · 3.53 ≈ 53 hours. We estimate that a key recovery for
the SL 1 parameter set of the third-round submission requires only a factor 28

more effort (see Table 1).

For the parameter sets targeting NIST security levels 3 and 5, we find that the
attack can be improved by combining the new technique with the rectangular
MinRank attack of Beullens [4]. The combined attack chooses a random x and
essentialy restricts P to the kernel of Dx and runs the rectangular MinRank on
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this smaller system, which will succeed with a probability of approximately 1/q.
Estimates of the complexities of the simple and combined attacks against the
Rainbow parameter sets submitted to NIST are given in Table 1.

Table 1. An overview of the cost of our attack versus known attacks for the six
Rainbow parameter sets submitted to the second round and the finals of the NIST
PQC standardization project. Complexities are given as log2 of the estimated gate
count. The complexities of the known attacks are taken from [4].

Parameter set (q, n,m, o2) Simple attack Combined
attack

Known attacks

Second
SL I (16, 96, 64, 32) 61 93 123

round
SL III (256, 140, 72, 36) 186 131 151
SL V (256, 188, 96, 48) 246 164 191

SL I (16, 100, 64, 32) 69 99 127
Finals SL III (256, 148, 80, 48) 160 157 177

SL V (256, 196, 100, 64) 257 206 226

2 Preliminaries

Notation. Let Fq be the finite field with q elements, and let P = {pi}mi=1

be a sequence of m multivariate quadratic polynomials in n variables over Fq.
We identify P with the function P : Fn

q → Fm
q defined as P(x) = {pi(x)}mi=1.

We define the differential P ′(x,y) (sometimes called polar the form of P) as
P ′(x,y) := P(x+ y)−P(x)−P(y) +P(0). It is easily checked that P ′(x,y) is
symmetric and bilinear.

Solving multivariate systems. Our attacks use (in a black-box way) a sub-
routine that given a homogeneous multivariate quadratic map P : Fn

q → Fm
q ,

finds a non-zero solution x such that P(x) = 0, if such a solution exists. We in-
stantiate this subroutine with the block Wiedemann XL algorithm [14, 7, 15, 6].
This algorithm constructs a large but very sparse system of linear equations and
solves it with the block Wiedemann algorithm to take advantage of the sparsity.
For the experimental validation of our attacks we used the optimized implemen-
tation of Block Wiedemann XL by Cheng, Chou, Niederhagen, and Yang [6].
The gate complexity of this algorithm on an instance with m random equations
in n variables can be estimated as the cost of

3

(
n− 1 +D

D

)2(
n+ 1

2

)
field multiplications, where D is the operating degree of XL, which is chosen to
be the smallest integer such that the coefficient of the tD term in the power
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series expansion of
(1− t2)m

(1− t)n

is non-positive.

Example 1. Suppose we want to find a solution to a system of 63 homogeneous
quadratic equations in 31 variables. We have

(1− t2)63

(1− t)31
= 1 + 31t+ 433t2 + 3503t3 + 17081t4 + 41447t5 − 44919t6 +O(t7) ,

so we can run XL at degree D = 6, with an estimated cost of

3

(
31− 1 + 6

6

)2(
31 + 1

2

)
≈ 252.3

field multiplications.

Solving MinRank problems. Our attacks will also make use of an algorithm
to solve the MinRank problem. An instance of this problem is a list of matrices
L1, . . . , Lk ∈ Fn×m

q , and a target rank r. And the task is to find a non-zero linear
combination of the matrices whose rank is at most r. This NP-hard problem
often appears in the cryptanalysis of multivariate and rank metric code-based
cryptosystems [13, 9], and has therefore been studied relatively well.

Our attacks use the support-minors algorithm of Bardet, Bros, Cabarcas, Ga-
borit, Perlner, Smith-Tone, Tillich, and Verbel [3]. This algorithm translates the
rank condition to a large sparse system of bilinear equations and solves this sys-
tem using linearization and sparse linear algebra methods. The complexity of
this algorithm can be estimated as

3(k − 1)(r + 1)

(
m

r

)2(
k + b− 2

b

)2

,

where b is the operating degree of the algorithm, which is chosen to be the
smallest positive integer such that(

m

r

)(
K + b− 2

b

)
−1 ≤

b∑
i=1

(−1)i+1

(
m

r + i

)(
n+ i− 1

i

)(
K + b− i− 2

b− i

)
. (1)

It is sometimes beneficial to ignore some columns of the Li matrices; one can
choose to trunctate the Li matrices to their first m′ ≤ m columns, for some
optimal value of m′ in the range [r+1,m]. It might seem wasteful to not use all
the columns, but current MinRank algorithms can unfortunately not always use
all the columns efficiently. (Similar to how LWE solving algorithms often cannot
make good use of all their LWE samples.)
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Example 2. Suppose we are given k = 92 matrices with n = 187 rows and
m = 96 columns each, and we know there is a non-zero linear combination of
the matrices with rank r = 48, which we want to find. Plugging our parameters
into inequality (1), we find that can work at degree b = 1 as longs as we keep
at least 72 columns, we can work at b = 2 is we keep at least 68 columns, at
b = 3 if we keep 65 columns and at b = 4 if we keep 63 columns etc. It turns out
that we get the most efficient algorithm if we keep m′ = 65 columns and work
at degree b = 3. The estimated cost of the algorithm is then

3(92− 1)(48 + 1)

(
65

48

)2(
92 + 3− 2

3

)2

≈ 2149.1

field multiplications.

The Rainbow trapdoor. We present the Rainbow trapdoor as described by
Beullens [4]. A Rainbow instance is parameterized by four parameters:

– q, the size of the finite field,
– n, the number of variables,
– m, the number of equations in the public key, and
– o2, the dimension of the subspaces O2 ⊂ Fn

q and W ⊂ Fm
q .

The public key is then a multivariate quadratic map P : Fn
q → Fm

q , and the
secret key consists of three linear subspaces O1, O2,W , such that (see Figure 1):

1. O2 ⊂ O1 ⊂ Fn
q , and W ⊂ Fm

q ,
2. dim(O2) = dim(W ) = o2, and dim(O1) = m,
3. for all o2 ∈ O2 and x ∈ Fn

q we have P(o2) = 0 and P ′(x,o2) ∈ W , and
4. for all o1 ∈ O1, we have P(o1) ∈ W .

The key generation algorithm chooses the subspaces O2 ⊂ O1 ⊂ Fn
q and W ⊂

Fm
q of the correct dimension, and produces a public key P that is distributed

uniformly among all the P that behave properly on O2, O1,W . How to do key
generation efficiently, and how to use the trapdoor structure to sample preimages
for P is irrelevant for our attacks, so we refer to [4] for the details.

3 Simple Attack

Let (pk = P, sk = (O2, O1,W )) be a Rainbow key pair. For any vector x ∈ Fn
q ,

and any vector o2 ∈ O2, we have by construction (see Section 2) that P ′(x,o2) ∈
W . So for any x we can consider the differential

Dx : Fn
q → Fm

q : y 7→ P ′(x,y) ,
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Fn
q O1 O2

Fm
q W {0}

P P P′(x,·) P

Fig. 1. The structure of a Rainbow public key. The differential P ′(x, ·) maps O2 to W
for every x ∈ Fn

q .

which is a linear map from Fn
q to Fm

q , that moreover sends O2 toW . For any fixed
non-zero x the differential Dx|O2

restricted to O2 is a uniformly random linear
map from O2 to W (over the random bits of the key generation algorithm). Note
that dim(O2) = dim(W ) = o2, so the probability that Dx has a kernel vector in
O2 is exactly the probability that a random o2-by-o2 matrix over Fq is singular.
A matrix is non-singular if the first row is non-zero, and for each i < o2, the
i+1-th row is not in the span of the first i rows (which happens with probability
qi−1−o2), so the probability of being singular is

1−
o2−1∏
i=0

(
1− qi−o2

)
,

which is close to 1/q for sufficiently large q, regardless of o2. For example, with
q = 16, o2 = 32, the probability is approximately 1/15.06.

Our attack is now to simply pick a random (non-zero) x, hope that the kernel
of Dx intersects O2 non-trivially, and then try to solve for a vector o in this
intersection. Since P(o) = 0 for all o ∈ O2, we propose to do this by solving the
following system {

Dxo = 0

P(o) = 0

This is a system ofm homogeneous linear equations, andm homogeneous quadratic
quations in the n variables of o. If we use the m linear equations to eliminate
m of the variables from the quadratic equations, we end up with a system of

m homogeneous equations in n − m variables. Concretely, let B ∈ F
n×(n−m)
q

be a matrix whose columns form a basis for ker(Dx), then we are looking for a
solution x ∈ Fn−m

q to P̃(x) = 0, where P̃(x) := P(Bx).

Attack in fields of odd characteristic. Our experiments (see Appendix A)
show that when q is odd, P̃ behaves like a random system of m homogeneous
quadratic equation in n−m variables in the XL algorithm. The ranks of the XL
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systems exactly match the ranks of XL systems of systems or random quadratic
equations at each operation degree D. In particular, if a solution to P(x) = 0
exists we can find it with an estimated gate cost of

3

(
n−m− 1 +D

D

)2(
n−m+ 1

2

)
field multiplications, where D is the smallest positive integer such that the tD

coefficient of the power series expansion of (1− t2)m/(1− t)m−n (see Section 2.)

Attack in fields of even characteristic. Our experiments show that for even
q, the rank of the XL systems does not match that of random systems, and just
applying the XL as in the case of odd characteristic sometimes fails. The reason
is that P ′(x,x) = 2P(x) vanishes in characteristic 2, so x ∈ ker(Dx). This means
there is a x̃ ∈ Fn−m

q (known to the attacker) such that P̃(x̃+y) = P̃(x̃) + P̃(y)

for all y ∈ Fn−m
q , which is not something that usually happens for random P̃.

Luckily for us, this is not a problem for the attack, in fact we can even exploit
this property to make the attack slightly more efficient: We want to find x such
that P̃(x) = 0. Let Y ⊂ Fn−m

q be any subspace of dimension n − m − 1 that
does not contain x̃, such that ⟨x̃⟩ + Y = Fn−m

q . Then it suffices to find y ∈ Y

such that P̃(y) = αP̃(x̃) for some α ∈ Fq, because then x = x̃ + α−1/2y is a

solution to P̃(x) = 0, (recall that evey element has a square root in fields of
characteristic 2, so α−1/2 exists), because

P̃(x̃+ α−1/2y) = P̃(x̃) + α−1P̃(y) = 0 .

To find this y ∈ Y , we restrict P̃ to Y , and look for a solution to the m − 1
homogeneous quadratic equations

P̂ := {p̃1ai − p̃ia1}mi=2 ,

where a = P̃(x̃), and we assume with loss of generality that a1 ̸= 0.

By restricting to Y , we remove the problematic vector x̃, so it should not be a
surprise that our rank experiments show that the new system P̂ behaves like a
system of m−1 random homogeneous quadratic equations in n−m−1 variables
(see the rank experiments in Appendix A). Therefore, if a solution exists, we can
find it with an estimated cost of

3

(
n−m− 2 +D

D

)2(
n−m

2

)
field multiplications, where D is the smallest positive integer such that the tD

coefficient of the power series expansion of (1− t2)m−1/(1− t)m−n−1.
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Example 3. The SL1 parameter set of the second-round NIST submission is
q = 16, n = 96,m = 64, o2 = 32. If we apply our attack to this parameter set
we need to solve systems of m − 1 = 63 homogeneous quadratic equations in
n −m − 1 = 31 variables, so the estimated cost of solving each system is 252.3

multiplications (see Example 1). On average we need to try 15.06 systems. If the
cost of one F16-multiplication is 36 gates, then we can estimate that the total
average gate cost of the attack is 252.3 · 15.06 · 36 ≈ 261.4, as reported in Table 1.

Completing the attack. It is well known that once a vector in O2 is found, a
full secret key (O2, O1,W ) can be recovered very efficiently. See e.g., Section 5.3
of [4]. Given a single vector o ∈ O2, one can first compute

⟨P ′(o, e1), . . . ,P ′(o, en)⟩ ⊂ W ,

which will with overwhelming probability be an equality. Let ϕW be the quotient
map Fm

q → Fm
a /W . Then O2 is found as the kernel of the linear map

o 7→

ϕW (P ′(e1,o))
· · ·

ϕW (P ′(en, e))

 .

This kernel contains O2, and with overwhelming probability, the kernel is exactly
equal to O2. Finally, to compute O1, note that ϕW ◦P is a multivariate quadratic
map in n variables that vanishes on O1 (which has dimension m). Since for
Rainbow parameters we have n < 2m we can use the Kipnis-Shamir attack [12]
to recover O1 in polynomial time.

4 Combination with rectangular MinRank attack

Even though the simple attack from the previous section is very efficient for
the NIST SL 1 parameter sets of Rainbow (because n − m is small), we see
in Table 1 that for the SL 3 and SL 5 parameter sets, the new attack does
not always outperform the rectangular MinRank attack of Beullens [4]. In this
section, we first summarize how the rectangular MinRank attack works, and then
we show that it can be made more efficient by combining it with our “guess-Dx”
technique.

Rectangular MinRank attack. Let e1, · · · , en be a basis for Fn
q , and let P

be a Rainbow public key. Then we define n rectangular matrices Li ∈ Fn×m
q as

Li :=

P ′(e1, ei)
. . .

P ′(en, ei)

 ,
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for all i from 1 to n. Let o ∈ Fn
q be a vector, then since P ′ is bilinear, we have

that
n∑

i=1

oiLi =

 P ′(e1,o)
. . .

P ′(en,o) ,


which has rank at most dim(W ) = o2 if o ∈ O2, because all the rows of the
matrix are in W .

We have n public matrices of dimensions n-by-m, and we know there exist linear
combinations of these matrices that have exceptionally low rank ≤ dim(W ), so
we have an instance of the MinRank problem. We can now use generic MinRank
solvers, such as the algorithms by Bardet et al. [3], to find a linear combination
o ∈ Fn

q , such that
∑

oiLi has rank at most o2. If o is such a solution, then with
overwhelming probability o ∈ O2.

Note that every o ∈ O2 is a solution to the MinRank problem. Therefore, we
can discard o2 − 1 of the matrices, and the span of the remaining n − o2 + 1
matrices will still contain a non-zero matrix of low rank. This is useful because
reducing the number of matrices in the MinRank problem reduces the cost of
finding a solution.

Once a solution o ∈ O2 is found, a full key recovery can be done efficiently, as
explained at the end of section Section 3.

Remark 4. We have extra information about the solution o the MinRank prob-
lem, namely that P(o) = o. Beullens [4] shows that the MinRank solving al-
gorithm of Bardet et al. [3] can be adapted to take advantage of this extra
information. This reduces the cost of the attack by a small factor between 22

and 29 for the Rainbow parameters submitted to NIST.

Combined attack. The combined attack is straightforward. We choose a ran-
dom x ∈ Fn

q , and then we solve for a vector o ∈ ker(Dx), such that
∑

oiLi has
rank at most o2. We can use the Dxo = 0 equations to reduce the number of
matrices in the MinRank problem by m. Concretely, let b1, . . . ,bn−m be a basis
for ker(Dx), then we consider the n−m matrices

L̃i :=

n∑
j=1

bijLj =

P ′(e1,bi)
. . .

P ′(en,bi)

 ,

for all i from 1 to n−m. Now o =
∑

xibi ∈ ker(Dx) is a solution to the original
MinRank problem if and only if x is a solution to the new MinRank problem
with n−m matrices L̃1, . . . , L̃n−m.

The advantage of this approach is that we now have a MinRank problem with
only n − m matrices, which makes finding the solution much easier compared
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to the original rectangular MinRank attack, where we had n− o2 + 1 matrices.
This comes at the cost of having to repeat the attack on average approximately
q times, until ker(Dx) ∩O2 ̸= {0}.

Experiments (see Appendix A) reveal that the MinRank instance L̃1, . . . , L̃n−m

does not behave like a random MinRank instance. Upon inspection we see that
this is because for all L̃i, we have

xL̃i = P ′(x,bi) = Dxbi = 0.

That is, there is a common linear dependency shared by all the L̃i matrices. This
means that one of the rows is not contributing any information to the MinRank
problem. For example, if x1 ̸= 0, then the first row of

∑
oiL̃i is just a linear

combination of the other rows, which means we can safely delete this first row
without affecting the rank of

∑
oiL̃i. After deleting a row from the L̃i we get a

MinRank problem with n−m matrices of size (n−1)-by-m, and for which there
exists a solution of rank o2 if the guess of Dx was good. Our rank experiments
show that this system behaves exactly like a random MinRank instance in fields
of odd characteristic. In fields of characteristic two, we occasionally observe some
rank defects (see Appendix A). Since the observed defects are small, we believe
that the complexity of solving random MinRank instances is a good estimate for
the complexity of solving the MinRank instances coming from a Rainbow public
key. We leave the investigation of the rank defects and quantifying how much is
gained by adding the P(o) = 0 equations for future work.

Example 5. We estimate the cost of the combined attack against the SL 5 pa-
rameter set from the second-round submission to NIST. This paramater set is
q = 256, n = 188,m = 96, o2 = 48. This means that after guessing a good Dx

(which happens with probability of approximately 1/255), we get a MinRank
instance of n −m = 92 matrices with n − 1 = 187 rows and m = 96 columns,
whose span contains a non-zero matrix of rank o2 = 48. Solving this MinRank
instance with the algorithm of Bardet et al. costs 2149.1 field multiplications (see
Example 2). If the gate cost of a F256-multiplication is 128, then the total ex-
pected gate cost of the attack is 2149.1 ·128 ·255 ≈ 2164.1, as reported in Table 1.
This is an improvement by a factor 227 over previously known attacks.

5 Experimental Results and Conclusion

To validate our attack and showcase that the attack is efficient enough to be
performed in practice, we implemented a Sage script that generates a Rainbow
public key, guesses a vector x ∈ Fn

q , and constructs (in fields of odd charac-

teristic) the system P̃ as described in Section 3, and writes it to a file in the
format readable by the optimized implementation of the block Wiedemann XL
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algorithm by Cheng, Chou, Niederhagen, and Yang [6]. In fields of characteristic
two, the script instead constructs and stores the slightly smaller P̂ system. We
then then run the block Wiedemann XL algorithm on the stored systems, and
find that it indeed finds solutions to P̃(x) = 0 (resp. P̂(x) = 0) if the solutions
exist.

The SL 1 parameter set of the second-round Rainbow submission is (q = 16, n =
96,m = 64, o2 = 32). For these parameters solving P̂(x) = 0 takes three hours
and 32 minutes on a laptop using the 8 cores of an Intel i9-10885H CPU, running
at 2.5 GHz. The block Wiedemann XL algorithm reports on the rate at which it
does F16-multiplications, which fluctuates between 130 and 200 multiplications
per cycle. This is consistent with the estimate that solving the system takes 252.3

multiplications (Example 1). Solving the system only uses 1.1 GB of memory.
Since each guess x leads to a key recovery with a probability of 1/15.06, to total
expected running time of the attack is 15.06 · 3.53 ≈ 53 hours.

We can use the knowledge of the secret key to determine if a guess for x is
good (i.e., if ker(Dx) ∩ O2 ̸= {0}) without doing the expensive system-solving
computation. This allows us to try a large number of guesses and count how
often a guess is good. We made 4000 guesses and found that 242 of them are
good, which is consistent with the null hypothesis of 1/15.06 (with a one-sided
p-value of 0.085).

The sage implementation of our attack and scripts for reproducing the rank
experiments of Appendix A are available at

https://github.com/WardBeullens/BreakingRainbow

We can conclude that the cost and success probability of the attack in practice
agree very well with what the theory predicts. Moreover, we demonstrated that
a key-recovery against the SL 1 parameter set of the second-round submission
of Rainbow can be performed in practice by anyone with a decent laptop and
some patience (or luck). A key-recovery attack against the SL 1 parameter set
of the third-round Rainbow submission is expected to be more costly by only a
factor 28, so this should be feasible for an attacker with a moderate amount of
resources.

In principle, it would be possible to move to larger parameters to protect against
the attacks presented in this paper, at the cost of larger key sizes and signature
sizes. E.g., the SL III parameters of the third-round submission seem to provide
enough security for SL I, but those parameters have signatures and public keys
that are larger by a factor 2.5 and 4.4 respectively compared to the SL I param-
eters. However, there seems to be some room for improvement for the attacks in
Section 4, so more cryptanalysis would be required before we can have confidence
in the security of Rainbow. Moreover, the resulting Rainbow signature scheme

https://github.com/WardBeullens/BreakingRainbow
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would be less efficient than the Oil and Vinegar scheme. So there is seemingly
no reason to prefer Rainbow over the Oil and Vinegar scheme [16], on which
Rainbow is based, and which is older, simpler, and has a strictly smaller attack
surface in comparison to Rainbow. (E.g., none of the attacks in this paper seem
to apply to the Oil and Vinegar scheme).

References

[1] Response to recent paper by Ward Beullens. https://troll.iis.sinica.edu.

tw/by-publ/recent/response-ward.pdf, 2020. 1
[2] John Baena, Pierre Briaud, Daniel Cabarcas, Ray Perlner, Daniel Smith-Tone, and

Javier Verbel. Improving support-minors rank attacks: applications to GeMSS and
rainbow. Cryptology ePrint Archive, Report 2021/1677, 2021. https://eprint.
iacr.org/2021/1677. 1

[3] Magali Bardet, Maxime Bros, Daniel Cabarcas, Philippe Gaborit, Ray A. Perlner,
Daniel Smith-Tone, Jean-Pierre Tillich, and Javier A. Verbel. Improvements of
algebraic attacks for solving the rank decoding and MinRank problems. In Shiho
Moriai and Huaxiong Wang, editors, ASIACRYPT 2020, Part I, volume 12491 of
LNCS, pages 507–536. Springer, Heidelberg, December 2020. 1, 2, 4, 4

[4] Ward Beullens. Improved cryptanalysis of UOV and rainbow. In Anne Canteaut
and François-Xavier Standaert, editors, EUROCRYPT 2021, Part I, volume 12696
of LNCS, pages 348–373. Springer, Heidelberg, October 2021. 1, 1, 2, 2, 3, 4, 4

[5] Olivier Billet and Henri Gilbert. Cryptanalysis of Rainbow. In Roberto De Prisco
and Moti Yung, editors, SCN 06, volume 4116 of LNCS, pages 336–347. Springer,
Heidelberg, September 2006. 1

[6] Chen-Mou Cheng, Tung Chou, Ruben Niederhagen, and Bo-Yin Yang. Solving
quadratic equations with XL on parallel architectures. In Emmanuel Prouff and
Patrick Schaumont, editors, CHES 2012, volume 7428 of LNCS, pages 356–373.
Springer, Heidelberg, September 2012. 2, 5

[7] Nicolas Courtois, Alexander Klimov, Jacques Patarin, and Adi Shamir. Efficient
algorithms for solving overdefined systems of multivariate polynomial equations.
In Bart Preneel, editor, EUROCRYPT 2000, volume 1807 of LNCS, pages 392–
407. Springer, Heidelberg, May 2000. 2

[8] Jintai Ding and Dieter Schmidt. Rainbow, a new multivariable polynomial sig-
nature scheme. In John Ioannidis, Angelos Keromytis, and Moti Yung, editors,
ACNS 05, volume 3531 of LNCS, pages 164–175. Springer, Heidelberg, June 2005.
1

[9] Jintai Ding, Bo-Yin Yang, Chia-Hsin Owen Chen, Ming-Shing Chen, and Chen-
Mou Cheng. New differential-algebraic attacks and reparametrization of Rainbow.
In Steven M. Bellovin, Rosario Gennaro, Angelos D. Keromytis, and Moti Yung,
editors, ACNS 08, volume 5037 of LNCS, pages 242–257. Springer, Heidelberg,
June 2008. 1, 2

[10] Louis Goubin and Nicolas Courtois. Cryptanalysis of the TTM cryptosystem.
In Tatsuaki Okamoto, editor, ASIACRYPT 2000, volume 1976 of LNCS, pages
44–57. Springer, Heidelberg, December 2000. 1

[11] Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced oil and vinegar
signature schemes. In Jacques Stern, editor, EUROCRYPT’99, volume 1592 of
LNCS, pages 206–222. Springer, Heidelberg, May 1999. 1

https://troll.iis.sinica.edu.tw/by-publ/recent/response-ward.pdf
https://troll.iis.sinica.edu.tw/by-publ/recent/response-ward.pdf
https://eprint.iacr.org/2021/1677
https://eprint.iacr.org/2021/1677


Breaking Rainbow Takes a Weekend on a Laptop 13

[12] Aviad Kipnis and Adi Shamir. Cryptanalysis of the oil & vinegar signature
scheme. In Hugo Krawczyk, editor, CRYPTO’98, volume 1462 of LNCS, pages
257–266. Springer, Heidelberg, August 1998. 1, 3

[13] Aviad Kipnis and Adi Shamir. Cryptanalysis of the HFE public key cryptosystem
by relinearization. In Michael J. Wiener, editor, CRYPTO’99, volume 1666 of
LNCS, pages 19–30. Springer, Heidelberg, August 1999. 2
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A Rank experiments

Simple Attack. For some rainbow parameter sets over F31 we construct some
P̃(x) = 0 systems as in our simple attack, and compute the ranks of Macaulay
matrices of these systems at various degrees. These ranks are displayed in Ta-
ble 2. Similarly, for some rainbow parameters over F16, we construct some
P̂(x) = 0 systems, and we displayed the ranks of their Macaulay matrices in
Table 3. We observe in both cases that the ranks are identical to the ranks of
systems of uniformly random quadratic equations with the same dimensions.
I.e., if P̃(x) (or P̂(x)) has m equations and n variables, then the rank of its
Macaulay matrix at degree D is equal to the coefficient of tD in the power series
expansion of

(1− t)n(1− (1− t2)m) ,

if this coefficient is positive. Otherwise, the system has a kernel of dimension 1,
which corresponds to the 1-dimensional space of solutions. This is evidence that
the P̃(x) = 0 and P̂(x) = 0 systems do not have special properties that make
them easier or harder to solve in comparison with random systems.

Combined Attack. Table 4 reports on some of our rank experiments for the
combined attack. For some small Rainbow parameter sets, we executed the com-
bined attack from Section 4 to derive a MinRank instance with n−m matrices

https://eprint.iacr.org/2020/702
https://eprint.iacr.org/2020/702
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with n−1 rows and m columns (of which we keep m′). Then we constructed the
linearized systems as they appear in the MinRank solving algorithm of Bardet
et al. at several bi-degrees (b, 1), and we compute their ranks. We found that
in odd characteristic, the rank of the Macaulay matrices always matches those
of random MinRank instances with the same parameters. In contrast, we some-
times observe a small rank defect in characteristic two (they are underlined in
the Table 4).

Table 2. The rank and the number of columns of the Macaulay matrices for the
P̃(x) = 0 system of equations of simple attack over F31. Ranks of the Macaulay matrix
of degree D is given in boldface if the system can be solved at that degree.

Rainbow P̃ Rank of Macaulay
parameters size matrix at degree D
n m o2 m n D = 2 D = 3 D = 4

30 20 10 20 10 rank 20 200 714
columns 55 220 715

45 30 15 30 15 rank 30 450 3059
columns 120 680 3060

60 40 20 40 20 rank 40 800 7620
columns 210 1540 8855

Table 3. The rank and the number of columns of the Macaulay matrices for the
P̂(x) = 0 system of equations of simple attack over F16. Ranks of the Macaulay matrix
of degree D is given in boldface if the system can be solved at that degree.

Rainbow P̂ Rank of Macaulay
parameters size matrix at degree D
n m o2 m n D = 2 D = 3 D = 4

30 20 10 19 9 rank 19 164
columns 45 165

36 24 12 23 11 rank 23 253 1000
columns 66 286 1001

42 28 14 27 13 rank 27 351 1819
columns 91 455 1820
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Table 4. The rank and the number of columns of the Macaulay matrices for the
MinRank problems from the combined attack over F31 and F16. Ranks of the Macaulay
matrix at bi-degree (b, 1) is given in boldface if the system can be solved at that bi-
degree.

Rainbow MinRank Rank of Macaulay
parameters parameters matrix at bi-degree (b, 1)
n m o2 k m′ b = 1 b = 2 b = 3

rank in F31 279
15 10 5 5 8 rank in F16 279

columns 280

rank in F31 98 314
15 10 5 5 7 rank in F16 98 314

columns 105 315

rank in F31 78 533 1799
14 6 4 8 6 rank in F16 78 527 1799

columns 120 540 1800
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